1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkClosestPointStrategy.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkClosestPointStrategy.h"
#include "vtkAbstractPointLocator.h"
#include "vtkGenericCell.h"
#include "vtkIdList.h"
#include "vtkObjectFactory.h"
#include "vtkPointSet.h"
//------------------------------------------------------------------------------
VTK_ABI_NAMESPACE_BEGIN
vtkStandardNewMacro(vtkClosestPointStrategy);
//------------------------------------------------------------------------------
vtkClosestPointStrategy::vtkClosestPointStrategy()
{
// Preallocate for performance
this->PointIds->Allocate(16);
this->Neighbors->Allocate(32);
this->CellIds->Allocate(32);
this->NearPointIds->Allocate(32);
this->PointLocator = nullptr;
}
//------------------------------------------------------------------------------
vtkClosestPointStrategy::~vtkClosestPointStrategy()
{
if (this->OwnsLocator && this->PointLocator != nullptr)
{
this->PointLocator->Delete();
this->PointLocator = nullptr;
}
}
//------------------------------------------------------------------------------
void vtkClosestPointStrategy::SetPointLocator(vtkAbstractPointLocator* pL)
{
if (pL != this->PointLocator)
{
if (this->PointLocator != nullptr && this->OwnsLocator)
{
this->PointLocator->Delete();
}
this->PointLocator = pL;
if (pL != nullptr)
{
pL->Register(this);
}
this->OwnsLocator = true;
this->Modified();
}
}
//------------------------------------------------------------------------------
int vtkClosestPointStrategy::Initialize(vtkPointSet* ps)
{
// See whether anything has changed. If not, just return.
if (this->PointSet != nullptr && ps == this->PointSet && this->MTime < this->InitializeTime)
{
return 1;
}
// Set up the point set; return on failure.
if (this->Superclass::Initialize(ps) == 0)
{
return 0;
}
// Use the point set's point locator preferentially. If no point locator,
// then we need to create one. If one is specified here in the strategy,
// use that. If not, then used the point set's default build point locator
// method.
vtkAbstractPointLocator* psPL = ps->GetPointLocator();
if (psPL == nullptr)
{
if (this->PointLocator != nullptr)
{
// only the owner of the locator can change it
if (this->OwnsLocator)
{
this->PointLocator->SetDataSet(ps);
this->PointLocator->BuildLocator();
}
}
else
{
ps->BuildPointLocator();
psPL = ps->GetPointLocator();
this->PointLocator = psPL;
this->OwnsLocator = false;
}
}
else
{
if (psPL != this->PointLocator)
{
this->PointLocator = psPL;
this->OwnsLocator = false;
}
// ensure that the point-set's locator is up-to-date
// this should be done only by one thread
if (!this->IsACopy)
{
this->PointLocator->BuildLocator();
}
}
this->VisitedCells.resize(static_cast<size_t>(ps->GetNumberOfCells()));
this->Weights.resize(8);
this->InitializeTime.Modified();
return 1;
}
//------------------------------------------------------------------------------
namespace
{
//------------------------------------------------------------------------------
// Used internally by FindCell to walk through neighbors from a starting cell.
// The arguments are the same as those for FindCell. In addition, visitedCells
// keeps a list of cells already traversed. If we run into such already
// visited, the walk terminates since we assume we already walked from that cell
// and found nothing. The ptIds and neighbors lists are buffers used
// internally. They are passed in so that they do not have to be continuously
// reallocated.
vtkIdType FindCellWalk(vtkClosestPointStrategy* self, vtkPointSet* ps, double x[3], vtkCell* cell,
vtkGenericCell* gencell, vtkIdType cellId, double tol2, int& subId, double pcoords[3],
double* weights, std::vector<unsigned char>& visitedCells, vtkIdList* visitedCellIds,
vtkIdList* ptIds, vtkIdList* neighbors)
{
const int VTK_MAX_WALK = 12;
double closestPoint[3];
double dist2;
for (int walk = 0; walk < VTK_MAX_WALK; walk++)
{
// Check to see if we already visited this cell.
if (visitedCells[cellId])
{
break;
}
visitedCells[cellId] = true;
visitedCellIds->InsertNextId(cellId);
// Get information for the cell.
cell = self->SelectCell(ps, cellId, cell, gencell);
// Check to see if the current, cached cell contains the point.
if ((cell->EvaluatePosition(x, closestPoint, subId, pcoords, dist2, weights) == 1) &&
(dist2 <= tol2))
{
return cellId;
}
// This is not the right cell. Find the next one.
cell->CellBoundary(subId, pcoords, ptIds);
ps->GetCellNeighbors(cellId, ptIds, neighbors);
// If there is no next one, exit.
if (neighbors->GetNumberOfIds() < 1)
{
break;
}
// Set the next cell as the current one and iterate.
cellId = neighbors->GetId(0);
cell = nullptr;
}
// Could not find a cell.
return -1;
}
//------------------------------------------------------------------------------
vtkIdType FindCellWalk(vtkClosestPointStrategy* self, vtkPointSet* ps, double x[3],
vtkGenericCell* gencell, vtkIdList* cellIds, double tol2, int& subId, double pcoords[3],
double* weights, std::vector<unsigned char>& visitedCells, vtkIdList* visitedCellIds,
vtkIdList* ptIds, vtkIdList* neighbors)
{
vtkIdType numCellIds = cellIds->GetNumberOfIds();
for (vtkIdType i = 0; i < numCellIds; i++)
{
vtkIdType cellId = cellIds->GetId(i);
vtkIdType foundCell = FindCellWalk(self, ps, x, nullptr, gencell, cellId, tol2, subId, pcoords,
weights, visitedCells, visitedCellIds, ptIds, neighbors);
if (foundCell >= 0)
{
return foundCell;
}
}
return -1;
}
} // anonymous namespace
//------------------------------------------------------------------------------
vtkIdType vtkClosestPointStrategy::FindCell(double x[3], vtkCell* cell, vtkGenericCell* gencell,
vtkIdType cellId, double tol2, int& subId, double pcoords[3], double* weights)
{
// Check to see if the point is within the bounds of the data. This is not
// a strict check, but it is fast.
const double* bounds = this->Bounds;
const double tol = std::sqrt(tol2);
if ((x[0] < bounds[0] - tol) || (x[0] > bounds[1] + tol) || (x[1] < bounds[2] - tol) ||
(x[1] > bounds[3] + tol) || (x[2] < bounds[4] - tol) || (x[2] > bounds[5] + tol))
{
return -1;
}
// reset the visited cells
for (vtkIdType i = 0, max = this->VisitedCellIds->GetNumberOfIds(); i < max; ++i)
{
this->VisitedCells[this->VisitedCellIds->GetId(i)] = false;
}
this->VisitedCellIds->Reset();
// If we are given a starting cell, try that.
vtkIdType foundCell;
if (cell && (cellId >= 0))
{
foundCell = FindCellWalk(this, this->PointSet, x, cell, gencell, cellId, tol2, subId, pcoords,
weights, this->VisitedCells, this->VisitedCellIds, this->PointIds, this->Neighbors);
if (foundCell >= 0)
{
return foundCell;
}
}
// The starting cell didn't work, find the point closest to the coordinates
// given and search the attached cells.
vtkIdType ptId = this->PointLocator->FindClosestPoint(x);
if (ptId < 0)
{
return -1;
}
this->PointSet->GetPointCells(ptId, this->CellIds);
foundCell = FindCellWalk(this, this->PointSet, x, gencell, this->CellIds, tol2, subId, pcoords,
weights, this->VisitedCells, this->VisitedCellIds, this->PointIds, this->Neighbors);
if (foundCell >= 0)
{
return foundCell;
}
// It is possible that the topology is not fully connected as points may be
// coincident. Handle this by looking at every point within the tolerance
// and consider all cells connected. It has been suggested that we should
// really do this coincident point check at every point as we walk through
// neighbors, which would happen in FindCellWalk. If that were ever
// implemented, this step might become unnecessary.
double ptCoord[3];
this->PointSet->GetPoint(ptId, ptCoord);
this->PointLocator->FindPointsWithinRadius(tol, ptCoord, this->NearPointIds);
this->NearPointIds->DeleteId(ptId); // Already searched this one.
for (vtkIdType i = 0, numPts = this->NearPointIds->GetNumberOfIds(); i < numPts; i++)
{
this->PointSet->GetPointCells(this->NearPointIds->GetId(i), this->CellIds);
foundCell = FindCellWalk(this, this->PointSet, x, gencell, this->CellIds, tol2, subId, pcoords,
weights, this->VisitedCells, this->VisitedCellIds, this->PointIds, this->Neighbors);
if (foundCell >= 0)
{
return foundCell;
}
}
// Could not find a containing cell. Either the query point is outside of
// the dataset, or there is an uncommon pathology of disconnected cells and
// points (if using a point locator approach). In this latter case, a cell
// locator is necessary.
return -1;
}
//------------------------------------------------------------------------------
vtkIdType vtkClosestPointStrategy::FindClosestPointWithinRadius(double x[3], double radius,
double closestPoint[3], vtkGenericCell* genCell, vtkIdType& closestCellId, int& closestSubId,
double& minDist2, int& inside)
{
// the implementation of this function is a copy of an old approach in
// vtkAbstractInterpolatedVelocityField, check git history for more info
// in the future something better could be implemented
vtkIdType retVal = 0;
// find the point closest to the coordinates
// given and search the attached cells.
vtkIdType ptId = this->PointLocator->FindClosestPoint(x);
if (ptId < 0)
{
return retVal;
}
// find the cells adjacent to the closest point
this->PointSet->GetPointCells(ptId, this->CellIds);
double point[3], pcoords[3], dist2, closestPcoords[3];
int subId, stat;
vtkIdType cellId;
closestSubId = -1;
closestCellId = -1;
minDist2 = this->PointSet->GetLength2();
// find the closest adjacent cell
for (vtkIdType id = 0, max = this->CellIds->GetNumberOfIds(); id < max; ++id)
{
cellId = this->CellIds->GetId(id);
this->PointSet->GetCell(cellId, genCell);
if (this->Weights.size() < static_cast<size_t>(genCell->GetNumberOfPoints()))
{
this->Weights.resize(static_cast<size_t>(genCell->GetNumberOfPoints()));
}
stat = genCell->EvaluatePosition(x, point, subId, pcoords, dist2, this->Weights.data());
if (stat != -1 && dist2 < minDist2)
{
retVal = 1;
inside = stat;
minDist2 = dist2;
closestCellId = cellId;
closestSubId = subId;
closestPoint[0] = point[0];
closestPoint[1] = point[1];
closestPoint[2] = point[2];
closestPcoords[0] = pcoords[0];
closestPcoords[1] = pcoords[1];
closestPcoords[2] = pcoords[2];
}
}
if (closestCellId == -1)
{
return retVal;
}
// Recover the closest cell
this->PointSet->GetCell(closestCellId, genCell);
// get the boundary point ids closest to the parametric coordinates
genCell->CellBoundary(closestSubId, closestPcoords, this->PointIds);
// get the neighbors cells of the boundary points
this->PointSet->GetCellNeighbors(closestCellId, this->PointIds, this->Neighbors);
// check if any of the neighbors is closer to the query point
for (vtkIdType neighCellId = 0, max = this->Neighbors->GetNumberOfIds(); neighCellId < max;
++neighCellId)
{
cellId = this->Neighbors->GetId(neighCellId);
this->PointSet->GetCell(cellId, genCell);
if (this->Weights.size() < static_cast<size_t>(genCell->GetNumberOfPoints()))
{
this->Weights.resize(static_cast<size_t>(genCell->GetNumberOfPoints()));
}
stat = genCell->EvaluatePosition(x, point, subId, pcoords, dist2, this->Weights.data());
if (stat != -1 && dist2 < minDist2)
{
retVal = 1;
inside = stat;
minDist2 = dist2;
closestCellId = cellId;
closestSubId = subId;
closestPoint[0] = point[0];
closestPoint[1] = point[1];
closestPoint[2] = point[2];
// pcoords are not used again
}
}
// the closest is within the given radius
if (minDist2 > radius * radius)
{
retVal = 0;
}
return retVal;
}
//------------------------------------------------------------------------------
bool vtkClosestPointStrategy::InsideCellBounds(double x[3], vtkIdType cellId)
{
double bounds[6];
this->PointSet->GetCellBounds(cellId, bounds);
return bounds[0] <= x[0] && x[0] <= bounds[1] && bounds[2] <= x[1] && x[1] <= bounds[3] &&
bounds[4] <= x[2] && x[2] <= bounds[5];
}
//------------------------------------------------------------------------------
void vtkClosestPointStrategy::CopyParameters(vtkFindCellStrategy* from)
{
this->Superclass::CopyParameters(from);
if (auto strategy = vtkClosestPointStrategy::SafeDownCast(from))
{
if (strategy->PointLocator)
{
this->PointLocator = strategy->PointLocator;
this->OwnsLocator = false;
}
}
}
//------------------------------------------------------------------------------
void vtkClosestPointStrategy::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "PointLocator: " << this->PointLocator << "\n";
}
VTK_ABI_NAMESPACE_END
|