File: FEDataStructures.cxx

package info (click to toggle)
paraview 5.13.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 544,220 kB
  • sloc: cpp: 3,374,605; ansic: 1,332,409; python: 150,381; xml: 122,166; sql: 65,887; sh: 7,317; javascript: 5,262; yacc: 4,417; java: 3,977; perl: 2,363; lex: 1,929; f90: 1,397; makefile: 170; objc: 153; tcl: 59; pascal: 50; fortran: 29
file content (156 lines) | stat: -rw-r--r-- 4,419 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
// SPDX-FileCopyrightText: Copyright (c) Kitware Inc.
// SPDX-License-Identifier: BSD-3-Clause
#include "FEDataStructures.h"

#include <iostream>
#include <iterator>
#include <mpi.h>

Grid::Grid() = default;

void Grid::Initialize(const unsigned int numPoints[3], const double spacing[3])
{
  if (numPoints[0] == 0 || numPoints[1] == 0 || numPoints[2] == 0)
  {
    std::cerr << "Must have a non-zero amount of points in each direction.\n";
  }
  // in parallel, we do a simple partitioning in the x-direction.
  int mpiSize = 1;
  int mpiRank = 0;
  MPI_Comm_rank(MPI_COMM_WORLD, &mpiRank);
  MPI_Comm_size(MPI_COMM_WORLD, &mpiSize);

  unsigned int startXPoint = mpiRank * numPoints[0] / mpiSize;
  unsigned int endXPoint = (mpiRank + 1) * numPoints[0] / mpiSize;
  if (mpiSize != mpiRank + 1)
  {
    endXPoint++;
  }

  // create the points -- slowest in the x and fastest in the z directions
  // all of the x coordinates are stored first, then y coordinates and
  // finally z coordinates (e.g. x[0], x[1], ..., x[n-1], y[0], y[1], ...,
  // y[n-1], z[0], z[1], ..., z[n-1]) which is OPPOSITE of VTK's ordering.
  size_t numTotalPoints = (endXPoint - startXPoint) * numPoints[1] * numPoints[2];
  this->Points.resize(3 * numTotalPoints);
  size_t counter = 0;
  for (unsigned int i = startXPoint; i < endXPoint; i++)
  {
    for (unsigned int j = 0; j < numPoints[1]; j++)
    {
      for (unsigned int k = 0; k < numPoints[2]; k++)
      {
        this->Points[counter] = i * spacing[0];
        this->Points[numTotalPoints + counter] = j * spacing[1];
        this->Points[2 * numTotalPoints + counter] = k * spacing[2];
        counter++;
      }
    }
  }

  // create the hex cells
  unsigned int cellPoints[8];
  unsigned int numXPoints = endXPoint - startXPoint;
  for (unsigned int i = 0; i < numXPoints - 1; i++)
  {
    for (unsigned int j = 0; j < numPoints[1] - 1; j++)
    {
      for (unsigned int k = 0; k < numPoints[2] - 1; k++)
      {
        cellPoints[0] = i * numPoints[1] * numPoints[2] + j * numPoints[2] + k;
        cellPoints[1] = (i + 1) * numPoints[1] * numPoints[2] + j * numPoints[2] + k;
        cellPoints[2] = (i + 1) * numPoints[1] * numPoints[2] + (j + 1) * numPoints[2] + k;
        cellPoints[3] = i * numPoints[1] * numPoints[2] + (j + 1) * numPoints[2] + k;
        cellPoints[4] = i * numPoints[1] * numPoints[2] + j * numPoints[2] + k + 1;
        cellPoints[5] = (i + 1) * numPoints[1] * numPoints[2] + j * numPoints[2] + k + 1;
        cellPoints[6] = (i + 1) * numPoints[1] * numPoints[2] + (j + 1) * numPoints[2] + k + 1;
        cellPoints[7] = i * numPoints[1] * numPoints[2] + (j + 1) * numPoints[2] + k + 1;
        std::copy(cellPoints, cellPoints + 8, std::back_inserter(this->Cells));
      }
    }
  }
}

size_t Grid::GetNumberOfPoints()
{
  return this->Points.size() / 3;
}

size_t Grid::GetNumberOfCells()
{
  return this->Cells.size() / 8;
}

double* Grid::GetPointsArray()
{
  if (this->Points.empty())
  {
    return nullptr;
  }
  return &(this->Points[0]);
}

bool Grid::GetPoint(size_t pointId, double coord[3])
{
  if (pointId >= this->Points.size() / 3)
  {
    return false;
  }
  coord[0] = this->Points[pointId];
  coord[1] = this->Points[pointId + this->GetNumberOfPoints()];
  coord[2] = this->Points[pointId + 2 * this->GetNumberOfPoints()];
  return true;
}

unsigned int* Grid::GetCellPoints(size_t cellId)
{
  if (cellId >= this->Cells.size())
  {
    return nullptr;
  }
  return &(this->Cells[cellId * 8]);
}

Attributes::Attributes()
{
  this->GridPtr = nullptr;
}

void Attributes::Initialize(Grid* grid)
{
  this->GridPtr = grid;
}

void Attributes::UpdateFields(double time)
{
  size_t numPoints = this->GridPtr->GetNumberOfPoints();
  this->Velocity.resize(numPoints * 3);
  double coord[3] = { 0, 0, 0 };
  for (size_t pt = 0; pt < numPoints; pt++)
  {
    this->GridPtr->GetPoint(pt, coord);
    this->Velocity[pt] = coord[1] * time;
  }
  std::fill(this->Velocity.begin() + numPoints, this->Velocity.end(), 0.);
  size_t numCells = this->GridPtr->GetNumberOfCells();
  this->Pressure.resize(numCells);
  std::fill(this->Pressure.begin(), this->Pressure.end(), 1.f);
}

double* Attributes::GetVelocityArray()
{
  if (this->Velocity.empty())
  {
    return nullptr;
  }
  return &this->Velocity[0];
}

float* Attributes::GetPressureArray()
{
  if (this->Pressure.empty())
  {
    return nullptr;
  }
  return &this->Pressure[0];
}