1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkTriQuadraticPyramid.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkTriQuadraticPyramid
* @brief cell represents a parabolic, 19-node isoparametric pyramid
*
* vtkTriQuadraticPyramid is a concrete implementation of vtkNonLinearCell to
* represent a second order three-dimensional isoparametric 19-node pyramid.
* The interpolation is the standard finite element, tri-quadratic
* isoparametric shape function. The cell includes 5 corner nodes, 8 mid-edge nodes,
* 5 mid-face nodes, and 1 volumetric centroid node. The ordering of the nineteen points
* defining the cell is point ids (0-4, 5-12, 13-17, 18), where point ids 0-4 are the five
* corner vertices of the pyramid; followed by 8 mid-edge nodes (5-12); followed by
* 5 mid-face nodes (13-17), and the last node (19) is the volumetric centroid node.
* Note that these mid-edge nodes lie on the edges defined by (0, 1), (1, 2), (2, 3),
* (3, 0), (0, 4), (1, 4), (2, 4), (3, 4), respectively. The mid-face nodes lie on the
* faces defined by (first corner nodes id's, then mid-edge node id's):
* quadrilateral face: (0, 3, 2, 1, 8, 7, 6, 5), triangle face 1: (0, 1, 4, 5, 10, 9),
* triangle face 2: (1, 2, 4, 6, 11, 10), triangle face 3: (2, 3, 4, 7, 12, 11),
* triangle face 5: (3, 0, 4, 8, 9, 12). The last point lies in the center of the cell
* (0, 1, 2, 3, 4). The parametric location of vertex #4 is [0.5, 0.5, 1].
*
* @note It should be noted that the parametric coordinates that describe this cell
* are not distorted like in vtkPyramid and vtkQuadraticPyramid, which are a collapsed
* hexahedron. They are the actual uniform isoparametric coordinates, which are described
* in Browning's dissertation (see thanks section), but they are converted to [0, 1] space,
* and the nodes are rotated so that node-0 has x = 0, y = 0, while maintaining the CCW order.
*
* \verbatim
* Description of 19-node pyramid from bottom to top (based on the z-axis).
*
* base quadrilateral including mid-edge nodes and mid-face node:
* 3-- 7--2
* | |
* 8 13 6
* | |
* 0-- 5--1
*
* volumetric centroid node:
*
*
* 18
*
*
* mid-face nodes of triangular faces:
*
* 16
* / \
* 17 15
* \ /
* 14
*
* mid-edge nodes of triangular faces:
*
* 12--11
* | |
* 9--10
*
* top corner(apex):
*
*
* 4
*
*
* \endverbatim
*
* @sa
* vtkQuadraticEdge vtkBiQuadraticTriangle vtkQuadraticTetra
* vtkQuadraticHexahedron vtkBiQuadraticQuad vtkQuadraticWedge
*
* @par Thanks:
* The shape functions and derivatives could be implemented thanks to
* the doctoral dissertation: R.S. Browning. A Second-Order 19-Node Pyramid
* Finite Element Suitable for Lumped Mass Explicit Dynamic methods in
* Nonlinear Solid Mechanics, University of Alabama at Birmingham.
*/
#ifndef vtkTriQuadraticPyramid_h
#define vtkTriQuadraticPyramid_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkNew.h" // initialize cells that are used for the implementation
#include "vtkNonLinearCell.h"
VTK_ABI_NAMESPACE_BEGIN
class vtkQuadraticEdge;
class vtkBiQuadraticQuad;
class vtkBiQuadraticTriangle;
class vtkTetra;
class vtkPyramid;
class vtkDoubleArray;
class VTKCOMMONDATAMODEL_EXPORT vtkTriQuadraticPyramid : public vtkNonLinearCell
{
public:
static vtkTriQuadraticPyramid* New();
vtkTypeMacro(vtkTriQuadraticPyramid, vtkNonLinearCell);
void PrintSelf(ostream& os, vtkIndent indent) override;
///@{
/**
* Implement the vtkCell API. See the vtkCell API for descriptions
* of these methods.
*/
int GetCellType() override { return VTK_TRIQUADRATIC_PYRAMID; }
int GetCellDimension() override { return 3; }
int GetNumberOfEdges() override { return 8; }
int GetNumberOfFaces() override { return 5; }
vtkCell* GetEdge(int edgeId) override;
vtkCell* GetFace(int faceId) override;
///@}
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
double& dist2, double weights[]) override;
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
/**
* Line-edge intersection. Intersection has to occur within [0,1] parametric
* coordinates and with specified tolerance.
*/
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
double pcoords[3], int& subId) override;
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
void Derivatives(
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
double* GetParametricCoords() override;
/**
* Clip this quadratic triangle using scalar value provided. Like
* contouring, except that it cuts the triangle to produce linear
* triangles.
*/
void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* tets, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
/**
* Return the center of the tri-quadratic pyramid in parametric coordinates.
*/
int GetParametricCenter(double pcoords[3]) override;
/**
* Return the distance of the parametric coordinate provided to the
* cell. If inside the cell, a distance of zero is returned.
*/
double GetParametricDistance(const double pcoords[3]) override;
static void InterpolationFunctions(const double pcoords[3], double weights[19]);
static void InterpolationDerivs(const double pcoords[3], double derivs[57]);
///@{
/**
* Compute the interpolation functions/derivatives
* (aka shape functions/derivatives)
*/
void InterpolateFunctions(const double pcoords[3], double weights[19]) override
{
vtkTriQuadraticPyramid::InterpolationFunctions(pcoords, weights);
}
void InterpolateDerivs(const double pcoords[3], double derivs[57]) override
{
vtkTriQuadraticPyramid::InterpolationDerivs(pcoords, derivs);
}
///@}
/**
* Given parametric coordinates compute inverse Jacobian transformation
* matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
* function derivatives.
*/
void JacobianInverse(const double pcoords[3], double** inverse, double derivs[57]);
///@{
/**
* Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
* Ids are related to the cell, not to the dataset.
*
* @note The return type changed. It used to be int*, it is now const vtkIdType*.
* This is so ids are unified between vtkCell and vtkPoints.
*/
static const vtkIdType* GetEdgeArray(vtkIdType edgeId);
static const vtkIdType* GetFaceArray(vtkIdType faceId);
///@}
protected:
vtkTriQuadraticPyramid();
~vtkTriQuadraticPyramid() override;
vtkNew<vtkQuadraticEdge> Edge;
vtkNew<vtkBiQuadraticTriangle> TriangleFace;
vtkNew<vtkBiQuadraticTriangle> TriangleFace2;
vtkNew<vtkBiQuadraticQuad> QuadFace;
vtkNew<vtkTetra> Tetra;
vtkNew<vtkPyramid> Pyramid;
vtkNew<vtkDoubleArray> Scalars; // used to avoid New/Delete in contouring/clipping
private:
vtkTriQuadraticPyramid(const vtkTriQuadraticPyramid&) = delete;
void operator=(const vtkTriQuadraticPyramid&) = delete;
};
//----------------------------------------------------------------------------
// Return the center of the tri-quadratic pyramid in parametric coordinates.
//
inline int vtkTriQuadraticPyramid::GetParametricCenter(double pcoords[3])
{
pcoords[0] = pcoords[1] = 0.5;
// This is different compared to the last node, because the last node
// is the centroid of the nodes 0-4, and not the centroid of the nodes 0-17.
// So pcoords[2] is defined as followed to pass the requirement of TestGenericCell
pcoords[2] = 283.0 / 456.0;
return 0;
}
VTK_ABI_NAMESPACE_END
#endif
|