File: vtkDataArrayPrivate.txx

package info (click to toggle)
paraview 5.4.1%2Bdfsg4-3.1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 218,616 kB
  • sloc: cpp: 2,331,508; ansic: 322,365; python: 111,051; xml: 79,203; tcl: 47,013; yacc: 4,877; java: 4,438; perl: 3,238; sh: 2,920; lex: 1,908; f90: 748; makefile: 273; pascal: 228; objc: 83; fortran: 31
file content (466 lines) | stat: -rw-r--r-- 13,580 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkDataArrayPrivate.txx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#ifndef vtkDataArrayPrivate_txx
#define vtkDataArrayPrivate_txx

#include "vtkAssume.h"
#include "vtkDataArray.h"
#include "vtkDataArrayAccessor.h"
#include "vtkTypeTraits.h"
#include <algorithm>
#include <cassert> // for assert()

namespace vtkDataArrayPrivate
{
#if (defined(_MSC_VER) && ( _MSC_VER < 2000 )) || (defined(__INTEL_COMPILER) && ( __INTEL_COMPILER < 1700 ))
namespace msvc
{
//----------------------------------------------------------------------------
// Those min and max functions replace std ones because their
// implementation used to generate very slow code with MSVC.
// See https://randomascii.wordpress.com/2013/11/24/stdmin-causing-three-times-slowdown-on-vc/
// The comparison expression in min/max are written so that if the "condition" is false,
// the "left" value is returned. This is consistent with STL's implementations
// and also handles the cases where the right value may be a NaN properly.
// All code using these methods should ensure that the "left" value is never
// NaN.
// We use _MSC_VER < 2000 instead of 1900 not due to performance issues, but
// because MSVC 2015 (_MSC_VER=1900) doesn't handle NaNs properly in optimized
// builds.
// icpc version 16 also doesn't handle NaNs properly.
// The order is correct in icpc version 17.
template <class ValueType>
ValueType max(const ValueType& left, const ValueType& right)
{
  return right > left ? right : left;
}

template <class ValueType>
ValueType min(const ValueType& left, const ValueType& right)
{
  return right <= left ? right : left;
}
}
#endif

namespace detail
{
#if (defined(_MSC_VER) && ( _MSC_VER < 2000 )) || (defined(__INTEL_COMPILER) && ( __INTEL_COMPILER < 1700 ))
using msvc::min;
using msvc::max;
#else
using std::min;
using std::max;
#endif
}

//avoid checking types that don't contain infinity.
namespace detail {
template <typename T, bool> struct has_infinity;

//Visual Studio 2012 and earlier don't have std::isinf.
#if defined(_MSC_VER) && ( _MSC_VER < 1800 )
template <typename T>
struct has_infinity<T, true>
{
  static bool isinf(T x)
  {
    return x == std::numeric_limits<T>::infinity() ||
           x == -std::numeric_limits<T>::infinity();
  }
};
#else
template <typename T>
struct has_infinity<T, true> {
  static bool isinf(T x)
  {
    return std::isinf(x);
  }
};
#endif

template <typename T>
struct has_infinity<T, false> { static bool isinf(T) { return false; } };

template <typename T>
bool isinf(T x)
{
  // Select the correct partially specialized type.
  return has_infinity<T, std::numeric_limits<T>::has_infinity>::isinf(x);
}
}

//----------------------------------------------------------------------------
template <class APIType, int NumComps, int RangeSize>
struct ComputeScalarRange
{
  template<class ArrayT>
  bool operator()(ArrayT *array, double *ranges)
  {
    VTK_ASSUME(array->GetNumberOfComponents() == NumComps);

    vtkDataArrayAccessor<ArrayT> access(array);
    APIType tempRange[RangeSize];

    for(int i = 0, j = 0; i < NumComps; ++i, j+=2)
    {
      tempRange[j] = vtkTypeTraits<APIType>::Max();
      tempRange[j+1] = vtkTypeTraits<APIType>::Min();
    }

    //compute the range for each component of the data array at the same time
    const vtkIdType numTuples = array->GetNumberOfTuples();
    for(vtkIdType tupleIdx = 0; tupleIdx < numTuples; ++tupleIdx)
    {
      for(int compIdx = 0, j = 0; compIdx < NumComps; ++compIdx, j+=2)
      {
        APIType value = access.Get(tupleIdx, compIdx);
        tempRange[j]   = detail::min(tempRange[j], value);
        tempRange[j+1] = detail::max(tempRange[j+1], value);
      }
    }

    //convert the range to doubles
    for (int i = 0, j = 0; i < NumComps; ++i, j+=2)
    {
      ranges[j] = static_cast<double>(tempRange[j]);
      ranges[j+1] = static_cast<double>(tempRange[j+1]);
    }
    return true;
  }
};

//----------------------------------------------------------------------------
template <class APIType, int NumComps, int RangeSize>
struct ComputeScalarFiniteRange
{
  template<class ArrayT>
  bool operator()(ArrayT *array, double *ranges)
  {
    VTK_ASSUME(array->GetNumberOfComponents() == NumComps);

    vtkDataArrayAccessor<ArrayT> access(array);
    APIType tempRange[RangeSize];

    for(int i = 0, j = 0; i < NumComps; ++i, j+=2)
    {
      tempRange[j] = vtkTypeTraits<APIType>::Max();
      tempRange[j+1] = vtkTypeTraits<APIType>::Min();
    }

    //compute the range for each component of the data array at the same time
    const vtkIdType numTuples = array->GetNumberOfTuples();
    for(vtkIdType tupleIdx = 0; tupleIdx < numTuples; ++tupleIdx)
    {
      for(int compIdx = 0, j = 0; compIdx < NumComps; ++compIdx, j+=2)
      {
        APIType value = access.Get(tupleIdx, compIdx);
        if (!detail::isinf(value))
        {
          tempRange[j]   = detail::min(tempRange[j], value);
          tempRange[j+1] = detail::max(tempRange[j+1], value);
        }
      }
    }

    //convert the range to doubles
    for (int i = 0, j = 0; i < NumComps; ++i, j+=2)
    {
      ranges[j] = static_cast<double>(tempRange[j]);
      ranges[j+1] = static_cast<double>(tempRange[j+1]);
    }
    return true;
  }
};

//----------------------------------------------------------------------------
template <typename ArrayT>
bool DoComputeScalarFiniteRange(ArrayT *array, double *ranges)
{
  vtkDataArrayAccessor<ArrayT> access(array);
  typedef typename vtkDataArrayAccessor<ArrayT>::APIType APIType;

  const vtkIdType numTuples = array->GetNumberOfTuples();
  const int numComp = array->GetNumberOfComponents();

  //setup the initial ranges to be the max,min for double
  for (int i = 0, j = 0; i < numComp; ++i, j+=2)
  {
    ranges[j] =  vtkTypeTraits<double>::Max();
    ranges[j+1] = vtkTypeTraits<double>::Min();
  }

  //do this after we make sure range is max to min
  if (numTuples == 0)
  {
    return false;
  }

  //Special case for single value scalar range. This is done to help the
  //compiler detect it can perform loop optimizations.
  if (numComp == 1)
  {
    return ComputeScalarFiniteRange<APIType,1,2>()(array, ranges);
  }
  else if (numComp == 2)
  {
    return ComputeScalarFiniteRange<APIType,2,4>()(array, ranges);
  }
  else if (numComp == 3)
  {
    return ComputeScalarFiniteRange<APIType,3,6>()(array, ranges);
  }
  else if (numComp == 4)
  {
    return ComputeScalarFiniteRange<APIType,4,8>()(array, ranges);
  }
  else if (numComp == 5)
  {
    return ComputeScalarFiniteRange<APIType,5,10>()(array, ranges);
  }
  else if (numComp == 6)
  {
    return ComputeScalarFiniteRange<APIType,6,12>()(array, ranges);
  }
  else if (numComp == 7)
  {
    return ComputeScalarFiniteRange<APIType,7,14>()(array, ranges);
  }
  else if (numComp == 8)
  {
    return ComputeScalarFiniteRange<APIType,8,16>()(array, ranges);
  }
  else if (numComp == 9)
  {
    return ComputeScalarFiniteRange<APIType,9,18>()(array, ranges);
  }
  else
  {
    //initialize the temp range storage to min/max pairs
    APIType* tempRange = new APIType[numComp*2];
    for (int i = 0, j = 0; i < numComp; ++i, j+=2)
    {
      tempRange[j] = vtkTypeTraits<APIType>::Max();
      tempRange[j+1] = vtkTypeTraits<APIType>::Min();
    }

    //compute the range for each component of the data array at the same time
    for (vtkIdType tupleIdx = 0; tupleIdx < numTuples; ++tupleIdx)
    {
      for(int compIdx = 0, j = 0; compIdx < numComp; ++compIdx, j+=2)
      {
        APIType value = access.Get(tupleIdx, compIdx);
        if (!detail::isinf(value))
        {
          tempRange[j]   = detail::min(tempRange[j],value);
          tempRange[j+1] = detail::max(tempRange[j+1],value);
        }
      }
    }

    //convert the range to doubles
    for (int i = 0, j = 0; i < numComp; ++i, j+=2)
    {
      ranges[j] = static_cast<double>(tempRange[j]);
      ranges[j+1] = static_cast<double>(tempRange[j+1]);
    }

    //cleanup temp range storage
    delete[] tempRange;

    return true;
  }
}

//----------------------------------------------------------------------------
template <typename ArrayT>
bool DoComputeScalarRange(ArrayT *array, double *ranges)
{
  vtkDataArrayAccessor<ArrayT> access(array);
  typedef typename vtkDataArrayAccessor<ArrayT>::APIType APIType;

  const vtkIdType numTuples = array->GetNumberOfTuples();
  const int numComp = array->GetNumberOfComponents();

  //setup the initial ranges to be the max,min for double
  for (int i = 0, j = 0; i < numComp; ++i, j+=2)
  {
    ranges[j] =  vtkTypeTraits<double>::Max();
    ranges[j+1] = vtkTypeTraits<double>::Min();
  }

  //do this after we make sure range is max to min
  if (numTuples == 0)
  {
    return false;
  }

  //Special case for single value scalar range. This is done to help the
  //compiler detect it can perform loop optimizations.
  if (numComp == 1)
  {
    return ComputeScalarRange<APIType,1,2>()(array, ranges);
  }
  else if (numComp == 2)
  {
    return ComputeScalarRange<APIType,2,4>()(array, ranges);
  }
  else if (numComp == 3)
  {
    return ComputeScalarRange<APIType,3,6>()(array, ranges);
  }
  else if (numComp == 4)
  {
    return ComputeScalarRange<APIType,4,8>()(array, ranges);
  }
  else if (numComp == 5)
  {
    return ComputeScalarRange<APIType,5,10>()(array, ranges);
  }
  else if (numComp == 6)
  {
    return ComputeScalarRange<APIType,6,12>()(array, ranges);
  }
  else if (numComp == 7)
  {
    return ComputeScalarRange<APIType,7,14>()(array, ranges);
  }
  else if (numComp == 8)
  {
    return ComputeScalarRange<APIType,8,16>()(array, ranges);
  }
  else if (numComp == 9)
  {
    return ComputeScalarRange<APIType,9,18>()(array, ranges);
  }
  else
  {
    //initialize the temp range storage to min/max pairs
    APIType* tempRange = new APIType[numComp*2];
    for (int i = 0, j = 0; i < numComp; ++i, j+=2)
    {
      tempRange[j] = vtkTypeTraits<APIType>::Max();
      tempRange[j+1] = vtkTypeTraits<APIType>::Min();
    }

    //compute the range for each component of the data array at the same time
    for (vtkIdType tupleIdx = 0; tupleIdx < numTuples; ++tupleIdx)
    {
      for(int compIdx = 0, j = 0; compIdx < numComp; ++compIdx, j+=2)
      {
        APIType value = access.Get(tupleIdx, compIdx);
        tempRange[j]   = detail::min(tempRange[j],value);
        tempRange[j+1] = detail::max(tempRange[j+1],value);
      }
    }

    //convert the range to doubles
    for (int i = 0, j = 0; i < numComp; ++i, j+=2)
    {
      ranges[j] = static_cast<double>(tempRange[j]);
      ranges[j+1] = static_cast<double>(tempRange[j+1]);
    }

    //cleanup temp range storage
    delete[] tempRange;

    return true;
  }
}

//----------------------------------------------------------------------------
template <typename ArrayT>
bool DoComputeVectorRange(ArrayT *array, double range[2])
{
  vtkDataArrayAccessor<ArrayT> access(array);

  const vtkIdType numTuples = array->GetNumberOfTuples();
  const int numComps = array->GetNumberOfComponents();

  range[0] = vtkTypeTraits<double>::Max();
  range[1] = vtkTypeTraits<double>::Min();

  //do this after we make sure range is max to min
  if (numTuples == 0)
  {
    return false;
  }

  //iterate over all the tuples
  for (vtkIdType tupleIdx = 0; tupleIdx < numTuples; ++tupleIdx)
  {
    double squaredSum = 0.0;
    for (int compIdx = 0; compIdx < numComps; ++compIdx)
    {
      const double t = static_cast<double>(access.Get(tupleIdx, compIdx));
      squaredSum += t * t;
    }
    range[0] = detail::min(range[0], squaredSum);
    range[1] = detail::max(range[1], squaredSum);
  }

  //now that we have computed the smallest and largest value, take the
  //square root of that value.
  range[0] = sqrt(range[0]);
  range[1] = sqrt(range[1]);

  return true;
}

//----------------------------------------------------------------------------
template <typename ArrayT>
bool DoComputeVectorFiniteRange(ArrayT *array, double range[2])
{
  vtkDataArrayAccessor<ArrayT> access(array);

  const vtkIdType numTuples = array->GetNumberOfTuples();
  const int numComps = array->GetNumberOfComponents();

  range[0] = vtkTypeTraits<double>::Max();
  range[1] = vtkTypeTraits<double>::Min();

  //do this after we make sure range is max to min
  if (numTuples == 0)
  {
    return false;
  }

  //iterate over all the tuples
  for (vtkIdType tupleIdx = 0; tupleIdx < numTuples; ++tupleIdx)
  {
    double squaredSum = 0.0;
    for (int compIdx = 0; compIdx < numComps; ++compIdx)
    {
      const double t = static_cast<double>(access.Get(tupleIdx, compIdx));
      squaredSum += t * t;
    }
    if (!detail::isinf(squaredSum))
    {
      range[0] = detail::min(range[0], squaredSum);
      range[1] = detail::max(range[1], squaredSum);
    }
  }

  //now that we have computed the smallest and largest value, take the
  //square root of that value.
  range[0] = sqrt(range[0]);
  range[1] = sqrt(range[1]);

  return true;
}

} // end namespace vtkDataArrayPrivate
#endif
// VTK-HeaderTest-Exclude: vtkDataArrayPrivate.txx