File: vtkTriangle.h

package info (click to toggle)
paraview 5.11.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 497,236 kB
  • sloc: cpp: 3,171,290; ansic: 1,315,072; python: 134,290; xml: 103,324; sql: 65,887; sh: 5,286; javascript: 4,901; yacc: 4,383; java: 3,977; perl: 2,363; lex: 1,909; f90: 1,255; objc: 143; makefile: 119; tcl: 59; pascal: 50; fortran: 29
file content (298 lines) | stat: -rw-r--r-- 11,007 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkTriangle.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/**
 * @class   vtkTriangle
 * @brief   a cell that represents a triangle
 *
 * vtkTriangle is a concrete implementation of vtkCell to represent a triangle
 * located in 3-space.
 */

#ifndef vtkTriangle_h
#define vtkTriangle_h

#include "vtkCell.h"
#include "vtkCommonDataModelModule.h" // For export macro

#include "vtkMath.h" // Needed for inline methods

VTK_ABI_NAMESPACE_BEGIN
class vtkLine;
class vtkQuadric;
class vtkIncrementalPointLocator;

class VTKCOMMONDATAMODEL_EXPORT vtkTriangle : public vtkCell
{
public:
  static vtkTriangle* New();
  vtkTypeMacro(vtkTriangle, vtkCell);
  void PrintSelf(ostream& os, vtkIndent indent) override;

  /**
   * Get the edge specified by edgeId (range 0 to 2) and return that edge's
   * coordinates.
   */
  vtkCell* GetEdge(int edgeId) override;

  ///@{
  /**
   * See the vtkCell API for descriptions of these methods.
   */
  int GetCellType() override { return VTK_TRIANGLE; }
  int GetCellDimension() override { return 2; }
  int GetNumberOfEdges() override { return 3; }
  int GetNumberOfFaces() override { return 0; }
  vtkCell* GetFace(int) override { return nullptr; }
  int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
  void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
    vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
    vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
  int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
    double& dist2, double weights[]) override;
  void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
  int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
  void Derivatives(
    int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
  double* GetParametricCoords() override;
  ///@}

  /**
   * A convenience function to compute the area of a vtkTriangle.
   */
  double ComputeArea();

  /**
   * Clip this triangle using scalar value provided. Like contouring, except
   * that it cuts the triangle to produce other triangles.
   */
  void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
    vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
    vtkIdType cellId, vtkCellData* outCd, int insideOut) override;

  static void InterpolationFunctions(const double pcoords[3], double sf[3]);
  static void InterpolationDerivs(const double pcoords[3], double derivs[6]);
  ///@{
  /**
   * Compute the interpolation functions/derivatives
   * (aka shape functions/derivatives)
   */
  void InterpolateFunctions(const double pcoords[3], double sf[3]) override
  {
    vtkTriangle::InterpolationFunctions(pcoords, sf);
  }
  void InterpolateDerivs(const double pcoords[3], double derivs[6]) override
  {
    vtkTriangle::InterpolationDerivs(pcoords, derivs);
  }
  ///@}
  /**
   * Return the ids of the vertices defining edge (`edgeId`).
   * Ids are related to the cell, not to the dataset.
   *
   * @note The return type changed. It used to be int*, it is now const vtkIdType*.
   * This is so ids are unified between vtkCell and vtkPoints, and so vtkCell ids
   * can be used as inputs in algorithms such as vtkPolygon::ComputeNormal.
   */
  const vtkIdType* GetEdgeArray(vtkIdType edgeId);

  /**
   * Given a line defined by two points p1 and p2, determine whether it intersects the triangle.
   * The tolerance tol is used to verify whether the intersection is inside or outside of the
   * triangle. If the line and triangle are coplanar and there is intersection, the intersecting
   * point is chosen as the point closest to p1 that is inside the triangle.
   */
  int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
    double pcoords[3], int& subId) override;

  /**
   * Return the center of the triangle in parametric coordinates.
   */
  int GetParametricCenter(double pcoords[3]) override;

  /**
   * Return the distance of the parametric coordinate provided to the
   * cell. If inside the cell, a distance of zero is returned.
   */
  double GetParametricDistance(const double pcoords[3]) override;

  /**
   * Compute the center of the triangle.
   */
  static void TriangleCenter(
    const double p1[3], const double p2[3], const double p3[3], double center[3]);

  /**
   * Compute the area of a triangle in 3D.
   * See also vtkTriangle::ComputeArea()
   */
  static double TriangleArea(const double p1[3], const double p2[3], const double p3[3]);

  /**
   * Compute the circumcenter (center[3]) and radius squared (method
   * return value) of a triangle defined by the three points x1, x2,
   * and x3. (Note that the coordinates are 2D. 3D points can be used
   * but the z-component will be ignored.)
   */
  static double Circumcircle(
    const double p1[2], const double p2[2], const double p3[2], double center[2]);

  /**
   * Given a 2D point x[2], determine the barycentric coordinates of the point.
   * Barycentric coordinates are a natural coordinate system for simplices that
   * express a position as a linear combination of the vertices. For a
   * triangle, there are three barycentric coordinates (because there are
   * three vertices), and the sum of the coordinates must equal 1. If a
   * point x is inside a simplex, then all three coordinates will be strictly
   * positive.  If two coordinates are zero (so the third =1), then the
   * point x is on a vertex. If one coordinates are zero, the point x is on an
   * edge. In this method, you must specify the vertex coordinates x1->x3.
   * Returns 0 if triangle is degenerate.
   */
  static int BarycentricCoords(const double x[2], const double x1[2], const double x2[2],
    const double x3[2], double bcoords[3]);

  /**
   * Project triangle defined in 3D to 2D coordinates. Returns 0 if
   * degenerate triangle; non-zero value otherwise. Input points are x1->x3;
   * output 2D points are v1->v3.
   */
  static int ProjectTo2D(const double x1[3], const double x2[3], const double x3[3], double v1[2],
    double v2[2], double v3[2]);

  /**
   * Compute the triangle normal from a points list, and a list of point ids
   * that index into the points list.
   */
  static void ComputeNormal(vtkPoints* p, int numPts, const vtkIdType* pts, double n[3]);

  /**
   * Compute the triangle normal from three points.
   */
  static void ComputeNormal(
    const double v1[3], const double v2[3], const double v3[3], double n[3]);

  /**
   * Compute the (unnormalized) triangle normal direction from three points.
   */
  static void ComputeNormalDirection(
    const double v1[3], const double v2[3], const double v3[3], double n[3]);

  // Description:
  // Determine whether or not triangle (p1,q1,r1) intersects triangle
  // (p2,q2,r2). This method is adapted from Olivier Devillers, Philippe Guigue.
  // Faster Triangle-Triangle Intersection Tests. RR-4488, IN-RIA. 2002.
  // <inria-00072100>.
  static int TrianglesIntersect(const double p1[3], const double q1[3], const double r1[3],
    const double p2[3], const double q2[3], const double r2[3]);

  // Description:
  // Given a point x, determine whether it is inside (within the
  // tolerance squared, tol2) the triangle defined by the three
  // coordinate values p1, p2, p3. Method is via comparing dot products.
  // (Note: in current implementation the tolerance only works in the
  // neighborhood of the three vertices of the triangle.
  static int PointInTriangle(const double x[3], const double x1[3], const double x2[3],
    const double x3[3], const double tol2);

  ///@{
  /**
   * Calculate the error quadric for this triangle.  Return the
   * quadric as a 4x4 matrix or a vtkQuadric.  (from Peter
   * Lindstrom's Siggraph 2000 paper, "Out-of-Core Simplification of
   * Large Polygonal Models")
   */
  static void ComputeQuadric(
    const double x1[3], const double x2[3], const double x3[3], double quadric[4][4]);
  static void ComputeQuadric(
    const double x1[3], const double x2[3], const double x3[3], vtkQuadric* quadric);
  ///@}

  /**
   * Get the centroid of the triangle.
   * pointIds can be nullptr if ids are {0, 1, 2}
   */
  static bool ComputeCentroid(vtkPoints* points, const vtkIdType* pointIds, double centroid[3]);

protected:
  vtkTriangle();
  ~vtkTriangle() override;

  vtkLine* Line;

private:
  vtkTriangle(const vtkTriangle&) = delete;
  void operator=(const vtkTriangle&) = delete;
};

//----------------------------------------------------------------------------
inline int vtkTriangle::GetParametricCenter(double pcoords[3])
{
  pcoords[0] = pcoords[1] = 1.0 / 3.0;
  pcoords[2] = 0.0;
  return 0;
}

//----------------------------------------------------------------------------
inline void vtkTriangle::ComputeNormalDirection(
  const double v1[3], const double v2[3], const double v3[3], double n[3])
{
  // order is important!!! maintain consistency with triangle vertex order
  double ax = v3[0] - v2[0];
  double ay = v3[1] - v2[1];
  double az = v3[2] - v2[2];
  double bx = v1[0] - v2[0];
  double by = v1[1] - v2[1];
  double bz = v1[2] - v2[2];

  n[0] = (ay * bz - az * by);
  n[1] = (az * bx - ax * bz);
  n[2] = (ax * by - ay * bx);
}

//----------------------------------------------------------------------------
inline void vtkTriangle::ComputeNormal(
  const double v1[3], const double v2[3], const double v3[3], double n[3])
{
  vtkTriangle::ComputeNormalDirection(v1, v2, v3, n);

  double length = sqrt(n[0] * n[0] + n[1] * n[1] + n[2] * n[2]);
  if (length != 0.0)
  {
    n[0] /= length;
    n[1] /= length;
    n[2] /= length;
  }
}

//----------------------------------------------------------------------------
inline void vtkTriangle::TriangleCenter(
  const double p1[3], const double p2[3], const double p3[3], double center[3])
{
  center[0] = (p1[0] + p2[0] + p3[0]) / 3.0;
  center[1] = (p1[1] + p2[1] + p3[1]) / 3.0;
  center[2] = (p1[2] + p2[2] + p3[2]) / 3.0;
}

//----------------------------------------------------------------------------
inline double vtkTriangle::TriangleArea(const double p1[3], const double p2[3], const double p3[3])
{
  double n[3];
  vtkTriangle::ComputeNormalDirection(p1, p2, p3, n);

  return 0.5 * vtkMath::Norm(n);
}

VTK_ABI_NAMESPACE_END
#endif