File: vtkLagrangeInterpolation.cxx

package info (click to toggle)
paraview 5.11.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 497,236 kB
  • sloc: cpp: 3,171,290; ansic: 1,315,072; python: 134,290; xml: 103,324; sql: 65,887; sh: 5,286; javascript: 4,901; yacc: 4,383; java: 3,977; perl: 2,363; lex: 1,909; f90: 1,255; objc: 143; makefile: 119; tcl: 59; pascal: 50; fortran: 29
file content (189 lines) | stat: -rw-r--r-- 6,907 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkLagrangeInterpolation.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

  This software is distributed WITHOUT ANY WARRANTY; without even
  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
  PURPOSE.  See the above copyright notice for more information.

  =========================================================================*/
#include "vtkLagrangeInterpolation.h"

#include "vtkDoubleArray.h"
#include "vtkLagrangeTriangle.h"
#include "vtkLagrangeWedge.h"
#include "vtkMath.h"
#include "vtkNew.h"
#include "vtkObjectFactory.h"
#include "vtkPoints.h"
#include "vtkVector.h"
#include "vtkVectorOperators.h"

#include <array>
#include <vector>

VTK_ABI_NAMESPACE_BEGIN
vtkStandardNewMacro(vtkLagrangeInterpolation);

vtkLagrangeInterpolation::vtkLagrangeInterpolation() = default;

vtkLagrangeInterpolation::~vtkLagrangeInterpolation() = default;

void vtkLagrangeInterpolation::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os, indent);
}

/// Evaluate 1-D shape functions for the given \a order at the given \a pcoord (in [0,1]).
void vtkLagrangeInterpolation::EvaluateShapeFunctions(
  const int order, const double pcoord, double* shape)
{
  int j, k;
  double v = order * pcoord;
  for (j = 0; j <= order; ++j)
  {
    shape[j] = 1.;
    for (k = 0; k <= order; ++k)
    {
      if (j != k)
      { // FIXME: (j - k) could be a register decremented inside the k loop:
        // and even better: normalization 1./(j - k) could be pre-computed and stored
        // somehow for each order that is actually used, removing division operations.
        shape[j] *= (v - k) / (j - k);
      }
    }
  }
}

/// Evaluate 1-D shape functions and their derivatives for the given \a order at the given \a pcoord
/// (in [0,1]).
void vtkLagrangeInterpolation::EvaluateShapeAndGradient(
  int order, double pcoord, double* shape, double* derivs)
{
  int j, k, q;
  double dtmp;
  double v = order * pcoord;
  for (j = 0; j <= order; ++j)
  {
    // std::cout << "ShapeDeriv j = " << j << "  v = " << v << "\n";
    shape[j] = 1.;
    derivs[j] = 0.;
    for (k = 0; k <= order; ++k)
    {
      if (j != k)
      { // FIXME: (j - k) could be a register decremented inside the k loop:
        // and even better: normalization could be pre-computed and stored
        // somehow for each order that is actually used.
        shape[j] *= (v - k) / (j - k);

        // Now compute the derivative of shape[j]; we use the differentiation
        // rule d/dx(a * b) = a * d/dx(b) + b * d/dx(a) instead of faster
        // methods because it keeps the truncation error low(er):
        dtmp = 1.;
        // std::cout << "           k = " << k;
        for (q = 0; q <= order; ++q)
        {
          if (q == j)
          {
            continue;
          }
          dtmp *= (q == k ? 1. : (v - q)) / (j - q);
          // std::cout << "  q " << q << " dtmp *= " << ((q == k ? 1. : (v - q)) / (j - q));
        }
        derivs[j] += order * dtmp;
      }
    }
  }
}

int vtkLagrangeInterpolation::Tensor1ShapeFunctions(
  const int order[1], const double* pcoords, double* shape)
{
  return vtkHigherOrderInterpolation::Tensor1ShapeFunctions(
    order, pcoords, shape, vtkLagrangeInterpolation::EvaluateShapeFunctions);
}

int vtkLagrangeInterpolation::Tensor1ShapeDerivatives(
  const int order[1], const double* pcoords, double* derivs)
{
  return vtkHigherOrderInterpolation::Tensor1ShapeDerivatives(
    order, pcoords, derivs, vtkLagrangeInterpolation::EvaluateShapeAndGradient);
}

/// Quadrilateral shape function computation
int vtkLagrangeInterpolation::Tensor2ShapeFunctions(
  const int order[2], const double pcoords[3], double* shape)
{
  return vtkHigherOrderInterpolation::Tensor2ShapeFunctions(
    order, pcoords, shape, vtkLagrangeInterpolation::EvaluateShapeFunctions);
}

// Quadrilateral shape-function derivatives
int vtkLagrangeInterpolation::Tensor2ShapeDerivatives(
  const int order[2], const double pcoords[3], double* derivs)
{
  return vtkHigherOrderInterpolation::Tensor2ShapeDerivatives(
    order, pcoords, derivs, vtkLagrangeInterpolation::EvaluateShapeAndGradient);
}

/// Hexahedral shape function computation
int vtkLagrangeInterpolation::Tensor3ShapeFunctions(
  const int order[3], const double pcoords[3], double* shape)
{
  return vtkHigherOrderInterpolation::Tensor3ShapeFunctions(
    order, pcoords, shape, vtkLagrangeInterpolation::EvaluateShapeFunctions);
}

int vtkLagrangeInterpolation::Tensor3ShapeDerivatives(
  const int order[3], const double pcoords[3], double* derivs)
{
  return vtkHigherOrderInterpolation::Tensor3ShapeDerivatives(
    order, pcoords, derivs, vtkLagrangeInterpolation::EvaluateShapeAndGradient);
}

void vtkLagrangeInterpolation::Tensor3EvaluateDerivative(const int order[3], const double* pcoords,
  vtkPoints* points, const double* fieldVals, int fieldDim, double* fieldDerivs)
{
  this->vtkHigherOrderInterpolation::Tensor3EvaluateDerivative(order, pcoords, points, fieldVals,
    fieldDim, fieldDerivs, vtkLagrangeInterpolation::EvaluateShapeAndGradient);
}

/// Wedge shape function computation
void vtkLagrangeInterpolation::WedgeShapeFunctions(
  const int order[3], const vtkIdType numberOfPoints, const double pcoords[3], double* shape)
{
  vtkNew<vtkLagrangeTriangle> tri;
  vtkHigherOrderInterpolation::WedgeShapeFunctions(
    order, numberOfPoints, pcoords, shape, *tri, vtkLagrangeInterpolation::EvaluateShapeFunctions);
}

/// Wedge shape-function derivative evaluation
void vtkLagrangeInterpolation::WedgeShapeDerivatives(
  const int order[3], const vtkIdType numberOfPoints, const double pcoords[3], double* derivs)
{
  vtkNew<vtkLagrangeTriangle> tri;
  vtkHigherOrderInterpolation::WedgeShapeDerivatives(order, numberOfPoints, pcoords, derivs, *tri,
    vtkLagrangeInterpolation::EvaluateShapeAndGradient);
}

void vtkLagrangeInterpolation::WedgeEvaluate(const int order[3], const vtkIdType numberOfPoints,
  const double* pcoords, double* fieldVals, int fieldDim, double* fieldAtPCoords)
{
  vtkNew<vtkLagrangeTriangle> tri;
  this->vtkHigherOrderInterpolation::WedgeEvaluate(order, numberOfPoints, pcoords, fieldVals,
    fieldDim, fieldAtPCoords, *tri, vtkLagrangeInterpolation::EvaluateShapeFunctions);
}

void vtkLagrangeInterpolation::WedgeEvaluateDerivative(const int order[3], const double* pcoords,
  vtkPoints* points, const double* fieldVals, int fieldDim, double* fieldDerivs)
{
  vtkNew<vtkLagrangeTriangle> tri;
  this->vtkHigherOrderInterpolation::WedgeEvaluateDerivative(order, pcoords, points, fieldVals,
    fieldDim, fieldDerivs, *tri, vtkLagrangeInterpolation::EvaluateShapeAndGradient);
}
VTK_ABI_NAMESPACE_END