File: FEDriver.cxx

package info (click to toggle)
paraview 5.4.1%2Bdfsg4-3.1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 218,616 kB
  • sloc: cpp: 2,331,508; ansic: 322,365; python: 111,051; xml: 79,203; tcl: 47,013; yacc: 4,877; java: 4,438; perl: 3,238; sh: 2,920; lex: 1,908; f90: 748; makefile: 273; pascal: 228; objc: 83; fortran: 31
file content (74 lines) | stat: -rw-r--r-- 1,940 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#include "FEDataStructures.h"
#include <mpi.h>

#ifdef USE_CATALYST
#include "FEAdaptor.h"
#include <cstdlib>
#include <iostream>
#endif

// Example of a C++ adaptor for a simulation code
// where we use a hard-coded ParaView server-manager
// C++ pipeline. The simulation code has a fixed topology
// grid. We treat the grid as an unstructured
// grid even though in the example provided it
// would be best described as a vtkImageData.
// Also, the points are stored in an inconsistent
// manner with respect to the velocity vector.
// This is purposefully done to demonstrate
// the different approaches for getting data
// into Catalyst. The hard-coded C++ pipeline
// uses a slice filter to cut 4 planes through
// the domain.
// Note that through configuration
// that the driver can be run without linking
// to Catalyst.

int main(int argc, char* argv[])
{
  MPI_Init(&argc, &argv);
  Grid grid;
  unsigned int numPoints[3] = { 70, 60, 44 };
  double spacing[3] = { 1, 1.1, 1.3 };
  grid.Initialize(numPoints, spacing);
  Attributes attributes;
  attributes.Initialize(&grid);

#ifdef USE_CATALYST
  bool doCoProcessing = false;
  if (argc == 3)
  {
    doCoProcessing = true;
    // pass in the number of time steps and base file name.
    FEAdaptor::Initialize(atoi(argv[1]), argv[2]);
  }
  else
  {
    std::cerr
      << "To run with Catalyst you must pass in the output frequency and the base file name.\n";
  }
#endif
  unsigned int numberOfTimeSteps = 15;
  for (unsigned int timeStep = 0; timeStep < numberOfTimeSteps; timeStep++)
  {
    // use a time step length of 0.1
    double time = timeStep * 0.1;
    attributes.UpdateFields(time);
#ifdef USE_CATALYST
    if (doCoProcessing)
    {
      FEAdaptor::CoProcess(grid, attributes, time, timeStep, timeStep == numberOfTimeSteps - 1);
    }
#endif
  }

#ifdef USE_CATALYST
  if (doCoProcessing)
  {
    FEAdaptor::Finalize();
  }
#endif
  MPI_Finalize();

  return 0;
}