File: vtkLine.h

package info (click to toggle)
paraview 5.11.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 497,236 kB
  • sloc: cpp: 3,171,290; ansic: 1,315,072; python: 134,290; xml: 103,324; sql: 65,887; sh: 5,286; javascript: 4,901; yacc: 4,383; java: 3,977; perl: 2,363; lex: 1,909; f90: 1,255; objc: 143; makefile: 119; tcl: 59; pascal: 50; fortran: 29
file content (204 lines) | stat: -rw-r--r-- 7,975 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkLine.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/**
 * @class   vtkLine
 * @brief   cell represents a 1D line
 *
 * vtkLine is a concrete implementation of vtkCell to represent a 1D line.
 */

#ifndef vtkLine_h
#define vtkLine_h

#include "vtkCell.h"
#include "vtkCommonDataModelModule.h" // For export macro

VTK_ABI_NAMESPACE_BEGIN
class vtkIncrementalPointLocator;

class VTKCOMMONDATAMODEL_EXPORT vtkLine : public vtkCell
{
public:
  static vtkLine* New();
  vtkTypeMacro(vtkLine, vtkCell);
  void PrintSelf(ostream& os, vtkIndent indent) override;

  ///@{
  /**
   * See the vtkCell API for descriptions of these methods.
   */
  int GetCellType() override { return VTK_LINE; }
  int GetCellDimension() override { return 1; }
  int GetNumberOfEdges() override { return 0; }
  int GetNumberOfFaces() override { return 0; }
  vtkCell* GetEdge(int) override { return nullptr; }
  vtkCell* GetFace(int) override { return nullptr; }
  int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
  void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
    vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
    vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
  int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
    double& dist2, double weights[]) override;
  void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
  int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
  void Derivatives(
    int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
  double* GetParametricCoords() override;
  ///@}

  /**
   * Inflates this line by extending both end by dist. A degenerate line remains
   * untouched.
   *
   * \return 1 if inflation was successful, 0 if no inflation was performed
   */
  int Inflate(double dist) override;

  /**
   * Clip this line using scalar value provided. Like contouring, except
   * that it cuts the line to produce other lines.
   */
  void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
    vtkCellArray* lines, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
    vtkIdType cellId, vtkCellData* outCd, int insideOut) override;

  /**
   * Return the center of the triangle in parametric coordinates.
   */
  int GetParametricCenter(double pcoords[3]) override;

  /**
   * Line-line intersection. Intersection has to occur within [0,1] parametric
   * coordinates and with specified tolerance.
   */
  int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
    double pcoords[3], int& subId) override;

  // Return result type for Intersection() and Intersection3D()
  enum IntersectionType
  {
    NoIntersect = 0,
    Intersect = 2,
    OnLine = 3
  };

  // Control the meaning of the provided tolerance.  Fuzzy tolerances allow
  // intersections to occur outside of the range (0<=u,v<=1) as long as they
  // fall within the tolerance provided. Thus non-fuzzy tolerances must be
  // within the (0,1) parametric range (inclusive)
  enum ToleranceType
  {
    Relative = 0,
    Absolute = 1,
    RelativeFuzzy = 2,
    AbsoluteFuzzy = 3
  };

  /**
   * Performs intersection of the projection of two finite 3D lines onto a 2D
   * plane. An intersection is found if the projection of the two lines onto
   * the plane perpendicular to the cross product of the two lines intersect.
   * The parameters (u,v) are the parametric coordinates of the lines at the
   * position of closest approach.
   *
   * The results are of type vtkLine::IntersectionType. An intersection occurs
   * if (u,v) are in the interval [0,1] and the intersection point falls within
   * the tolerance specified. Different types of tolerancing can be used by
   * specifying a tolerance type with the enum provided (vtkLine::ToleranceType).
   * The tolerance types may be: Relative) relative to the projection line lengths
   * (this is default); or Absolute) the distance between the points at (u,v) on
   * the two lines must be less than or equal to the tolerance specified.
   *
   */
  static int Intersection(const double p1[3], const double p2[3], const double x1[3],
    const double x2[3], double& u, double& v, const double tolerance = 1e-6,
    int toleranceType = ToleranceType::Relative);

  /**
   * Compute the distance of a point x to a finite line (p1,p2). The method
   * computes the parametric coordinate t and the point location on the
   * line. Note that t is unconstrained (i.e., it may lie outside the range
   * [0,1]) but the closest point will lie within the finite line [p1,p2], if
   * it is defined. Also, the method returns the distance squared between x and
   * the line (p1,p2).
   */
  static double DistanceToLine(const double x[3], const double p1[3], const double p2[3], double& t,
    double closestPoint[3] = nullptr);

  /**
   * Determine the distance of the current vertex to the edge defined by
   * the vertices provided.  Returns distance squared. Note: line is assumed
   * infinite in extent.
   */
  static double DistanceToLine(const double x[3], const double p1[3], const double p2[3]);

  /**
   * Computes the shortest distance squared between two infinite lines, each
   * defined by a pair of points (l0,l1) and (m0,m1).
   * Upon return, the closest points on the two line segments will be stored
   * in closestPt1 and closestPt2. Their parametric coords
   * (-inf <= t0, t1 <= inf) will be stored in t0 and t1. The return value is
   * the shortest distance squared between the two line-segments.
   */
  static double DistanceBetweenLines(double l0[3], double l1[3], double m0[3], double m1[3],
    double closestPt1[3], double closestPt2[3], double& t1, double& t2);

  /**
   * Computes the shortest distance squared between two finite line segments
   * defined by their end points (l0,l1) and (m0,m1).
   * Upon return, the closest points on the two line segments will be stored
   * in closestPt1 and closestPt2. Their parametric coords (0 <= t0, t1 <= 1)
   * will be stored in t0 and t1. The return value is the shortest distance
   * squared between the two line-segments.
   */
  static double DistanceBetweenLineSegments(double l0[3], double l1[3], double m0[3], double m1[3],
    double closestPt1[3], double closestPt2[3], double& t1, double& t2);

  static void InterpolationFunctions(const double pcoords[3], double weights[2]);
  static void InterpolationDerivs(const double pcoords[3], double derivs[2]);
  ///@{
  /**
   * Compute the interpolation functions/derivatives
   * (aka shape functions/derivatives)
   */
  void InterpolateFunctions(const double pcoords[3], double weights[2]) override
  {
    vtkLine::InterpolationFunctions(pcoords, weights);
  }
  void InterpolateDerivs(const double pcoords[3], double derivs[2]) override
  {
    vtkLine::InterpolationDerivs(pcoords, derivs);
  }
  ///@}

protected:
  vtkLine();
  ~vtkLine() override = default;

private:
  vtkLine(const vtkLine&) = delete;
  void operator=(const vtkLine&) = delete;
};

//----------------------------------------------------------------------------
inline int vtkLine::GetParametricCenter(double pcoords[3])
{
  pcoords[0] = 0.5;
  pcoords[1] = pcoords[2] = 0.0;
  return 0;
}

VTK_ABI_NAMESPACE_END
#endif