1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkOpenGLProjectedTetrahedraMapper.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/*
* Copyright 2003 Sandia Corporation.
* Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
* license for use of this work by or on behalf of the
* U.S. Government. Redistribution and use in source and binary forms, with
* or without modification, are permitted provided that this Notice and any
* statement of authorship are reproduced on all copies.
*/
#include "vtkOpenGLProjectedTetrahedraMapper.h"
#include "vtkCamera.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkCellIterator.h"
#include "vtkFloatArray.h"
#include "vtkIdList.h"
#include "vtkIdTypeArray.h"
#include "vtkInformation.h"
#include "vtkMath.h"
#include "vtkMatrix3x3.h"
#include "vtkMatrix4x4.h"
#include "vtkNew.h"
#include "vtkObjectFactory.h"
#include "vtkOpenGLActor.h"
#include "vtkOpenGLCamera.h"
#include "vtkOpenGLError.h"
#include "vtkOpenGLFramebufferObject.h"
#include "vtkOpenGLIndexBufferObject.h"
#include "vtkOpenGLRenderUtilities.h"
#include "vtkOpenGLRenderWindow.h"
#include "vtkOpenGLShaderCache.h"
#include "vtkOpenGLState.h"
#include "vtkOpenGLVertexArrayObject.h"
#include "vtkOpenGLVertexBufferObject.h"
#include "vtkPointData.h"
#include "vtkRenderer.h"
#include "vtkShaderProgram.h"
#include "vtkSmartPointer.h"
#include "vtkTimerLog.h"
#include "vtkUnsignedCharArray.h"
#include "vtkUnstructuredGrid.h"
#include "vtkVisibilitySort.h"
#include "vtkVolume.h"
#include "vtkVolumeProperty.h"
#include <algorithm>
#include <cmath>
#include <string>
// bring in shader code
#include "vtkglProjectedTetrahedraFS.h"
#include "vtkglProjectedTetrahedraVS.h"
VTK_ABI_NAMESPACE_BEGIN
namespace
{
void annotate(const std::string& message)
{
vtkOpenGLRenderUtilities::MarkDebugEvent(message);
}
class scoped_annotate
{
std::string Message;
public:
scoped_annotate(const std::string& message)
: Message(message)
{
annotate("start " + message);
}
~scoped_annotate() { annotate("end " + this->Message); }
};
}
static int tet_edges[6][2] = { { 0, 1 }, { 1, 2 }, { 2, 0 }, { 0, 3 }, { 1, 3 }, { 2, 3 } };
const int SqrtTableSize = 2048;
//------------------------------------------------------------------------------
class vtkOpenGLProjectedTetrahedraMapper::vtkInternals
{
public:
bool IntermixedGeometryWarningIssued = false;
};
//------------------------------------------------------------------------------
vtkStandardNewMacro(vtkOpenGLProjectedTetrahedraMapper);
//------------------------------------------------------------------------------
vtkOpenGLProjectedTetrahedraMapper::vtkOpenGLProjectedTetrahedraMapper()
{
this->Internals = new vtkInternals();
this->TransformedPoints = vtkFloatArray::New();
this->Colors = vtkUnsignedCharArray::New();
this->LastProperty = nullptr;
this->MaxCellSize = 0;
this->GaveError = 0;
this->SqrtTable = new float[SqrtTableSize];
this->SqrtTableBias = 0.0;
this->Initialized = false;
this->CurrentFBOWidth = -1;
this->CurrentFBOHeight = -1;
this->FloatingPointFrameBufferResourcesAllocated = false;
this->Framebuffer = vtkOpenGLFramebufferObject::New();
this->UseFloatingPointFrameBuffer = true;
this->CanDoFloatingPointFrameBuffer = false;
this->HasHardwareSupport = false;
this->VBO = vtkOpenGLVertexBufferObject::New();
}
//------------------------------------------------------------------------------
vtkOpenGLProjectedTetrahedraMapper::~vtkOpenGLProjectedTetrahedraMapper()
{
this->ReleaseGraphicsResources(nullptr);
this->TransformedPoints->Delete();
this->Colors->Delete();
delete[] this->SqrtTable;
this->VBO->Delete();
this->Framebuffer->Delete();
delete this->Internals;
this->Internals = nullptr;
}
//------------------------------------------------------------------------------
void vtkOpenGLProjectedTetrahedraMapper::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "VisibilitySort: " << this->VisibilitySort << endl;
os << indent
<< "UseFloatingPointFrameBuffer: " << (this->UseFloatingPointFrameBuffer ? "True" : "False")
<< endl;
}
//------------------------------------------------------------------------------
bool vtkOpenGLProjectedTetrahedraMapper::IsSupported(vtkRenderWindow* rwin)
{
vtkOpenGLRenderWindow* context = vtkOpenGLRenderWindow::SafeDownCast(rwin);
if (!context)
{
vtkErrorMacro(<< "Support for " << rwin->GetClassName() << " not implemented");
return false;
}
// use render to FBO when it's supported
this->CanDoFloatingPointFrameBuffer = false;
if (this->UseFloatingPointFrameBuffer)
{
this->CanDoFloatingPointFrameBuffer = true;
}
return true;
}
//------------------------------------------------------------------------------
void vtkOpenGLProjectedTetrahedraMapper::Initialize(vtkRenderer* renderer)
{
if (this->Initialized)
{
return;
}
this->Initialized = true;
vtkOpenGLRenderWindow* renwin = vtkOpenGLRenderWindow::SafeDownCast(renderer->GetRenderWindow());
this->HasHardwareSupport = renwin != nullptr && this->IsSupported(renwin);
if (!this->HasHardwareSupport)
{
// this is an error since there's no fallback.
vtkErrorMacro("The required extensions are not supported.");
}
}
//------------------------------------------------------------------------------
bool vtkOpenGLProjectedTetrahedraMapper::AllocateFOResources(vtkRenderer* r)
{
vtkOpenGLClearErrorMacro();
scoped_annotate annotator("PTM::AllocateFOResources");
const int* size = r->GetSize();
if (this->UseFloatingPointFrameBuffer && this->CanDoFloatingPointFrameBuffer &&
(!this->FloatingPointFrameBufferResourcesAllocated || (size[0] != this->CurrentFBOWidth) ||
(size[0] != this->CurrentFBOHeight)))
{
vtkOpenGLRenderWindow* rw = static_cast<vtkOpenGLRenderWindow*>(r->GetRenderWindow());
if (!this->FloatingPointFrameBufferResourcesAllocated)
{
// determine if we have MSAA
GLint winSampleBuffers = 0;
glGetIntegerv(GL_SAMPLE_BUFFERS, &winSampleBuffers);
GLint winSamples = 0;
if (winSampleBuffers)
{
glGetIntegerv(GL_SAMPLES, &winSamples);
}
int dsize = rw->GetDepthBufferSize();
if (dsize == 0)
{
dsize = 24;
}
vtkOpenGLFramebufferObject* fo = this->Framebuffer;
fo->SetContext(rw);
rw->GetState()->PushFramebufferBindings();
const char* desc;
// if we failed to get a framebuffer and we wanted
// multisamples, then try again without multisamples
if (!fo->PopulateFramebuffer(size[0], size[1],
true, // use textures
1, VTK_FLOAT, // 1 color buffer of float
true, dsize, // yes depth buffer
winSamples) // possibly multisampled
&& winSamples > 0)
{
fo->PopulateFramebuffer(size[0], size[1],
true, // use textures
1, VTK_FLOAT, // 1 color buffer of float
true, dsize, // yes depth buffer
0); // no multisamples
}
this->FloatingPointFrameBufferResourcesAllocated = true;
if (!vtkOpenGLFramebufferObject::GetFrameBufferStatus(
vtkOpenGLFramebufferObject::GetDrawMode(), desc))
{
vtkWarningMacro("Missing FBO support. The algorithm may produce visual artifacts.");
this->CanDoFloatingPointFrameBuffer = false;
rw->GetState()->PopFramebufferBindings();
return false;
}
rw->GetState()->PopFramebufferBindings();
this->CanDoFloatingPointFrameBuffer = true;
}
else
{
// need resize
vtkOpenGLFramebufferObject* fo = this->Framebuffer;
rw->GetState()->PushFramebufferBindings();
fo->Bind();
fo->Resize(size[0], size[1]);
this->Framebuffer->UnBind();
rw->GetState()->PopFramebufferBindings();
}
this->CurrentFBOWidth = size[0];
this->CurrentFBOHeight = size[1];
}
return true;
}
//------------------------------------------------------------------------------
void vtkOpenGLProjectedTetrahedraMapper::ReleaseGraphicsResources(vtkWindow* win)
{
this->Initialized = false;
if (this->FloatingPointFrameBufferResourcesAllocated)
{
this->FloatingPointFrameBufferResourcesAllocated = false;
this->Framebuffer->ReleaseGraphicsResources(win);
}
this->VBO->ReleaseGraphicsResources();
this->Tris.ReleaseGraphicsResources(win);
this->Superclass::ReleaseGraphicsResources(win);
}
//------------------------------------------------------------------------------
void vtkOpenGLProjectedTetrahedraMapper::Render(vtkRenderer* renderer, vtkVolume* volume)
{
vtkOpenGLClearErrorMacro();
scoped_annotate annotator("PTM::Render");
// Disable FP-FBO support on Apple with ATI. See paraview/paraview#17303
#ifdef __APPLE__
if (this->UseFloatingPointFrameBuffer)
{
std::string glVendor = (const char*)glGetString(GL_VENDOR);
if (glVendor.find("ATI") != std::string::npos)
{
vtkWarningMacro("Disabling floating point framebuffer: Unsupported "
"hardware. Volume rendering will continue, though"
"artifacts may be present.");
this->UseFloatingPointFrameBufferOff();
}
}
#endif
// load required extensions
this->Initialize(renderer);
if (!this->HasHardwareSupport)
{
return;
}
// make sure our shader program is loaded and ready to go
vtkOpenGLRenderWindow* renWin = vtkOpenGLRenderWindow::SafeDownCast(renderer->GetRenderWindow());
if (renWin == nullptr)
{
vtkErrorMacro("Invalid vtkOpenGLRenderWindow");
}
vtkInformation* volumeKeys = volume->GetPropertyKeys();
if (volumeKeys && volumeKeys->Has(vtkOpenGLActor::GLDepthMaskOverride()))
{
if (!this->Internals->IntermixedGeometryWarningIssued)
{
vtkWarningMacro(
"Intermixing translucent polygonal data with unstructured grid volumes is not supported!"
"\nEither set opacity to 1.0 for polydata in the view or resample the unstructured "
"grid to image data and use the ray cast mapper.");
this->Internals->IntermixedGeometryWarningIssued = true;
}
}
vtkUnstructuredGridBase* input = this->GetInput();
vtkVolumeProperty* property = volume->GetProperty();
// has something changed that would require us to recreate the shader?
if (!this->Tris.Program)
{
// build the shader source code
std::string VSSource = vtkglProjectedTetrahedraVS;
std::string FSSource = vtkglProjectedTetrahedraFS;
std::string GSSource;
// compile and bind it if needed
vtkShaderProgram* newShader = renWin->GetShaderCache()->ReadyShaderProgram(
VSSource.c_str(), FSSource.c_str(), GSSource.c_str());
// if the shader changed reinitialize the VAO
if (newShader != this->Tris.Program)
{
this->Tris.Program = newShader;
this->Tris.VAO->ShaderProgramChanged(); // reset the VAO as the shader has changed
}
this->Tris.ShaderSourceTime.Modified();
}
else
{
renWin->GetShaderCache()->ReadyShaderProgram(this->Tris.Program);
}
// Check to see if input changed.
if ((this->InputAnalyzedTime < this->MTime) || (this->InputAnalyzedTime < input->GetMTime()))
{
this->GaveError = 0;
float max_cell_size2 = 0;
if (input->GetNumberOfCells() == 0)
{
// Apparently, the input has no cells. Just do nothing.
return;
}
vtkSmartPointer<vtkCellIterator> cellIter =
vtkSmartPointer<vtkCellIterator>::Take(input->NewCellIterator());
for (cellIter->InitTraversal(); !cellIter->IsDoneWithTraversal(); cellIter->GoToNextCell())
{
vtkIdType npts = cellIter->GetNumberOfPoints();
if (npts != 4)
{
if (!this->GaveError)
{
vtkErrorMacro("Encountered non-tetrahedra cell!");
this->GaveError = 1;
}
continue;
}
vtkIdType* pts = cellIter->GetPointIds()->GetPointer(0);
for (int j = 0; j < 6; j++)
{
double p1[3], p2[3];
input->GetPoint(pts[tet_edges[j][0]], p1);
input->GetPoint(pts[tet_edges[j][1]], p2);
float size2 = (float)vtkMath::Distance2BetweenPoints(p1, p2);
if (size2 > max_cell_size2)
{
max_cell_size2 = size2;
}
}
}
this->MaxCellSize = (float)sqrt(max_cell_size2);
// Build a sqrt lookup table for measuring distances. During perspective
// modes we have to take a lot of square roots, and a table is much faster
// than calling the sqrt function.
this->SqrtTableBias = (SqrtTableSize - 1) / max_cell_size2;
for (int i = 0; i < SqrtTableSize; i++)
{
this->SqrtTable[i] = (float)sqrt(i / this->SqrtTableBias);
}
this->InputAnalyzedTime.Modified();
}
if (renderer->GetRenderWindow()->CheckAbortStatus() || this->GaveError)
{
vtkOpenGLCheckErrorMacro("failed during Render");
return;
}
if (renderer->GetRenderWindow()->CheckAbortStatus())
{
vtkOpenGLCheckErrorMacro("failed during Render");
return;
}
// Check to see if we need to remap colors.
if ((this->ColorsMappedTime < this->MTime) || (this->ColorsMappedTime < input->GetMTime()) ||
(this->LastProperty != property) || (this->ColorsMappedTime < property->GetMTime()))
{
vtkDataArray* scalars = vtkOpenGLProjectedTetrahedraMapper::GetScalars(input, this->ScalarMode,
this->ArrayAccessMode, this->ArrayId, this->ArrayName, this->UsingCellColors);
if (!scalars)
{
vtkErrorMacro(<< "Can't use projected tetrahedra without scalars!");
vtkOpenGLCheckErrorMacro("failed during Render");
return;
}
vtkProjectedTetrahedraMapper::MapScalarsToColors(this->Colors, property, scalars);
this->ColorsMappedTime.Modified();
this->LastProperty = property;
}
if (renderer->GetRenderWindow()->CheckAbortStatus())
{
vtkOpenGLCheckErrorMacro("failed during Render");
return;
}
this->Timer->StartTimer();
this->ProjectTetrahedra(renderer, volume, renWin);
this->Timer->StopTimer();
this->TimeToDraw = this->Timer->GetElapsedTime();
vtkOpenGLCheckErrorMacro("failed after Render");
}
//------------------------------------------------------------------------------
inline float vtkOpenGLProjectedTetrahedraMapper::GetCorrectedDepth(float x, float y, float z1,
float z2, const float inverse_projection_mat[16], int use_linear_depth_correction,
float linear_depth_correction)
{
if (use_linear_depth_correction)
{
float depth = linear_depth_correction * (z1 - z2);
if (depth < 0)
depth = -depth;
return depth;
}
else
{
float eye1[3], eye2[3], invw;
// This code does the same as the commented code above, but also collects
// common arithmetic between the two matrix x vector operations. An
// optimizing compiler may or may not pick up on that.
float common[4];
common[0] =
(inverse_projection_mat[0] * x + inverse_projection_mat[4] * y + inverse_projection_mat[12]);
common[1] =
(inverse_projection_mat[1] * x + inverse_projection_mat[5] * y + inverse_projection_mat[13]);
common[2] = (inverse_projection_mat[2] * x + inverse_projection_mat[6] * y +
inverse_projection_mat[10] * z1 + inverse_projection_mat[14]);
common[3] =
(inverse_projection_mat[3] * x + inverse_projection_mat[7] * y + inverse_projection_mat[15]);
invw = 1 / (common[3] + inverse_projection_mat[11] * z1);
eye1[0] = invw * (common[0] + inverse_projection_mat[8] * z1);
eye1[1] = invw * (common[1] + inverse_projection_mat[9] * z1);
eye1[2] = invw * (common[2] + inverse_projection_mat[10] * z1);
invw = 1 / (common[3] + inverse_projection_mat[11] * z2);
eye2[0] = invw * (common[0] + inverse_projection_mat[8] * z2);
eye2[1] = invw * (common[1] + inverse_projection_mat[9] * z2);
eye2[2] = invw * (common[2] + inverse_projection_mat[10] * z2);
float dist2 = vtkMath::Distance2BetweenPoints(eye1, eye2);
return this->SqrtTable[(int)(dist2 * this->SqrtTableBias)];
}
}
//------------------------------------------------------------------------------
void vtkOpenGLProjectedTetrahedraMapper::ProjectTetrahedra(
vtkRenderer* renderer, vtkVolume* volume, vtkOpenGLRenderWindow* window)
{
vtkOpenGLClearErrorMacro();
scoped_annotate annotator("PTM::ProjectTetrahedra");
// after mucking about with FBO bindings be sure
// we're saving the default fbo attributes/blend function
this->AllocateFOResources(renderer);
vtkOpenGLFramebufferObject* fo = nullptr;
vtkOpenGLState* ostate =
static_cast<vtkOpenGLRenderWindow*>(renderer->GetRenderWindow())->GetState();
// Copy existing Depth/Color buffers to FO
if (this->UseFloatingPointFrameBuffer && this->CanDoFloatingPointFrameBuffer)
{
scoped_annotate annotator2("PTM::UseFloatingPointFrameBuffer");
fo = this->Framebuffer;
// bind draw+read to set it up
ostate->PushFramebufferBindings();
fo->Bind(vtkOpenGLFramebufferObject::GetDrawMode());
fo->ActivateDrawBuffer(0);
if (!fo->CheckFrameBufferStatus(vtkOpenGLFramebufferObject::GetDrawMode()))
{
vtkErrorMacro("FO is incomplete ");
}
ostate->vtkglBlitFramebuffer(0, 0, this->CurrentFBOWidth, this->CurrentFBOHeight, 0, 0,
this->CurrentFBOWidth, this->CurrentFBOHeight, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT,
GL_NEAREST);
vtkOpenGLCheckErrorMacro("failed at glBlitFramebuffer");
}
// TODO:
// There are some caching optimizations that could be used
// here to skip various expensive operations (eg sorting
// cells could be skipped if input data and MVP matrices
// haven't changed).
vtkUnstructuredGridBase* input = this->GetInput();
this->VisibilitySort->SetInput(input);
this->VisibilitySort->SetDirectionToBackToFront();
volume->GetModelToWorldMatrix(this->tmpMat);
this->VisibilitySort->SetModelTransform(this->tmpMat);
this->VisibilitySort->SetCamera(renderer->GetActiveCamera());
this->VisibilitySort->SetMaxCellsReturned(1000);
this->VisibilitySort->InitTraversal();
if (renderer->GetRenderWindow()->CheckAbortStatus())
{
if (fo)
{
ostate->PopFramebufferBindings();
}
return;
}
vtkMatrix4x4* wcdc;
vtkMatrix4x4* wcvc;
vtkMatrix3x3* norms;
vtkMatrix4x4* vcdc;
vtkOpenGLCamera* cam = (vtkOpenGLCamera*)(renderer->GetActiveCamera());
cam->GetKeyMatrices(renderer, wcvc, norms, vcdc, wcdc);
float projection_mat[16];
for (int i = 0; i < 4; ++i)
{
for (int j = 0; j < 4; ++j)
{
projection_mat[i * 4 + j] = vcdc->GetElement(i, j);
}
}
float modelview_mat[16];
if (!volume->GetIsIdentity())
{
volume->GetModelToWorldMatrix(tmpMat);
tmpMat2->DeepCopy(wcvc);
tmpMat2->Transpose();
vtkMatrix4x4::Multiply4x4(tmpMat2, tmpMat, tmpMat);
tmpMat->Transpose();
for (int i = 0; i < 4; ++i)
{
for (int j = 0; j < 4; ++j)
{
modelview_mat[i * 4 + j] = tmpMat->GetElement(i, j);
}
}
}
else
{
for (int i = 0; i < 4; ++i)
{
for (int j = 0; j < 4; ++j)
{
modelview_mat[i * 4 + j] = wcvc->GetElement(i, j);
}
}
}
// Get the inverse projection matrix so that we can convert distances in
// clipping space to distances in world or eye space.
float inverse_projection_mat[16];
float linear_depth_correction = 1;
int use_linear_depth_correction;
double tmp_mat[16];
// VTK's matrix functions use doubles.
std::copy(projection_mat, projection_mat + 16, tmp_mat);
// VTK and OpenGL store their matrices differently. Correct.
vtkMatrix4x4::Transpose(tmp_mat, tmp_mat);
// Take the inverse.
vtkMatrix4x4::Invert(tmp_mat, tmp_mat);
// Restore back to OpenGL form.
vtkMatrix4x4::Transpose(tmp_mat, tmp_mat);
// Copy back to float for faster computation.
std::copy(tmp_mat, tmp_mat + 16, inverse_projection_mat);
// Check to see if we can just do a linear depth correction from clipping
// space to eye space.
use_linear_depth_correction = ((projection_mat[3] == 0.0) && (projection_mat[7] == 0.0) &&
(projection_mat[11] == 0.0) && (projection_mat[15] == 1.0));
if (use_linear_depth_correction)
{
float pos1[3], *pos2;
pos1[0] = inverse_projection_mat[8] + inverse_projection_mat[12];
pos1[1] = inverse_projection_mat[9] + inverse_projection_mat[13];
pos1[2] = inverse_projection_mat[10] + inverse_projection_mat[14];
pos2 = inverse_projection_mat + 12;
linear_depth_correction = sqrt(vtkMath::Distance2BetweenPoints(pos1, pos2));
}
// Transform all the points.
vtkProjectedTetrahedraMapper::TransformPoints(
input->GetPoints(), projection_mat, modelview_mat, this->TransformedPoints);
float* points = this->TransformedPoints->GetPointer(0);
if (renderer->GetRenderWindow()->CheckAbortStatus())
{
if (fo)
{
ostate->PopFramebufferBindings();
}
return;
}
ostate->vtkglDepthMask(GL_FALSE);
ostate->vtkglEnable(GL_DEPTH_TEST);
ostate->vtkglDisable(GL_CULL_FACE);
vtkOpenGLState::ScopedglBlendFuncSeparate bfsaver(ostate);
ostate->vtkglBlendFuncSeparate(
GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
float unit_distance = volume->GetProperty()->GetScalarOpacityUnitDistance();
// build the VBO and IBOs, we do these in chunks as based on
// the settings of the VisibilitySort tclass
this->VBO->SetStride(6 * sizeof(float));
// Establish vertex arrays.
// tets have 4 points, 5th point here is used
// to insert a point in case of intersections
float tet_points[5 * 3] = { 0.0f };
unsigned char tet_colors[5 * 3] = { 0 };
float tet_texcoords[5 * 2] = { 0.0f };
unsigned char* colors = this->Colors->GetPointer(0);
vtkIdType totalnumcells = input->GetNumberOfCells();
vtkIdType numcellsrendered = 0;
vtkNew<vtkIdList> cellPointIds;
std::vector<float> packedVBO;
packedVBO.reserve(6 * 5 * this->VisibilitySort->GetMaxCellsReturned());
std::vector<unsigned int> indexArray;
indexArray.reserve(3 * 4 * this->VisibilitySort->GetMaxCellsReturned());
double progressNext = 0.0;
// Let's do it!
for (vtkIdTypeArray* sorted_cell_ids = this->VisibilitySort->GetNextCells();
sorted_cell_ids != nullptr; sorted_cell_ids = this->VisibilitySort->GetNextCells())
{
const double progress = static_cast<double>(numcellsrendered) / totalnumcells;
if (progress >= progressNext)
{
this->GLSafeUpdateProgress(progress, window);
progressNext += 0.1; // we report progress in 10% increments to avoid
// over-reporting .
}
if (renderer->GetRenderWindow()->CheckAbortStatus())
{
break;
}
vtkIdType* cell_ids = sorted_cell_ids->GetPointer(0);
vtkIdType num_cell_ids = sorted_cell_ids->GetNumberOfTuples();
packedVBO.resize(6 * 5 * num_cell_ids);
std::vector<float>::iterator it = packedVBO.begin();
int numPts = 0;
indexArray.resize(0);
for (vtkIdType i = 0; i < num_cell_ids; i++)
{
vtkIdType cell = cell_ids[i];
input->GetCellPoints(cell, cellPointIds);
int j;
// Get the data for the tetrahedra.
for (j = 0; j < 4; j++)
{
// Assuming we only have tetrahedra, each entry in cells has 5
// components.
const float* p = points + 3 * cellPointIds->GetId(j);
tet_points[j * 3 + 0] = p[0];
tet_points[j * 3 + 1] = p[1];
tet_points[j * 3 + 2] = p[2];
const unsigned char* c;
if (this->UsingCellColors)
{
c = colors + 4 * cell;
}
else
{
c = colors + 4 * cellPointIds->GetId(j);
}
tet_colors[j * 3 + 0] = c[0];
tet_colors[j * 3 + 1] = c[1];
tet_colors[j * 3 + 2] = c[2];
tet_texcoords[j * 2 + 0] = static_cast<float>(c[3]) / 255.0f;
tet_texcoords[j * 2 + 1] = 0;
}
// Do not render this cell if it is outside of the cutting planes. For
// most planes, cut if all points are outside. For the near plane, cut if
// any points are outside because things can go very wrong if one of the
// points is behind the view.
if (((tet_points[0 * 3 + 0] > 1.0f) && (tet_points[1 * 3 + 0] > 1.0f) &&
(tet_points[2 * 3 + 0] > 1.0f) && (tet_points[3 * 3 + 0] > 1.0f)) ||
((tet_points[0 * 3 + 0] < -1.0f) && (tet_points[1 * 3 + 0] < -1.0f) &&
(tet_points[2 * 3 + 0] < -1.0f) && (tet_points[3 * 3 + 0] < -1.0f)) ||
((tet_points[0 * 3 + 1] > 1.0f) && (tet_points[1 * 3 + 1] > 1.0f) &&
(tet_points[2 * 3 + 1] > 1.0f) && (tet_points[3 * 3 + 1] > 1.0f)) ||
((tet_points[0 * 3 + 1] < -1.0f) && (tet_points[1 * 3 + 1] < -1.0f) &&
(tet_points[2 * 3 + 1] < -1.0f) && (tet_points[3 * 3 + 1] < -1.0f)) ||
((tet_points[0 * 3 + 2] > 1.0f) && (tet_points[1 * 3 + 2] > 1.0f) &&
(tet_points[2 * 3 + 2] > 1.0f) && (tet_points[3 * 3 + 2] > 1.0f)) ||
((tet_points[0 * 3 + 2] < -1.0f) || (tet_points[1 * 3 + 2] < -1.0f) ||
(tet_points[2 * 3 + 2] < -1.0f) || (tet_points[3 * 3 + 2] < -1.0f)))
{
continue;
}
// The classic PT algorithm uses face normals to determine the
// projection class and then do calculations individually. However,
// Wylie 2002 shows how to use the intersection of two segments to
// calculate the depth of the thick part for any case. Here, we use
// face normals to determine which segments to use. One segment
// should be between two faces that are either both front facing or
// back facing. Obviously, we only need to test three faces to find
// two such faces. We test the three faces connected to point 0.
vtkIdType segment1[2];
vtkIdType segment2[2];
float v1[2], v2[2], v3[3];
v1[0] = tet_points[1 * 3 + 0] - tet_points[0 * 3 + 0];
v1[1] = tet_points[1 * 3 + 1] - tet_points[0 * 3 + 1];
v2[0] = tet_points[2 * 3 + 0] - tet_points[0 * 3 + 0];
v2[1] = tet_points[2 * 3 + 1] - tet_points[0 * 3 + 1];
v3[0] = tet_points[3 * 3 + 0] - tet_points[0 * 3 + 0];
v3[1] = tet_points[3 * 3 + 1] - tet_points[0 * 3 + 1];
float face_dir1 = v3[0] * v2[1] - v3[1] * v2[0];
float face_dir2 = v1[0] * v3[1] - v1[1] * v3[0];
float face_dir3 = v2[0] * v1[1] - v2[1] * v1[0];
if ((face_dir1 * face_dir2 >= 0) &&
((face_dir1 != 0) // Handle a special case where 2 faces
|| (face_dir2 != 0))) // are perpendicular to the view plane.
{
segment1[0] = 0;
segment1[1] = 3;
segment2[0] = 1;
segment2[1] = 2;
}
else if (face_dir1 * face_dir3 >= 0)
{
segment1[0] = 0;
segment1[1] = 2;
segment2[0] = 1;
segment2[1] = 3;
}
else // Unless the tet is degenerate, face_dir2*face_dir3 >= 0
{
segment1[0] = 0;
segment1[1] = 1;
segment2[0] = 2;
segment2[1] = 3;
}
#define VEC3SUB(Z, X, Y) \
do \
{ \
(Z)[0] = (X)[0] - (Y)[0]; \
(Z)[1] = (X)[1] - (Y)[1]; \
(Z)[2] = (X)[2] - (Y)[2]; \
} while (false)
#define P1 (tet_points + 3 * segment1[0])
#define P2 (tet_points + 3 * segment1[1])
#define P3 (tet_points + 3 * segment2[0])
#define P4 (tet_points + 3 * segment2[1])
#define C1 (tet_colors + 3 * segment1[0])
#define C2 (tet_colors + 3 * segment1[1])
#define C3 (tet_colors + 3 * segment2[0])
#define C4 (tet_colors + 3 * segment2[1])
#define T1 (tet_texcoords + 2 * segment1[0])
#define T2 (tet_texcoords + 2 * segment1[1])
#define T3 (tet_texcoords + 2 * segment2[0])
#define T4 (tet_texcoords + 2 * segment2[1])
// Find the intersection of the projection of the two segments in the
// XY plane. This algorithm is based on that given in Graphics Gems
// III, pg. 199-202.
float A[3], B[3], C[3];
// We can define the two lines parametrically as:
// P1 + alpha(A)
// P3 + beta(B)
// where A = P2 - P1
// and B = P4 - P3.
// alpha and beta are in the range [0,1] within the line segment.
VEC3SUB(A, P2, P1);
VEC3SUB(B, P4, P3);
// The lines intersect when the values of the two parameteric equations
// are equal. Setting them equal and moving everything to one side:
// 0 = C + beta(B) - alpha(A)
// where C = P3 - P1.
VEC3SUB(C, P3, P1);
// When we project the lines to the xy plane (which we do by throwing
// away the z value), we have two equations and two unknowns. The
// following are the solutions for alpha and beta.
float denominator = (A[0] * B[1] - A[1] * B[0]);
if (denominator == 0)
continue; // Must be degenerated tetrahedra.
float alpha = (B[1] * C[0] - B[0] * C[1]) / denominator;
float beta = (A[1] * C[0] - A[0] * C[1]) / denominator;
if ((alpha >= 0) && (alpha <= 1))
{
// The two segments intersect. This corresponds to class 2 in
// Shirley and Tuchman (or one of the degenerate cases).
// Make new point at intersection.
tet_points[3 * 4 + 0] = P1[0] + alpha * A[0];
tet_points[3 * 4 + 1] = P1[1] + alpha * A[1];
tet_points[3 * 4 + 2] = P1[2] + alpha * A[2];
// Find depth at intersection.
float depth = this->GetCorrectedDepth(tet_points[3 * 4 + 0], tet_points[3 * 4 + 1],
tet_points[3 * 4 + 2], P3[2] + beta * B[2], inverse_projection_mat,
use_linear_depth_correction, linear_depth_correction);
// Find color at intersection.
tet_colors[3 * 4 + 0] = static_cast<unsigned char>(
0.5f * (C1[0] + alpha * (C2[0] - C1[0]) + C3[0] + beta * (C4[0] - C3[0])));
tet_colors[3 * 4 + 1] = static_cast<unsigned char>(
0.5f * (C1[1] + alpha * (C2[1] - C1[1]) + C3[1] + beta * (C4[1] - C3[1])));
tet_colors[3 * 4 + 2] = static_cast<unsigned char>(
0.5f * (C1[2] + alpha * (C2[2] - C1[2]) + C3[2] + beta * (C4[2] - C3[2])));
// tet_colors[3*0 + 0] = 255;
// tet_colors[3*0 + 1] = 0;
// tet_colors[3*0 + 2] = 0;
// tet_colors[3*1 + 0] = 255;
// tet_colors[3*1 + 1] = 0;
// tet_colors[3*1 + 2] = 0;
// tet_colors[3*2 + 0] = 255;
// tet_colors[3*2 + 1] = 0;
// tet_colors[3*2 + 2] = 0;
// tet_colors[3*3 + 0] = 255;
// tet_colors[3*3 + 1] = 0;
// tet_colors[3*3 + 2] = 0;
// tet_colors[3*4 + 0] = 255;
// tet_colors[3*4 + 1] = 0;
// tet_colors[3*4 + 2] = 0;
// Find the opacity at intersection.
tet_texcoords[2 * 4 + 0] =
0.5f * (T1[0] + alpha * (T2[0] - T1[0]) + T3[0] + alpha * (T4[0] - T3[0]));
// Record the depth at the intersection.
tet_texcoords[2 * 4 + 1] = depth / unit_distance;
// Establish the order in which the points should be rendered.
unsigned char indices[6];
indices[0] = 4;
indices[1] = segment1[0];
indices[2] = segment2[0];
indices[3] = segment1[1];
indices[4] = segment2[1];
indices[5] = segment1[0];
// add the cells to the IBO
for (int cellIdx = 0; cellIdx < 4; cellIdx++)
{
indexArray.push_back(indices[0] + numPts);
indexArray.push_back(indices[cellIdx + 1] + numPts);
indexArray.push_back(indices[cellIdx + 2] + numPts);
}
}
else
{
// The two segments do not intersect. This corresponds to class 1
// in Shirley and Tuchman.
if (alpha <= 0)
{
// Flip segment1 so that alpha is >= 1. P1 and P2 are also
// flipped as are C1-C2 and T1-T2. Note that this will
// invalidate A. B and beta are unaffected.
std::swap(segment1[0], segment1[1]);
alpha = 1 - alpha;
}
// From here on, we can assume P2 is the "thick" point.
// Find the depth under the thick point. Use the alpha and beta
// from intersection to determine location of face under thick
// point.
float edgez = P3[2] + beta * B[2];
float pointz = P1[2];
float facez = (edgez + (alpha - 1) * pointz) / alpha;
float depth = GetCorrectedDepth(P2[0], P2[1], P2[2], facez, inverse_projection_mat,
use_linear_depth_correction, linear_depth_correction);
// Fix color at thick point. Average color with color of opposite
// face.
for (j = 0; j < 3; j++)
{
float edgec = C3[j] + beta * (C4[j] - C3[j]);
float pointc = C1[j];
float facec = (edgec + (alpha - 1) * pointc) / alpha;
C2[j] = (unsigned char)(0.5f * (facec + C2[j]));
}
// tet_colors[3*segment1[0] + 0] = 0;
// tet_colors[3*segment1[0] + 1] = 255;
// tet_colors[3*segment1[0] + 2] = 0;
// tet_colors[3*segment1[1] + 0] = 0;
// tet_colors[3*segment1[1] + 1] = 255;
// tet_colors[3*segment1[1] + 2] = 0;
// tet_colors[3*segment2[0] + 0] = 0;
// tet_colors[3*segment2[0] + 1] = 255;
// tet_colors[3*segment2[0] + 2] = 0;
// tet_colors[3*segment2[1] + 0] = 0;
// tet_colors[3*segment2[1] + 1] = 255;
// tet_colors[3*segment2[1] + 2] = 0;
// Fix opacity at thick point. Average opacity with opacity of
// opposite face.
float edgea = T3[0] + beta * (T4[0] - T3[0]);
float pointa = T1[0];
float facea = (edgea + (alpha - 1) * pointa) / alpha;
T2[0] = 0.5f * (facea + T2[0]);
// Record thickness at thick point.
T2[1] = depth / unit_distance;
// Establish the order in which the points should be rendered.
unsigned char indices[5];
indices[0] = segment1[1];
indices[1] = segment1[0];
indices[2] = segment2[0];
indices[3] = segment2[1];
indices[4] = segment1[0];
// add the cells to the IBO
for (int cellIdx = 0; cellIdx < 3; cellIdx++)
{
indexArray.push_back(indices[0] + numPts);
indexArray.push_back(indices[cellIdx + 1] + numPts);
indexArray.push_back(indices[cellIdx + 2] + numPts);
}
}
// add the points to the VBO
union {
unsigned char c[4];
float f;
} v = { { 0, 0, 0, 255 } };
for (int ptIdx = 0; ptIdx < 5; ptIdx++)
{
*(it++) = tet_points[ptIdx * 3];
*(it++) = tet_points[ptIdx * 3 + 1];
*(it++) = tet_points[ptIdx * 3 + 2];
v.c[0] = tet_colors[ptIdx * 3];
v.c[1] = tet_colors[ptIdx * 3 + 1];
v.c[2] = tet_colors[ptIdx * 3 + 2];
*(it++) = v.f;
*(it++) = tet_texcoords[ptIdx * 2]; // attenuation
*(it++) = tet_texcoords[ptIdx * 2 + 1]; // depth
}
numPts += 5;
}
this->VBO->Upload(packedVBO, vtkOpenGLBufferObject::ArrayBuffer);
this->VBO->Bind();
this->Tris.VAO->Bind();
if (this->Tris.IBO->IndexCount &&
(this->Tris.ShaderSourceTime > this->Tris.AttributeUpdateTime))
{
if (!this->Tris.VAO->AddAttributeArray(this->Tris.Program, this->VBO, "vertexDC", 0,
this->VBO->GetStride(), VTK_FLOAT, 3, false))
{
vtkErrorMacro(<< "Error setting 'vertexDC' in shader VAO.");
}
if (!this->Tris.VAO->AddAttributeArray(this->Tris.Program, this->VBO, "scalarColor",
3 * sizeof(float), this->VBO->GetStride(), VTK_UNSIGNED_CHAR, 3, true))
{
vtkErrorMacro(<< "Error setting 'scalarColor' in shader VAO.");
}
if (!this->Tris.VAO->AddAttributeArray(this->Tris.Program, this->VBO, "attenuationArray",
4 * sizeof(float), this->VBO->GetStride(), VTK_FLOAT, 1, false))
{
vtkErrorMacro(<< "Error setting attenuation in shader VAO.");
}
if (!this->Tris.VAO->AddAttributeArray(this->Tris.Program, this->VBO, "depthArray",
5 * sizeof(float), this->VBO->GetStride(), VTK_FLOAT, 1, false))
{
vtkErrorMacro(<< "Error setting depth in shader VAO.");
}
this->Tris.AttributeUpdateTime.Modified();
}
this->Tris.IBO->Upload(indexArray, vtkOpenGLBufferObject::ElementArrayBuffer);
this->Tris.IBO->IndexCount = indexArray.size();
this->Tris.IBO->Bind();
// Avoid underflow in numPts-1 calculation
if (numPts > 0)
{
glDrawRangeElements(GL_TRIANGLES, 0, static_cast<GLuint>(numPts - 1),
static_cast<GLsizei>(this->Tris.IBO->IndexCount), GL_UNSIGNED_INT, nullptr);
}
this->Tris.IBO->Release();
this->Tris.VAO->Release();
this->VBO->Release();
numcellsrendered += num_cell_ids;
}
if (fo)
{
// copy from our fbo to the default one
fo->Bind(vtkOpenGLFramebufferObject::GetReadMode());
// draw to default fbo
ostate->PopDrawFramebufferBinding();
// Depth buffer has not changed so only copy color
ostate->vtkglBlitFramebuffer(0, 0, this->CurrentFBOWidth, this->CurrentFBOHeight, 0, 0,
this->CurrentFBOWidth, this->CurrentFBOHeight, GL_COLOR_BUFFER_BIT, GL_NEAREST);
vtkOpenGLCheckErrorMacro("failed at glBlitFramebuffer");
// restore default fbo for both read+draw
ostate->PopReadFramebufferBinding();
}
// Restore the blend function.
vtkOpenGLCheckErrorMacro("failed at glPopAttrib");
ostate->vtkglDepthMask(GL_TRUE);
vtkOpenGLCheckErrorMacro("failed after ProjectTetrahedra");
this->GLSafeUpdateProgress(1.0, window);
}
//------------------------------------------------------------------------------
void vtkOpenGLProjectedTetrahedraMapper::GLSafeUpdateProgress(double, vtkOpenGLRenderWindow*)
{
// Turns out firing progress event during rendering is not only opens up the
// potential corrupting buffers, but also slows the mapper down considerably!
// turning off progress events entirely. just not worth the hassle at this
// point.
#if 0
scoped_annotate annotator("GLSafeUpdateProgress");
window->GetState()->PushFramebufferBindings();
// since UpdateProgress may causes GL context changes, we save and restore
// state.
this->UpdateProgress(value);
window->MakeCurrent();
window->GetState()->PopFramebufferBindings();
vtkOpenGLCheckErrorMacro("failed after GLSafeUpdateProgress");
#endif
}
VTK_ABI_NAMESPACE_END
|