File: vtkCIEDE2000.cxx

package info (click to toggle)
paraview 5.11.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 497,236 kB
  • sloc: cpp: 3,171,290; ansic: 1,315,072; python: 134,290; xml: 103,324; sql: 65,887; sh: 5,286; javascript: 4,901; yacc: 4,383; java: 3,977; perl: 2,363; lex: 1,909; f90: 1,255; objc: 143; makefile: 119; tcl: 59; pascal: 50; fortran: 29
file content (403 lines) | stat: -rw-r--r-- 12,727 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkCIEDE2000.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/*=========================================================================
The MIT License (MIT)

Copyright (c) 2015 Greg Fiumara

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
=========================================================================*/

#include "vtkCIEDE2000.h"

#include <algorithm> // std::min, std::max
#include <array>
#include <deque>
#include <limits>
#include <set>
#include <utility> // std::pair, std::make_pair
#include <vtkMath.h>

namespace CIEDE2000
{
VTK_ABI_NAMESPACE_BEGIN

//------------------------------------------------------------------------------
static const int COLORSPACE_SIZE_X = 17;
static const int COLORSPACE_SIZE_Y = 17;
static const int COLORSPACE_SIZE_Z = 17;

static const int NEIGHBORHOOD_SIZE_X = 1;
static const int NEIGHBORHOOD_SIZE_Y = 1;
static const int NEIGHBORHOOD_SIZE_Z = 1;

typedef int PositionComponent;
typedef std::array<PositionComponent, 3> Position;
typedef double Distance;

//------------------------------------------------------------------------------
inline static void getPosition(const double rgb[3], Position& pos)
{
  pos[0] = static_cast<PositionComponent>(rgb[0] * (COLORSPACE_SIZE_X - 1) + 0.5);
  pos[1] = static_cast<PositionComponent>(rgb[1] * (COLORSPACE_SIZE_Y - 1) + 0.5);
  pos[2] = static_cast<PositionComponent>(rgb[2] * (COLORSPACE_SIZE_Z - 1) + 0.5);
}

//------------------------------------------------------------------------------
inline static void getRGBColor(const Position& pos, double rgb[3])
{
  rgb[0] = pos[0] / static_cast<double>(COLORSPACE_SIZE_X - 1);
  rgb[1] = pos[1] / static_cast<double>(COLORSPACE_SIZE_Y - 1);
  rgb[2] = pos[2] / static_cast<double>(COLORSPACE_SIZE_Z - 1);
}

//------------------------------------------------------------------------------
void MapColor(double rgb[3])
{
  Position pos;
  getPosition(rgb, pos);
  getRGBColor(pos, rgb);
}

//------------------------------------------------------------------------------
inline static void getLabColor(const Position& pos, double _lab[3])
{
  double rgb[3];
  getRGBColor(pos, rgb);

  vtkMath::RGBToLab(rgb, _lab);
}

//------------------------------------------------------------------------------
inline static int getIndex(const Position& pos)
{
  return pos[0] + COLORSPACE_SIZE_X * (pos[1] + COLORSPACE_SIZE_Y * pos[2]);
}

//------------------------------------------------------------------------------
double GetCIEDeltaE2000(const double lab1[3], const double lab2[3])
{
  // The three constants used in the CIEDE2000 measure
  static const double k_L = 1.0;
  static const double k_C = 1.0;
  static const double k_H = 1.0;

  // Calculate and return Delta E

  double C1 = std::sqrt((lab1[1] * lab1[1]) + (lab1[2] * lab1[2]));
  double C2 = std::sqrt((lab2[1] * lab2[1]) + (lab2[2] * lab2[2]));

  double barC = 0.5 * (C1 + C2);

  double G =
    0.5 * (1.0 - std::sqrt(std::pow(barC, 7.0) / (std::pow(barC, 7.0) + std::pow(25.0, 7.0))));

  double a1Prime = (1.0 + G) * lab1[1];
  double a2Prime = (1.0 + G) * lab2[1];

  double CPrime1 = std::sqrt((a1Prime * a1Prime) + (lab1[2] * lab1[2]));
  double CPrime2 = std::sqrt((a2Prime * a2Prime) + (lab2[2] * lab2[2]));

  double hPrime1;
  if ((lab1[2] == 0.0) && (a1Prime == 0.0))
  {
    hPrime1 = 0.0;
  }
  else
  {
    hPrime1 = std::atan2(lab1[2], a1Prime);
    if (hPrime1 < 0.0)
    {
      hPrime1 += 2.0 * vtkMath::Pi();
    }
  }

  double hPrime2;
  if ((lab2[2] == 0.0) && (a2Prime == 0.0))
  {
    hPrime2 = 0.0;
  }
  else
  {
    hPrime2 = std::atan2(lab2[2], a2Prime);
    if (hPrime2 < 0.0)
    {
      hPrime2 += 2.0 * vtkMath::Pi();
    }
  }

  double deltaLPrime = lab2[0] - lab1[0];

  double deltaCPrime = CPrime2 - CPrime1;

  double CPrimeProduct = CPrime1 * CPrime2;

  double deltahPrime;
  if (CPrimeProduct == 0.0)
  {
    deltahPrime = 0.0;
  }
  else
  {
    deltahPrime = hPrime2 - hPrime1;

    if (deltahPrime < -vtkMath::Pi())
    {
      deltahPrime += 2.0 * vtkMath::Pi();
    }
    else if (deltahPrime > vtkMath::Pi())
    {
      deltahPrime -= 2.0 * vtkMath::Pi();
    }
  }

  double deltaHPrime = 2.0 * std::sqrt(CPrimeProduct) * std::sin(0.5 * deltahPrime);

  double barLPrime = 0.5 * (lab1[0] + lab2[0]);

  double barCPrime = 0.5 * (CPrime1 + CPrime2);

  double hPrimeSum = hPrime1 + hPrime2;

  double barhPrime;
  if (CPrime1 * CPrime2 == 0.0)
  {
    barhPrime = hPrimeSum;
  }
  else
  {
    if (std::fabs(hPrime1 - hPrime2) <= vtkMath::Pi())
    {
      barhPrime = 0.5 * hPrimeSum;
    }
    else
    {
      if (hPrimeSum < 2.0 * vtkMath::Pi())
      {
        barhPrime = 0.5 * (hPrimeSum + 2.0 * vtkMath::Pi());
      }
      else
      {
        barhPrime = 0.5 * (hPrimeSum - 2.0 * vtkMath::Pi());
      }
    }
  }

  double T = 1.0 - 0.17 * std::cos(barhPrime - (vtkMath::Pi() * 30.0 / 180.0)) +
    0.24 * std::cos(2.0 * barhPrime) +
    0.32 * std::cos(3.0 * barhPrime + (vtkMath::Pi() * 6.0 / 180.0)) -
    0.20 * std::cos(4.0 * barhPrime - (vtkMath::Pi() * 63.0 / 180.0));

  double deltaTheta = (vtkMath::Pi() * 30.0 / 180.0) *
    std::exp(-std::pow(
      (barhPrime - (vtkMath::Pi() * 275.0 / 180.0)) / (vtkMath::Pi() * 25.0 / 180.0), 2.0));

  double R_C =
    2.0 * std::sqrt(std::pow(barCPrime, 7.0) / (std::pow(barCPrime, 7.0) + std::pow(25.0, 7.0)));

  double S_L =
    1.0 + (0.015 * pow(barLPrime - 50.0, 2.0) / std::sqrt(20.0 + std::pow(barLPrime - 50.0, 2.0)));

  double S_C = 1.0 + (0.045 * barCPrime);

  double S_H = 1.0 + (0.015 * barCPrime * T);

  double R_T = -std::sin(2.0 * deltaTheta) * R_C;

  double deltaE = std::sqrt(std::pow(deltaLPrime / (k_L * S_L), 2.0) +
    std::pow(deltaCPrime / (k_C * S_C), 2.0) + std::pow(deltaHPrime / (k_H * S_H), 2.0) +
    R_T * (deltaCPrime / (k_C * S_C)) * (deltaHPrime / (k_H * S_H)));

  return deltaE;
}

//------------------------------------------------------------------------------
double CorrectedDistance(std::vector<Node>& path)
{
  double distance = 0.0;

  for (std::size_t i = 1; i < path.size(); ++i)
  {
    double currentLabColor[3];
    vtkMath::RGBToLab(path.at(i).rgb, currentLabColor);

    double previousLabColor[3];
    vtkMath::RGBToLab(path.at(i - 1).rgb, previousLabColor);

    distance += GetCIEDeltaE2000(currentLabColor, previousLabColor);
    path.at(i).distance = distance;
  }

  return distance;
}

//------------------------------------------------------------------------------
double GetColorPath(
  const double rgb1[3], const double rgb2[3], std::vector<Node>& path, bool forceExactSupportColors)
{
  Position pos1, pos2;
  getPosition(rgb1, pos1);
  getPosition(rgb2, pos2);

  // Use Dijkstra's algorithm backwards to calculate the shortest distances from
  // the second color

  std::deque<Distance> distances(COLORSPACE_SIZE_X * COLORSPACE_SIZE_Y * COLORSPACE_SIZE_Z,
    std::numeric_limits<Distance>::infinity());
  std::deque<Position> predecessors(COLORSPACE_SIZE_X * COLORSPACE_SIZE_Y * COLORSPACE_SIZE_Z);

  // Use a set as the priority queue so we can update an entry in the queue by
  // deleting the old entry and re-inserting the new entry.
  // The set is sorted first by the distance from the seed node, so that the
  // first entry always is the node that can be reached shortest.
  std::set<std::pair<Distance, Position>> front;

  // Start backwards and use the second color as seed
  distances[getIndex(pos2)] = static_cast<Distance>(0);
  front.insert(std::make_pair(static_cast<Distance>(0), pos2));

  while (!front.empty())
  {
    Distance currentDist = front.begin()->first;
    Position currentPos = front.begin()->second;

    front.erase(front.begin());

    double currentLabColor[3];
    getLabColor(currentPos, currentLabColor);

    int minNeighborPosX = std::max(static_cast<int>(currentPos[0]) - NEIGHBORHOOD_SIZE_X, 0);
    int minNeighborPosY = std::max(static_cast<int>(currentPos[1]) - NEIGHBORHOOD_SIZE_Y, 0);
    int minNeighborPosZ = std::max(static_cast<int>(currentPos[2]) - NEIGHBORHOOD_SIZE_Z, 0);

    int maxNeighborPosX =
      std::min(static_cast<int>(currentPos[0]) + NEIGHBORHOOD_SIZE_X, COLORSPACE_SIZE_X - 1);
    int maxNeighborPosY =
      std::min(static_cast<int>(currentPos[1]) + NEIGHBORHOOD_SIZE_Y, COLORSPACE_SIZE_Y - 1);
    int maxNeighborPosZ =
      std::min(static_cast<int>(currentPos[2]) + NEIGHBORHOOD_SIZE_Z, COLORSPACE_SIZE_Z - 1);

    for (int neighborPosZ = minNeighborPosZ; neighborPosZ <= maxNeighborPosZ; ++neighborPosZ)
    {
      for (int neighborPosY = minNeighborPosY; neighborPosY <= maxNeighborPosY; ++neighborPosY)
      {
        for (int neighborPosX = minNeighborPosX; neighborPosX <= maxNeighborPosX; ++neighborPosX)
        {
          Position neighborPos;
          neighborPos[0] = neighborPosX;
          neighborPos[1] = neighborPosY;
          neighborPos[2] = neighborPosZ;

          if (neighborPos == currentPos)
          {
            continue;
          }

          double neighborLabColor[3];
          getLabColor(neighborPos, neighborLabColor);

          Distance deltaE =
            static_cast<Distance>(GetCIEDeltaE2000(currentLabColor, neighborLabColor));

          int neighborIdx = getIndex(neighborPos);

          Distance oldNeighborDist = distances[neighborIdx];
          Distance newNeighborDist = currentDist + deltaE;

          if (newNeighborDist < oldNeighborDist)
          {
            front.erase(std::make_pair(oldNeighborDist, neighborPos));

            distances[neighborIdx] = newNeighborDist;
            predecessors[neighborIdx] = currentPos;
            front.insert(std::make_pair(newNeighborDist, neighborPos));
          }
        }
      }
    }
  }

  // We started backwards from the second color, so the overall length of the
  // path is the distance value at the position of the first color
  Distance pathDistance = distances[getIndex(pos1)];

  // Start the path from the first color and follow each node's predecessor
  // until the second color is reached.
  // Since each node was reached shortest from its predecessor, this results in
  // a shortest path from the first to the second color.

  path.clear();

  Position currentPos = pos1;

  while (true)
  {
    int currentIdx = getIndex(currentPos);

    Node node;
    getRGBColor(currentPos, node.rgb);

    // The shortest distance from the first color to the node is the overall
    // shortest distance
    // from the first to the second color minus the shortest distance from the
    // second color to the node.
    node.distance = pathDistance - distances[currentIdx];

    path.push_back(node);

    if (currentPos == pos2)
    {
      break;
    }

    currentPos = predecessors[currentIdx];
  }

  // Force the first and the last node's color to be exact
  if (forceExactSupportColors)
  {
    for (int i = 0; i < 3; ++i)
    {
      path.front().rgb[i] = rgb1[i];
      path.back().rgb[i] = rgb2[i];
    }

    // Return the corrected overall length of the path. Necessary if forcing the
    return CorrectedDistance(path);
  }

  // Return the overall length of the path
  return pathDistance;
}
//------------------------------------------------------------------------------

VTK_ABI_NAMESPACE_END
} // namespace CIEDE2000