1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkDataArrayPrivate.txx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#ifndef vtkDataArrayPrivate_txx
#define vtkDataArrayPrivate_txx
#include "vtkAssume.h"
#include "vtkDataArray.h"
#include "vtkDataArrayAccessor.h"
#include "vtkTypeTraits.h"
#include <algorithm>
#include <cassert> // for assert()
namespace vtkDataArrayPrivate
{
#if (defined(_MSC_VER) && ( _MSC_VER < 2000 )) || (defined(__INTEL_COMPILER) && ( __INTEL_COMPILER < 1700 ))
namespace msvc
{
//----------------------------------------------------------------------------
// Those min and max functions replace std ones because their
// implementation used to generate very slow code with MSVC.
// See https://randomascii.wordpress.com/2013/11/24/stdmin-causing-three-times-slowdown-on-vc/
// The comparison expression in min/max are written so that if the "condition" is false,
// the "left" value is returned. This is consistent with STL's implementations
// and also handles the cases where the right value may be a NaN properly.
// All code using these methods should ensure that the "left" value is never
// NaN.
// We use _MSC_VER < 2000 instead of 1900 not due to performance issues, but
// because MSVC 2015 (_MSC_VER=1900) doesn't handle NaNs properly in optimized
// builds.
// icpc version 16 also doesn't handle NaNs properly.
// The order is correct in icpc version 17.
template <class ValueType>
ValueType max(const ValueType& left, const ValueType& right)
{
return right > left ? right : left;
}
template <class ValueType>
ValueType min(const ValueType& left, const ValueType& right)
{
return right <= left ? right : left;
}
}
#endif
namespace detail
{
#if (defined(_MSC_VER) && ( _MSC_VER < 2000 )) || (defined(__INTEL_COMPILER) && ( __INTEL_COMPILER < 1700 ))
using msvc::min;
using msvc::max;
#else
using std::min;
using std::max;
#endif
}
//avoid checking types that don't contain infinity.
namespace detail {
template <typename T, bool> struct has_infinity;
//Visual Studio 2012 and earlier don't have std::isinf.
#if defined(_MSC_VER) && ( _MSC_VER < 1800 )
template <typename T>
struct has_infinity<T, true>
{
static bool isinf(T x)
{
return x == std::numeric_limits<T>::infinity() ||
x == -std::numeric_limits<T>::infinity();
}
};
#else
template <typename T>
struct has_infinity<T, true> {
static bool isinf(T x)
{
return std::isinf(x);
}
};
#endif
template <typename T>
struct has_infinity<T, false> { static bool isinf(T) { return false; } };
template <typename T>
bool isinf(T x)
{
// Select the correct partially specialized type.
return has_infinity<T, std::numeric_limits<T>::has_infinity>::isinf(x);
}
}
//----------------------------------------------------------------------------
template <class APIType, int NumComps, int RangeSize>
struct ComputeScalarRange
{
template<class ArrayT>
bool operator()(ArrayT *array, double *ranges)
{
VTK_ASSUME(array->GetNumberOfComponents() == NumComps);
vtkDataArrayAccessor<ArrayT> access(array);
APIType tempRange[RangeSize];
for(int i = 0, j = 0; i < NumComps; ++i, j+=2)
{
tempRange[j] = vtkTypeTraits<APIType>::Max();
tempRange[j+1] = vtkTypeTraits<APIType>::Min();
}
//compute the range for each component of the data array at the same time
const vtkIdType numTuples = array->GetNumberOfTuples();
for(vtkIdType tupleIdx = 0; tupleIdx < numTuples; ++tupleIdx)
{
for(int compIdx = 0, j = 0; compIdx < NumComps; ++compIdx, j+=2)
{
APIType value = access.Get(tupleIdx, compIdx);
tempRange[j] = detail::min(tempRange[j], value);
tempRange[j+1] = detail::max(tempRange[j+1], value);
}
}
//convert the range to doubles
for (int i = 0, j = 0; i < NumComps; ++i, j+=2)
{
ranges[j] = static_cast<double>(tempRange[j]);
ranges[j+1] = static_cast<double>(tempRange[j+1]);
}
return true;
}
};
//----------------------------------------------------------------------------
template <class APIType, int NumComps, int RangeSize>
struct ComputeScalarFiniteRange
{
template<class ArrayT>
bool operator()(ArrayT *array, double *ranges)
{
VTK_ASSUME(array->GetNumberOfComponents() == NumComps);
vtkDataArrayAccessor<ArrayT> access(array);
APIType tempRange[RangeSize];
for(int i = 0, j = 0; i < NumComps; ++i, j+=2)
{
tempRange[j] = vtkTypeTraits<APIType>::Max();
tempRange[j+1] = vtkTypeTraits<APIType>::Min();
}
//compute the range for each component of the data array at the same time
const vtkIdType numTuples = array->GetNumberOfTuples();
for(vtkIdType tupleIdx = 0; tupleIdx < numTuples; ++tupleIdx)
{
for(int compIdx = 0, j = 0; compIdx < NumComps; ++compIdx, j+=2)
{
APIType value = access.Get(tupleIdx, compIdx);
if (!detail::isinf(value))
{
tempRange[j] = detail::min(tempRange[j], value);
tempRange[j+1] = detail::max(tempRange[j+1], value);
}
}
}
//convert the range to doubles
for (int i = 0, j = 0; i < NumComps; ++i, j+=2)
{
ranges[j] = static_cast<double>(tempRange[j]);
ranges[j+1] = static_cast<double>(tempRange[j+1]);
}
return true;
}
};
//----------------------------------------------------------------------------
template <typename ArrayT>
bool DoComputeScalarFiniteRange(ArrayT *array, double *ranges)
{
vtkDataArrayAccessor<ArrayT> access(array);
typedef typename vtkDataArrayAccessor<ArrayT>::APIType APIType;
const vtkIdType numTuples = array->GetNumberOfTuples();
const int numComp = array->GetNumberOfComponents();
//setup the initial ranges to be the max,min for double
for (int i = 0, j = 0; i < numComp; ++i, j+=2)
{
ranges[j] = vtkTypeTraits<double>::Max();
ranges[j+1] = vtkTypeTraits<double>::Min();
}
//do this after we make sure range is max to min
if (numTuples == 0)
{
return false;
}
//Special case for single value scalar range. This is done to help the
//compiler detect it can perform loop optimizations.
if (numComp == 1)
{
return ComputeScalarFiniteRange<APIType,1,2>()(array, ranges);
}
else if (numComp == 2)
{
return ComputeScalarFiniteRange<APIType,2,4>()(array, ranges);
}
else if (numComp == 3)
{
return ComputeScalarFiniteRange<APIType,3,6>()(array, ranges);
}
else if (numComp == 4)
{
return ComputeScalarFiniteRange<APIType,4,8>()(array, ranges);
}
else if (numComp == 5)
{
return ComputeScalarFiniteRange<APIType,5,10>()(array, ranges);
}
else if (numComp == 6)
{
return ComputeScalarFiniteRange<APIType,6,12>()(array, ranges);
}
else if (numComp == 7)
{
return ComputeScalarFiniteRange<APIType,7,14>()(array, ranges);
}
else if (numComp == 8)
{
return ComputeScalarFiniteRange<APIType,8,16>()(array, ranges);
}
else if (numComp == 9)
{
return ComputeScalarFiniteRange<APIType,9,18>()(array, ranges);
}
else
{
//initialize the temp range storage to min/max pairs
APIType* tempRange = new APIType[numComp*2];
for (int i = 0, j = 0; i < numComp; ++i, j+=2)
{
tempRange[j] = vtkTypeTraits<APIType>::Max();
tempRange[j+1] = vtkTypeTraits<APIType>::Min();
}
//compute the range for each component of the data array at the same time
for (vtkIdType tupleIdx = 0; tupleIdx < numTuples; ++tupleIdx)
{
for(int compIdx = 0, j = 0; compIdx < numComp; ++compIdx, j+=2)
{
APIType value = access.Get(tupleIdx, compIdx);
if (!detail::isinf(value))
{
tempRange[j] = detail::min(tempRange[j],value);
tempRange[j+1] = detail::max(tempRange[j+1],value);
}
}
}
//convert the range to doubles
for (int i = 0, j = 0; i < numComp; ++i, j+=2)
{
ranges[j] = static_cast<double>(tempRange[j]);
ranges[j+1] = static_cast<double>(tempRange[j+1]);
}
//cleanup temp range storage
delete[] tempRange;
return true;
}
}
//----------------------------------------------------------------------------
template <typename ArrayT>
bool DoComputeScalarRange(ArrayT *array, double *ranges)
{
vtkDataArrayAccessor<ArrayT> access(array);
typedef typename vtkDataArrayAccessor<ArrayT>::APIType APIType;
const vtkIdType numTuples = array->GetNumberOfTuples();
const int numComp = array->GetNumberOfComponents();
//setup the initial ranges to be the max,min for double
for (int i = 0, j = 0; i < numComp; ++i, j+=2)
{
ranges[j] = vtkTypeTraits<double>::Max();
ranges[j+1] = vtkTypeTraits<double>::Min();
}
//do this after we make sure range is max to min
if (numTuples == 0)
{
return false;
}
//Special case for single value scalar range. This is done to help the
//compiler detect it can perform loop optimizations.
if (numComp == 1)
{
return ComputeScalarRange<APIType,1,2>()(array, ranges);
}
else if (numComp == 2)
{
return ComputeScalarRange<APIType,2,4>()(array, ranges);
}
else if (numComp == 3)
{
return ComputeScalarRange<APIType,3,6>()(array, ranges);
}
else if (numComp == 4)
{
return ComputeScalarRange<APIType,4,8>()(array, ranges);
}
else if (numComp == 5)
{
return ComputeScalarRange<APIType,5,10>()(array, ranges);
}
else if (numComp == 6)
{
return ComputeScalarRange<APIType,6,12>()(array, ranges);
}
else if (numComp == 7)
{
return ComputeScalarRange<APIType,7,14>()(array, ranges);
}
else if (numComp == 8)
{
return ComputeScalarRange<APIType,8,16>()(array, ranges);
}
else if (numComp == 9)
{
return ComputeScalarRange<APIType,9,18>()(array, ranges);
}
else
{
//initialize the temp range storage to min/max pairs
APIType* tempRange = new APIType[numComp*2];
for (int i = 0, j = 0; i < numComp; ++i, j+=2)
{
tempRange[j] = vtkTypeTraits<APIType>::Max();
tempRange[j+1] = vtkTypeTraits<APIType>::Min();
}
//compute the range for each component of the data array at the same time
for (vtkIdType tupleIdx = 0; tupleIdx < numTuples; ++tupleIdx)
{
for(int compIdx = 0, j = 0; compIdx < numComp; ++compIdx, j+=2)
{
APIType value = access.Get(tupleIdx, compIdx);
tempRange[j] = detail::min(tempRange[j],value);
tempRange[j+1] = detail::max(tempRange[j+1],value);
}
}
//convert the range to doubles
for (int i = 0, j = 0; i < numComp; ++i, j+=2)
{
ranges[j] = static_cast<double>(tempRange[j]);
ranges[j+1] = static_cast<double>(tempRange[j+1]);
}
//cleanup temp range storage
delete[] tempRange;
return true;
}
}
//----------------------------------------------------------------------------
template <typename ArrayT>
bool DoComputeVectorRange(ArrayT *array, double range[2])
{
vtkDataArrayAccessor<ArrayT> access(array);
const vtkIdType numTuples = array->GetNumberOfTuples();
const int numComps = array->GetNumberOfComponents();
range[0] = vtkTypeTraits<double>::Max();
range[1] = vtkTypeTraits<double>::Min();
//do this after we make sure range is max to min
if (numTuples == 0)
{
return false;
}
//iterate over all the tuples
for (vtkIdType tupleIdx = 0; tupleIdx < numTuples; ++tupleIdx)
{
double squaredSum = 0.0;
for (int compIdx = 0; compIdx < numComps; ++compIdx)
{
const double t = static_cast<double>(access.Get(tupleIdx, compIdx));
squaredSum += t * t;
}
range[0] = detail::min(range[0], squaredSum);
range[1] = detail::max(range[1], squaredSum);
}
//now that we have computed the smallest and largest value, take the
//square root of that value.
range[0] = sqrt(range[0]);
range[1] = sqrt(range[1]);
return true;
}
//----------------------------------------------------------------------------
template <typename ArrayT>
bool DoComputeVectorFiniteRange(ArrayT *array, double range[2])
{
vtkDataArrayAccessor<ArrayT> access(array);
const vtkIdType numTuples = array->GetNumberOfTuples();
const int numComps = array->GetNumberOfComponents();
range[0] = vtkTypeTraits<double>::Max();
range[1] = vtkTypeTraits<double>::Min();
//do this after we make sure range is max to min
if (numTuples == 0)
{
return false;
}
//iterate over all the tuples
for (vtkIdType tupleIdx = 0; tupleIdx < numTuples; ++tupleIdx)
{
double squaredSum = 0.0;
for (int compIdx = 0; compIdx < numComps; ++compIdx)
{
const double t = static_cast<double>(access.Get(tupleIdx, compIdx));
squaredSum += t * t;
}
if (!detail::isinf(squaredSum))
{
range[0] = detail::min(range[0], squaredSum);
range[1] = detail::max(range[1], squaredSum);
}
}
//now that we have computed the smallest and largest value, take the
//square root of that value.
range[0] = sqrt(range[0]);
range[1] = sqrt(range[1]);
return true;
}
} // end namespace vtkDataArrayPrivate
#endif
// VTK-HeaderTest-Exclude: vtkDataArrayPrivate.txx
|