1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
"""This demo program solves the incompressible Navier-Stokes equations
on an L-shaped domain using Chorin's splitting method."""
# Copyright (C) 2010-2011 Anders Logg
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Mikael Mortensen 2011
#
# First added: 2010-08-30
# Last changed: 2011-06-30
#
# SC14 Paraview's Catalyst tutorial
#
# Step 1 : initialization
#
# [SC14-Catalyst] we need a python environment that enables import of both Dolfin and ParaView
execfile("simulation-env.py")
# [SC14-Catalyst] import paraview, vtk and paraview's simple API
import sys
import paraview
import paraview.vtk as vtk
import paraview.simple as pvsimple
# [SC14-Catalyst] check for command line arguments
if len(sys.argv) != 3:
print "command is 'python",sys.argv[0],"<script name> <number of time steps>'"
sys.exit(1)
# [SC14-Catalyst] initialize and read input parameters
paraview.options.batch = True
paraview.options.symmetric = True
# [SC14-Catalyst] import user co-processing script
import vtkPVCatalystPython
import os
scriptpath, scriptname = os.path.split(sys.argv[1])
sys.path.append(scriptpath)
if scriptname.endswith(".py"):
print 'script name is ', scriptname
scriptname = scriptname[0:len(scriptname)-3]
try:
cpscript = __import__(scriptname)
except:
print sys.exc_info()
print 'Cannot find ', scriptname, ' -- no coprocessing will be performed.'
sys.exit(1)
# Begin demo
from dolfin import *
# Print log messages only from the root process in parallel
parameters["std_out_all_processes"] = False;
# Load mesh from file
mesh = Mesh(DOLFIN_EXAMPLE_DATA_DIR+"/lshape.xml.gz")
# Define function spaces (P2-P1)
V = VectorFunctionSpace(mesh, "Lagrange", 2)
Q = FunctionSpace(mesh, "Lagrange", 1)
# Define trial and test functions
u = TrialFunction(V)
p = TrialFunction(Q)
v = TestFunction(V)
q = TestFunction(Q)
# Set parameter values
dt = 0.01
T = 3
nu = 0.01
# Define time-dependent pressure boundary condition
p_in = Expression("sin(3.0*t)", t=0.0)
# Define boundary conditions
noslip = DirichletBC(V, (0, 0),
"on_boundary && \
(x[0] < DOLFIN_EPS | x[1] < DOLFIN_EPS | \
(x[0] > 0.5 - DOLFIN_EPS && x[1] > 0.5 - DOLFIN_EPS))")
inflow = DirichletBC(Q, p_in, "x[1] > 1.0 - DOLFIN_EPS")
outflow = DirichletBC(Q, 0, "x[0] > 1.0 - DOLFIN_EPS")
bcu = [noslip]
bcp = [inflow, outflow]
# Create functions
u0 = Function(V)
u1 = Function(V)
p1 = Function(Q)
# Define coefficients
k = Constant(dt)
f = Constant((0, 0))
# Tentative velocity step
F1 = (1/k)*inner(u - u0, v)*dx + inner(grad(u0)*u0, v)*dx + \
nu*inner(grad(u), grad(v))*dx - inner(f, v)*dx
a1 = lhs(F1)
L1 = rhs(F1)
# Pressure update
a2 = inner(grad(p), grad(q))*dx
L2 = -(1/k)*div(u1)*q*dx
# Velocity update
a3 = inner(u, v)*dx
L3 = inner(u1, v)*dx - k*inner(grad(p1), v)*dx
# Assemble matrices
A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)
# Use amg preconditioner if available
prec = "amg" if has_krylov_solver_preconditioner("amg") else "default"
# Create files for storing solution
ufile = File("results/velocity.pvd")
pfile = File("results/pressure.pvd")
# Time-stepping
maxtimestep = int(sys.argv[2])
tstep = 0
t = dt
while tstep < maxtimestep:
# Update pressure boundary condition
p_in.t = t
# Compute tentative velocity step
begin("Computing tentative velocity")
b1 = assemble(L1)
[bc.apply(A1, b1) for bc in bcu]
solve(A1, u1.vector(), b1, "gmres", "default")
end()
# Pressure correction
begin("Computing pressure correction")
b2 = assemble(L2)
[bc.apply(A2, b2) for bc in bcp]
solve(A2, p1.vector(), b2, "gmres", prec)
end()
# Velocity correction
begin("Computing velocity correction")
b3 = assemble(L3)
[bc.apply(A3, b3) for bc in bcu]
solve(A3, u1.vector(), b3, "gmres", "default")
end()
# Plot solution [SC14-Catalyst] Not anymore
# plot(p1, title="Pressure", rescale=True)
# plot(u1, title="Velocity", rescale=True)
# Save to file [SC14-Catalyst] Not anymore
# ufile << u1
# pfile << p1
# Move to next time step
u0.assign(u1)
t += dt
tstep += 1
print "t =", t, "step =",tstep
# Hold plot [SC14-Catalyst] Not anymore
# interactive()
|