File: vtkSphericalPointIterator.cxx

package info (click to toggle)
paraview 5.11.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 497,236 kB
  • sloc: cpp: 3,171,290; ansic: 1,315,072; python: 134,290; xml: 103,324; sql: 65,887; sh: 5,286; javascript: 4,901; yacc: 4,383; java: 3,977; perl: 2,363; lex: 1,909; f90: 1,255; objc: 143; makefile: 119; tcl: 59; pascal: 50; fortran: 29
file content (620 lines) | stat: -rw-r--r-- 19,665 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkSphericalPointIterator.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkSphericalPointIterator.h"

#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkMath.h"
#include "vtkNew.h"
#include "vtkPoints.h"
#include "vtkPolyData.h"
#include "vtkUnsignedIntArray.h"

#include <numeric>
#include <vector>

VTK_ABI_NAMESPACE_BEGIN
vtkStandardNewMacro(vtkSphericalPointIterator);

//=============================================================================
// Define the internal structure of the spherical point iterator below.

// An axis of the spherical point iterator
struct Axis
{
  double A[3];
  Axis(double a[3])
    : A{ a[0], a[1], a[2] }
  {
  }
};

// Represent the iterator
struct vtkSphericalPointIterator::SphericalPointIterator
{
  // The points being referred to
  vtkDataSet* DataSet;

  // The center point of the iterator
  double Center[3];

  // *Unit* normals defining the axes
  std::vector<Axis> Axes;

  // The points (referred to by id) along each axis. Typically sorted,
  // but not necessarily (depending on user specification).
  std::vector<std::vector<vtkIdType>> Points;

  // Represent the current iteration state. The iteration state consists of:
  // the current axis number, and the current point index on that
  // axis. NumVisited number keeps track of the number of points processed
  // at the current state of iteration.
  int CurrentAxis;         // during traversal, the current axis
  int CurrentPointIndex;   // during the traversal, the current
  vtkIdType NumVisited;    // The number of points visited so far
  vtkIdType MaxPointIndex; // the maximum number of points projected on any one axis
  vtkIdType NumPts;        // Total number of points in the neighborhood

  // Determine whether the axis and point index specified contain valid
  // information.
  bool IsValid(int axis, int ptIdx)
  {
    if (axis >= static_cast<int>(this->Axes.size()))
    {
      return false;
    }
    std::vector<vtkIdType>& axisPts = this->Points[axis];
    if (ptIdx >= static_cast<int>(axisPts.size()))
    {
      return false;
    }

    return true;
  }

  // Clear out the iterator data to an empty state.
  void Clear()
  {
    this->DataSet = nullptr;
    this->Axes.clear();
    this->Points.clear();
    this->CurrentAxis = 0;
    this->CurrentPointIndex = 0;
    this->NumVisited = 0;
    this->NumPts = 0;
  }

  // Propagate the VTK class information to this internal iterator.
  // Make sure the axes are normalized. There is an upper limit on
  // the number of axes, here it's set to a ridiculously large number.
  // Typically the number of axes is 20 or less.
  void Define(vtkDataSet* ds, vtkDoubleArray* axes)
  {
    constexpr int MAX_NUM_AXES = 100000;

    this->Clear();
    vtkIdType numAxes = axes->GetNumberOfTuples();
    numAxes = (numAxes < MAX_NUM_AXES ? numAxes : MAX_NUM_AXES);
    this->Points.resize(numAxes); // creates empty points vectors

    this->DataSet = ds;
    double a[3];
    for (auto i = 0; i < numAxes; ++i)
    {
      axes->GetTuple(i, a);
      vtkMath::Normalize(a);
      this->Axes.emplace_back(a);
    }
  }

  // Reset (empty out) the points lists.
  void Reset()
  {
    for (auto& pts : this->Points)
    {
      pts.clear();
    }
  }

  // Return the number of axes
  vtkIdType GetNumberOfAxes() { return static_cast<vtkIdType>(this->Axes.size()); }

  struct RadialTuple
  {
    vtkIdType PtId;
    double R2;
    RadialTuple(vtkIdType ptId, double r2)
      : PtId(ptId)
      , R2(r2)
    {
    }
    bool operator<(const RadialTuple& tuple) const { return (this->R2 < tuple.R2); }
    bool operator>(const RadialTuple& tuple) const { return (this->R2 > tuple.R2); }
  };

  // Radially sort the points on the axes specified. Will sort in
  // either an ascending or descending direction.
  void SortPointsOnAxis(std::vector<vtkIdType>& points, int dir)
  {
    // Make sure there is work to do
    if (points.empty())
    {
      return;
    }

    // Sort a tuple based on distance**2
    std::vector<struct RadialTuple> radialSort;
    radialSort.reserve(points.size());
    double x[3], d2;
    for (auto ptId : points)
    {
      this->DataSet->GetPoint(ptId, x);
      d2 = vtkMath::Distance2BetweenPoints(x, this->Center);
      radialSort.emplace_back(RadialTuple(ptId, d2));
    }
    if (dir == vtkSphericalPointIterator::SORT_DESCENDING)
    {
      std::sort(radialSort.begin(), radialSort.end(), std::greater<RadialTuple>());
    }
    else // ascending
    {
      std::sort(radialSort.begin(), radialSort.end());
    }

    // Update the ordering of the points along the axis
    vtkIdType sze = static_cast<vtkIdType>(points.size());
    for (vtkIdType i = 0; i < sze; ++i)
    {
      points[i] = radialSort[i].PtId;
    }
  }

  // Initialize the traversal process. Specify whether sorting along the axes is required.
  bool Initialize(double center[3], vtkIdType numNei, vtkIdType* neighborhood, int sort)
  {
    // Reset the points lists.
    this->Reset();
    this->NumPts = 0;

    // Redefine the center of iteration
    this->Center[0] = center[0];
    this->Center[1] = center[1];
    this->Center[2] = center[2];

    // Project points onto the best axis (with maximum positive dot product)
    double x[3], v[3], dp, dpMax;
    int axis, axisMax = 0;
    for (auto i = 0; i < numNei; ++i)
    {
      vtkIdType ptId = neighborhood[i];
      this->DataSet->GetPoint(ptId, x);
      v[0] = x[0] - this->Center[0];
      v[1] = x[1] - this->Center[1];
      v[2] = x[2] - this->Center[2];
      dpMax = 0; // angle between vectors must be <90 degrees
      int sze = static_cast<int>(this->Axes.size());
      for (axis = 0; axis < sze; ++axis)
      {
        double* a = this->Axes[axis].A;
        dp = vtkMath::Dot(a, v);
        if (dp > dpMax)
        {
          dpMax = dp;
          axisMax = axis;
        }
      } // for all axes
      if (dpMax > 0)
      {
        this->Points[axisMax].emplace_back(ptId);
        this->NumPts++;
      }
    } // for all points in neighborhood

    // If sorting is requested, then do the extra work
    // of sorting along each of the axes.
    if (sort != vtkSphericalPointIterator::SORT_NONE)
    {
      int sze = static_cast<int>(this->Axes.size());
      for (axis = 0; axis < sze; ++axis)
      {
        this->SortPointsOnAxis(this->Points[axis], sort);
      }
    }

    // Determine the maximum number of points on any axis.
    this->MaxPointIndex = 0;
    int sze = static_cast<int>(this->Axes.size());
    for (axis = 0; axis < sze; ++axis)
    {
      vtkIdType npts = (vtkIdType)this->Points[axis].size();
      this->MaxPointIndex = (npts > this->MaxPointIndex ? npts : this->MaxPointIndex);
    }

    return true;
  }

  // Begin forward iteration. The complexity of forward iteration is that the
  // number of points associated with each axes varies (and may be zero).
  // The iteration process begins with axis0, point0, and then moves onto
  // axis1, point0, and so on. Axes and/or points may have to be skipped
  // until all points are iterated over.
  void GoToFirstPoint()
  {
    this->CurrentPointIndex = 0;
    int sze = static_cast<int>(this->Axes.size());
    for (this->CurrentAxis = 0; this->CurrentAxis < sze; ++this->CurrentAxis)
    {
      if (this->IsValid(this->CurrentAxis, this->CurrentPointIndex))
      {
        this->NumVisited = 1;
        return;
      }
    } // over all axes
  }

  // Determine whether formard iteration is complete.
  bool IsDoneWithTraversal() { return (this->NumVisited <= this->NumPts ? false : true); }

  // Go to the the next point during forward iteration.
  void GoToNextPoint()
  {
    // Spiral around the axes, incrementing point index when
    // all axes have been visited once.
    do
    {
      if (++this->CurrentAxis >= static_cast<int>(this->Axes.size()))
      {
        this->CurrentAxis = 0;
        this->CurrentPointIndex++;
      }
    } while (this->CurrentPointIndex < this->MaxPointIndex &&
      !this->IsValid(this->CurrentAxis, this->CurrentPointIndex));

    this->NumVisited++;
  }

  // During forward iteration, retrieve the current point id and its
  // coordinates.
  void GetCurrentPoint(vtkIdType& ptId, double x[3])
  {
    ptId = (this->Points[this->CurrentAxis])[this->CurrentPointIndex];
    this->DataSet->GetPoint(ptId, x);
  }

  // During forward iteration, retrieve the current point id.
  vtkIdType GetCurrentPoint() { return (this->Points[this->CurrentAxis])[this->CurrentPointIndex]; }

  // Randomly access a point from the iterator. Returns a
  // point id, or <0 if no such point exists.
  vtkIdType GetPoint(int axis, int ptIdx)
  {
    if (!this->IsValid(axis, ptIdx))
    {
      return -1;
    }

    std::vector<vtkIdType>& axisPts = this->Points[axis];
    return axisPts[ptIdx];
  }

  // Randomly access a point from the iterator. Returns a
  // point id, or <0 if no such point exists. Also returns
  // the point coordinate x[3].
  vtkIdType GetPoint(int axis, int ptIdx, double x[3])
  {
    vtkIdType ptId = this->GetPoint(axis, ptIdx);
    if (ptId < 0)
    {
      return -1;
    }
    else
    {
      this->DataSet->GetPoint(ptId, x);
      return ptId;
    }
  }

  // Get the points along a particular axis.
  void GetAxisPoints(int axis, vtkIdType& npts, const vtkIdType*& pts)
  {
    if (axis < static_cast<int>(this->Axes.size()))
    {
      npts = this->Points[axis].size();
      pts = this->Points[axis].data();
    }
    else
    {
      npts = 0;
      pts = nullptr;
    }
  }

}; // vtkSphericalPointIterator::SphericalPointIterator

//==============================================================================
// Begin VTK class proper

//------------------------------------------------------------------------------
vtkSphericalPointIterator::vtkSphericalPointIterator()
  : Iterator(new vtkSphericalPointIterator::SphericalPointIterator())
{
  // Smart pointers are constructed with nullptr
  this->Sorting = SORT_NONE;
}

//------------------------------------------------------------------------------
void vtkSphericalPointIterator::SetAxes(int axesType, int resolution)
{
  vtkNew<vtkDoubleArray> axes;
  axes->SetNumberOfComponents(3);
  int res = (resolution < 1 ? 1 : resolution);

  if (axesType == XY_CW_AXES)
  {
    axes->SetNumberOfTuples(res);
    for (auto i = res; i > 0; --i)
    {
      double theta = ((static_cast<double>(i) / res) * 2.0 * vtkMath::Pi());
      axes->SetTuple3(res - i, cos(theta), sin(theta), 0);
    }
  }

  else if (axesType == XY_CCW_AXES)
  {
    axes->SetNumberOfTuples(res);
    for (auto i = 0; i < res; ++i)
    {
      double theta = ((static_cast<double>(i) / res) * 2.0 * vtkMath::Pi());
      axes->SetTuple3(i, cos(theta), sin(theta), 0);
    }
  }

  else if (axesType == XY_SQUARE_AXES)
  {
    axes->SetNumberOfTuples(4);
    axes->SetTuple3(0, -1, 0, 0);
    axes->SetTuple3(1, 1, 0, 0);
    axes->SetTuple3(2, 0, -1, 0);
    axes->SetTuple3(3, 0, 1, 0);
  }

  else if (axesType == CUBE_AXES)
  {
    axes->SetNumberOfTuples(6);
    axes->SetTuple3(0, -1, 0, 0);
    axes->SetTuple3(1, 1, 0, 0);
    axes->SetTuple3(2, 0, -1, 0);
    axes->SetTuple3(3, 0, 1, 0);
    axes->SetTuple3(4, 0, 0, -1);
    axes->SetTuple3(5, 0, 0, 1);
  }

  else if (axesType == OCTAHEDRON_AXES)
  {
    axes->SetNumberOfTuples(8);
    axes->SetTuple3(0, 0, -0.47140451272, -0.33333333333);
    axes->SetTuple3(1, 0.47140451272, 0, -0.33333333333);
    axes->SetTuple3(2, 0, 0.47140451272, -0.33333333333);
    axes->SetTuple3(3, -0.47140451272, 0, -0.33333333333);
    axes->SetTuple3(4, 0, -0.47140451272, 0.33333333333);
    axes->SetTuple3(5, 0.47140451272, 0, 0.33333333333);
    axes->SetTuple3(6, 0, 0.47140451272, 0.33333333333);
    axes->SetTuple3(7, -0.47140451272, 0, 0.33333333333);
  }

  else if (axesType == CUBE_OCTAHEDRON_AXES)
  {
    axes->SetNumberOfTuples(14);
    axes->SetTuple3(0, -1, 0, 0);
    axes->SetTuple3(1, 1, 0, 0);
    axes->SetTuple3(2, 0, -1, 0);
    axes->SetTuple3(3, 0, 1, 0);
    axes->SetTuple3(4, 0, 0, -1);
    axes->SetTuple3(5, 0, 0, 1);
    axes->SetTuple3(6, 1, 1, 1);
    axes->SetTuple3(7, -1, 1, 1);
    axes->SetTuple3(8, 1, -1, 1);
    axes->SetTuple3(9, -1, -1, 1);
    axes->SetTuple3(10, 1, 1, -1);
    axes->SetTuple3(11, -1, 1, -1);
    axes->SetTuple3(12, 1, -1, -1);
    axes->SetTuple3(13, -1, -1, -1);
  }

  else if (axesType == DODECAHEDRON_AXES)
  {
    axes->SetNumberOfTuples(12);
    axes->SetTuple3(0, -0.055132041737, 0.43301268705, 0.66655578242);
    axes->SetTuple3(1, 0.055132041737, -0.43301268705, 0.66655578242);
    axes->SetTuple3(2, -0.055132041737, -0.43301268705, -0.66655578242);
    axes->SetTuple3(3, 0.055132041737, 0.43301268705, -0.66655578242);
    axes->SetTuple3(4, 0.46708616567, 0.64549721701, 0);
    axes->SetTuple3(5, -0.46708616567, 0.64549721701, 0);
    axes->SetTuple3(6, -0.46708616567, -0.64549721701, 0);
    axes->SetTuple3(7, 0.46708616567, -0.64549721701, 0);
    axes->SetTuple3(8, 0.66655578242, -0.055132041737, 0.43301268705);
    axes->SetTuple3(9, 0.66655578242, 0.055132041737, -0.43301268705);
    axes->SetTuple3(10, -0.66655578242, -0.055132041737, -0.43301268705);
    axes->SetTuple3(11, -0.66655578242, 0.055132041737, 0.43301268705);
  }

  else // icosahedron
  {
    axes->SetNumberOfTuples(20);
    axes->SetTuple3(0, 0, 0.74234422048, -0.28355026245);
    axes->SetTuple3(1, 0, 0.74234422048, 0.28355026245);
    axes->SetTuple3(2, -0.28355026245, 0, 0.74234422048);
    axes->SetTuple3(3, 0.28355026245, 0, 0.74234422048);
    axes->SetTuple3(4, 0.28355026245, 0, -0.74234422048);
    axes->SetTuple3(5, -0.28355026245, 0, -0.74234422048);
    axes->SetTuple3(6, 0, -0.74234422048, 0.28355026245);
    axes->SetTuple3(7, 0, -0.74234422048, -0.28355026245);
    axes->SetTuple3(8, -0.74234422048, 0.28355026245, 0);
    axes->SetTuple3(9, -0.74234422048, -0.28355026245, 0);
    axes->SetTuple3(10, 0.74234422048, 0.28355026245, 0);
    axes->SetTuple3(11, 0.74234422048, -0.28355026245, 0);
    axes->SetTuple3(12, -0.45879395803, 0.45879395803, 0.45879395803);
    axes->SetTuple3(13, 0.45879395803, 0.45879395803, 0.45879395803);
    axes->SetTuple3(14, -0.45879395803, 0.45879395803, -0.45879395803);
    axes->SetTuple3(15, 0.45879395803, 0.45879395803, -0.45879395803);
    axes->SetTuple3(16, -0.45879395803, -0.45879395803, -0.45879395803);
    axes->SetTuple3(17, 0.45879395803, -0.45879395803, -0.45879395803);
    axes->SetTuple3(18, -0.45879395803, -0.45879395803, 0.45879395803);
    axes->SetTuple3(19, 0.45879395803, -0.45879395803, 0.45879395803);
  }

  this->SetAxes(axes);
}

//------------------------------------------------------------------------------
bool vtkSphericalPointIterator::Initialize(
  double center[3], vtkIdType numNei, vtkIdType* neighborhood)
{
  // Check input
  if (!this->DataSet || !this->Axes)
  {
    return false;
  }

  if (this->BuildTime < this->MTime)
  {
    // The first time requires defining the iterator
    this->Iterator->Define(this->DataSet, this->Axes);
    this->BuildTime.Modified();
  }

  return this->Iterator->Initialize(center, numNei, neighborhood, this->Sorting);
}

//------------------------------------------------------------------------------
bool vtkSphericalPointIterator::Initialize(double center[3], vtkIdList* neighborhood)
{
  return this->Initialize(center, neighborhood->GetNumberOfIds(), neighborhood->GetPointer(0));
}

//------------------------------------------------------------------------------
// Iterator over all points in a dataset
bool vtkSphericalPointIterator::Initialize(double center[3])
{
  if (!this->DataSet)
  {
    return false;
  }
  vtkIdType numPts = this->DataSet->GetNumberOfPoints();
  std::vector<vtkIdType> ptMap(numPts);
  std::iota(ptMap.begin(), ptMap.end(), 0);

  return this->Initialize(center, numPts, ptMap.data());
}

//------------------------------------------------------------------------------
void vtkSphericalPointIterator::GoToFirstPoint()
{
  this->Iterator->GoToFirstPoint();
}

//------------------------------------------------------------------------------
bool vtkSphericalPointIterator::IsDoneWithTraversal()
{
  return this->Iterator->IsDoneWithTraversal();
}

//------------------------------------------------------------------------------
void vtkSphericalPointIterator::GoToNextPoint()
{
  this->Iterator->GoToNextPoint();
}

//------------------------------------------------------------------------------
void vtkSphericalPointIterator::GetCurrentPoint(vtkIdType& ptId, double x[3])
{
  this->Iterator->GetCurrentPoint(ptId, x);
}

//------------------------------------------------------------------------------
vtkIdType vtkSphericalPointIterator::GetCurrentPoint()
{
  return this->Iterator->GetCurrentPoint();
}

//------------------------------------------------------------------------------
vtkIdType vtkSphericalPointIterator::GetPoint(int axis, int ptIdx)
{
  return this->Iterator->GetPoint(axis, ptIdx);
}

//------------------------------------------------------------------------------
void vtkSphericalPointIterator::GetAxisPoints(int axis, vtkIdType& npts, const vtkIdType*& pts)
{
  return this->Iterator->GetAxisPoints(axis, npts, pts);
}

//------------------------------------------------------------------------------
vtkIdType vtkSphericalPointIterator::GetNumberOfAxes()
{
  return this->Iterator->GetNumberOfAxes();
}

//------------------------------------------------------------------------------
// The Initialize() method is assumed to have been called.
void vtkSphericalPointIterator::BuildRepresentation(vtkPolyData* pd)
{
  // Initialize the representation
  pd->Reset();

  // Get the basic iterator information
  int numAxes = this->GetNumberOfAxes();
  double* center = this->Iterator->Center;

  // Build the polydata
  vtkNew<vtkPoints> pts;
  pts->SetDataTypeToDouble();
  pts->SetNumberOfPoints(numAxes + 1);
  vtkNew<vtkCellArray> lines;
  vtkNew<vtkUnsignedIntArray> lineNumbers;
  lineNumbers->SetNumberOfTuples(numAxes);
  pd->SetPoints(pts);
  pd->SetLines(lines);
  pd->GetCellData()->AddArray(lineNumbers);

  // Loop over axes. The center point goes first.
  vtkIdType linePts[2];
  linePts[0] = 0;
  pts->SetPoint(0, center[0], center[1], center[2]);
  for (auto i = 1; i <= numAxes; ++i)
  {
    int axisNum = i - 1;
    double x[3];
    x[0] = center[0] + this->Iterator->Axes[axisNum].A[0];
    x[1] = center[1] + this->Iterator->Axes[axisNum].A[1];
    x[2] = center[2] + this->Iterator->Axes[axisNum].A[2];
    pts->SetPoint(i, x);
    linePts[1] = i;
    lines->InsertNextCell(2, linePts);
    lineNumbers->SetTypedComponent(axisNum, 0, axisNum);
  }
}

//------------------------------------------------------------------------------
void vtkSphericalPointIterator::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os, indent);

  os << indent << "DataSet: " << this->DataSet << "\n";
  os << indent << "Number of Axes: " << this->Axes->GetNumberOfTuples() << "\n";
  os << indent << "Axes: " << this->Axes << "\n";
  os << indent << "Sorting: " << this->Sorting << "\n";
}
VTK_ABI_NAMESPACE_END