File: vtkCONVERGECFDReader.cxx

package info (click to toggle)
paraview 5.11.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 497,236 kB
  • sloc: cpp: 3,171,290; ansic: 1,315,072; python: 134,290; xml: 103,324; sql: 65,887; sh: 5,286; javascript: 4,901; yacc: 4,383; java: 3,977; perl: 2,363; lex: 1,909; f90: 1,255; objc: 143; makefile: 119; tcl: 59; pascal: 50; fortran: 29
file content (1405 lines) | stat: -rw-r--r-- 46,486 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkCONVERGECFDReader.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkCONVERGECFDReader.h"

#include "vtkBuffer.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkCommand.h"
#include "vtkDataArraySelection.h"
#include "vtkDataAssembly.h"
#include "vtkDirectory.h"
#include "vtkFloatArray.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkNew.h"
#include "vtkObjectFactory.h"
#include "vtkPartitionedDataSetCollection.h"
#include "vtkPointData.h"
#include "vtkPolyData.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include "vtkUnstructuredGrid.h"

#include <vtksys/RegularExpression.hxx>

#include <algorithm>
#include <array>
#include <map>
#include <set>
#include <sstream>

#define H5_USE_16_API
#include "vtk_hdf5.h"

#include "vtkHDF5ScopedHandle.h"

VTK_ABI_NAMESPACE_BEGIN
vtkStandardNewMacro(vtkCONVERGECFDReader);

namespace
{

//----------------------------------------------------------------------------
/**
 *  Check existence of array defined by pathName relative to fileId.
 */
bool ArrayExists(hid_t fileId, const char* pathName)
{
  return (H5Lexists(fileId, pathName, H5P_DEFAULT) > 0);
}

//----------------------------------------------------------------------------
/**
 *  Check existence of array defined by groupName relative to fileId.
 */
bool GroupExists(hid_t fileId, const char* groupName)
{
  // Same implementation as ArrayExists, but that's okay.
  return (H5Lexists(fileId, groupName, H5P_DEFAULT) > 0);
}

//----------------------------------------------------------------------------
/**
 *  Get length of array defined by pathName relative to fileId.
 */
hsize_t GetDataLength(hid_t fileId, const char* pathName)
{
  vtkHDF::ScopedH5DHandle arrayId = H5Dopen(fileId, pathName);
  if (arrayId < 0)
  {
    vtkGenericWarningMacro("No array named " << pathName << " available");
    return 0;
  }

  vtkHDF::ScopedH5DHandle dataspace = H5Dget_space(arrayId);
  if (H5Sget_simple_extent_ndims(dataspace) != 1)
  {
    vtkGenericWarningMacro("Array " << pathName << " dimensionality is not 1");
    return 0;
  }

  hsize_t length = 0;
  int numDimensions = H5Sget_simple_extent_dims(dataspace, &length, nullptr);
  if (numDimensions < 0)
  {
    vtkGenericWarningMacro("Failed to get length of array");
    return 0;
  }

  return length;
}

//----------------------------------------------------------------------------
/**
 *  Read a typed array and into an array passed in by the caller. Checks that the
 *  number of elements in the array specified by fileId and pathName matches the length
 *  argument n.
 *
 *  Returns true if reading succeeded, false otherwise.
 */
template <typename T>
bool ReadArray(hid_t fileId, const char* pathName, T* data, hsize_t n)
{
  vtkHDF::ScopedH5DHandle arrayId = H5Dopen(fileId, pathName);
  if (arrayId < 0)
  {
    return false;
  }

  vtkHDF::ScopedH5DHandle rawType = H5Dget_type(arrayId);
  vtkHDF::ScopedH5THandle dataType = H5Tget_native_type(rawType, H5T_DIR_ASCEND);
  vtkHDF::ScopedH5DHandle dataspace = H5Dget_space(arrayId);
  if (H5Sget_simple_extent_ndims(dataspace) != 1)
  {
    vtkGenericWarningMacro("Array " << pathName << " dimensionality is not 1");
    return false;
  }

  hsize_t length = 0;
  int numDims = H5Sget_simple_extent_dims(dataspace, &length, nullptr);
  if (numDims < 0)
  {
    vtkGenericWarningMacro("Failed to get length of array");
    return false;
  }

  if (n != length)
  {
    vtkGenericWarningMacro(
      "Size of array passed in does not match length of array. Skipping array.");
    return false;
  }

  if (H5Dread(arrayId, dataType, H5S_ALL, H5S_ALL, H5P_DEFAULT, data) < 0)
  {
    vtkGenericWarningMacro("Could not read " << pathName);
    return false;
  }

  return true;
}

//----------------------------------------------------------------------------
/**
 * Get an array of strings from a table defined by pathName relative to fileId.
 * Strings are returned in the vector of strings parameter that was passed in.
 */
bool ReadStrings(hid_t fileId, const char* path, std::vector<std::string>& strings)
{
  vtkHDF::ScopedH5DHandle stringsId = H5Dopen(fileId, path);
  if (stringsId < 0)
  {
    vtkGenericWarningMacro("Could not read " << path);
    return false;
  }

  vtkHDF::ScopedH5THandle filetype = H5Dget_type(stringsId);
  size_t sdim = H5Tget_size(filetype);
  sdim++; /* Make room for null terminator */

  vtkHDF::ScopedH5SHandle space = H5Dget_space(stringsId);
  hsize_t dim;
  int ndims = H5Sget_simple_extent_dims(space, &dim, nullptr);
  if (ndims != 1)
  {
    vtkGenericWarningMacro("String array dimension not 1");
    return false;
  }

  char** rdata = new char*[dim];
  rdata[0] = new char[dim * sdim];
  for (hsize_t i = 1; i < dim; ++i)
  {
    rdata[i] = rdata[0] + i * sdim;
  }

  vtkHDF::ScopedH5THandle memtype = H5Tcopy(H5T_C_S1);
  H5Tset_size(memtype, sdim);
  if (H5Dread(stringsId, memtype, H5S_ALL, H5S_ALL, H5P_DEFAULT, rdata[0]) < 0)
  {
    vtkGenericWarningMacro("Could not read " << path);
    return false;
  }

  strings.clear();
  for (hsize_t i = 0; i < dim; ++i)
  {
    strings.emplace_back(std::string(rdata[i]));
  }

  delete[] rdata[0];
  delete[] rdata;

  return true;
}

void SplitScalarAndVectorVariables(
  std::vector<std::string>& allVariables, std::vector<std::string>& vectorVariables)
{
  vectorVariables.clear();
  for (const auto& varName : allVariables)
  {
    // See if variable is an array.
    if (varName.find_last_of('_') == varName.size() - 2)
    {
      const char componentName = varName[varName.size() - 1];
      if (componentName == 'X')
      {
        // Check that components Y and Z exist as well
        std::string baseName = varName.substr(0, varName.size() - 2);
        if (std::find(allVariables.begin(), allVariables.end(), baseName + "_Y") !=
            allVariables.end() &&
          std::find(allVariables.begin(), allVariables.end(), baseName + "_Z") !=
            allVariables.end())
        {
          vectorVariables.emplace_back(baseName);
        }
      }
    }
  }

  // Now remove the vector variables from all variables. At the end, allVariables will contain
  // only scalar array names.
  for (const auto& varName : vectorVariables)
  {
    allVariables.erase(std::find(allVariables.begin(), allVariables.end(), varName + "_X"));
    allVariables.erase(std::find(allVariables.begin(), allVariables.end(), varName + "_Y"));
    allVariables.erase(std::find(allVariables.begin(), allVariables.end(), varName + "_Z"));
  }
}

} // anonymous namespace

//----------------------------------------------------------------------------
class vtkCONVERGECFDReader::vtkInternal
{
public:
  vtkCONVERGECFDReader* Self;
  std::vector<std::string> CellDataScalarVariables;
  std::vector<std::string> CellDataVectorVariables;
  std::vector<std::string> ParcelDataTypes;
  std::vector<std::string> ParcelDataScalarVariables;
  std::vector<std::string> ParcelDataVectorVariables;

  // Clears out variable info
  void Reset()
  {
    this->CellDataScalarVariables.clear();
    this->CellDataVectorVariables.clear();
    this->ParcelDataTypes.clear();
  }

  // Get a parcel dataset at a given path
  vtkSmartPointer<vtkPolyData> ReadParcelDataSet(hid_t streamId, const std::string& path)
  {
    vtkSmartPointer<vtkPolyData> parcels = vtkSmartPointer<vtkPolyData>::New();

    // Build PARCEL_X address string from path name
    std::string parcelXPath = path + "/PARCEL_X";

    // Read parcel point locations
    hsize_t parcelLength = GetDataLength(streamId, parcelXPath.c_str());

    vtkNew<vtkFloatArray> parcelPointArray;
    parcelPointArray->SetNumberOfComponents(3);
    parcelPointArray->SetNumberOfTuples(parcelLength);

    vtkNew<vtkBuffer<float>> floatBuffer;
    floatBuffer->Allocate(parcelLength);

    std::array<char, 3> dimensionNames = { 'X', 'Y', 'Z' };
    for (size_t c = 0; c < dimensionNames.size(); ++c)
    {
      std::stringstream name;
      name << path << "/PARCEL_" << dimensionNames[c];
      if (!ReadArray(streamId, name.str().c_str(), floatBuffer->GetBuffer(), parcelLength))
      {
        vtkGenericWarningMacro(
          "No parcel coordinate array " << name.str() << " dataset available in " << name.str());
        return nullptr;
      }

      for (hsize_t j = 0; j < parcelLength; ++j)
      {
        parcelPointArray->SetTypedComponent(j, static_cast<int>(c), floatBuffer->GetBuffer()[j]);
      }
    }

    vtkNew<vtkPoints> parcelPoints;
    parcelPoints->SetData(parcelPointArray);

    parcels->SetPoints(parcelPoints);

    // Create a vertex for each parcel point
    vtkNew<vtkCellArray> parcelCells;
    parcelCells->AllocateExact(parcelLength, 1);
    for (vtkIdType id = 0; id < static_cast<vtkIdType>(parcelLength); ++id)
    {
      parcelCells->InsertNextCell(1, &id);
    }
    parcels->SetVerts(parcelCells);

    // Read parcel data arrays
    for (int i = 0; i < this->Self->ParcelDataArraySelection->GetNumberOfArrays(); ++i)
    {
      std::string varName(this->Self->ParcelDataArraySelection->GetArrayName(i));
      if (varName == "PARCEL_X" || varName == "PARCEL_Y" || varName == "PARCEL_Z" ||
        this->Self->ParcelDataArraySelection->ArrayIsEnabled(varName.c_str()) == 0)
      {
        continue;
      }

      auto begin = this->ParcelDataVectorVariables.begin();
      auto end = this->ParcelDataVectorVariables.end();
      bool isVector = std::find(begin, end, varName) != end;

      // This would be a lot simpler using a vtkSOADataArrayTemplate<float>, but
      // until GetVoidPointer() is removed from more of the VTK code base, we
      // will use a vtkFloatArray.
      vtkNew<vtkFloatArray> dataArray;
      bool success = true;
      if (isVector)
      {
        std::string pathX = path + "/" + varName + "_X";
        std::string pathY = path + "/" + varName + "_Y";
        std::string pathZ = path + "/" + varName + "_Z";

        if (!ArrayExists(streamId, pathX.c_str()))
        {
          // This array just doesn't exist in this stream, skip it.
          continue;
        }

        // hsize_t length = GetDataLength(streamId, pathX.c_str());
        dataArray->SetNumberOfComponents(3);
        dataArray->SetNumberOfTuples(parcelLength);
        dataArray->SetName(varName.c_str());

        if (static_cast<hsize_t>(floatBuffer->GetSize()) != parcelLength)
        {
          floatBuffer->Allocate(parcelLength);
        }
        success =
          success && ReadArray(streamId, pathX.c_str(), floatBuffer->GetBuffer(), parcelLength);
        for (hsize_t j = 0; j < parcelLength; ++j)
        {
          dataArray->SetTypedComponent(j, 0, floatBuffer->GetBuffer()[j]);
        }
        success =
          success && ReadArray(streamId, pathY.c_str(), floatBuffer->GetBuffer(), parcelLength);
        for (hsize_t j = 0; j < parcelLength; ++j)
        {
          dataArray->SetTypedComponent(j, 1, floatBuffer->GetBuffer()[j]);
        }
        success =
          success && ReadArray(streamId, pathZ.c_str(), floatBuffer->GetBuffer(), parcelLength);
        for (hsize_t j = 0; j < parcelLength; ++j)
        {
          dataArray->SetTypedComponent(j, 2, floatBuffer->GetBuffer()[j]);
        }
      }
      else // !is_vector
      {
        std::string varPath(path);
        varPath += "/" + varName;

        if (!ArrayExists(streamId, varPath.c_str()))
        {
          // This array just doesn't exist in this stream, skip it.
          continue;
        }

        dataArray->SetNumberOfComponents(1);
        dataArray->SetNumberOfTuples(parcelLength);
        dataArray->SetName(varName.c_str());
        success =
          success && ReadArray(streamId, varPath.c_str(), dataArray->GetPointer(0), parcelLength);
      }

      if (success)
      {
        parcels->GetPointData()->AddArray(dataArray);
      }
    }

    return parcels;
  }
};

//----------------------------------------------------------------------------
vtkCONVERGECFDReader::vtkCONVERGECFDReader()
  : FileName(nullptr)
  , Internal(new vtkCONVERGECFDReader::vtkInternal())
{
  this->SetNumberOfInputPorts(0);
  this->SetNumberOfOutputPorts(1);
  this->Internal->Self = this;

  this->CellDataArraySelection->AddObserver(
    vtkCommand::ModifiedEvent, this, &vtkCONVERGECFDReader::Modified);
  this->ParcelDataArraySelection->AddObserver(
    vtkCommand::ModifiedEvent, this, &vtkCONVERGECFDReader::Modified);
}

//----------------------------------------------------------------------------
vtkCONVERGECFDReader::~vtkCONVERGECFDReader()
{
  delete[] this->FileName;
  this->FileName = nullptr;
  delete this->Internal;
}

//----------------------------------------------------------------------------
void vtkCONVERGECFDReader::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os, indent);
}

//----------------------------------------------------------------------------
int vtkCONVERGECFDReader::RequestInformation(
  vtkInformation*, vtkInformationVector**, vtkInformationVector* outInfos)
{
  if (!this->FileName || this->FileName[0] == '\0')
  {
    return 1;
  }

  // Reset internal information
  this->Internal->Reset();

  vtkHDF::ScopedH5FHandle fileId = H5Fopen(this->FileName, H5F_ACC_RDONLY, H5P_DEFAULT);
  if (fileId < 0)
  {
    vtkErrorMacro("Could not open HDF5 file '" << this->FileName << "'");
    return 0;
  }

  // Iterate over all streams to find available cell data arrays and parcel data arrays
  std::set<std::string> cellVariables;
  std::set<std::string> parcelVariables;
  int streamCount = 0;
  do
  {
    herr_t status = 0;
    std::ostringstream streamName;
    streamName << "/STREAM_" << std::setw(2) << std::setfill('0') << streamCount;
    H5Eset_auto(nullptr, nullptr);
    status = H5Gget_objinfo(fileId, streamName.str().c_str(), false, nullptr);
    if (status < 0)
    {
      break;
    }

    // Open the group
    vtkHDF::ScopedH5GHandle streamId = H5Gopen(fileId, streamName.str().c_str());
    if (streamId < 0)
    {
      // Group exists, but could not be opened
      vtkErrorMacro("Could not open stream " << streamName.str());
      break;
    }

    std::vector<std::string> cellDataVariables;
    if (!ReadStrings(streamId, "VARIABLE_NAMES/CELL_VARIABLES", cellDataVariables))
    {
      vtkErrorMacro("Could not read cell variable names");
      return 0;
    }

    // Insert variables into set to ensure uniqueness
    for (auto& cellVariableName : cellDataVariables)
    {
      cellVariables.insert(cellVariableName);
    }

    // Pre- 3.1 format
    std::vector<std::string> parcelDataScalarVariables;
    if (ArrayExists(streamId, "VARIABLE_NAMES/PARCEL_VARIABLES"))
    {
      if (!ReadStrings(streamId, "VARIABLE_NAMES/PARCEL_VARIABLES", parcelDataScalarVariables))
      {
        vtkErrorMacro("Could not read parcel variable names");
        return 0;
      }

      // Copy to set of names to ensure uniqueness
      for (auto& parcelDataArrayName : parcelDataScalarVariables)
      {
        parcelVariables.insert(parcelDataArrayName);
      }
    }
    else
    {
      // 3.1 and later format
      vtkHDF::ScopedH5GHandle varNamesHandle = H5Gopen(streamId, "VARIABLE_NAMES");
      if (varNamesHandle < 0)
      {
        vtkErrorMacro("Cannot open /" << streamId << "/VARIABLE_NAMES");
        return 0;
      }

      // Iterate over parcel variable names
      hsize_t numVariableTypes = 0;
      herr_t err = H5Gget_num_objs(varNamesHandle, &numVariableTypes);
      if (err < 0)
      {
        vtkErrorMacro("Cannot get number of groups from file");
        return 0;
      }

      for (hsize_t i = 0; i < numVariableTypes; ++i)
      {
        status = 0;
        char groupName[256];
        status = H5Lget_name_by_idx(streamId, "VARIABLE_NAMES/", H5_INDEX_NAME, H5_ITER_NATIVE, i,
          groupName, 256, H5P_DEFAULT);
        if (status < 0)
        {
          vtkErrorMacro(<< "error reading parcel variable names");
          break;
        }

        std::string groupNameString(groupName);
        if (groupNameString == "CELL_VARIABLES")
        {
          continue;
        }

        auto const underscorePos = groupNameString.find_last_of('_');
        std::string parcelTypePrefix = groupNameString.substr(0, underscorePos);

        std::string parcelVariablesGroupName = parcelTypePrefix + "_VARIABLES";
        std::string parcelVariableTypeName = parcelTypePrefix + "_DATA";

        // Read parcel array names
        std::string parcelDataGroup("VARIABLE_NAMES/");
        parcelDataGroup += parcelVariablesGroupName;
        if (ArrayExists(streamId, parcelDataGroup.c_str()))
        {
          std::vector<std::string> parcelScalarVariables;
          if (!ReadStrings(streamId, parcelDataGroup.c_str(), parcelScalarVariables))
          {
            vtkErrorMacro("Could not read parcel variable names");
            return 0;
          }

          // Insert variable name into set to ensure uniqueness
          for (auto& var : parcelScalarVariables)
          {
            parcelVariables.insert(var);
          }
        }
      }
    }

    streamCount++;
  } while (true); // end iterating over streams

  constexpr bool defaultEnabledState = true;

  // Set up cell data array selection
  this->Internal->CellDataScalarVariables.clear();
  this->Internal->CellDataVectorVariables.clear();

  for (auto& cellArrayName : cellVariables)
  {
    this->Internal->CellDataScalarVariables.emplace_back(cellArrayName);
  }

  // Split cell variables into scalar and vector arrays
  SplitScalarAndVectorVariables(
    this->Internal->CellDataScalarVariables, this->Internal->CellDataVectorVariables);

  for (const auto& varName : this->Internal->CellDataScalarVariables)
  {
    if (!this->CellDataArraySelection->ArrayExists(varName.c_str()))
    {
      this->CellDataArraySelection->AddArray(varName.c_str(), defaultEnabledState);
    }
  }

  for (const auto& varName : this->Internal->CellDataVectorVariables)
  {
    if (!this->CellDataArraySelection->ArrayExists(varName.c_str()))
    {
      this->CellDataArraySelection->AddArray(varName.c_str(), defaultEnabledState);
    }
  }

  // Set up parcel data array selection
  this->Internal->ParcelDataScalarVariables.clear();
  this->Internal->ParcelDataVectorVariables.clear();

  for (auto& parcelArrayName : parcelVariables)
  {
    this->Internal->ParcelDataScalarVariables.emplace_back(parcelArrayName);
  }

  // Split parcel arrays into scalar and vector variables
  SplitScalarAndVectorVariables(
    this->Internal->ParcelDataScalarVariables, this->Internal->ParcelDataVectorVariables);

  // Set up data array status
  for (const auto& varName : this->Internal->ParcelDataScalarVariables)
  {
    if (!this->ParcelDataArraySelection->ArrayExists(varName.c_str()))
    {
      this->ParcelDataArraySelection->AddArray(varName.c_str(), defaultEnabledState);
    }
  }

  for (const auto& varName : this->Internal->ParcelDataVectorVariables)
  {
    // Skip X, Y, Z points
    if (varName == "PARCEL")
    {
      continue;
    }

    if (!this->ParcelDataArraySelection->ArrayExists(varName.c_str()))
    {
      this->ParcelDataArraySelection->AddArray(varName.c_str(), defaultEnabledState);
    }
  }

  // Get time information
  vtkInformation* outInfo = outInfos->GetInformationObject(0);
  this->ReadTimeSteps(outInfo);

  return 1;
}

//----------------------------------------------------------------------------
int vtkCONVERGECFDReader::RequestData(
  vtkInformation*, vtkInformationVector**, vtkInformationVector* outputVector)
{
  vtkInformation* outInfo = outputVector->GetInformationObject(0);

  size_t fileIndex = this->SelectTimeStepIndex(outInfo);
  std::string fileName = this->FileNames[fileIndex];

  if (fileName.empty())
  {
    vtkErrorMacro("No file sequence found");
    return 0;
  }

  vtkPartitionedDataSetCollection* outputPDC = vtkPartitionedDataSetCollection::GetData(outInfo);
  if (!outputPDC)
  {
    vtkErrorMacro("No output available!");
    return 0;
  }

  vtkNew<vtkDataAssembly> hierarchy;
  hierarchy->Initialize();
  outputPDC->SetDataAssembly(hierarchy);

  vtkHDF::ScopedH5FHandle fileId = H5Fopen(fileName.c_str(), H5F_ACC_RDONLY, H5P_DEFAULT);
  if (fileId < 0)
  {
    vtkErrorMacro("Could not open HDF5 file '" << fileName << "'");
    return 0;
  }

  vtkHDF::ScopedH5GHandle boundaryHandle = H5Gopen(fileId, "/BOUNDARIES");
  if (boundaryHandle < 0)
  {
    vtkErrorMacro("Cannot open group/BOUNDARIES");
    return 0;
  }

  // Iterate over stream groups
  hsize_t numObjs = 0;
  herr_t err = H5Gget_num_objs(fileId, &numObjs);
  if (err < 0)
  {
    vtkErrorMacro("Cannot get number of groups from file");
    return 0;
  }

  int streamCount = 0;
  do
  {
    herr_t status = 0;
    std::ostringstream streamName;
    streamName << "/STREAM_" << std::setw(2) << std::setfill('0') << streamCount;
    H5Eset_auto(nullptr, nullptr);
    status = H5Gget_objinfo(fileId, streamName.str().c_str(), false, nullptr);
    if (status < 0)
    {
      break;
    }

    // Open the group
    vtkHDF::ScopedH5GHandle streamId = H5Gopen(fileId, streamName.str().c_str());
    if (streamId < 0)
    {
      vtkErrorMacro("Could not open stream " << streamName.str());
      break;
    }

    if (!ArrayExists(streamId, "VERTEX_COORDINATES/X"))
    {
      vtkErrorMacro("Could not find array VERTEX_COORDINATES/X");
      break;
    }

    std::stringstream streamss;
    streamss << "STREAM_" << std::setw(2) << std::setfill('0') << streamCount;
    int streamNodeId = hierarchy->AddNode(streamss.str().c_str(), 0 /* root */);

    hsize_t xCoordsLength = GetDataLength(streamId, "VERTEX_COORDINATES/X");

    // Temporary buffer for reading vector array components
    vtkNew<vtkBuffer<float>> floatBuffer;

    vtkNew<vtkFloatArray> pointArray;
    pointArray->SetNumberOfComponents(3);
    pointArray->SetNumberOfTuples(xCoordsLength);

    floatBuffer->Allocate(xCoordsLength);

    std::array<char, 3> dimensionNames = { 'X', 'Y', 'Z' };

    for (size_t c = 0; c < dimensionNames.size(); ++c)
    {
      std::stringstream name;
      name << "VERTEX_COORDINATES/" << dimensionNames[c];
      if (!ReadArray(streamId, name.str().c_str(), floatBuffer->GetBuffer(), xCoordsLength))
      {
        vtkErrorMacro(
          "No coordinate array " << name.str() << " dataset available in " << streamName.str());
        return 0;
      }

      for (hsize_t j = 0; j < xCoordsLength; ++j)
      {
        pointArray->SetTypedComponent(j, static_cast<int>(c), floatBuffer->GetBuffer()[j]);
      }
    }

    // ++++ POLYGON_OFFSET ++++
    hsize_t polygonOffsetsLength = GetDataLength(streamId, "CONNECTIVITY/POLYGON_OFFSET");
    std::vector<int> polygonOffsets(polygonOffsetsLength);
    if (!ReadArray(
          streamId, "CONNECTIVITY/POLYGON_OFFSET", polygonOffsets.data(), polygonOffsetsLength))
    {
      vtkErrorMacro("Could not read CONNECTIVITY/POLYGON_OFFSET");
      return 0;
    }

    // Reduce the number of polygons by one to make up for the fact that the POLYGON_OFFSETS
    // array is longer by one row.
    vtkIdType numPolygons = static_cast<vtkIdType>(polygonOffsets.size()) - 1;

    // ++++ POLYGON_TO_VERTEX ++++
    hsize_t polygonsLength = GetDataLength(streamId, "CONNECTIVITY/POLYGON_TO_VERTEX");
    std::vector<int> polygons(polygonsLength);
    if (!ReadArray(streamId, "CONNECTIVITY/POLYGON_TO_VERTEX", polygons.data(), polygonsLength))
    {
      vtkErrorMacro("Could not read CONNECTIVITY/POLYGON_TO_VERTEX");
      return 0;
    }

    // ++++ CONNECTED_CELLS ++++
    hsize_t connectedCellsLength = GetDataLength(streamId, "CONNECTIVITY/CONNECTED_CELLS");
    std::vector<int> connectedCells(connectedCellsLength);
    if (!ReadArray(
          streamId, "CONNECTIVITY/CONNECTED_CELLS", connectedCells.data(), connectedCellsLength))
    {
      vtkErrorMacro("Could not read CONNECTIVITY/CONNECTED_CELLS");
      return 0;
    }

    // ++++ CREATE VTK DATA SETS ++++
    vtkNew<vtkPoints> points;
    points->SetData(pointArray);

    // boundaryIdToIndex must be size of max id... ids are not guaranteed to be sequential,
    // i.e., 1, 3, 5, 30, 31, 32, 1001 so it's better to use map instead of array lookup
    std::map<int, int> boundaryIdToIndex;

    hsize_t numBoundaryNames = GetDataLength(boundaryHandle, "BOUNDARY_NAMES");
    std::vector<std::string> boundaryNames(numBoundaryNames);
    ReadStrings(boundaryHandle, "BOUNDARY_NAMES", boundaryNames);
    hsize_t numBoundaries = GetDataLength(boundaryHandle, "NUM_ELEMENTS");
    std::vector<int> boundaryNumElements(numBoundaries);
    ReadArray(
      boundaryHandle, "NUM_ELEMENTS", boundaryNumElements.data(), boundaryNumElements.size());
    std::vector<int> boundaryIds(numBoundaries);
    ReadArray(boundaryHandle, "BOUNDARY_IDS", boundaryIds.data(), boundaryIds.size());
    if (numBoundaries != numBoundaryNames)
    {
      vtkErrorMacro("Number of BOUNDARY_NAMES does not match NUM_ELEMENTS");
      return 0;
    }

    // Make mesh the first node in the stream and put it first in the collection
    int meshNodeId = hierarchy->AddNode("Mesh", streamNodeId);
    int meshStartId = outputPDC->GetNumberOfPartitionedDataSets();
    outputPDC->SetNumberOfPartitionedDataSets(meshStartId + 1);

    vtkNew<vtkUnstructuredGrid> ugrid;
    outputPDC->SetPartition(meshStartId, 0, ugrid);
    outputPDC->GetMetaData(meshStartId)->Set(vtkCompositeDataSet::NAME(), "Mesh");
    hierarchy->AddDataSetIndex(meshNodeId, meshStartId);

    // Multiple surfaces can exist in a single file. We create a vtkPolyData for
    // each one and store them under another group in the partitioned dataset collection.
    unsigned int streamSurfaceStartId = outputPDC->GetNumberOfPartitionedDataSets();
    outputPDC->SetNumberOfPartitionedDataSets(
      streamSurfaceStartId + static_cast<unsigned int>(boundaryIds.size()));

    int surfaceNodeId = hierarchy->AddNode("Surfaces", streamNodeId);
    for (int i = 0; i < static_cast<int>(boundaryIds.size()); ++i)
    {
      // If boundary index 0 has boundary id == 1, index 1 of boundaryIdToIndex will be 0.
      boundaryIdToIndex[boundaryIds[i]] = static_cast<int>(i);

      vtkNew<vtkPolyData> boundarySurface;
      outputPDC->SetPartition(streamSurfaceStartId + i, 0, boundarySurface);
      outputPDC->GetMetaData(streamSurfaceStartId + static_cast<unsigned int>(i))
        ->Set(vtkCompositeDataSet::NAME(), boundaryNames[i]);

      vtkNew<vtkCellArray> polys;
      polys->AllocateEstimate(boundaryNumElements[i], 4);
      boundarySurface->SetPolys(polys);
      std::string validName = vtkDataAssembly::MakeValidNodeName(boundaryNames[i].c_str());
      unsigned int boundaryNodeId = hierarchy->AddNode(validName.c_str(), surfaceNodeId);
      hierarchy->AddDataSetIndex(boundaryNodeId, streamSurfaceStartId + i);
    }

    // Create maps from surface point IDs for each block
    std::vector<std::set<vtkIdType>> blocksSurfacePointIds(boundaryIds.size());
    for (int polyId = 0; polyId < numPolygons; ++polyId)
    {
      if (connectedCells[2 * polyId + 0] >= 0 && connectedCells[2 * polyId + 1] >= 0)
      {
        // Polygon is not part of a surface, so skip.
        continue;
      }

      int boundaryId = -(connectedCells[2 * polyId + 0] + 1);
      int boundaryIndex = boundaryIdToIndex[boundaryId];
      vtkIdType numCellPts =
        static_cast<vtkIdType>(polygonOffsets[polyId + 1] - polygonOffsets[polyId]);
      for (vtkIdType id = 0; id < numCellPts; ++id)
      {
        vtkIdType ptId = polygons[polygonOffsets[polyId] + id];
        blocksSurfacePointIds[boundaryIndex].insert(ptId);
      }
    }

    // Create maps from original point IDs to surface point IDs for each block
    std::vector<std::map<vtkIdType, vtkIdType>> blocksOriginalToBlockPointId(numBoundaryNames);
    for (hsize_t boundaryIndex = 0; boundaryIndex < numBoundaryNames; ++boundaryIndex)
    {
      // Create a map from original point ID in the global points list
      vtkIdType newIndex = 0;
      for (vtkIdType id : blocksSurfacePointIds[boundaryIndex])
      {
        blocksOriginalToBlockPointId[boundaryIndex][id] = newIndex++;
      }

      // Clear some memory
      blocksSurfacePointIds[boundaryIndex].clear();

      // Create localized points for this block
      vtkNew<vtkPoints> blockPoints;
      blockPoints->SetDataType(points->GetDataType());
      blockPoints->SetNumberOfPoints(newIndex);
      vtkFloatArray* toArray = vtkFloatArray::SafeDownCast(blockPoints->GetData());
      for (auto it = blocksOriginalToBlockPointId[boundaryIndex].begin();
           it != blocksOriginalToBlockPointId[boundaryIndex].end(); ++it)
      {
        vtkIdType from = it->first;
        vtkIdType to = it->second;
        float xyz[3];
        pointArray->GetTypedTuple(from, xyz);
        toArray->SetTypedTuple(to, xyz);
      }

      vtkPolyData* boundarySurface =
        vtkPolyData::SafeDownCast(outputPDC->GetPartition(streamSurfaceStartId + boundaryIndex, 0));
      boundarySurface->SetPoints(blockPoints);
    }

    // Go through polygons again and add them to the polydata blocks
    vtkIdType numSurfacePolys = 0;
    for (int polyId = 0; polyId < numPolygons; ++polyId)
    {
      if (connectedCells[2 * polyId + 0] >= 0 && connectedCells[2 * polyId + 1] >= 0)
      {
        // Polygon is not part of a surface, so skip.
        continue;
      }

      numSurfacePolys++;

      int boundaryId = -(connectedCells[2 * polyId + 0] + 1);
      int boundaryIndex = boundaryIdToIndex[boundaryId];
      vtkPolyData* polyData =
        vtkPolyData::SafeDownCast(outputPDC->GetPartition(streamSurfaceStartId + boundaryIndex, 0));
      vtkIdType numCellPts =
        static_cast<vtkIdType>(polygonOffsets[polyId + 1] - polygonOffsets[polyId]);
      std::vector<vtkIdType> ptIds(numCellPts);
      for (vtkIdType id = 0; id < numCellPts; ++id)
      {
        vtkIdType ptId = polygons[polygonOffsets[polyId] + id];
        ptIds[id] = blocksOriginalToBlockPointId[boundaryIndex][ptId];
      }
      polyData->GetPolys()->InsertNextCell(numCellPts, ptIds.data());
    }

    // Clear some memory
    blocksOriginalToBlockPointId.clear();

    // Create a map from cell to polygons
    std::map<int, std::set<int>> cellToPoly;

    // Create a map from polygon to the volumetric cell to which it is attached
    std::vector<int> polyToCell(numSurfacePolys);

    // Create a map from polygon to boundary
    std::vector<int> polyToBoundary(numSurfacePolys);

    vtkIdType surfacePolyCount = 0;
    for (int polyId = 0; polyId < numPolygons; ++polyId)
    {
      int cell0 = connectedCells[2 * polyId + 0];
      int cell1 = connectedCells[2 * polyId + 1];
      if (cell0 >= 0)
      {
        // Add polyId to cell 0's list of polygons
        cellToPoly[cell0].insert(polyId);
      }
      if (cell1 >= 0)
      {
        // Add polyId to cell 1's list of polygons
        cellToPoly[cell1].insert(polyId);
      }

      if (cell0 < 0 || cell1 < 0)
      {
        assert(polyToBoundary.size() > static_cast<size_t>(surfacePolyCount));
        polyToBoundary[surfacePolyCount] = cell0 >= 0 ? -(cell1 + 1) : -(cell0 + 1);
        polyToCell[surfacePolyCount] = cell0 >= 0 ? cell0 : cell1;
        surfacePolyCount++;
      }
    }

    // Set the points in the unstructured grid
    ugrid->SetPoints(points);

    // Create polyhedra from their faces
    vtkNew<vtkIdList> faces;
    for (const auto& cellIdAndPolys : cellToPoly)
    {
      faces->Reset();
      // Number of faces
      faces->InsertNextId(static_cast<vtkIdType>(cellIdAndPolys.second.size()));
      for (auto polyId : cellIdAndPolys.second)
      {
        // Get polygon
        int numPts = polygonOffsets[polyId + 1] - polygonOffsets[polyId];

        // Number of points in face
        faces->InsertNextId(numPts);
        for (int i = 0; i < numPts; ++i)
        {
          // Polygon vertex
          faces->InsertNextId(polygons[polygonOffsets[polyId] + i]);
        }
      }

      ugrid->InsertNextCell(VTK_POLYHEDRON, faces);
    }

    // ++++ CELL DATA ++++
    for (int i = 0; i < this->CellDataArraySelection->GetNumberOfArrays(); ++i)
    {
      std::string varName(this->CellDataArraySelection->GetArrayName(i));
      if (this->GetCellDataArraySelection()->ArrayIsEnabled(varName.c_str()) == 0)
      {
        continue;
      }

      auto begin = this->Internal->CellDataVectorVariables.begin();
      auto end = this->Internal->CellDataVectorVariables.end();
      bool isVector = std::find(begin, end, varName) != end;

      // This would be a lot simpler using a vtkSOADataArrayTemplate<float>, but
      // until GetVoidPointer() is removed from more of the VTK code base, we
      // will use a vtkFloatArray.
      vtkNew<vtkFloatArray> dataArray;
      bool success = true;
      if (isVector)
      {
        std::string rootPath("CELL_CENTER_DATA/");
        rootPath += varName;
        std::string pathX = rootPath + "_X";
        std::string pathY = rootPath + "_Y";
        std::string pathZ = rootPath + "_Z";

        if (!ArrayExists(streamId, pathX.c_str()))
        {
          // This array just doesn't exist in this stream, skip it.
          continue;
        }

        hsize_t length = GetDataLength(streamId, pathX.c_str());
        dataArray->SetNumberOfComponents(3);
        dataArray->SetNumberOfTuples(length);
        dataArray->SetName(varName.c_str());

        if (floatBuffer->GetSize() != static_cast<vtkIdType>(length))
        {
          floatBuffer->Allocate(length);
        }

        success = success && ReadArray(streamId, pathX.c_str(), floatBuffer->GetBuffer(), length);
        for (hsize_t j = 0; j < length; ++j)
        {
          dataArray->SetTypedComponent(j, 0, floatBuffer->GetBuffer()[j]);
        }
        success = success && ReadArray(streamId, pathY.c_str(), floatBuffer->GetBuffer(), length);
        for (hsize_t j = 0; j < length; ++j)
        {
          dataArray->SetTypedComponent(j, 1, floatBuffer->GetBuffer()[j]);
        }
        success = success && ReadArray(streamId, pathZ.c_str(), floatBuffer->GetBuffer(), length);
        for (hsize_t j = 0; j < length; ++j)
        {
          dataArray->SetTypedComponent(j, 2, floatBuffer->GetBuffer()[j]);
        }
      }
      else
      {
        std::string path("CELL_CENTER_DATA/");
        path += varName;

        if (!ArrayExists(streamId, path.c_str()))
        {
          // This array just doesn't exist in this stream, skip it.
          continue;
        }

        hsize_t length = GetDataLength(streamId, path.c_str());
        dataArray->SetNumberOfComponents(1);
        dataArray->SetNumberOfTuples(length);
        dataArray->SetName(varName.c_str());
        success = success && ReadArray(streamId, path.c_str(), dataArray->GetPointer(0), length);
      }

      if (success)
      {
        ugrid->GetCellData()->AddArray(dataArray);

        // Now pull out the values needed for the surface geometry
        for (int boundaryIndex = 0; boundaryIndex < static_cast<int>(numBoundaryNames);
             ++boundaryIndex)
        {
          vtkPolyData* boundarySurface = vtkPolyData::SafeDownCast(
            outputPDC->GetPartition(streamSurfaceStartId + boundaryIndex, 0));
          int numBoundaryPolys = boundarySurface->GetNumberOfCells();
          vtkNew<vtkFloatArray> surfaceDataArray;
          surfaceDataArray->SetNumberOfComponents(dataArray->GetNumberOfComponents());
          surfaceDataArray->SetNumberOfTuples(numBoundaryPolys);
          surfaceDataArray->SetName(varName.c_str());
          vtkIdType localDataCount = 0;
          for (vtkIdType id = 0; id < numSurfacePolys; ++id)
          {
            assert(polyToBoundary.size() > static_cast<size_t>(id));
            if (boundaryIdToIndex.find(polyToBoundary[id]) == boundaryIdToIndex.end())
            {
              vtkErrorMacro(
                "polyToBoundary[id] is not found within boundaryIdToIndex" << polyToBoundary[id]);
              return 0;
            }
            const int polyBoundaryIndex = boundaryIdToIndex[polyToBoundary[id]];
            if (polyBoundaryIndex != boundaryIndex)
            {
              continue;
            }
            for (int c = 0; c < surfaceDataArray->GetNumberOfComponents(); ++c)
            {
              assert(polyToCell.size() > static_cast<size_t>(id));
              surfaceDataArray->SetTypedComponent(
                localDataCount, c, dataArray->GetTypedComponent(polyToCell[id], c));
            }
            ++localDataCount;
          }
          boundarySurface->GetCellData()->AddArray(surfaceDataArray);
        }
      }
    }

    // ++++ PARCEL DATA ++++
    bool parcelExists = GroupExists(streamId, "PARCEL_DATA");
    if (parcelExists)
    {
      std::string parcelDataRoot;

      // Branch between pre-3.1 and post-3.1 file formats
      H5O_info_t objectInfo;
      err = H5Oget_info_by_idx(
        streamId, "PARCEL_DATA", H5_INDEX_NAME, H5_ITER_NATIVE, 0, &objectInfo, 0);
      if (err < 0 || objectInfo.type == H5O_TYPE_GROUP)
      {
        // Handle 3.1 or above version

        // Get parcel data type names
        vtkHDF::ScopedH5GHandle parcelDataTypesHandle = H5Gopen(streamId, "PARCEL_DATA");
        // We already checked that the group exists, so no need to check again.

        hsize_t numParcelDataTypes = 0;
        err = H5Gget_num_objs(parcelDataTypesHandle, &numParcelDataTypes);
        if (err < 0)
        {
          vtkErrorMacro("Cannot get number of parcel data types from file");
          return 0;
        }

        int parcelsNodeId = hierarchy->AddNode("Parcels", streamNodeId);

        // Iterate over the parcel data types/data sets
        unsigned int parcelDataTypeCount = 0;
        for (hsize_t parcelDataTypeIndex = 0; parcelDataTypeIndex < numParcelDataTypes;
             ++parcelDataTypeIndex)
        {
          status = 0;
          char groupName[256];
          status = H5Lget_name_by_idx(streamId, "PARCEL_DATA", H5_INDEX_NAME, H5_ITER_NATIVE,
            parcelDataTypeIndex, groupName, 256, H5P_DEFAULT);
          if (status < 0)
          {
            vtkErrorMacro(<< "error reading parcel variable names");
            break;
          }

          std::string dataType(groupName);
          std::string dataTypeGroupName("PARCEL_DATA/");
          dataTypeGroupName += dataType;
          vtkHDF::ScopedH5GHandle dataTypeHandle = H5Gopen(streamId, dataTypeGroupName.c_str());
          if (dataTypeHandle < 0)
          {
            vtkErrorMacro("Cannot open group " << dataTypeGroupName);
            return 0;
          }

          // Handle the datasets in each datatype
          H5G_info_t groupInfo;
          err = H5Gget_info(dataTypeHandle, &groupInfo);
          if (err < 0)
          {
            vtkErrorMacro("Cannot get number of datasets from group " << dataTypeGroupName);
            return 0;
          }
          hsize_t numDataSets = groupInfo.nlinks;

          std::string dataTypeNodeName = vtkDataAssembly::MakeValidNodeName(dataType.c_str());
          int parcelDataTypeNodeId = hierarchy->AddNode(dataTypeNodeName.c_str(), parcelsNodeId);

          parcelDataTypeCount++;

          // Iterate over the datasets in the dataset type group
          for (hsize_t i = 0; i < numDataSets; ++i)
          {
            char dataSetGroupName[256];
            status = H5Lget_name_by_idx(dataTypeHandle, ".", H5_INDEX_NAME, H5_ITER_NATIVE, i,
              dataSetGroupName, 256, H5P_DEFAULT);
            if (status < 0)
            {
              continue;
            }

            vtkSmartPointer<vtkPolyData> parcels =
              this->Internal->ReadParcelDataSet(dataTypeHandle, dataSetGroupName);
            int parcelsId = outputPDC->GetNumberOfPartitionedDataSets();
            outputPDC->SetNumberOfPartitionedDataSets(parcelsId + 1);
            outputPDC->SetPartition(parcelsId, 0, parcels);
            outputPDC->GetMetaData(parcelsId)->Set(vtkCompositeDataSet::NAME(), dataSetGroupName);
            std::string validDataSetGroupName =
              vtkDataAssembly::MakeValidNodeName(dataSetGroupName);
            int parcelNodeId =
              hierarchy->AddNode(validDataSetGroupName.c_str(), parcelDataTypeNodeId);
            hierarchy->AddDataSetIndex(parcelNodeId, parcelsId);
          }
        }
      }
      else
      {
        vtkSmartPointer<vtkPolyData> parcels =
          this->Internal->ReadParcelDataSet(streamId, "PARCEL_DATA");
        int parcelsId = outputPDC->GetNumberOfPartitionedDataSets();
        outputPDC->SetNumberOfPartitionedDataSets(parcelsId + 1);
        outputPDC->SetPartition(parcelsId, 0, parcels);
        outputPDC->GetMetaData(parcelsId)->Set(vtkCompositeDataSet::NAME(), "Parcels");
        int parcelNodeId = hierarchy->AddNode("Parcels", streamNodeId);
        hierarchy->AddDataSetIndex(parcelNodeId, parcelsId);
      }
    }
    streamCount++;
  } while (true);

  // Everything succeeded
  return 1;
}

//----------------------------------------------------------------------------
void vtkCONVERGECFDReader::ReadTimeSteps(vtkInformation* outInfo)
{
  if (!this->FileName || this->FileName[0] == '\0')
  {
    return;
  }

  // Scan for other files with the same naming pattern in the same directory.
  // We are looking for files with the following convention
  //
  // <file><zero-padded index>_<time>.h5
  //
  // We load each file and extract the time from within.
  this->FileNames.clear();
  std::string originalFile = this->FileName;
  std::string path;
  std::string baseName;
  std::string::size_type dirseppos = originalFile.find_last_of("/\\");
  if (dirseppos == std::string::npos)
  {
    path = "./";
    baseName = originalFile;
  }
  else
  {
    path = originalFile.substr(0, dirseppos + 1);
    baseName = originalFile.substr(dirseppos + 1);
  }

  std::vector<std::string> fileNames;
  vtksys::RegularExpression regEx("^([^0-9]*)([0-9]*)[_]?(.*).h5$");
  if (!regEx.find(baseName))
  {
    fileNames.emplace_back(originalFile);
    return;
  }

  std::string prefix = regEx.match(1);
  std::string indexString = regEx.match(2);

  vtkNew<vtkDirectory> dir;
  if (!dir->Open(path.c_str()))
  {
    vtkWarningMacro(<< "Could not open directory " << originalFile << " is supposed to be from ("
                    << path << ")");
    fileNames.emplace_back(originalFile);
    return;
  }

  for (vtkIdType i = 0; i < dir->GetNumberOfFiles(); i++)
  {
    const char* file = dir->GetFile(i);
    if (!regEx.find(file))
    {
      continue;
    }
    if (regEx.match(1) != prefix)
    {
      continue;
    }
    fileNames.emplace_back(path + file);
  }

  std::vector<std::pair<double, std::string>> timesAndFiles;
  for (const auto& file : fileNames)
  {
    double time = 0.0;
    bool timeRead = this->ReadOutputTime(file, time);
    if (timeRead)
    {
      timesAndFiles.emplace_back(std::make_pair(time, file));
    }
  }

  // Sort files and times by time
  std::sort(timesAndFiles.begin(), timesAndFiles.end(),
    [](const std::pair<double, std::string>& left, const std::pair<double, std::string>& right) {
      return left.first < right.first;
    });

  std::vector<double> times;
  // Reset the FileNames vector in chronological order
  this->FileNames.clear();
  for (const auto& pair : timesAndFiles)
  {
    times.emplace_back(pair.first);
    this->FileNames.emplace_back(pair.second);
  }

  if (!times.empty())
  {
    double timeRange[2] = { times[0], times[times.size() - 1] };
    outInfo->Set(vtkStreamingDemandDrivenPipeline::TIME_RANGE(), timeRange, 2);
    outInfo->Set(
      vtkStreamingDemandDrivenPipeline::TIME_STEPS(), times.data(), static_cast<int>(times.size()));
  }
}

//----------------------------------------------------------------------------
bool vtkCONVERGECFDReader::ReadOutputTime(const std::string& filePath, double& time)
{
  if (filePath[0] == '\0')
  {
    return false;
  }

  vtkHDF::ScopedH5FHandle fileId = H5Fopen(filePath.c_str(), H5F_ACC_RDONLY, H5P_DEFAULT);
  if (fileId < 0)
  {
    return false;
  }

  if (H5Aexists(fileId, "OUTPUT_TIME"))
  {
    vtkHDF::ScopedH5AHandle outputTimeId =
      H5Aopen_by_name(fileId, ".", "OUTPUT_TIME", H5P_DEFAULT, H5P_DEFAULT);
    vtkHDF::ScopedH5THandle rawType = H5Aget_type(outputTimeId);
    vtkHDF::ScopedH5THandle dataType = H5Tget_native_type(rawType, H5T_DIR_ASCEND);

    double outputTime = 0.0;
    if (H5Aread(outputTimeId, dataType, &outputTime) >= 0)
    {
      time = outputTime;
      return true;
    }
  }

  return false;
}

//----------------------------------------------------------------------------
size_t vtkCONVERGECFDReader::SelectTimeStepIndex(vtkInformation* info)
{
  if (!info->Has(vtkStreamingDemandDrivenPipeline::TIME_STEPS()) ||
    !info->Has(vtkStreamingDemandDrivenPipeline::UPDATE_TIME_STEP()))
  {
    return 0;
  }

  double* times = info->Get(vtkStreamingDemandDrivenPipeline::TIME_STEPS());
  int nTimes = info->Length(vtkStreamingDemandDrivenPipeline::TIME_STEPS());
  double t = info->Get(vtkStreamingDemandDrivenPipeline::UPDATE_TIME_STEP());

  double resultDiff = VTK_DOUBLE_MAX;
  size_t result = 0;
  for (int i = 0; i < nTimes; ++i)
  {
    double diff = std::fabs(times[i] - t);
    if (diff < resultDiff)
    {
      resultDiff = diff;
      result = static_cast<size_t>(i);
    }
  }

  return result;
}

//----------------------------------------------------------------------------
int vtkCONVERGECFDReader::CanReadFile(const char* fname)
{
  if (H5Fis_hdf5(fname) == 0)
  {
    return 0;
  }

  vtkHDF::ScopedH5FHandle fileId = H5Fopen(fname, H5F_ACC_RDONLY, H5P_DEFAULT);
  if (fileId < 0)
  {
    return 0;
  }

  // Require a /BOUNDARIES group and at least one STREAM_00 group
  if (H5Lexists(fileId, "/BOUNDARIES", H5P_DEFAULT) == 0 ||
    H5Lexists(fileId, "/STREAM_00", H5P_DEFAULT) == 0)
  {
    return 0;
  }

  // Everything succeeded
  return 1;
}
VTK_ABI_NAMESPACE_END