File: internal_algorithms.py

package info (click to toggle)
paraview 5.13.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 544,220 kB
  • sloc: cpp: 3,374,605; ansic: 1,332,409; python: 150,381; xml: 122,166; sql: 65,887; sh: 7,317; javascript: 5,262; yacc: 4,417; java: 3,977; perl: 2,363; lex: 1,929; f90: 1,397; makefile: 170; objc: 153; tcl: 59; pascal: 50; fortran: 29
file content (598 lines) | stat: -rw-r--r-- 21,466 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
from __future__ import absolute_import
from . import dataset_adapter as dsa
import numpy
from vtkmodules.util import numpy_support
from vtkmodules.vtkCommonDataModel import vtkImageData
from vtkmodules.vtkFiltersCore import vtkCellDataToPointData, vtkPolyDataNormals
from vtkmodules.vtkFiltersGeneral import vtkCellDerivatives
from vtkmodules.vtkFiltersVerdict import vtkCellSizeFilter, vtkCellQuality, vtkMatrixMathFilter

def _cell_derivatives (narray, dataset, attribute_type, filter):
    if not dataset :
       raise RuntimeError('Need a dataset to compute _cell_derivatives.')

    # Reshape n dimensional vector to n by 1 matrix
    if len(narray.shape) == 1 :
       narray = narray.reshape((narray.shape[0], 1))

    ncomp = narray.shape[1]
    if attribute_type == 'scalars' and ncomp != 1 :
       raise RuntimeError('This function expects scalars. ' +
                           'Input shape ' + str(narray.shape))
    if attribute_type == 'vectors' and ncomp != 3 :
       raise RuntimeError('This function expects vectors. ' +
                           'Input shape ' + str(narray.shape))

    # numpy_to_vtk converts only contiguous arrays
    if not narray.flags.contiguous : narray = narray.copy()
    varray = numpy_support.numpy_to_vtk(narray)

    if attribute_type == 'scalars': varray.SetName('scalars')
    else : varray.SetName('vectors')

    # create a dataset with only our array but the same geometry/topology
    ds = dataset.NewInstance()
    ds.UnRegister(None)
    ds.CopyStructure(dataset.VTKObject)

    if dsa.ArrayAssociation.FIELD == narray.Association :
       raise RuntimeError('Unknown data association. Data should be associated with points or cells.')

    if dsa.ArrayAssociation.POINT == narray.Association :
       # Work on point data
       if narray.shape[0] != dataset.GetNumberOfPoints() :
          raise RuntimeError('The number of points does not match the number of tuples in the array')
       if attribute_type == 'scalars': ds.GetPointData().SetScalars(varray)
       else : ds.GetPointData().SetVectors(varray)
    elif dsa.ArrayAssociation.CELL == narray.Association :
       # Work on cell data
       if narray.shape[0] != dataset.GetNumberOfCells() :
          raise RuntimeError('The number of does not match the number of tuples in the array')

       # Since vtkCellDerivatives only works with point data, we need to convert
       # the cell data to point data first.

       ds2 = dataset.NewInstance()
       ds2.UnRegister(None)
       ds2.CopyStructure(dataset.VTKObject)

       if attribute_type == 'scalars' : ds2.GetCellData().SetScalars(varray)
       else : ds2.GetCellData().SetVectors(varray)

       c2p = vtkCellDataToPointData()
       c2p.SetInputData(ds2)
       c2p.Update()

       # Set the output to the ds dataset
       if attribute_type == 'scalars':
          ds.GetPointData().SetScalars(c2p.GetOutput().GetPointData().GetScalars())
       else:
          ds.GetPointData().SetVectors(c2p.GetOutput().GetPointData().GetVectors())

    filter.SetInputData(ds)

    if dsa.ArrayAssociation.POINT == narray.Association :
       # Since the data is associated with cell and the query is on points
       # we have to convert to point data before returning
       c2p = vtkCellDataToPointData()
       c2p.SetInputConnection(filter.GetOutputPort())
       c2p.Update()
       return c2p.GetOutput().GetPointData()
    elif dsa.ArrayAssociation.CELL == narray.Association :
       filter.Update()
       return filter.GetOutput().GetCellData()
    else :
       # We shall never reach here
       raise RuntimeError('Unknown data association. Data should be associated with points or cells.')

def _cell_quality (dataset, quality) :
    if not dataset : raise RuntimeError('Need a dataset to compute _cell_quality')

    # create a dataset with only our array but the same geometry/topology
    ds = dataset.NewInstance()
    ds.UnRegister(None)
    ds.CopyStructure(dataset.VTKObject)

    filter = vtkCellQuality()
    filter.SetInputData(ds)

    if   "area"         == quality : filter.SetQualityMeasureToArea()
    elif "aspect"       == quality : filter.SetQualityMeasureToAspectRatio()
    elif "aspect_gamma" == quality : filter.SetQualityMeasureToAspectGamma()
    elif "condition"    == quality : filter.SetQualityMeasureToCondition()
    elif "diagonal"     == quality : filter.SetQualityMeasureToDiagonal()
    elif "jacobian"     == quality : filter.SetQualityMeasureToJacobian()
    elif "max_angle"    == quality : filter.SetQualityMeasureToMaxAngle()
    elif "shear"        == quality : filter.SetQualityMeasureToShear()
    elif "skew"         == quality : filter.SetQualityMeasureToSkew()
    elif "min_angle"    == quality : filter.SetQualityMeasureToMinAngle()
    elif "volume"       == quality : filter.SetQualityMeasureToVolume()
    else : raise RuntimeError('Unknown cell quality ['+quality+'].')

    filter.Update()

    varray = filter.GetOutput().GetCellData().GetArray("CellQuality")
    ans = dsa.vtkDataArrayToVTKArray(varray, dataset)

    # The association information has been lost over the vtk filter
    # we must reconstruct it otherwise lower pipeline will be broken.
    ans.Association = dsa.ArrayAssociation.CELL

    return ans

def _matrix_math_filter (narray, operation) :
    if operation not in ['Determinant', 'Inverse', 'Eigenvalue', 'Eigenvector'] :
       raise RuntimeError('Unknown quality measure ['+operation+']'+
                          ' Supported are [Determinant, Inverse, Eigenvalue, Eigenvector]')

    if narray.ndim != 3 :
       raise RuntimeError(operation+' only works for an array of matrices(3D array).'+
                           ' Input shape ' + str(narray.shape))
    elif narray.shape[1] != narray.shape[2] :
       raise RuntimeError(operation+' requires an array of 2D square matrices.' +
                           ' Input shape ' + str(narray.shape))

    # numpy_to_vtk converts only contiguous arrays
    if not narray.flags.contiguous : narray = narray.copy()

    # Reshape is necessary because numpy_support.numpy_to_vtk only works with 2D or
    # less arrays.
    nrows = narray.shape[0]
    ncols = narray.shape[1] * narray.shape[2]
    narray = narray.reshape(nrows, ncols)

    ds = vtkImageData()
    ds.SetDimensions(nrows, 1, 1)

    varray = numpy_support.numpy_to_vtk(narray)
    varray.SetName('tensors')
    ds.GetPointData().SetTensors(varray)

    filter = vtkMatrixMathFilter()

    if   operation == 'Determinant'  : filter.SetOperationToDeterminant()
    elif operation == 'Inverse'      : filter.SetOperationToInverse()
    elif operation == 'Eigenvalue'   : filter.SetOperationToEigenvalue()
    elif operation == 'Eigenvector'  : filter.SetOperationToEigenvector()

    filter.SetInputData(ds)
    filter.Update()

    varray = filter.GetOutput().GetPointData().GetArray(operation)

    ans = dsa.vtkDataArrayToVTKArray(varray)

    # The association information has been lost over the vtk filter
    # we must reconstruct it otherwise lower pipeline will be broken.
    ans.Association = narray.Association
    ans.DataSet = narray.DataSet

    return ans

# Python interfaces
def abs (narray) :
    "Returns the absolute values of an array of scalars/vectors/tensors."
    return numpy.abs(narray)

def all (narray, axis=None):
    "Returns the min value of an array of scalars/vectors/tensors."
    if narray is dsa.NoneArray:
      return dsa.NoneArray
    ans = numpy.all(numpy.array(narray), axis)
    return ans

def area (dataset) :
    "Returns the surface area of each cell in a mesh."
    return _cell_quality(dataset, "area")

def aspect (dataset) :
    "Returns the aspect ratio of each cell in a mesh."
    return _cell_quality(dataset, "aspect")

def aspect_gamma (dataset) :
    "Returns the aspect ratio gamma of each cell in a mesh."
    return _cell_quality(dataset, "aspect_gamma")

def condition (dataset) :
    "Returns the condition number of each cell in a mesh."
    return _cell_quality(dataset, "condition")

def cross (x, y) :
    "Return the cross product for two 3D vectors from two arrays of 3D vectors."
    if x is dsa.NoneArray or y is dsa.NoneArray:
      return dsa.NoneArray

    if x.ndim != y.ndim or x.shape != y.shape:
       raise RuntimeError('Both operands must have same dimension and shape.' +
                          ' Input shapes ' + str(x.shape) + ' and ' + str(y.shape))

    if x.ndim != 1 and x.ndim != 2 :
       raise RuntimeError('Cross only works for 3D vectors or an array of 3D vectors.' +
                          ' Input shapes ' + str(x.shape) + ' and ' + str(y.shape))

    if x.ndim == 1 and x.shape[0] != 3 :
       raise RuntimeError('Cross only works for 3D vectors.' +
                          ' Input shapes ' + str(x.shape) + ' and ' + str(y.shape))

    if x.ndim == 2 and x.shape[1] != 3 :
       raise RuntimeError('Cross only works for an array of 3D vectors.' +
                          'Input shapes ' + str(x.shape) + ' and ' + str(y.shape))

    return numpy.cross(x, y)

def curl (narray, dataset=None):
    "Returns the curl of an array of 3D vectors."
    if not dataset : dataset = narray.DataSet
    if not dataset : raise RuntimeError('Need a dataset to compute curl.')

    if narray.ndim != 2 or narray.shape[1] != 3 :
       raise RuntimeError('Curl only works with an array of 3D vectors.' +
                          'Input shape ' + str(narray.shape))

    cd = vtkCellDerivatives()
    cd.SetVectorModeToComputeVorticity()

    res = _cell_derivatives(narray, dataset, 'vectors', cd)

    retVal = res.GetVectors()
    retVal.SetName("vorticity")

    ans = dsa.vtkDataArrayToVTKArray(retVal, dataset)

    # The association information has been lost over the vtk filter
    # we must reconstruct it otherwise lower pipeline will be broken.
    ans.Association = narray.Association

    return ans

def divergence (narray, dataset=None):
    "Returns the divergence of an array of 3D vectors."
    if not dataset : dataset = narray.DataSet
    if not dataset : raise RuntimeError('Need a dataset to compute divergence')

    if narray.ndim != 2 or narray.shape[1] != 3 :
       raise RuntimeError('Divergence only works with an array of 3D vectors.' +
                          ' Input shape ' + str(narray.shape))

    g = gradient(narray, dataset)
    g = g.reshape(g.shape[0], 3, 3)

    a = dsa.VTKArray\
           (numpy.add.reduce(g.diagonal(axis1=1, axis2=2), 1), dataset=g.DataSet)
    try:
        a.Association = g.Association
    except AttributeError: pass
    return a


def det (narray) :
    "Returns the determinant of an array of 2D square matrices."
    return _matrix_math_filter(narray, "Determinant")

def determinant (narray) :
    "Returns the determinant of an array of 2D square matrices."
    return det(narray)

def diagonal (dataset) :
    "Returns the diagonal length of each cell in a dataset."
    return _cell_quality(dataset, "diagonal")

def dot (a1, a2):
    "Returns the dot product of two scalars/vectors of two array of scalars/vectors."
    if a1 is dsa.NoneArray or a2 is dsa.NoneArray:
      return dsa.NoneArray

    if a1.shape[1] != a2.shape[1] :
     raise RuntimeError('Dot product only works with vectors of same dimension.' +
                         ' Input shapes ' + str(a1.shape) + ' and ' + str(a2.shape))
    m = a1*a2
    va = dsa.VTKArray(numpy.add.reduce(m, 1))
    if hasattr(m, "Association"):
      va.Association = m.Association
    if a1.DataSet == a2.DataSet : va.DataSet = a1.DataSet
    return va

def eigenvalue (narray) :
    "Returns the eigenvalue of an array of 2D square matrices."
    return _matrix_math_filter(narray, "Eigenvalue")

def eigenvector (narray) :
    "Returns the eigenvector of an array of 2D square matrices."
    return _matrix_math_filter(narray, "Eigenvector")

def gradient(narray, dataset=None):
    "Returns the gradient of an array of scalars/vectors."
    if not dataset: dataset = narray.DataSet
    if not dataset: raise RuntimeError('Need a dataset to compute gradient')

    try:
      ncomp = narray.shape[1]
    except IndexError:
      ncomp = 1
    if ncomp != 1 and ncomp != 3:
       raise RuntimeError('Gradient only works with scalars (1 component) and vectors (3 component)' +
                          ' Input shape ' + str(narray.shape))

    cd = vtkCellDerivatives()
    if ncomp == 1 : attribute_type = 'scalars'
    else : attribute_type = 'vectors'

    res = _cell_derivatives(narray, dataset, attribute_type, cd)

    if ncomp == 1 : retVal = res.GetVectors()
    else : retVal = res.GetTensors()

    try:
        if narray.GetName() : retVal.SetName("gradient of " + narray.GetName())
        else : retVal.SetName("gradient")
    except AttributeError : retVal.SetName("gradient")

    ans = dsa.vtkDataArrayToVTKArray(retVal, dataset)

    # The association information has been lost over the vtk filter
    # we must reconstruct it otherwise lower pipeline will be broken.
    ans.Association = narray.Association

    return ans

def inv (narray) :
    "Returns the inverse an array of 2D square matrices."
    return _matrix_math_filter(narray, "Inverse")

def inverse (narray) :
    "Returns the inverse of an array of 2D square matrices."
    return inv(narray)

def jacobian (dataset) :
    "Returns the jacobian of an array of 2D square matrices."
    return _cell_quality(dataset, "jacobian")

def laplacian (narray, dataset=None) :
    "Returns the jacobian of an array of scalars."
    if not dataset : dataset = narray.DataSet
    if not dataset : raise RuntimeError('Need a dataset to compute laplacian')
    ans = gradient(narray, dataset)
    return divergence(ans)

def ln (narray) :
    "Returns the natural logarithm of an array of scalars/vectors/tensors."
    return numpy.log(narray)

def log (narray) :
    "Returns the natural logarithm of an array of scalars/vectors/tensors."
    return ln(narray)

def log10 (narray) :
    "Returns the base 10 logarithm of an array of scalars/vectors/tensors."
    return numpy.log10(narray)

def max (narray, axis=None):
    "Returns the maximum value of an array of scalars/vectors/tensors."
    if narray is dsa.NoneArray:
      return dsa.NoneArray
    ans = numpy.max(narray, axis)
#    if len(ans.shape) == 2 and ans.shape[0] == 3 and ans.shape[1] == 3: ans.reshape(9)
    return ans

def max_angle (dataset) :
    "Returns the maximum angle of each cell in a dataset."
    return _cell_quality(dataset, "max_angle")

def mag (a) :
    "Returns the magnigude of an array of scalars/vectors."
    return numpy.sqrt(dot(a, a))

def matmul (a, b) :
    "Return the product of the inputs. Inputs can be vectors/tensors."
    ashape = a.shape
    if (len(ashape) == 3 and (ashape[1] != 3 or ashape[2] not in [1, 3])) \
       or (len(ashape) == 2 and ashape[1] != 3) \
       or (len(ashape) != 2 and len(ashape) != 3):
        return dsa.NoneArray

    bshape = b.shape
    if (len(bshape) == 3 and (bshape[1] != 3 or bshape[2] not in [1, 3])) \
       or (len(bshape) == 2 and bshape[1] != 3) \
       or (len(bshape) != 2 and len(bshape) != 3):
        return dsa.NoneArray

    aindices = "...j"
    if len(ashape) == 3:
        aindices = "...ij"

    bindices = "...j"
    if len(bshape) == 3:
        bindices = "...jk"

    indices = aindices + ',' + bindices
    ans = numpy.einsum(indices, a, b)
    return ans

def mean (narray, axis=None) :
    "Returns the mean value of an array of scalars/vectors/tensors."
    if narray is dsa.NoneArray:
      return dsa.NoneArray
    ans = numpy.mean(numpy.array(narray), axis)
#    if len(ans.shape) == 2 and ans.shape[0] == 3 and ans.shape[1] == 3: ans.reshape(9)
    return ans

def min (narray, axis=None):
    "Returns the min value of an array of scalars/vectors/tensors."
    if narray is dsa.NoneArray:
      return dsa.NoneArray
    ans = numpy.min(narray, axis)
#    if len(ans.shape) == 2 and ans.shape[0] == 3 and ans.shape[1] == 3: ans.reshape(9)
    return ans

def min_angle (dataset) :
    "Returns the minimum angle of each cell in a dataset."
    return _cell_quality(dataset, "min_angle")

def norm (a) :
    "Returns the normalized values of an array of scalars/vectors."
    return a/mag(a).reshape((a.shape[0], 1))

def shear (dataset) :
    "Returns the shear of each cell in a dataset."
    return _cell_quality(dataset, "shear")

def skew (dataset) :
    "Returns the skew of each cell in a dataset."
    return _cell_quality(dataset, "skew")

def strain (narray, dataset=None) :
    "Returns the strain of an array of 3D vectors."
    if not dataset : dataset = narray.DataSet
    if not dataset : raise RuntimeError('Need a dataset to compute strain')

    if 2 != narray.ndim or 3 != narray.shape[1] :
       raise RuntimeError('strain only works with an array of 3D vectors' +
                          'Input shape ' + str(narray.shape))

    cd = vtkCellDerivatives()
    cd.SetTensorModeToComputeStrain()

    res = _cell_derivatives(narray, dataset, 'vectors', cd)

    retVal = res.GetTensors()
    retVal.SetName("strain")

    ans = dsa.vtkDataArrayToVTKArray(retVal, dataset)

    # The association information has been lost over the vtk filter
    # we must reconstruct it otherwise lower pipeline will be broken.
    ans.Association = narray.Association

    return ans

def sum (narray, axis=None):
    "Returns the min value of an array of scalars/vectors/tensors."
    if narray is dsa.NoneArray:
      return dsa.NoneArray
    return numpy.sum(narray, axis)

def surface_normal (dataset) :
    "Returns the surface normal of each cell in a dataset."
    if not dataset : raise RuntimeError('Need a dataset to compute surface_normal')

    ds = dataset.NewInstance()
    ds.UnRegister(None)
    ds.CopyStructure(dataset.VTKObject)

    filter = vtkPolyDataNormals()
    filter.SetInputData(ds)
    filter.ComputeCellNormalsOn()
    filter.ComputePointNormalsOff()

    filter.SetFeatureAngle(180)
    filter.SplittingOff()
    filter.ConsistencyOff()
    filter.AutoOrientNormalsOff()
    filter.FlipNormalsOff()
    filter.NonManifoldTraversalOff()
    filter.Update()

    varray = filter.GetOutput().GetCellData().GetNormals()
    ans = dsa.vtkDataArrayToVTKArray(varray, dataset)

    # The association information has been lost over the vtk filter
    # we must reconstruct it otherwise lower pipeline will be broken.
    ans.Association = dsa.ArrayAssociation.CELL

    return ans

def trace (narray) :
    "Returns the trace of an array of 2D square matrices."
    ax1 = 0
    ax2 = 1
    if narray.ndim > 2 :
       ax1 = 1
       ax2 = 2
    return numpy.trace(narray, axis1=ax1, axis2=ax2)

def var (narray, axis=None) :
    "Returns the mean value of an array of scalars/vectors/tensors."
    if narray is dsa.NoneArray:
      return dsa.NoneArray
    return numpy.var(narray, axis)

def volume (dataset) :
    "Returns the volume of each cell in a dataset."
    #def _cell_quality (dataset, quality) :
    if not dataset : raise RuntimeError('Need a dataset to compute volume')

    # create a dataset with only our array but the same geometry/topology
    ds = dataset.NewInstance()
    ds.UnRegister(None)
    ds.CopyStructure(dataset.VTKObject)

    filter = vtkCellSizeFilter()
    filter.SetInputData(ds)
    filter.ComputeVertexCountOff()
    filter.ComputeLengthOff()
    filter.ComputeAreaOff()
    filter.Update()

    varray = filter.GetOutput().GetCellData().GetArray("Volume")
    varray.SetName("CellQuality")
    ans = dsa.vtkDataArrayToVTKArray(varray, dataset)

    # The association information has been lost over the vtk filter
    # we must reconstruct it otherwise lower pipeline will be broken.
    ans.Association = dsa.ArrayAssociation.CELL

    return ans

def vorticity(narray, dataset=None):
    "Returns the vorticity/curl of an array of 3D vectors."
    return curl(narray, dataset)

def vertex_normal (dataset) :
    "Returns the vertex normal of each point in a dataset."
    if not dataset : raise RuntimeError('Need a dataset to compute vertex_normal')

    ds = dataset.NewInstance()
    ds.UnRegister(None)
    ds.CopyStructure(dataset.VTKObject)

    filter = vtkPolyDataNormals()
    filter.SetInputData(ds)
    filter.ComputeCellNormalsOff()
    filter.ComputePointNormalsOn()

    filter.SetFeatureAngle(180)
    filter.SplittingOff()
    filter.ConsistencyOff()
    filter.AutoOrientNormalsOff()
    filter.FlipNormalsOff()
    filter.NonManifoldTraversalOff()
    filter.Update()

    varray = filter.GetOutput().GetPointData().GetNormals()
    ans = dsa.vtkDataArrayToVTKArray(varray, dataset)

    # The association information has been lost over the vtk filter
    # we must reconstruct it otherwise lower pipeline will be broken.
    ans.Association = dsa.ArrayAssociation.POINT

    return ans

def make_vector(ax, ay, az=None):
    if ax is dsa.NoneArray or ay is dsa.NoneArray or ay is dsa.NoneArray:
      return dsa.NoneArray

    if len(ax.shape) != 1 or len(ay.shape) != 1 or (az is not None and len(az.shape) != 1):
        raise ValueError("Can only merge 1D arrays")

    if az is None:
        az = numpy.zeros(ax.shape)
    v = numpy.vstack([ax, ay, az]).transpose().view(dsa.VTKArray)
    # Copy defaults from first array. The user can always
    # overwrite this
    try:
        v.DataSet = ax.DataSet
    except AttributeError: pass
    try:
        v.Association = ax.Association
    except AttributeError: pass
    return v