File: vtkCookieCutter.cxx

package info (click to toggle)
paraview 5.4.1%2Bdfsg4-3.1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 218,616 kB
  • sloc: cpp: 2,331,508; ansic: 322,365; python: 111,051; xml: 79,203; tcl: 47,013; yacc: 4,877; java: 4,438; perl: 3,238; sh: 2,920; lex: 1,908; f90: 748; makefile: 273; pascal: 228; objc: 83; fortran: 31
file content (1221 lines) | stat: -rw-r--r-- 41,708 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkCookieCutter.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkCookieCutter.h"

#include "vtkCellArray.h"
#include "vtkExecutive.h"
#include "vtkGarbageCollector.h"
#include "vtkLine.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkCellData.h"
#include "vtkPointData.h"
#include "vtkPoints.h"
#include "vtkPolyData.h"
#include "vtkPolygon.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include "vtkNew.h"

#include <vector>
#include <set>

vtkStandardNewMacro(vtkCookieCutter);

//Helper functions------------------------------------------------------------

// Precision in the parametric coordinate system. Note that intersection
// points, and/or parallel segments routinely occur during processing. This
// tolerance is used to merge nearly coincident points.
#define VTK_DEGENERATE_TOL 0.001

namespace {

  // Note on the definition of parametric coordinates: Given a sequence of
  // line segments (vi,vi+1) that form a primitive (e.g., polyline or
  // polygon), the parametric coordinate t along the primitive is
  // [i,i+1). Any point on a segment (like an intersection point on the
  // segment) has parametric coordinate i+t, where 0 <= t < 1.


  // Infrastructure for cropping----------------------------------------------
  // Note that the classification Class data member is has multiple meanings,
  // being applied to points as well as line segments. Initially the vertices
  // are classified. Then the segments [i,(i+1)) are classified by combining
  // the vertex classifications (and possibly other information like in/out
  // tests). For example, the INSIDE or OUTSIDE classification refers to a
  // segment that lies inside or outside the boundary of the loop
  // (respectively), or to a point that may be inside or outside. The
  // INTERSECTION classification refers to a point generated by the
  // intersection of two edges. MULT_INTS refers to multiple >1 merged
  // intersection points. The ON classification refers to a point (maybe
  // merged) that has at least one ON point. The ON classification for a
  // segment also holds if both of the end points are ON and the OnId of both
  // are the same.
  struct SortPoint
  {
    //vertex and segment classification
    enum ClassEnum {VERTEX=0, OUTSIDE=1, INSIDE=2, INTERSECTION=4,
                    MULT_INTS=8, ON=16};
    double T; //parametric coordinate along primitive (line or polygon)
    int Class; // classification of vertex or segment
    vtkIdType Id; //Id assigned to INTERSECTION or ON point, used later to build loops
    vtkIdType OnId; //Id of edge pair if classification of point is ON
    double X[3]; //position of point
    SortPoint(double t, int c, vtkIdType id, vtkIdType onId, double x[3]) :
      T(t), Class(c), Id(id), OnId(onId)
    {
      this->X[0] = x[0];
      this->X[1] = x[1];
      this->X[2] = x[2];
    }
  };

  // Special sort operation on primitive parametric coordinate T-------------
  bool PointSorter(SortPoint const& lhs, SortPoint const& rhs)
  {
    return lhs.T < rhs.T;
  }

  // Vectors are used to hold points, eventually sorted
  typedef std::vector<SortPoint> SortedPointsType;

  // Used to analyze and merge nearly coincident points----------------------
  struct MergeRange
  {//points to merge [StartIdx,EndIdx) possibly modulo around loop
    int StartIdx;
    int EndIdx;
    MergeRange(int start, int end) : StartIdx(start), EndIdx(end) {}
  };

  // Vectors are used to hold merge regions
  typedef std::vector<MergeRange> MergeRangeType;

  // Convenience function classifies a segment of a loop or polyline--------
  int ClassifySegment(SortedPointsType &sortedPoints, int i, int j,
                      vtkIdType npts, double *p, double bds[6], double n[3])
  {
    double midSegment[3];
    midSegment[0] = 0.5 * (sortedPoints[i].X[0] + sortedPoints[j].X[0]);
    midSegment[1] = 0.5 * (sortedPoints[i].X[1] + sortedPoints[j].X[1]);
    midSegment[2] = 0.5 * (sortedPoints[i].X[2] + sortedPoints[j].X[2]);
    if ( vtkPolygon::PointInPolygon(midSegment, npts, p, bds, n) == 1 )
    {
      return SortPoint::INSIDE;
    }
    else
    {
      return SortPoint::OUTSIDE;
    }
  }

  // Merge the list of coincident intersections along a polyline-------------
  // The points are assumed sorted in parametric coordinates, not closed.
  int CleanSortedPolyline(SortedPointsType &sortedPoints)
  {
    int num, i, ip, j;
    double t, tp;
    bool needsAnalysis=false;
    vtkIdType maxId;

    // First do a quick check. If there are no degenerate situations just
    // return.
    num = static_cast<int>(sortedPoints.size());
    maxId = sortedPoints[0].Id;
    for ( i=0; i < (num-1); ++i)
    {
      ip = i + 1;
      t = sortedPoints[i].T;
      tp = sortedPoints[ip].T;

      maxId = ( sortedPoints[ip].Id > maxId ? sortedPoints[ip].Id : maxId );

      if ( fabs(tp-t) <= VTK_DEGENERATE_TOL )
      {
        needsAnalysis = true;
      }
    }

    if ( ! needsAnalysis )
    {
      return maxId + 1;
    }

    // If here a deeper analysis is required. We need to segment groups of
    // points and/or vertices; deleting some and updating others.
    int start=0, end=0;
    MergeRangeType mergeRange;

    // segment nearly coincident points into groups [start,end)
    int imax = num - 1;
    for (i=0; i < num; )
    {
      t = sortedPoints[i].T;
      if ( end == (num-1) )
      {//last point may require special treatment
        mergeRange.push_back(MergeRange(end,end+1));
        break;
      }
      ip = i + 1;
      tp = sortedPoints[ip].T;

      //special treatment for first point in the loop
      while ( fabs(tp-t) <= VTK_DEGENERATE_TOL && ip < imax )
      {
        ip++;
        tp = sortedPoints[ip].T;
      }
      end = ip;

      // Add new segment
      mergeRange.push_back(MergeRange(start,end));

      // Move to next segment
      i = start = end;
    }

    // Now perform the analysis and update the sorted points
    SortedPointsType newSortedPoints;
    vtkIdType minId, onId, minX=0;
    int spc, nints, sze, numMR=static_cast<int>(mergeRange.size());
    double minT;
    for (i=0; i < numMR; ++i)
    {
      start = mergeRange[i].StartIdx;
      end = mergeRange[i].EndIdx;
      sze = ( end > start ? end-start : (end+num)-start );
      if ( sze == 1 ) //just copy vertex
      {
        newSortedPoints.push_back(sortedPoints[start]);
        continue;
      }

      minId = onId = VTK_ID_MAX;
      minT = sortedPoints[start].T;
      minX = start;
      spc = SortPoint::VERTEX;
      for ( nints=0, j=0; j < sze; ++j )
      {
        ip = start + j;
        if ( sortedPoints[ip].Id >= 0 )
        {
          nints++;
          minId = (sortedPoints[ip].Id >= 0 && sortedPoints[ip].Id < minId ?
                   sortedPoints[ip].Id : minId);
          onId = (sortedPoints[ip].OnId >= 0 && sortedPoints[ip].OnId < onId ?
                   sortedPoints[ip].OnId : onId);
          if ( sortedPoints[ip].T < minT )
          {
            minT = sortedPoints[ip].T;
            minX = ip;
          }
          spc |= sortedPoints[ip].Class;
        }
      }

      if ( spc == SortPoint::INTERSECTION && nints > 1 )
      {
        spc = SortPoint::MULT_INTS;
      }
      newSortedPoints.push_back(SortPoint(minT,spc,minId,onId,sortedPoints[minX].X));
    }//across all merge ranges

    // Update the sorted points array, now clean!
    sortedPoints = newSortedPoints;

    // Max id is used for allocating some space shortly
    num = static_cast<int>(sortedPoints.size());
    for ( maxId=0, i=0; i < num; ++i)
    {
      maxId = ( sortedPoints[i].Id > maxId ? sortedPoints[i].Id : maxId );
    }

    return maxId + 1;
  }

  // Clean up the list of intersections around the polygon-------------------
  // The points are assumed sorted in parametric coordinates, closed
  // loop. Nearly coincident points are merged.
  //
  void CleanSortedPolygon(vtkIdType npts, SortedPointsType &sortedPoints)
  {
    int num, i, im, ip, j;
    double t, tm, tp=0, moduloOffset=static_cast<double>(npts);
    bool needsAnalysis=false;

    // First do a quick check. If there are no degenerate situations just
    // return.
    num = static_cast<int>(sortedPoints.size());
    for ( i=0; i < num; ++i)
    {
      ip = (i + 1) % num;
      t = sortedPoints[i].T;
      if ( (tp = sortedPoints[ip].T) < t )
      {//in case of modulo wrap
        tp += moduloOffset;
      }

      if ( fabs(tp-t) <= VTK_DEGENERATE_TOL )
      {
        needsAnalysis = true;
      }
    }

    if ( ! needsAnalysis )
    {
      return;
    }

    // If here a deeper analysis is required. We need to segment groups of
    // points and/or vertices; eventually deleting some and updating the
    // classification of the remaining point.
    int start=0, end=0;
    MergeRangeType mergeRange;

    // Segment nearly coincident points into groups [start,end)
    int imax = num;
    for (i=0; i < imax; )
    {
      if ( i == (imax-1) )
      {
        mergeRange.push_back(MergeRange(i,imax));
        break;
      }

      t = sortedPoints[i].T;
      ip = (i + 1) % num;
      tp = sortedPoints[ip].T;

      // Special treatment for first point in the loop (due to modulo wrap)
      if ( i == 0 )
      {
        im = num - 1;
        tm = npts - sortedPoints[im].T;
        while ( fabs(t-tm) <= VTK_DEGENERATE_TOL )
        {
          im--;
          tm = npts - sortedPoints[im].T;
        }
        start = (im + 1) % num;
        imax = (start == 0 ? num : start);
      }

      // Now proceed in forward direction
      while ( fabs(tp-t) <= VTK_DEGENERATE_TOL && ip < imax )
      {
        ip++;
        tp = sortedPoints[ip%num].T;
      }
      end = ip;

      // Add new segment
      mergeRange.push_back(MergeRange(start,end));

      // Move to next segment
      i = start = end;
    }

    // Now perform the analysis and update the sorted points
    SortedPointsType newSortedPoints;
    vtkIdType minId, onId, minX=0;
    int spc, nints, sze, numMR=static_cast<int>(mergeRange.size());
    double minT;
    for (i=0; i < numMR; ++i)
    {
      start = mergeRange[i].StartIdx;
      end = mergeRange[i].EndIdx;
      sze = ( end > start ? end-start : (end+num)-start );
      if ( sze == 1 ) //just copy vertex
      {
        newSortedPoints.push_back(sortedPoints[start]);
        continue;
      }

      // Aggregate the final classification, point id, and other information
      // for merged point.
      minId = onId = VTK_ID_MAX;
      minT = sortedPoints[start].T;
      minX = start;
      spc = SortPoint::VERTEX;
      for ( nints=0, j=0; j < sze; ++j )
      {
        ip = (start + j) % num;
        if ( sortedPoints[ip].Class != SortPoint::VERTEX )
        {
          nints++;
          minId = (sortedPoints[ip].Id >= 0 && sortedPoints[ip].Id < minId ?
                   sortedPoints[ip].Id : minId);
          onId = (sortedPoints[ip].OnId >= 0 && sortedPoints[ip].OnId < onId ?
                  sortedPoints[ip].OnId : onId);
          spc |= sortedPoints[ip].Class;
          if ( sortedPoints[ip].T < minT )
          {
            minT = sortedPoints[ip].T;
            minX = ip;
          }
        }
      }

      if ( spc == SortPoint::INTERSECTION && nints > 1 )
      {
        spc = SortPoint::MULT_INTS;
      }
      newSortedPoints.push_back(SortPoint(minT,spc,minId,onId,sortedPoints[minX].X));
    }//across all merge ranges

    // Update the sorted points array, now clean!
    sortedPoints = newSortedPoints;

    return;
  }

  // Classify polyline segments----------------------------------------------
  // Entering this function the points are classified as either VERTEX,
  // INTERSECTION, MULT_INTS, or ON. Combine this information to classify each
  // segment of the polyline. Note that whenever possible a pervious segment
  // classification is propagated to the next segment to avoid extra in/out tests.
  int ClassifyPolyline(SortedPointsType &sortedPoints, vtkIdType npts, double *p,
                       double bds[6], double n[3])
  {
    // Check for Degenerate case. Can happen when all points are merged to one.
    int num = static_cast<int>(sortedPoints.size());
    if ( num < 2 )
    {
      sortedPoints[0].Class = SortPoint::OUTSIDE;
      return 1;
    }

    // Classify the initial segment.
    int prevSegClass;
    if ( sortedPoints[0].Class >= SortPoint::ON &&
         sortedPoints[1].Class >= SortPoint::ON &&
         sortedPoints[0].OnId == sortedPoints[1].OnId )
    {
      prevSegClass = SortPoint::ON;
    }
    else //perform in/out test
    {
      prevSegClass = ClassifySegment(sortedPoints,0,1,npts,p,bds,n);
      sortedPoints[0].Class = prevSegClass;
    }

    // Okay now work along the polyline, propagating classification when possible
    // and otherwise determining the classification of each segment.
    int i, ip;
    int currClass, nextClass;
    for (i=1; i < (num-1); ++i)
    {
      ip = i + 1;
      currClass = sortedPoints[i].Class;
      nextClass = sortedPoints[ip].Class;

      if ( currClass == SortPoint::VERTEX )
      { // propagate forward
        ;
      }
      else if ( currClass == SortPoint::INTERSECTION )
      { // Flip classification
        prevSegClass = (prevSegClass == SortPoint::INSIDE ?
                        SortPoint::OUTSIDE : SortPoint::INSIDE);
      }
      else if ( currClass >= SortPoint::ON && nextClass >= SortPoint::ON &&
                sortedPoints[i].OnId == sortedPoints[ip].OnId )
      { // Segment is on loop segment
        prevSegClass = SortPoint::ON;
      }
      else
      { // complicated, do an in/out check
        prevSegClass = ClassifySegment(sortedPoints,i,ip,npts,p,bds,n);
      }
      sortedPoints[i].Class = prevSegClass;
    }

    return 1;
  }

  // Classify polygon segments----------------------------------------------
  // Entering this function the points are classified as either VERTEX,
  // INTERSECTION, MULT_INTS, or ON. Combine this information to classify each
  // segment of the polygon. Note that whenever possible a pervious segment
  // classification is propagated to the next segment to avoid extra in/out tests.
  // This deals with closed, modulo processing. Return a non-zero value if the
  // loop is complex, i.e., has a "ON" segment classification.
  int ClassifyPolygon(SortedPointsType &sortedPoints, vtkIdType npts, double *p,
                    double bds[6], double n[3])
  {
    // Check for Degenerate case. Can happen when all points are merged to one or two.
    int num = static_cast<int>(sortedPoints.size());
    if ( num < 3 )
    {
      for (int i=0; i < num; ++i)
      {
      sortedPoints[i].Class = SortPoint::OUTSIDE;
      }
      return 0;
    }

    // Classify the initial segment.
    int segClass, startClass=sortedPoints[0].Class, hasOnClassification=0;
    if ( sortedPoints[0].Class >= SortPoint::ON &&
         sortedPoints[1].Class >= SortPoint::ON &&
         sortedPoints[0].OnId == sortedPoints[1].OnId )
    {
      segClass = SortPoint::ON;
      hasOnClassification = 1;
    }
    else //perform in/out test
    {
      segClass = ClassifySegment(sortedPoints,0,1,npts,p,bds,n);
    }
    sortedPoints[0].Class = segClass;

    // Okay now work around the polygon, propagating segment classification
    // when possible and otherwise determining the classification of each
    // segment.
    int i, ip;
    int currClass, nextClass;
    for (i=1; i < num; ++i)
    {
      currClass = sortedPoints[i].Class;
      ip = (i + 1) % num;
      nextClass = (ip == 0 ? startClass : sortedPoints[ip].Class); //remember start

      if ( currClass == SortPoint::VERTEX )
      { // Propagate the classification forward
        ;
      }
      else if ( currClass == SortPoint::INTERSECTION )
      { // Flip the classification
        segClass = (segClass == SortPoint::INSIDE ?
                    SortPoint::OUTSIDE : SortPoint::INSIDE);
      }
      else if ( currClass >= SortPoint::ON && nextClass >= SortPoint::ON &&
                sortedPoints[i].OnId == sortedPoints[ip].OnId )
      { // Segment is on loop segment
        segClass = SortPoint::ON;
        hasOnClassification = 1;
      }
      else
      { // complicated, do an in/out check
        segClass = ClassifySegment(sortedPoints,i,ip,npts,p,bds,n);
      }
      sortedPoints[i].Class = segClass;
    }

    return hasOnClassification;
  }

  // Convenience method------------------------------------------------------
  inline void InsertPoint(double x[3], vtkPoints *outPts, vtkCellArray *ca)
  {
    vtkIdType newPtId = outPts->InsertNextPoint(x);
    ca->InsertCellPoint(newPtId);
  }

  // Process a polyline-------------------------------------------------------
  void CropLine(vtkIdType cellId, vtkIdType cellOffset, vtkIdType npts,
                vtkIdType *pts, vtkPoints *inPts,
                vtkPolygon *loop, double *l, double loopBds[6], double n[3],
                vtkCellData *inCellData, vtkPoints *outPts,
                vtkCellArray *outLines, vtkCellData *outCellData)
  {
    // Make sure that this is a valid line
    if ( npts < 2 )
    {
      return;
    }

    // Create a vector of points with parametric coordinates, etc. which will
    // be sorted later. The tricky part is getting the classification of each
    // point correctly.
    // First insert all of the vertices defining the polyline
    vtkIdType i, j, newCellId;
    double t, u, v, x[3], x0[3], x1[3], y0[3], y1[3];
    int result;
    SortedPointsType sortedPoints;
    for (i=0; i < npts; ++i)
    {
      t = static_cast<double>(i);
      inPts->GetPoint(pts[i],x);
      sortedPoints.push_back(SortPoint(t,SortPoint::VERTEX,-1,-1,x));
    }

    // Now insert any intersection points
    vtkIdType numInts=0, numLoopPts=loop->Points->GetNumberOfPoints();
    for (numInts=0, i=0; i < (npts-1); ++i)
    {
      inPts->GetPoint(pts[i],x0);
      inPts->GetPoint(pts[i+1],x1);

      // Traverse polygon loop intersecting each polygon segment
      for (j=0; j < numLoopPts; ++j)
      {
        loop->Points->GetPoint(j,y0);
        loop->Points->GetPoint((j+1)%numLoopPts,y1);
        if ( (result=vtkLine::Intersection(x0,x1,y0,y1,u,v)) == 2 )
        {
          x[0] = x0[0] + u*(x1[0]-x0[0]);
          x[1] = x0[1] + u*(x1[1]-x0[1]);
          x[2] = x0[2] + u*(x1[2]-x0[2]);
          u += static_cast<double>(i);
          v += static_cast<double>(j);
          sortedPoints.push_back(SortPoint(u,SortPoint::INTERSECTION,numInts,-1,x));
          numInts++;
        }
        else if ( result == 3 ) // parallel lines
        {
          double x10[3], c[3], c2[3];
          vtkMath::Subtract(x1,x0,x10);
          double tol2 = 1.0e-08*sqrt( vtkMath::Dot(x10,x10) );
          if ( vtkLine::DistanceBetweenLines(x0,x1,y0,y1,c,c2,u,v) > tol2 )
          {
            continue; //no intersection just move ahead
          }
          else
          {
            vtkIdType onId = i*numLoopPts + j;
            vtkLine::DistanceToLine(x0,y0,y1,u,c);
            if ( -VTK_DEGENERATE_TOL <= u && u <= (1.0+VTK_DEGENERATE_TOL) )
            {
              sortedPoints.push_back(SortPoint(static_cast<double>(i),SortPoint::ON,numInts,onId,c));
              numInts++;
            }
            vtkLine::DistanceToLine(x1,y0,y1,u,c);
            if ( -VTK_DEGENERATE_TOL <= u && u <= (1.0+VTK_DEGENERATE_TOL) )
            {
              sortedPoints.push_back(SortPoint(static_cast<double>(i)+1.0,SortPoint::ON,numInts,onId,c));
              numInts++;
            }
            vtkLine::DistanceToLine(y0,x0,x1,u,c);
            if ( -VTK_DEGENERATE_TOL <= u && u <= (1.0+VTK_DEGENERATE_TOL) )
            {
              sortedPoints.push_back(SortPoint(static_cast<double>(i)+u,SortPoint::ON,numInts,onId,c));
              numInts++;
            }
            vtkLine::DistanceToLine(y1,x0,x1,u,c);
            if ( -VTK_DEGENERATE_TOL <= u && u <= (1.0+VTK_DEGENERATE_TOL) )
            {
              sortedPoints.push_back(SortPoint(static_cast<double>(i)+u,SortPoint::ON,numInts,onId,c));
              numInts++;
            }
          }//within tolerance of other line
        }//parallel line
      }//intersect all line segments that form the loop
    }//for all line segments that make up this polyline

    // Sort in parametric space
    std::sort(sortedPoints.begin(), sortedPoints.end(), &PointSorter);

    // Clean up coincident points
    CleanSortedPolyline(sortedPoints);

    // Classify the segments of the polyline
    ClassifyPolyline(sortedPoints,numLoopPts,l,loopBds,n);

    // If here, then pieces of the intersected polyline are output. Note that
    // a "ON" classification for a polyline should be output.
    vtkIdType num = static_cast<vtkIdType>(sortedPoints.size());
    vtkIdType startIdx=0, endIdx=0, numInsertedPts;
    while ( startIdx < (num-1) )
    {
      // move to the beginning of the next interior strand.
      while ( startIdx < (num-1) && sortedPoints[startIdx].Class == SortPoint::OUTSIDE )
      {
        startIdx++;
      }
      if ( startIdx >= (num-1) )
      {
        continue; // all done
      }

      // Find the end of the run, i.e., link together interior strands.
      endIdx = startIdx + 1;
      while ( endIdx < (num-1) && (sortedPoints[endIdx].Class == SortPoint::INSIDE ||
                                   sortedPoints[endIdx].Class == SortPoint::ON) )
      {
        endIdx++;
      }

      // Output line segments
      numInsertedPts = endIdx - startIdx + 1;
      newCellId = outLines->InsertNextCell(numInsertedPts) + cellOffset;
      outCellData->CopyData(inCellData,cellId,newCellId);
      for (i=startIdx; i <= endIdx; ++i)
      {
        InsertPoint(sortedPoints[i].X, outPts, outLines);
      }
      startIdx = endIdx;
    }//over all sorted points
  }//CropLine

  // Check and clean up potentially non manifold situations----------------------
  // Used to clean up complex sets of lines assumed to form one or more loops
  // (i.e., polygons). At this point, these lines are classified "ON" or are
  // classified "INSIDE". Make sure they are manifold; trim out non-manifold
  // loops.
  int ResolveTopology(vtkPolyData *pd)
  {
    vtkIdType numLines = pd->GetNumberOfLines();
    if ( numLines < 3 ) //non-manifold, on-edge lines don't form a loop
    {
      return 0;
    }

    // Make a pass and make sure all points are manifold, or not used at all
    vtkPoints *pts = pd->GetPoints();
    vtkIdType pid, *cells, numPts=pts->GetNumberOfPoints();
    int numBoundary=0, numNonManifold=0;
    unsigned short ncells;
    for (pid=0; pid < numPts; ++pid)
    {
      pd->GetPointCells(pid, ncells, cells);
      if ( ncells == 0 || ncells == 2 )
      {
        ; // skip is ok
      }
      else if ( ncells == 1 )
      {
        numBoundary++;
      }
      else
      {
        numNonManifold++;
      }
    }//over all points

    // Return if everything is cool
    if ( numBoundary == 0 && numNonManifold == 0 )
    {
      return 1;
    }

    // Special case: non-manifolds must be balanced with boundary.
    // Otherwise things are really messed up.
    else if ( numBoundary != numNonManifold )
    {
      return 0;
    }

    // At this point, we have to erode away the boundary segments and
    // leave just manifolds. It's rare but does happen.
    bool resolved=false;
    while ( ! resolved )
    {
      resolved=true;
      for (pid=0; pid < numPts; ++pid)
      {
        pd->GetPointCells(pid, ncells, cells);
        if ( ncells == 1 )
        {
          pd->RemoveCellReference(cells[0]);
          resolved = false;
        }
      }//over all points
    }//while not resolved

    // Do a last sanity check
    for (pid=0; pid < numPts; ++pid)
    {
      pd->GetPointCells(pid, ncells, cells);
      if ( ncells == 1 || ncells > 2 )
      {
        return 0;
      }
    }//over all points
    return 1;
  }

  // Process a polygon-------------------------------------------------------
  void CropPoly(vtkIdType cellId, vtkIdType cellOffset,
                vtkPolygon *poly, vtkIdType npts,
                vtkIdType *pts, vtkPoints *inPts, vtkPolygon *loop,
                double *l, double loopBds[6], double n[3],
                vtkCellData *inCellData, vtkPoints *outPts,
                vtkCellArray *outPolys, vtkCellData *outCellData)
  {
    // Make sure that this is a valid polygon
    if ( npts < 3 )
    {
      return;
    }

    // Make sure that the polyons actually overlap in the x-y plane
    double polyBds[6];
    double *p = static_cast<double*>(poly->Points->GetVoidPointer(0));
    poly->GetBounds(polyBds);
    if ( loopBds[0] > polyBds[1] || loopBds[1] < polyBds[0] ||
         loopBds[2] > polyBds[3] || loopBds[3] < polyBds[2] )
    {
      return;
    }

    // Run around the polygon inserting intersection points into two
    // (eventually sorted) arrays. These sorted arrays will alternate inside
    // paths with outside paths, sort of like a "braid". To construct polygon
    // loops, the braid is woven together to form the loops.
    vtkIdType i, j, newCellId, numPts=0, numInts=0;
    double t, u, v, x[3], x0[3], x1[3], y0[3], y1[3];
    int result;
    SortedPointsType loopPoints, polyPoints;
    vtkIdType numLoopPts=loop->Points->GetNumberOfPoints();
    for (i=0; i < npts; ++i)
    {
      t = static_cast<double>(i);
      inPts->GetPoint(pts[i],x);
      polyPoints.push_back(SortPoint(t,SortPoint::VERTEX,numPts,-1,x));
      numPts++;
    }
    for (i=0; i < numLoopPts; ++i)
    {
      t = static_cast<double>(i);
      loop->Points->GetPoint(i,x);
      loopPoints.push_back(SortPoint(t,SortPoint::VERTEX,numPts,-1,x));
      numPts++;
    }

    // Now insert intersection points
    for (i=0; i < npts; ++i)
    {
      inPts->GetPoint(pts[i],x0);
      inPts->GetPoint(pts[(i+1)%npts],x1);

      // Traverse polygon loop intersecting each polygon segment
      for (j=0; j < numLoopPts; ++j)
      {
        loop->Points->GetPoint(j,y0);
        loop->Points->GetPoint((j+1)%numLoopPts,y1);
        if ( (result=vtkLine::Intersection(x0,x1,y0,y1,u,v)) == 2 )
        {
          x[0] = x0[0] + u*(x1[0]-x0[0]);
          x[1] = x0[1] + u*(x1[1]-x0[1]);
          x[2] = x0[2] + u*(x1[2]-x0[2]);
          u += static_cast<double>(i);
          v += static_cast<double>(j);
          polyPoints.push_back(SortPoint(u,SortPoint::INTERSECTION,numPts,-1,x));
          loopPoints.push_back(SortPoint(v,SortPoint::INTERSECTION,numPts,-1,x));
          numInts++;
          numPts++;
        }
        else if ( result == 3 ) // parallel lines
        {
          double x10[3], c[3], c2[3];
          vtkMath::Subtract(x1,x0,x10);
          double tol2 = 1.0e-08*sqrt( vtkMath::Dot(x10,x10) );
          if ( vtkLine::DistanceBetweenLines(x0,x1,y0,y1,c,c2,u,v) > tol2 )
          {
            continue; //no intersection just move ahead
          }
          else
          {
            vtkIdType onId = i*numLoopPts + j;
            vtkLine::DistanceToLine(x0,y0,y1,u,c);
            if ( -VTK_DEGENERATE_TOL <= u && u <= (1.0+VTK_DEGENERATE_TOL) )
            {
              polyPoints.push_back(SortPoint(static_cast<double>(i),SortPoint::ON,numPts,onId,c));
              loopPoints.push_back(SortPoint(static_cast<double>(j)+u,SortPoint::ON,numPts,onId,c));
              numInts++;
              numPts++;
            }
            vtkLine::DistanceToLine(x1,y0,y1,u,c);
            if ( -VTK_DEGENERATE_TOL <= u && u <= (1.0+VTK_DEGENERATE_TOL) )
            {
              polyPoints.push_back(SortPoint(static_cast<double>(i)+1.0,SortPoint::ON,numPts,onId,c));
              loopPoints.push_back(SortPoint(static_cast<double>(j)+u,SortPoint::ON,numPts,onId,c));
              numInts++;
              numPts++;
            }
            vtkLine::DistanceToLine(y0,x0,x1,u,c);
            if ( -VTK_DEGENERATE_TOL <= u && u <= (1.0+VTK_DEGENERATE_TOL) )
            {
              polyPoints.push_back(SortPoint(static_cast<double>(i)+u,SortPoint::ON,numPts,onId,c));
              loopPoints.push_back(SortPoint(static_cast<double>(j),SortPoint::ON,numPts,onId,c));
              numInts++;
              numPts++;
            }
            vtkLine::DistanceToLine(y1,x0,x1,u,c);
            if ( -VTK_DEGENERATE_TOL <= u && u <= (1.0+VTK_DEGENERATE_TOL) )
            {
              polyPoints.push_back(SortPoint(static_cast<double>(i)+u,SortPoint::ON,numPts,onId,c));
              loopPoints.push_back(SortPoint(static_cast<double>(j)+1.0,SortPoint::ON,numPts,onId,c));
              numInts++;
              numPts++;
            }
          }
        }
      }//intersect all line segments that form the loop
    }//for all line segments that make up this polygon

    // Sort in parametric coordinates around the intersected polygon and
    // loop.
    std::sort(polyPoints.begin(), polyPoints.end(), &PointSorter);
    std::sort(loopPoints.begin(), loopPoints.end(), &PointSorter);

    // Clean loops of nearly coincident points
    CleanSortedPolygon(npts,polyPoints);
    CleanSortedPolygon(numLoopPts,loopPoints);

    // If here, we identify the strands from the polygon and the loop. A
    // strand is the "inside" region between two intersection points. Strands
    // will be braided later to form loops. Note that potentially non-manifold
    // conditions (classified "ON") require a more complex loop building process.
    ClassifyPolygon(polyPoints, numLoopPts, l, loopBds, n);
    ClassifyPolygon(loopPoints, npts, p, polyBds, n);

    // Insert "INSIDE" or "ON" edge segments into polydata (polylines) and
    // build adjacency information. We are using vtkPolyData because it does
    // everythig we want, although there is a lot of allocation / deallocation
    // going on which is a potential area of speed improvement.
    vtkNew<vtkPoints> pDataPts;
    pDataPts->SetNumberOfPoints(numPts);
    vtkNew<vtkCellArray> pDataLines;
    vtkNew<vtkPolyData> pData;
    pData->SetPoints(pDataPts.GetPointer());
    pData->SetLines(pDataLines.GetPointer());

    SortedPointsType *loops[2];
    loops[0] = &polyPoints;
    loops[1] = &loopPoints;
    SortedPointsType *curLoop;
    int loopIdx;
    size_t sze, ii, ip;
    std::set<vtkIdType> edgeExist;
    vtkIdType eId, id0, id1;
    for (loopIdx=0; loopIdx < 2; ++loopIdx)
    {
      curLoop = loops[loopIdx];
      sze = curLoop->size();
      for ( ii=0; ii < sze; ++ii)
      {
        ip = (ii+1) % sze;
        id0 = (*curLoop)[ii].Id;
        id1 = (*curLoop)[ip].Id;
        // Since the number of edges is small, create an unique edge id from
        // the two vertex ids (id0,id1) where id0 < id1.
        eId = ( id0 < id1 ? id1*numPts + id0 : id0*numPts + id1 );
        if ( ((*curLoop)[ii].Class == SortPoint::INSIDE ||
              (*curLoop)[ii].Class == SortPoint::ON) &&
             edgeExist.find(eId) == edgeExist.end() )
        {
          edgeExist.insert(eId);
          pDataPts->SetPoint(id0,(*curLoop)[ii].X);
          pDataPts->SetPoint(id1,(*curLoop)[ip].X);
          pDataLines->InsertNextCell(2);
          pDataLines->InsertCellPoint(id0);
          pDataLines->InsertCellPoint(id1);
        }
      }
    }
    pData->BuildLinks();

    // Check the topology of the edges and ensure that it is valid.  If there
    // are "ON" classifications, may need to remove potential non-manifold
    // edges. Bail out if can't fix any problems.
    if ( ! ResolveTopology(pData.GetPointer()) )
    {
      return;
    }

    // Build loops (i.e., output polygons)
    vtkIdType numInsertedPts, *cells, thisCell, nextId, startId;
    unsigned short ncells;
    vtkIdType thisNPts, *thisPts;
    std::vector<char> visited(numPts,0);
    // Each unvisited, connected point generates a loop
    for (i=0; i<numPts; ++i)
    {
      if ( !visited[i] )
      {
        startId = nextId = i;
        pData->GetPointCells(nextId, ncells, cells);
        if ( ncells != 2 ) // unused or merged point
        {
          continue;
        }
        numInsertedPts = 0;
        thisCell = cells[0];
        newCellId = outPolys->InsertNextCell(numInsertedPts) + cellOffset;
        outCellData->CopyData(inCellData,cellId,newCellId);

        do
        {
          visited[nextId] = 1;
          numInsertedPts++;
          InsertPoint(pDataPts->GetPoint(nextId), outPts, outPolys);
          pData->GetCellPoints(thisCell,thisNPts,thisPts);
          nextId = (thisPts[0] != nextId ? thisPts[0] : thisPts[1] );
          pData->GetPointCells(nextId, ncells, cells);
          thisCell = (cells[0] != thisCell ? cells[0] : cells[1]);
        } while ( nextId != startId );
        outPolys->UpdateCellCount(numInsertedPts);
      }
    }
  }//That was easy! CropPoly

} //anonymous namespace

//----------------------------------------------------------------------------
// Instantiate object with empty loop.
vtkCookieCutter::vtkCookieCutter()
{
  this->SetNumberOfInputPorts(2);
}

//----------------------------------------------------------------------------
vtkCookieCutter::~vtkCookieCutter()
{
}

//----------------------------------------------------------------------------
void vtkCookieCutter::SetLoopsConnection(vtkAlgorithmOutput* algOutput)
{
  this->SetInputConnection(1, algOutput);
}

//----------------------------------------------------------------------------
vtkAlgorithmOutput *vtkCookieCutter::GetLoopsConnection()
{
  return this->GetInputConnection(1, 0);
}

//----------------------------------------------------------------------------
void vtkCookieCutter::SetLoopsData(vtkDataObject *input)
{
  this->SetInputData(1, input);
}

//----------------------------------------------------------------------------
vtkDataObject *vtkCookieCutter::GetLoops()
{
  if (this->GetNumberOfInputConnections(1) < 1)
  {
    return NULL;
  }

  return this->GetExecutive()->GetInputData(1, 0);
}

//----------------------------------------------------------------------------
int vtkCookieCutter::RequestData(
  vtkInformation *vtkNotUsed(request),
  vtkInformationVector **inputVector,
  vtkInformationVector *outputVector)
{
  // get the info objects
  vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
  vtkInformation *loopInfo = inputVector[1]->GetInformationObject(0);
  vtkInformation *outInfo = outputVector->GetInformationObject(0);

  // get the input and output
  vtkPolyData *input = vtkPolyData::SafeDownCast(
    inInfo->Get(vtkDataObject::DATA_OBJECT()));
  vtkPolyData *loops = vtkPolyData::SafeDownCast(
    loopInfo->Get(vtkDataObject::DATA_OBJECT()));
  vtkPolyData *output = vtkPolyData::SafeDownCast(
    outInfo->Get(vtkDataObject::DATA_OBJECT()));

  // Initialize and check data
  vtkDebugMacro(<<"Cookie cutting...");

  vtkIdType numPts, numLoopPts;
  if ( (numPts = input->GetNumberOfPoints()) < 1 )
  {
    vtkErrorMacro("Input contains no points");
    return 1;
  }

  if ( !loops || loops->GetNumberOfCells() < 1 )
  {
    vtkErrorMacro("Please define a polygonal loop with at least three points");
    return 1;
  }

  // Create output data objects and prepare for processing
  vtkPoints *inPts = input->GetPoints();
  vtkPoints *loopPts = loops->GetPoints();
  vtkPoints *outPts = inPts->NewInstance();

  vtkCellData *inCellData = input->GetCellData();
  vtkCellData *outCellData = output->GetCellData();
  outCellData->CopyAllocate(inCellData);

  vtkCellArray *inVerts = input->GetVerts();
  vtkCellArray *outVerts = vtkCellArray::New();
  outVerts->Allocate(inVerts->GetNumberOfCells(),1);

  vtkCellArray *inLines = input->GetLines();
  vtkCellArray *outLines = vtkCellArray::New();
  outLines->Allocate(inLines->GetNumberOfCells(),1);

  vtkCellArray *inPolys = input->GetPolys();
  vtkCellArray *inStrips = input->GetStrips();
  vtkCellArray *outPolys = vtkCellArray::New();
  outPolys->Allocate(inPolys->GetNumberOfCells(),1);

  // Initialize and create polygon representing the loop
  double n[3], bds[6];
  vtkPolygon *loop = vtkPolygon::New();
  vtkPolygon *poly = vtkPolygon::New();

  // Process loops from second input. Note that the cell id in vtkPolyData
  // starts with verts, then lines, then polys, then strips.
  vtkIdType i, npts, *pts, cellId=0, newPtId, newCellId, cellOffset=0;
  vtkCellArray *loopPolys = loops->GetPolys();
  for (loopPolys->InitTraversal(); loopPolys->GetNextCell(npts,pts); )
  {
    numLoopPts = npts;
    if ( numLoopPts < 3 )
    {
      continue; // need a valid polygon loop, skip this one
    }
    loop->Initialize(npts,pts,loopPts);
    loop->GetBounds(bds);
    vtkPolygon::ComputeNormal(loop->Points,n);
    double *l = static_cast<double*>(loop->Points->GetVoidPointer(0));

    // Start by processing the verts. A simple in/out check.
    double x[3];
    if ( inVerts->GetNumberOfCells() > 0 )
    {
      for (inVerts->InitTraversal(); inVerts->GetNextCell(npts,pts); ++cellId)
      {
        for ( i=0; i<npts; ++i)
        {
          inPts->GetPoint(pts[i], x);
          if ( vtkPolygon::PointInPolygon(x, numLoopPts, l, bds, n) == 1 )
          {
            newPtId = outPts->InsertNextPoint(x);
            newCellId = outVerts->InsertNextCell(1,&newPtId);
            outCellData->CopyData(inCellData,cellId,newCellId);
          }
        }
      }//for all verts
    }//if vert cells

    // Now process lines
    if ( inLines->GetNumberOfCells() > 0 )
    {
      cellOffset = outVerts->GetNumberOfCells();
      for (inLines->InitTraversal(); inLines->GetNextCell(npts,pts); ++cellId)
      {
        CropLine(cellId,cellOffset, npts,pts,inPts, loop,l,bds,n,inCellData,
                 outPts,outLines,outCellData);
      }
    }//if line cells

    // Now process polygons
    if ( inPolys->GetNumberOfCells() > 0 )
    {
      cellOffset = outVerts->GetNumberOfCells() + outLines->GetNumberOfCells();
      for (inPolys->InitTraversal(); inPolys->GetNextCell(npts,pts); ++cellId)
      {
        poly->Initialize(npts,pts,inPts);
        CropPoly(cellId,cellOffset, poly,npts,pts,inPts,loop,l,bds,n,inCellData,
                 outPts,outPolys,outCellData);
      }
    }//if polygonal cells

    // Now process triangle strips
    if ( inStrips->GetNumberOfCells() > 0 )
    {
      cellOffset = outVerts->GetNumberOfCells() + outLines->GetNumberOfCells();
      for (inStrips->InitTraversal(); inStrips->GetNextCell(npts,pts); ++cellId)
      {
        vtkIdType numTriPts=3, triPts[3];
        for ( i=0; i<(npts-2); ++i)
        {
          triPts[0] = pts[i];
          triPts[1] = pts[i+1];
          triPts[2] = pts[i+2];
          poly->Initialize(3,triPts,inPts);
          CropPoly(cellId,cellOffset, poly,numTriPts,triPts,inPts, loop,l,bds,n,inCellData,
                   outPts,outPolys,outCellData);
        }
      }
    }//if polygonal cells
  }//for all loops

  // Assign output as appropriate
  output->SetVerts(outVerts);
  outVerts->Delete();

  output->SetLines(outLines);
  outLines->Delete();

  output->SetPolys(outPolys);
  outPolys->Delete();

  // Clean up
  output->SetPoints(outPts);
  outPts->Delete();
  loop->Delete();
  poly->Delete();

  return 1;
}

//----------------------------------------------------------------------------
int vtkCookieCutter::
RequestUpdateExtent(vtkInformation *vtkNotUsed(request),
                    vtkInformationVector **inputVector,
                    vtkInformationVector *outputVector)
{
  // get the info objects
  vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
  vtkInformation *loopInfo = inputVector[1]->GetInformationObject(0);
  vtkInformation *outInfo = outputVector->GetInformationObject(0);

  if (loopInfo)
  {
    loopInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_PIECE_NUMBER(),
                    0);
    loopInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_NUMBER_OF_PIECES(),
                    1);
    loopInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_NUMBER_OF_GHOST_LEVELS(),
                    0);
  }
  inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_PIECE_NUMBER(),
              outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_PIECE_NUMBER()));
  inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_NUMBER_OF_PIECES(),
              outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_NUMBER_OF_PIECES()));
  inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_NUMBER_OF_GHOST_LEVELS(),
              outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_NUMBER_OF_GHOST_LEVELS()));
  inInfo->Set(vtkStreamingDemandDrivenPipeline::EXACT_EXTENT(), 1);

  return 1;
}

//----------------------------------------------------------------------------
int vtkCookieCutter::FillInputPortInformation(int port, vtkInformation *info)
{
  if (port == 0)
  {
    info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkPolyData");
    return 1;
  }
  else if (port == 1)
  {
    info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkPolyData");
    return 1;
  }
  return 0;
}

//----------------------------------------------------------------------------
void vtkCookieCutter::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os,indent);

}