File: vtkBezierCurve.cxx

package info (click to toggle)
paraview 5.11.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 497,236 kB
  • sloc: cpp: 3,171,290; ansic: 1,315,072; python: 134,290; xml: 103,324; sql: 65,887; sh: 5,286; javascript: 4,901; yacc: 4,383; java: 3,977; perl: 2,363; lex: 1,909; f90: 1,255; objc: 143; makefile: 119; tcl: 59; pascal: 50; fortran: 29
file content (144 lines) | stat: -rw-r--r-- 4,540 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkBezierCurve.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkBezierCurve.h"

#include "vtkBezierInterpolation.h"
#include "vtkCellData.h"
#include "vtkDoubleArray.h"
#include "vtkIdList.h"
#include "vtkLine.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPoints.h"
#include "vtkTriangle.h"
#include "vtkVector.h"
#include "vtkVectorOperators.h"

VTK_ABI_NAMESPACE_BEGIN
vtkStandardNewMacro(vtkBezierCurve);

vtkBezierCurve::vtkBezierCurve() = default;

vtkBezierCurve::~vtkBezierCurve() = default;

void vtkBezierCurve::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os, indent);
}

/**\brief Set the rational weight of the cell, given a vtkDataSet
 */
void vtkBezierCurve::SetRationalWeightsFromPointData(
  vtkPointData* point_data, const vtkIdType numPts)
{
  vtkDataArray* v = point_data->GetRationalWeights();
  if (v)
  {
    this->GetRationalWeights()->SetNumberOfTuples(numPts);
    for (vtkIdType i = 0; i < numPts; i++)
    {
      this->GetRationalWeights()->SetValue(i, v->GetTuple1(this->PointIds->GetId(i)));
    }
  }
  else
    this->GetRationalWeights()->Reset();
}

/**\brief Populate the linear segment returned by GetApprox() with point-data from one voxel-like
 * intervals of this cell.
 *
 * Ensure that you have called GetOrder() before calling this method
 * so that this->Order is up to date. This method does no checking
 * before using it to map connectivity-array offsets.
 */
vtkLine* vtkBezierCurve::GetApproximateLine(
  int subId, vtkDataArray* scalarsIn, vtkDataArray* scalarsOut)
{
  vtkLine* approx = this->GetApprox();
  bool doScalars = (scalarsIn && scalarsOut);
  if (doScalars)
  {
    scalarsOut->SetNumberOfTuples(2);
  }
  int i;
  if (!this->SubCellCoordinatesFromId(i, subId))
  {
    vtkErrorMacro("Invalid subId " << subId);
    return nullptr;
  }
  // Get the point ids (and optionally scalars) for each of the 2 corners
  // in the approximating line spanned by (i, i+1):
  for (vtkIdType ic = 0; ic < 2; ++ic)
  {
    const vtkIdType corner = this->PointIndexFromIJK(i + ic, 0, 0);
    vtkVector3d cp;
    // Only the first four corners are interpolatory, we need to project the value of the other
    // nodes
    if (corner < 2)
    {
      this->Points->GetPoint(corner, cp.GetData());
    }
    else
    {
      this->SetParametricCoords();
      double pcoords[3];
      this->PointParametricCoordinates->GetPoint(corner, pcoords);
      int subIdtps;
      const int numtripts = (this->Order[0] + 1);
      std::vector<double> weights(numtripts);
      this->vtkHigherOrderCurve::EvaluateLocation(subIdtps, pcoords, cp.GetData(), weights.data());
    }
    approx->Points->SetPoint(ic, cp.GetData());
    approx->PointIds->SetId(ic, doScalars ? corner : this->PointIds->GetId(corner));
    if (doScalars)
    {
      scalarsOut->SetTuple(ic, scalarsIn->GetTuple(corner));
    }
  }
  return approx;
}

void vtkBezierCurve::InterpolateFunctions(const double pcoords[3], double* weights)
{
  vtkBezierInterpolation::Tensor1ShapeFunctions(this->GetOrder(), pcoords, weights);

  // If the unit cell has rational weights: weights_i = weights_i * rationalWeights / sum( weights_i
  // * rationalWeights )
  const bool has_rational_weights = RationalWeights->GetNumberOfTuples() > 0;
  if (has_rational_weights)
  {
    vtkIdType nPoints = this->GetPoints()->GetNumberOfPoints();
    double w = 0;
    for (vtkIdType idx = 0; idx < nPoints; ++idx)
    {
      weights[idx] *= RationalWeights->GetTuple1(idx);
      w += weights[idx];
    }
    const double one_over_rational_weight = 1. / w;
    for (vtkIdType idx = 0; idx < nPoints; ++idx)
      weights[idx] *= one_over_rational_weight;
  }
}

void vtkBezierCurve::InterpolateDerivs(const double pcoords[3], double* derivs)
{
  vtkBezierInterpolation::Tensor1ShapeDerivatives(this->GetOrder(), pcoords, derivs);
}
vtkDoubleArray* vtkBezierCurve::GetRationalWeights()
{
  return RationalWeights.Get();
}
VTK_ABI_NAMESPACE_END