File: vtkHigherOrderTetra.h

package info (click to toggle)
paraview 5.11.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 497,236 kB
  • sloc: cpp: 3,171,290; ansic: 1,315,072; python: 134,290; xml: 103,324; sql: 65,887; sh: 5,286; javascript: 4,901; yacc: 4,383; java: 3,977; perl: 2,363; lex: 1,909; f90: 1,255; objc: 143; makefile: 119; tcl: 59; pascal: 50; fortran: 29
file content (139 lines) | stat: -rw-r--r-- 6,041 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkHigherOrderTetra.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/**
 * @class   vtkHigherOrderTetra
 * @brief   A 3D cell that represents an arbitrary order HigherOrder tetrahedron
 *
 * vtkHigherOrderTetra is a concrete implementation of vtkCell to represent a
 * 3D tetrahedron using HigherOrder shape functions of user specified order.
 *
 * The number of points in a HigherOrder cell determines the order over which they
 * are iterated relative to the parametric coordinate system of the cell. The
 * first points that are reported are vertices. They appear in the same order in
 * which they would appear in linear cells. Mid-edge points are reported next.
 * They are reported in sequence. For two- and three-dimensional (3D) cells, the
 * following set of points to be reported are face points. Finally, 3D cells
 * report points interior to their volume.
 */

#ifndef vtkHigherOrderTetra_h
#define vtkHigherOrderTetra_h

#include <functional> //For std::function

#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkNew.h"                   // For member variable.
#include "vtkNonLinearCell.h"
#include "vtkSmartPointer.h" // For member variable.

#include <vector> //For caching

VTK_ABI_NAMESPACE_BEGIN
class vtkTetra;
class vtkHigherOrderCurve;
class vtkHigherOrderTriangle;
class vtkDoubleArray;

class VTKCOMMONDATAMODEL_EXPORT vtkHigherOrderTetra : public vtkNonLinearCell
{
public:
  vtkTypeMacro(vtkHigherOrderTetra, vtkNonLinearCell);
  void PrintSelf(ostream& os, vtkIndent indent) override;

  int GetCellType() override = 0;
  int GetCellDimension() override { return 3; }
  int RequiresInitialization() override { return 1; }
  int GetNumberOfEdges() override { return 6; }
  int GetNumberOfFaces() override { return 4; }
  vtkCell* GetEdge(int edgeId) override = 0;
  vtkCell* GetFace(int faceId) override = 0;
  void SetEdgeIdsAndPoints(int edgeId,
    const std::function<void(const vtkIdType&)>& set_number_of_ids_and_points,
    const std::function<void(const vtkIdType&, const vtkIdType&)>& set_ids_and_points);
  void SetFaceIdsAndPoints(vtkHigherOrderTriangle* result, int edgeId,
    const std::function<void(const vtkIdType&)>& set_number_of_ids_and_points,
    const std::function<void(const vtkIdType&, const vtkIdType&)>& set_ids_and_points);

  void Initialize() override;

  int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
  int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
    double& dist2, double weights[]) override;
  void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
  void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
    vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
    vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
  void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
    vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
    vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
  int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
    double pcoords[3], int& subId) override;
  int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
  void JacobianInverse(const double pcoords[3], double** inverse, double* derivs);
  void Derivatives(
    int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
  void SetParametricCoords();
  double* GetParametricCoords() override;

  int GetParametricCenter(double pcoords[3]) override;
  double GetParametricDistance(const double pcoords[3]) override;

  void InterpolateFunctions(const double pcoords[3], double* weights) override = 0;
  void InterpolateDerivs(const double pcoords[3], double* derivs) override = 0;

  vtkIdType GetOrder() const { return this->Order; }
  vtkIdType ComputeOrder();
  static vtkIdType ComputeOrder(const vtkIdType nPoints);

  void ToBarycentricIndex(vtkIdType index, vtkIdType* bindex);
  vtkIdType ToIndex(const vtkIdType* bindex);

  static void BarycentricIndex(vtkIdType index, vtkIdType* bindex, vtkIdType order);
  static vtkIdType Index(const vtkIdType* bindex, vtkIdType order);
  virtual vtkHigherOrderCurve* GetEdgeCell() = 0;
  virtual vtkHigherOrderTriangle* GetFaceCell() = 0;

protected:
  vtkHigherOrderTetra();
  ~vtkHigherOrderTetra() override;

  vtkIdType GetNumberOfSubtetras() const { return this->NumberOfSubtetras; }
  vtkIdType ComputeNumberOfSubtetras();

  // Description:
  // Given the index of the subtriangle, compute the barycentric indices of
  // the subtriangle's vertices.
  void SubtetraBarycentricPointIndices(vtkIdType cellIndex, vtkIdType (&pointBIndices)[4][4]);
  void TetraFromOctahedron(
    vtkIdType cellIndex, const vtkIdType (&octBIndices)[6][4], vtkIdType (&tetraBIndices)[4][4]);

  vtkTetra* Tetra;
  vtkDoubleArray* Scalars; // used to avoid New/Delete in contouring/clipping
  vtkIdType Order;
  vtkIdType NumberOfSubtetras;
  vtkSmartPointer<vtkPoints> PointParametricCoordinates;

  std::vector<vtkIdType> EdgeIds;
  std::vector<vtkIdType> BarycentricIndexMap;
  std::vector<vtkIdType> IndexMap;
  std::vector<vtkIdType> SubtetraIndexMap;

private:
  vtkHigherOrderTetra(const vtkHigherOrderTetra&) = delete;
  void operator=(const vtkHigherOrderTetra&) = delete;
};

VTK_ABI_NAMESPACE_END
#endif