File: vtkBoundingBox.h

package info (click to toggle)
paraview 5.11.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 497,236 kB
  • sloc: cpp: 3,171,290; ansic: 1,315,072; python: 134,290; xml: 103,324; sql: 65,887; sh: 5,286; javascript: 4,901; yacc: 4,383; java: 3,977; perl: 2,363; lex: 1,909; f90: 1,255; objc: 143; makefile: 119; tcl: 59; pascal: 50; fortran: 29
file content (587 lines) | stat: -rw-r--r-- 16,967 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
/*=========================================================================

Program:   Visualization Toolkit
Module:    vtkBoundingBox.h

Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/**
 * @class   vtkBoundingBox
 * @brief   Fast, simple class for representing and operating on 3D bounds
 *
 * vtkBoundingBox maintains and performs operations on a 3D axis aligned
 * bounding box. It is very light weight and many of the member functions are
 * in-lined so it is very fast. It is not derived from vtkObject so it can
 * be allocated on the stack.
 *
 * @sa
 * vtkBox
 */

#ifndef vtkBoundingBox_h
#define vtkBoundingBox_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkSystemIncludes.h"
#include <atomic> // For threaded bounding box computation

VTK_ABI_NAMESPACE_BEGIN
class vtkPoints;

class VTKCOMMONDATAMODEL_EXPORT vtkBoundingBox
{
public:
  ///@{
  /**
   * Construct a bounding box with the min point set to
   * VTK_DOUBLE_MAX and the max point set to VTK_DOUBLE_MIN.
   */
  vtkBoundingBox();
  vtkBoundingBox(const double bounds[6]);
  vtkBoundingBox(double xMin, double xMax, double yMin, double yMax, double zMin, double zMax);
  ///@}

  /**
   * Copy constructor.
   */
  vtkBoundingBox(const vtkBoundingBox& bbox);

  /**
   * Assignment Operator
   */
  vtkBoundingBox& operator=(const vtkBoundingBox& bbox);

  ///@{
  /**
   * Equality operator.
   */
  bool operator==(const vtkBoundingBox& bbox) const;
  bool operator!=(const vtkBoundingBox& bbox) const;
  ///@}

  ///@{
  /**
   * Set the bounds explicitly of the box (using the VTK convention for
   * representing a bounding box).  Returns 1 if the box was changed else 0.
   */
  void SetBounds(const double bounds[6]);
  void SetBounds(double xMin, double xMax, double yMin, double yMax, double zMin, double zMax);
  ///@}

  ///@{
  /**
   * Compute the bounding box from an array of vtkPoints. It uses a fast
   * (i.e., threaded) path when possible. The second signature (with point
   * uses) only considers points with ptUses[i] != 0 in the bounds
   * calculation. The third signature uses point ids.
   * The non-static ComputeBounds() methods update the current bounds of an instance of this class.
   */
  static void ComputeBounds(vtkPoints* pts, double bounds[6]);
  static void ComputeBounds(vtkPoints* pts, const unsigned char* ptUses, double bounds[6]);
  static void ComputeBounds(
    vtkPoints* pts, const std::atomic<unsigned char>* ptUses, double bounds[6]);
  static void ComputeBounds(
    vtkPoints* pts, const long long* ptIds, long long numPointIds, double bounds[6]);
  static void ComputeBounds(vtkPoints* pts, const long* ptIds, long numPointIds, double bounds[6]);
  static void ComputeBounds(vtkPoints* pts, const int* ptIds, int numPointIds, double bounds[6]);
  void ComputeBounds(vtkPoints* pts)
  {
    double bds[6];
    vtkBoundingBox::ComputeBounds(pts, bds);
    this->MinPnt[0] = bds[0];
    this->MinPnt[1] = bds[2];
    this->MinPnt[2] = bds[4];
    this->MaxPnt[0] = bds[1];
    this->MaxPnt[1] = bds[3];
    this->MaxPnt[2] = bds[5];
  }
  void ComputeBounds(vtkPoints* pts, unsigned char* ptUses)
  {
    double bds[6];
    vtkBoundingBox::ComputeBounds(pts, ptUses, bds);
    this->MinPnt[0] = bds[0];
    this->MinPnt[1] = bds[2];
    this->MinPnt[2] = bds[4];
    this->MaxPnt[0] = bds[1];
    this->MaxPnt[1] = bds[3];
    this->MaxPnt[2] = bds[5];
  }
  ///@}

  ///@{
  /**
   * Compute local bounds.
   * Not as fast as vtkPoints.getBounds() if u, v, w form a natural basis.
   */
  static void ComputeLocalBounds(
    vtkPoints* points, double u[3], double v[3], double w[3], double outputBounds[6]);
  ///@}

  ///@{
  /**
   * Set the minimum point of the bounding box - if the min point
   * is greater than the max point then the max point will also be changed.
   */
  void SetMinPoint(double x, double y, double z);
  void SetMinPoint(double p[3]);
  ///@}

  ///@{
  /**
   * Set the maximum point of the bounding box - if the max point
   * is less than the min point then the min point will also be changed.
   */
  void SetMaxPoint(double x, double y, double z);
  void SetMaxPoint(double p[3]);
  ///@}

  ///@{
  /**
   * Returns 1 if the bounds have been set and 0 if the box is in its
   * initialized state which is an inverted state.
   */
  int IsValid() const;
  static int IsValid(const double bounds[6]);
  ///@}

  ///@{
  /**
   * Change bounding box so it includes the point p.  Note that the bounding
   * box may have 0 volume if its bounds were just initialized.
   */
  void AddPoint(double p[3]);
  void AddPoint(double px, double py, double pz);
  ///@}

  /**
   * Change the bounding box to be the union of itself and the specified
   * bbox.
   */
  void AddBox(const vtkBoundingBox& bbox);

  /**
   * Adjust the bounding box so it contains the specified bounds (defined by
   * the VTK representation (xmin,xmax, ymin,ymax, zmin,zmax).
   */
  void AddBounds(const double bounds[]);

  /**
   * Returns true if this instance is entirely contained by bbox.
   */
  bool IsSubsetOf(const vtkBoundingBox& bbox) const;

  /**
   * Intersect this box with bbox. The method returns 1 if both boxes are
   * valid and they do have overlap else it will return 0.  If 0 is returned
   * the box has not been modified.
   */
  int IntersectBox(const vtkBoundingBox& bbox);

  /**
   * Returns 1 if the boxes intersect else returns 0.
   */
  int Intersects(const vtkBoundingBox& bbox) const;

  /**
   * Intersect this box with the half space defined by plane.  Returns true
   * if there is intersection---which implies that the box has been modified
   * Returns false otherwise.
   */
  bool IntersectPlane(double origin[3], double normal[3]);

  /**
   * Intersect this box with a sphere.
   * Parameters involve the center of the sphere and the squared radius.
   */
  bool IntersectsSphere(double center[3], double squaredRadius) const;

  /**
   * Returns true if any part of segment [p1,p2] lies inside the bounding box, as well as on its
   * boundaries. It returns false otherwise.
   */
  bool IntersectsLine(const double p1[3], const double p2[3]) const;

  /**
   * Returns the inner dimension of the bounding box.
   */
  int ComputeInnerDimension() const;

  /**
   * Returns 1 if the min and max points of bbox are contained
   * within the bounds of the specified box, else returns 0.
   */
  int Contains(const vtkBoundingBox& bbox) const;

  ///@{
  /**
   * Get the bounds of the box (defined by VTK style).
   */
  void GetBounds(double bounds[6]) const;
  void GetBounds(
    double& xMin, double& xMax, double& yMin, double& yMax, double& zMin, double& zMax) const;
  ///@}

  /**
   * Return the ith bounds of the box (defined by VTK style).
   */
  double GetBound(int i) const;

  ///@{
  /**
   * Get the minimum point of the bounding box.
   */
  const double* GetMinPoint() const VTK_SIZEHINT(3);
  void GetMinPoint(double& x, double& y, double& z) const;
  void GetMinPoint(double x[3]) const;
  ///@}

  ///@{
  /**
   * Get the maximum point of the bounding box.
   */
  const double* GetMaxPoint() const VTK_SIZEHINT(3);
  void GetMaxPoint(double& x, double& y, double& z) const;
  void GetMaxPoint(double x[3]) const;
  ///@}

  /**
   * Get the ith corner of the bounding box. The points are ordered
   * with i, then j, then k increasing.
   */
  void GetCorner(int corner, double p[3]) const;

  ///@{
  /**
   * Returns 1 if the point is contained in the box else 0.
   */
  vtkTypeBool ContainsPoint(const double p[3]) const;
  vtkTypeBool ContainsPoint(double px, double py, double pz) const;
  template <class PointT>
  bool ContainsPoint(const PointT& p) const;
  ///@}

  /**
   * Get the center of the bounding box.
   */
  void GetCenter(double center[3]) const;

  /**
   * Get the length of each side of the box.
   */
  void GetLengths(double lengths[3]) const;

  /**
   * Return the length of the bounding box in the ith direction.
   */
  double GetLength(int i) const;

  /**
   * Return the maximum length of the box.
   */
  double GetMaxLength() const;

  /**
   * Return the length of the diagonal.
   * \pre not_empty: this->IsValid()
   */
  double GetDiagonalLength() const;

  ///@{
  /**
   * Expand the bounding box. Inflate(delta) expands by delta on each side,
   * the box will grow by 2*delta in x, y, and z. Inflate(dx,dy,dz) expands
   * by the given amounts in each of the x, y, z directions.  Inflate()
   * expands the bounds so that it has non-zero volume. Sides that are
   * inflated are adjusted by 1% of the longest edge. Or if an edge is zero
   * length, the bounding box is inflated by 1 unit in that direction.
   * Finally, InflateSlice(delta) will expand any side of the bounding box by
   * +/- delta if that side has length <2*delta (i.e., it is a slice as
   * measured by the user-specified delta)).
   */
  void Inflate(double delta);
  void Inflate(double deltaX, double deltaY, double deltaZ);
  void Inflate();
  void InflateSlice(double delta);
  ///@}

  ///@{
  /**
   * Scale each dimension of the box by some given factor.
   * If the box is not valid, it stays unchanged.
   * If the scalar factor is negative, bounds are flipped: for example,
   * if (xMin,xMax)=(-2,4) and sx=-3, (xMin,xMax) becomes (-12,6).
   */
  void Scale(double s[3]);
  void Scale(double sx, double sy, double sz);
  ///@}

  ///@{
  /**
   * Scale each dimension of the box by some given factor, with the origin of
   * the bounding box the center of the scaling. If the box is not
   * valid, it is not changed.
   */
  void ScaleAboutCenter(double s);
  void ScaleAboutCenter(double s[3]);
  void ScaleAboutCenter(double sx, double sy, double sz);
  ///@}

  /**
   * Compute the number of divisions in the x-y-z directions given a
   * psoitive, target number of total bins (i.e., product of divisions in the
   * x-y-z directions). The computation is done in such a way as to create
   * near cuboid bins. Also note that the returned bounds may be different
   * than the bounds defined in this class, as the bounds in the x-y-z
   * directions can never be <= 0. Note that the total number of divisions
   * (divs[0]*divs[1]*divs[2]) will be less than or equal to the target
   * number of bins (as long as totalBins>=1).
   */
  vtkIdType ComputeDivisions(vtkIdType totalBins, double bounds[6], int divs[3]) const;

  /**
   * Clamp the number of divisions to be less than or equal to a target number
   * of bins, and the divs[i] >= 1.
   */
  static void ClampDivisions(vtkIdType targetBins, int divs[3]);

  /**
   * Returns the box to its initialized state.
   */
  void Reset();

protected:
  double MinPnt[3], MaxPnt[3];
};

inline void vtkBoundingBox::Reset()
{
  this->MinPnt[0] = this->MinPnt[1] = this->MinPnt[2] = VTK_DOUBLE_MAX;
  this->MaxPnt[0] = this->MaxPnt[1] = this->MaxPnt[2] = VTK_DOUBLE_MIN;
}

inline void vtkBoundingBox::GetBounds(
  double& xMin, double& xMax, double& yMin, double& yMax, double& zMin, double& zMax) const
{
  xMin = this->MinPnt[0];
  xMax = this->MaxPnt[0];
  yMin = this->MinPnt[1];
  yMax = this->MaxPnt[1];
  zMin = this->MinPnt[2];
  zMax = this->MaxPnt[2];
}

inline double vtkBoundingBox::GetBound(int i) const
{
  // If i is odd then when are returning a part of the max bounds
  // else part of the min bounds is requested.  The exact component
  // needed is i /2 (or i right shifted by 1
  return ((i & 0x1) ? this->MaxPnt[i >> 1] : this->MinPnt[i >> 1]);
}

inline const double* vtkBoundingBox::GetMinPoint() const
{
  return this->MinPnt;
}

inline void vtkBoundingBox::GetMinPoint(double x[3]) const
{
  x[0] = this->MinPnt[0];
  x[1] = this->MinPnt[1];
  x[2] = this->MinPnt[2];
}

inline const double* vtkBoundingBox::GetMaxPoint() const
{
  return this->MaxPnt;
}

inline void vtkBoundingBox::GetMaxPoint(double x[3]) const
{
  x[0] = this->MaxPnt[0];
  x[1] = this->MaxPnt[1];
  x[2] = this->MaxPnt[2];
}

inline int vtkBoundingBox::IsValid() const
{
  return ((this->MinPnt[0] <= this->MaxPnt[0]) && (this->MinPnt[1] <= this->MaxPnt[1]) &&
    (this->MinPnt[2] <= this->MaxPnt[2]));
}

inline int vtkBoundingBox::IsValid(const double bounds[6])
{
  return (bounds[0] <= bounds[1] && bounds[2] <= bounds[3] && bounds[4] <= bounds[5]);
}

inline double vtkBoundingBox::GetLength(int i) const
{
  return this->MaxPnt[i] - this->MinPnt[i];
}

inline void vtkBoundingBox::GetLengths(double lengths[3]) const
{
  lengths[0] = this->GetLength(0);
  lengths[1] = this->GetLength(1);
  lengths[2] = this->GetLength(2);
}

inline void vtkBoundingBox::GetCenter(double center[3]) const
{
  center[0] = 0.5 * (this->MaxPnt[0] + this->MinPnt[0]);
  center[1] = 0.5 * (this->MaxPnt[1] + this->MinPnt[1]);
  center[2] = 0.5 * (this->MaxPnt[2] + this->MinPnt[2]);
}

inline bool vtkBoundingBox::IsSubsetOf(const vtkBoundingBox& bbox) const
{
  const double* bboxMaxPnt = bbox.GetMaxPoint();
  const double* bboxMinPnt = bbox.GetMinPoint();
  return this->MaxPnt[0] < bboxMaxPnt[0] && this->MinPnt[0] > bboxMinPnt[0] &&
    this->MaxPnt[1] < bboxMaxPnt[1] && this->MinPnt[1] > bboxMinPnt[1] &&
    this->MaxPnt[2] < bboxMaxPnt[2] && this->MinPnt[2] > bboxMinPnt[2];
}

inline void vtkBoundingBox::SetBounds(const double bounds[6])
{
  this->SetBounds(bounds[0], bounds[1], bounds[2], bounds[3], bounds[4], bounds[5]);
}

inline void vtkBoundingBox::GetBounds(double bounds[6]) const
{
  this->GetBounds(bounds[0], bounds[1], bounds[2], bounds[3], bounds[4], bounds[5]);
}

inline vtkBoundingBox::vtkBoundingBox()
{
  this->Reset();
}

inline vtkBoundingBox::vtkBoundingBox(const double bounds[6])
{
  this->Reset();
  this->SetBounds(bounds);
}

inline vtkBoundingBox::vtkBoundingBox(
  double xMin, double xMax, double yMin, double yMax, double zMin, double zMax)
{
  this->Reset();
  this->SetBounds(xMin, xMax, yMin, yMax, zMin, zMax);
}

inline vtkBoundingBox::vtkBoundingBox(const vtkBoundingBox& bbox)
{
  this->MinPnt[0] = bbox.MinPnt[0];
  this->MinPnt[1] = bbox.MinPnt[1];
  this->MinPnt[2] = bbox.MinPnt[2];

  this->MaxPnt[0] = bbox.MaxPnt[0];
  this->MaxPnt[1] = bbox.MaxPnt[1];
  this->MaxPnt[2] = bbox.MaxPnt[2];
}

inline vtkBoundingBox& vtkBoundingBox::operator=(const vtkBoundingBox& bbox)
{
  this->MinPnt[0] = bbox.MinPnt[0];
  this->MinPnt[1] = bbox.MinPnt[1];
  this->MinPnt[2] = bbox.MinPnt[2];

  this->MaxPnt[0] = bbox.MaxPnt[0];
  this->MaxPnt[1] = bbox.MaxPnt[1];
  this->MaxPnt[2] = bbox.MaxPnt[2];
  return *this;
}

inline bool vtkBoundingBox::operator==(const vtkBoundingBox& bbox) const
{
  return ((this->MinPnt[0] == bbox.MinPnt[0]) && (this->MinPnt[1] == bbox.MinPnt[1]) &&
    (this->MinPnt[2] == bbox.MinPnt[2]) && (this->MaxPnt[0] == bbox.MaxPnt[0]) &&
    (this->MaxPnt[1] == bbox.MaxPnt[1]) && (this->MaxPnt[2] == bbox.MaxPnt[2]));
}

inline bool vtkBoundingBox::operator!=(const vtkBoundingBox& bbox) const
{
  return !((*this) == bbox);
}

inline void vtkBoundingBox::SetMinPoint(double p[3])
{
  this->SetMinPoint(p[0], p[1], p[2]);
}

inline void vtkBoundingBox::SetMaxPoint(double p[3])
{
  this->SetMaxPoint(p[0], p[1], p[2]);
}

inline void vtkBoundingBox::GetMinPoint(double& x, double& y, double& z) const
{
  x = this->MinPnt[0];
  y = this->MinPnt[1];
  z = this->MinPnt[2];
}

inline void vtkBoundingBox::GetMaxPoint(double& x, double& y, double& z) const
{
  x = this->MaxPnt[0];
  y = this->MaxPnt[1];
  z = this->MaxPnt[2];
}

inline vtkTypeBool vtkBoundingBox::ContainsPoint(double px, double py, double pz) const
{
  if ((px < this->MinPnt[0]) || (px > this->MaxPnt[0]))
  {
    return 0;
  }
  if ((py < this->MinPnt[1]) || (py > this->MaxPnt[1]))
  {
    return 0;
  }
  if ((pz < this->MinPnt[2]) || (pz > this->MaxPnt[2]))
  {
    return 0;
  }
  return 1;
}

inline vtkTypeBool vtkBoundingBox::ContainsPoint(const double p[3]) const
{
  return this->ContainsPoint(p[0], p[1], p[2]);
}

template <class PointT>
inline bool vtkBoundingBox::ContainsPoint(const PointT& p) const
{
  return this->ContainsPoint(p[0], p[1], p[2]);
}

inline void vtkBoundingBox::GetCorner(int corner, double p[3]) const
{
  if ((corner < 0) || (corner > 7))
  {
    p[0] = VTK_DOUBLE_MAX;
    p[1] = VTK_DOUBLE_MAX;
    p[2] = VTK_DOUBLE_MAX;
    return; // out of bounds
  }

  int ix = (corner & 1) ? 1 : 0;        // 0,1,0,1,0,1,0,1
  int iy = ((corner >> 1) & 1) ? 1 : 0; // 0,0,1,1,0,0,1,1
  int iz = (corner >> 2) ? 1 : 0;       // 0,0,0,0,1,1,1,1

  const double* pts[2] = { this->MinPnt, this->MaxPnt };
  p[0] = pts[ix][0];
  p[1] = pts[iy][1];
  p[2] = pts[iz][2];
}

VTK_ABI_NAMESPACE_END
#endif
// VTK-HeaderTest-Exclude: vtkBoundingBox.h