File: FEDataStructures.cxx

package info (click to toggle)
paraview 5.13.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 544,220 kB
  • sloc: cpp: 3,374,605; ansic: 1,332,409; python: 150,381; xml: 122,166; sql: 65,887; sh: 7,317; javascript: 5,262; yacc: 4,417; java: 3,977; perl: 2,363; lex: 1,929; f90: 1,397; makefile: 170; objc: 153; tcl: 59; pascal: 50; fortran: 29
file content (149 lines) | stat: -rw-r--r-- 4,494 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
// SPDX-FileCopyrightText: Copyright (c) Kitware Inc.
// SPDX-License-Identifier: BSD-3-Clause
#include "FEDataStructures.h"

#include <iostream>
#include <iterator>
#include <mpi.h>

Grid::Grid() = default;

void Grid::Initialize(const unsigned int numPoints[3], const double spacing[3])
{
  if (numPoints[0] == 0 || numPoints[1] == 0 || numPoints[2] == 0)
  {
    std::cerr << "Must have a non-zero amount of points in each direction.\n";
  }

  this->Points.clear();

  // in parallel, we do a simple partitioning in the x-direction.
  int mpiSize = 1;
  int mpiRank = 0;
  MPI_Comm_rank(MPI_COMM_WORLD, &mpiRank);
  MPI_Comm_size(MPI_COMM_WORLD, &mpiSize);

  unsigned int startXPoint = mpiRank * numPoints[0] / mpiSize;
  unsigned int endXPoint = (mpiRank + 1) * numPoints[0] / mpiSize;
  if (mpiSize != mpiRank + 1)
  {
    endXPoint++;
  }

  // create the points -- slowest in the x and fastest in the z directions
  double coord[3] = { 0, 0, 0 };
  for (unsigned int i = startXPoint; i < endXPoint; i++)
  {
    coord[0] = i * spacing[0];
    for (unsigned int j = 0; j < numPoints[1]; j++)
    {
      coord[1] = j * spacing[1];
      for (unsigned int k = 0; k < numPoints[2]; k++)
      {
        coord[2] = k * spacing[2];
        // add the coordinate to the end of the vector
        std::copy(coord, coord + 3, std::back_inserter(this->Points));
      }
    }
  }
  // create the hex cells
  unsigned int cellPoints[8];
  unsigned int numXPoints = endXPoint - startXPoint;
  for (unsigned int i = 0; i < numXPoints - 1; i++)
  {
    for (unsigned int j = 0; j < numPoints[1] - 1; j++)
    {
      for (unsigned int k = 0; k < numPoints[2] - 1; k++)
      {
        cellPoints[0] = i * numPoints[1] * numPoints[2] + j * numPoints[2] + k;
        cellPoints[1] = (i + 1) * numPoints[1] * numPoints[2] + j * numPoints[2] + k;
        cellPoints[2] = (i + 1) * numPoints[1] * numPoints[2] + (j + 1) * numPoints[2] + k;
        cellPoints[3] = i * numPoints[1] * numPoints[2] + (j + 1) * numPoints[2] + k;
        cellPoints[4] = i * numPoints[1] * numPoints[2] + j * numPoints[2] + k + 1;
        cellPoints[5] = (i + 1) * numPoints[1] * numPoints[2] + j * numPoints[2] + k + 1;
        cellPoints[6] = (i + 1) * numPoints[1] * numPoints[2] + (j + 1) * numPoints[2] + k + 1;
        cellPoints[7] = i * numPoints[1] * numPoints[2] + (j + 1) * numPoints[2] + k + 1;

        this->AppendHex(cellPoints);
      }
    }
  }
}

void Grid::AppendHex(const unsigned int pointIds[8])
{
  // add a hex as a polyhedral cell, i.e. a cell with 6 quads

  // add the quads; since I couldn't confirm how the face normal should point,
  // I am making them all point outward.
  std::vector<unsigned int> faces;
  faces.push_back(this->PolygonalFaces.AddElement(pointIds, { 0, 3, 2, 1 })); // bottom
  faces.push_back(this->PolygonalFaces.AddElement(pointIds, { 0, 1, 5, 4 }));
  faces.push_back(this->PolygonalFaces.AddElement(pointIds, { 1, 2, 6, 5 }));
  faces.push_back(this->PolygonalFaces.AddElement(pointIds, { 2, 3, 7, 6 }));
  faces.push_back(this->PolygonalFaces.AddElement(pointIds, { 3, 0, 4, 7 }));
  faces.push_back(this->PolygonalFaces.AddElement(pointIds, { 4, 5, 6, 7 })); // top

  this->PolyhedralCells.AddElement(nullptr, faces);
}

size_t Grid::GetNumberOfPoints() const
{
  return this->Points.size() / 3;
}
size_t Grid::GetNumberOfCells() const
{
  return this->PolyhedralCells.GetNumberOfElements();
}

const double* Grid::GetPoint(size_t pointId) const
{
  if (pointId >= this->Points.size())
  {
    return nullptr;
  }
  return &(this->Points[pointId * 3]);
}

Attributes::Attributes()
{
  this->GridPtr = nullptr;
}

void Attributes::Initialize(Grid* grid)
{
  this->GridPtr = grid;
}

void Attributes::UpdateFields(double time)
{
  size_t numPoints = this->GridPtr->GetNumberOfPoints();
  this->Velocity.resize(numPoints * 3);
  for (size_t pt = 0; pt < numPoints; pt++)
  {
    const double* coord = this->GridPtr->GetPoint(pt);
    this->Velocity[pt] = coord[1] * time;
  }
  std::fill(this->Velocity.begin() + numPoints, this->Velocity.end(), 0.);
  size_t numCells = this->GridPtr->GetNumberOfCells();
  this->Pressure.resize(numCells);
  std::fill(this->Pressure.begin(), this->Pressure.end(), 1.f);
}

double* Attributes::GetVelocityArray()
{
  if (this->Velocity.empty())
  {
    return nullptr;
  }
  return &this->Velocity[0];
}

float* Attributes::GetPressureArray()
{
  if (this->Pressure.empty())
  {
    return nullptr;
  }
  return &this->Pressure[0];
}