File: vtkAbstractArray.h

package info (click to toggle)
paraview 5.4.1%2Bdfsg4-3.1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 218,616 kB
  • sloc: cpp: 2,331,508; ansic: 322,365; python: 111,051; xml: 79,203; tcl: 47,013; yacc: 4,877; java: 4,438; perl: 3,238; sh: 2,920; lex: 1,908; f90: 748; makefile: 273; pascal: 228; objc: 83; fortran: 31
file content (746 lines) | stat: -rw-r--r-- 27,771 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkAbstractArray.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
//
/**
 * @class   vtkAbstractArray
 * @brief   Abstract superclass for all arrays
 *
 *
 *
 * vtkAbstractArray is an abstract superclass for data array objects.
 * This class defines an API that all subclasses must support.  The
 * data type must be assignable and copy-constructible, but no other
 * assumptions about its type are made.  Most of the subclasses of
 * this array deal with numeric data either as scalars or tuples of
 * scalars.  A program can use the IsNumeric() method to check whether
 * an instance of vtkAbstractArray contains numbers.  It is also
 * possible to test for this by attempting to SafeDownCast an array to
 * an instance of vtkDataArray, although this assumes that all numeric
 * arrays will always be descended from vtkDataArray.
 *
 * <p>
 *
 * Every array has a character-string name. The naming of the array
 * occurs automatically when it is instantiated, but you are free to
 * change this name using the SetName() method.  (The array name is
 * used for data manipulation.)
 *
 * This class (and subclasses) use two forms of addressing elements:
 * - Value Indexing: The index of an element assuming an array-of-structs
 *   memory layout.
 * - Tuple/Component Indexing: Explicitly specify the tuple and component
 *   indices.
 *
 * It is also worth pointing out that the behavior of the "Insert*" methods
 * of classes in this hierarchy may not behave as expected. They work exactly
 * as the corresponding "Set*" methods, except that memory allocation will
 * be performed if acting on a value past the end of the array. If the data
 * already exists, "inserting" will overwrite existing values, rather than shift
 * the array contents and insert the new data at the specified location.
 *
 * @sa
 * vtkDataArray vtkStringArray vtkCellArray
*/

#ifndef vtkAbstractArray_h
#define vtkAbstractArray_h

#include "vtkCommonCoreModule.h" // For export macro
#include "vtkObject.h"
#include "vtkVariant.h" // for variant arguments

class vtkArrayIterator;
class vtkDataArray;
class vtkIdList;
class vtkIdTypeArray;
class vtkInformation;
class vtkInformationDoubleVectorKey;
class vtkInformationIntegerKey;
class vtkInformationInformationVectorKey;
class vtkInformationVariantVectorKey;
class vtkVariantArray;

class VTKCOMMONCORE_EXPORT vtkAbstractArray : public vtkObject
{
public:
  vtkTypeMacro(vtkAbstractArray,vtkObject);
  void PrintSelf(ostream& os, vtkIndent indent) VTK_OVERRIDE;

  /**
   * Allocate memory for this array. Delete old storage only if necessary.
   * Note that ext is no longer used.
   * This method will reset MaxId to -1 and resize the array capacity such that
   * this->Size >= numValues.
   * If numValues is 0, all memory will be freed.
   * Return 1 on success, 0 on failure.
   */
  virtual int Allocate(vtkIdType numValues, vtkIdType ext=1000) = 0;

  /**
   * Release storage and reset array to initial state.
   */
  virtual void Initialize() = 0;

  /**
   * Return the underlying data type. An integer indicating data type is
   * returned as specified in vtkSetGet.h.
   */
  virtual int GetDataType() =0;

  //@{
  /**
   * Return the size of the underlying data type.  For a bit, 0 is
   * returned.  For string 0 is returned. Arrays with variable length
   * components return 0.
   */
  virtual int GetDataTypeSize() = 0;
  static int GetDataTypeSize(int type);
  //@}

  /**
   * Return the size, in bytes, of the lowest-level element of an
   * array.  For vtkDataArray and subclasses this is the size of the
   * data type.  For vtkStringArray, this is
   * sizeof(vtkStdString::value_type), which winds up being
   * sizeof(char).
   */
  virtual int GetElementComponentSize() = 0;

  //@{
  /**
   * Set/Get the dimension (n) of the components. Must be >= 1. Make sure that
   * this is set before allocation.
   */
  vtkSetClampMacro(NumberOfComponents, int, 1, VTK_INT_MAX);
  int GetNumberOfComponents() { return this->NumberOfComponents; }
  //@}

  /**
   * Set the name for a component. Must be >= 1.
   */
  void SetComponentName( vtkIdType component, const char *name );

  /**
   * Get the component name for a given component.
   * Note: will return the actual string that is stored
   */
  const char* GetComponentName( vtkIdType component );

  /**
   * Returns if any component has had a name assigned
   */
  bool HasAComponentName();

  /**
   * Copies the component names from the inputed array to the current array
   * make sure that the current array has the same number of components as the input array
   */
  int CopyComponentNames( vtkAbstractArray *da );

  /**
   * Set the number of tuples (a component group) in the array. Note that
   * this may allocate space depending on the number of components.
   * Also note that if allocation is performed no copy is performed so
   * existing data will be lost (if data conservation is sought, one may
   * use the Resize method instead).
   */
  virtual void SetNumberOfTuples(vtkIdType numTuples) = 0;

  /**
   * Specify the number of values (tuples * components) for this object to hold.
   * Does an allocation as well as setting the MaxId ivar. Used in conjunction
   * with SetValue() method for fast insertion.
   */
  virtual void SetNumberOfValues(vtkIdType numValues);

  /**
   * Get the number of complete tuples (a component group) in the array.
   */
  vtkIdType GetNumberOfTuples()
    {return (this->MaxId + 1)/this->NumberOfComponents;}

  /**
   * Get the total number of values in the array. This is typically equivalent
   * to (numTuples * numComponents). The exception is during incremental array
   * construction for subclasses that support component insertion, which may
   * result in an incomplete trailing tuple.
   */
  inline vtkIdType GetNumberOfValues() const
  {
    return (this->MaxId + 1);
  }

  /**
   * Set the tuple at dstTupleIdx in this array to the tuple at srcTupleIdx in
   * the source array. This method assumes that the two arrays have the same
   * type and structure. Note that range checking and memory allocation is not
   * performed; use in conjunction with SetNumberOfTuples() to allocate space.
   */
  virtual void SetTuple(vtkIdType dstTupleIdx, vtkIdType srcTupleIdx,
                        vtkAbstractArray *source) = 0;

  /**
   * Insert the tuple at srcTupleIdx in the source array into this array at
   * dstTupleIdx.
   * Note that memory allocation is performed as necessary to hold the data.
   */
  virtual void InsertTuple(vtkIdType dstTupleIdx, vtkIdType srcTupleIdx,
                           vtkAbstractArray* source) = 0;

  /**
   * Copy the tuples indexed in srcIds from the source array to the tuple
   * locations indexed by dstIds in this array.
   * Note that memory allocation is performed as necessary to hold the data.
   */
  virtual void InsertTuples(vtkIdList *dstIds, vtkIdList *srcIds,
                            vtkAbstractArray* source) = 0;

  /**
   * Copy n consecutive tuples starting at srcStart from the source array to
   * this array, starting at the dstStart location.
   * Note that memory allocation is performed as necessary to hold the data.
   */
  virtual void InsertTuples(vtkIdType dstStart, vtkIdType n, vtkIdType srcStart,
                            vtkAbstractArray* source) = 0;

  /**
   * Insert the tuple from srcTupleIdx in the source array at the end of this
   * array. Note that memory allocation is performed as necessary to hold the
   * data. Returns the tuple index at which the data was inserted.
   */
  virtual vtkIdType InsertNextTuple(vtkIdType srcTupleIdx,
                                    vtkAbstractArray* source) = 0;

  /**
   * Given a list of tuple ids, return an array of tuples.
   * You must insure that the output array has been previously
   * allocated with enough space to hold the data.
   */
  virtual void GetTuples(vtkIdList *tupleIds, vtkAbstractArray* output);

  /**
   * Get the tuples for the range of tuple ids specified
   * (i.e., p1->p2 inclusive). You must insure that the output array has
   * been previously allocated with enough space to hold the data.
   */
  virtual void GetTuples(vtkIdType p1, vtkIdType p2, vtkAbstractArray *output);

  /**
   * Returns true if this array uses the standard memory layout defined in the
   * VTK user guide, e.g. a contiguous array:
   * {t1c1, t1c2, t1c3, ... t1cM, t2c1, ... tNcM}
   * where t1c2 is the second component of the first tuple.
   */
  virtual bool HasStandardMemoryLayout();

  /**
   * Return a void pointer. For image pipeline interface and other
   * special pointer manipulation.
   * Use of this method is discouraged, as newer arrays require a deep-copy of
   * the array data in order to return a suitable pointer. See vtkArrayDispatch
   * for a safer alternative for fast data access.
   */
  virtual void *GetVoidPointer(vtkIdType valueIdx) = 0;

  /**
   * Deep copy of data. Implementation left to subclasses, which
   * should support as many type conversions as possible given the
   * data type.

   * Subclasses should call vtkAbstractArray::DeepCopy() so that the
   * information object (if one exists) is copied from \a da.
   */
  virtual void DeepCopy(vtkAbstractArray* da);

  /**
   * Set the tuple at dstTupleIdx in this array to the interpolated tuple value,
   * given the ptIndices in the source array and associated interpolation
   * weights.
   * This method assumes that the two arrays are of the same type
   * and strcuture.
   */
  virtual void InterpolateTuple(vtkIdType dstTupleIdx, vtkIdList *ptIndices,
                                vtkAbstractArray* source,  double* weights) = 0;

  /**
   * Insert the tuple at dstTupleIdx in this array to the tuple interpolated
   * from the two tuple indices, srcTupleIdx1 and srcTupleIdx2, and an
   * interpolation factor, t. The interpolation factor ranges from (0,1),
   * with t=0 located at the tuple described by srcTupleIdx1. This method
   * assumes that the three arrays are of the same type, srcTupleIdx1 is an
   * index to array source1, and srcTupleIdx2 is an index to array source2.
   */
  virtual void InterpolateTuple(vtkIdType dstTupleIdx,
    vtkIdType srcTupleIdx1, vtkAbstractArray* source1,
    vtkIdType srcTupleIdx2, vtkAbstractArray* source2, double t) =0;

  /**
   * Free any unnecessary memory.
   * Description:
   * Resize object to just fit data requirement. Reclaims extra memory.
   */
  virtual void Squeeze() = 0;

  /**
   * Resize the array to the requested number of tuples and preserve data.
   * Increasing the array size may allocate extra memory beyond what was
   * requested. MaxId will not be modified when increasing array size.
   * Decreasing the array size will trim memory to the requested size and
   * may update MaxId if the valid id range is truncated.
   * Requesting an array size of 0 will free all memory.
   * Returns 1 if resizing succeeded and 0 otherwise.
   */
  virtual int Resize(vtkIdType numTuples) = 0;

  //@{
  /**
   * Reset to an empty state, without freeing any memory.
   */
  void Reset()
  {
      this->MaxId = -1;
      this->DataChanged();
  }
  //@}

  /**
   * Return the size of the data.
   */
  vtkIdType GetSize()
  {return this->Size;}

  /**
   * What is the maximum id currently in the array.
   */
  vtkIdType GetMaxId()
    {return this->MaxId;}

  enum DeleteMethod
  {
    VTK_DATA_ARRAY_FREE,
    VTK_DATA_ARRAY_DELETE,
    VTK_DATA_ARRAY_ALIGNED_FREE
  };

  //@{
  /**
   * This method lets the user specify data to be held by the array.  The
   * array argument is a pointer to the data.  size is the size of the array
   * supplied by the user.  Set save to 1 to keep the class from deleting the
   * array when it cleans up or reallocates memory.  The class uses the
   * actual array provided; it does not copy the data from the supplied
   * array. If specified, the delete method determines how the data array
   * will be deallocated. If the delete method is VTK_DATA_ARRAY_FREE, free()
   * will be used. If the delete method is VTK_DATA_ARRAY_DELETE, delete[]
   * will be used. If the delete method is VTK_DATA_ARRAY_ALIGNED_FREE
   * _aligned_free() will be used on windows, while free() will be used
   * everywhere else.The default is FREE.
   * (Note not all subclasses can support deleteMethod.)
   */
  virtual void SetVoidArray(void *vtkNotUsed(array),
                            vtkIdType vtkNotUsed(size),
                            int vtkNotUsed(save)) =0;
  virtual void SetVoidArray(void *array, vtkIdType size, int save,
                            int vtkNotUsed(deleteMethod))
    {this->SetVoidArray(array,size,save);};
  //@}

  /**
   * This method copies the array data to the void pointer specified
   * by the user.  It is up to the user to allocate enough memory for
   * the void pointer.
   */
  virtual void ExportToVoidPointer(void *out_ptr);

  /**
   * Return the memory in kibibytes (1024 bytes) consumed by this data array. Used to
   * support streaming and reading/writing data. The value returned is
   * guaranteed to be greater than or equal to the memory required to
   * actually represent the data represented by this object. The
   * information returned is valid only after the pipeline has
   * been updated.
   */
  virtual unsigned long GetActualMemorySize() = 0;

  //@{
  /**
   * Set/get array's name
   */
  vtkSetStringMacro(Name);
  vtkGetStringMacro(Name);
  //@}

  /**
   * Get the name of a data type as a string.
   */
  virtual const char *GetDataTypeAsString( void )
    { return vtkImageScalarTypeNameMacro( this->GetDataType() ); }

  /**
   * Creates an array for dataType where dataType is one of
   * VTK_BIT, VTK_CHAR, VTK_UNSIGNED_CHAR, VTK_SHORT,
   * VTK_UNSIGNED_SHORT, VTK_INT, VTK_UNSIGNED_INT, VTK_LONG,
   * VTK_UNSIGNED_LONG, VTK_DOUBLE, VTK_DOUBLE, VTK_ID_TYPE,
   * VTK_STRING.
   * Note that the data array returned has to be deleted by the
   * user.
   */
  VTK_NEWINSTANCE
  static vtkAbstractArray* CreateArray(int dataType);

  /**
   * This method is here to make backward compatibility easier.  It
   * must return true if and only if an array contains numeric data.
   */
  virtual int IsNumeric() = 0;

  /**
   * Subclasses must override this method and provide the right kind
   * of templated vtkArrayIteratorTemplate.
   */
  VTK_NEWINSTANCE
  virtual vtkArrayIterator* NewIterator() = 0;

  /**
   * Returns the size of the data in DataTypeSize units. Thus, the
   * number of bytes for the data can be computed by GetDataSize() *
   * GetDataTypeSize(). Non-contiguous or variable- size arrays need
   * to override this method.
   */
  virtual vtkIdType GetDataSize()
  {
    return this->GetNumberOfComponents() * this->GetNumberOfTuples();
  }

  //@{
  /**
   * Return the value indices where a specific value appears.
   */
  virtual vtkIdType LookupValue(vtkVariant value) = 0;
  virtual void LookupValue(vtkVariant value, vtkIdList* valueIds) = 0;
  //@}

  /**
   * Retrieve value from the array as a variant.
   */
  virtual vtkVariant GetVariantValue(vtkIdType valueIdx);

  /**
   * Insert a value into the array from a variant.  This method does
   * bounds checking.
   */
  virtual void InsertVariantValue(vtkIdType valueIdx, vtkVariant value) = 0;

  /**
   * Set a value in the array from a variant.  This method does NOT do
   * bounds checking.
   */
  virtual void SetVariantValue(vtkIdType valueIdx, vtkVariant value) = 0;

  /**
   * Tell the array explicitly that the data has changed.
   * This is only necessary to call when you modify the array contents
   * without using the array's API (i.e. you retrieve a pointer to the
   * data and modify the array contents).  You need to call this so that
   * the fast lookup will know to rebuild itself.  Otherwise, the lookup
   * functions will give incorrect results.
   */
  virtual void DataChanged() = 0;

  /**
   * Delete the associated fast lookup data structure on this array,
   * if it exists.  The lookup will be rebuilt on the next call to a lookup
   * function.
   */
  virtual void ClearLookup() = 0;

  /**
   * Populate the given vtkVariantArray with a set of distinct values taken on
   * by the requested component (or, when passed -1, by the tuples as a whole).
   * If the set of prominent values has more than 32 entries, then the array
   * is assumed to be continuous in nature and no values are returned.

   * This method takes 2 parameters: \a uncertainty and \a minimumProminence.
   * Note that this set of returned values may not be complete if
   * \a uncertainty and \a minimumProminence are both larger than 0.0;
   * in order to perform interactively, a subsample of the array is
   * used to determine the set of values.

   * The first parameter (\a uncertainty, U) is the maximum acceptable
   * probability that a prominent value will not be detected.
   * Setting this to 0 will cause every value in the array to be examined.

   * The second parameter (\a minimumProminence, P) specifies the smallest
   * relative frequency (in [0,1]) with which a value in the array may
   * occur and still be considered prominent. Setting this to 0
   * will force every value in the array to be traversed.
   * Using numbers close to 0 for this parameter quickly causes
   * the number of samples required to obtain the given uncertainty to
   * subsume the entire array, as rare occurrences require frequent
   * sampling to detect.

   * For an array with T tuples and given uncertainty U and mininumum
   * prominence P, we sample N values, with N = f(T; P, U).
   * We want f to be sublinear in T in order to interactively handle large
   * arrays; in practice, we can make f independent of T:
   * \f$ N >= \frac{5}{P}\mathrm{ln}\left(\frac{1}{PU}\right) \f$,
   * but note that small values of P are costly to achieve.
   * The default parameters will locate prominent values that occur at least
   * 1 out of every 1000 samples with a confidence of 0.999999 (= 1 - 1e6).
   * Thanks to Seshadri Comandur (Sandia National Laboratories) for the
   * bounds on the number of samples.

   * The first time this is called, the array is examined and unique values
   * are stored in the vtkInformation object associated with the array.
   * The list of unique values will be updated on subsequent calls only if
   * the array's MTime is newer than the associated vtkInformation object or
   * if better sampling (lower \a uncertainty or \a minimumProminence) is
   * requested.
   * The DISCRETE_VALUE_SAMPLE_PARAMETERS() information key is used to
   * store the numbers which produced any current set of prominent values.

   * Also, note that every value encountered is reported and counts toward
   * the maximum of 32 distinct values, regardless of the value's frequency.
   * This is required for an efficient implementation.
   * Use the vtkOrderStatistics filter if you wish to threshold the set of
   * distinct values to eliminate "unprominent" (infrequently-occurring)
   * values.
   */
  virtual void GetProminentComponentValues(int comp, vtkVariantArray* values,
    double uncertainty = 1.e-6, double minimumProminence = 1.e-3);

  // TODO: Implement these lookup functions also.
  //virtual void LookupRange(vtkVariant min, vtkVariant max, vtkIdList* ids,
  //  bool includeMin = true, bool includeMax = true) = 0;
  //virtual void LookupGreaterThan(vtkVariant min, vtkIdList* ids, bool includeMin = false) = 0;
  //virtual void LookupLessThan(vtkVariant max, vtkIdList* ids, bool includeMax = false) = 0;

  /**
   * Get an information object that can be used to annotate the array.
   * This will always return an instance of vtkInformation, if one is
   * not currently associated with the array it will be created.
   */
  vtkInformation* GetInformation();
  /**
   * Inquire if this array has an instance of vtkInformation
   * already associated with it.
   */
  bool HasInformation(){ return this->Information!=0; }

  /**
   * Copy information instance. Arrays use information objects
   * in a variety of ways. It is important to have flexibility in
   * this regard because certain keys should not be coppied, while
   * others must be.

   * NOTE: Subclasses must always call their superclass's CopyInformation
   * method, so that all classes in the hierarchy get a chance to remove
   * keys they do not wish to be coppied. The subclass will not need to
   * explicilty copy the keys as it's handled here.
   */
  virtual int CopyInformation(vtkInformation *infoFrom, int deep=1);

  /**
   * This key is a hint to end user interface that this array
   * is internal and should not be shown to the end user.
   */
  static vtkInformationIntegerKey* GUI_HIDE();

  /**
   * This key is used to hold a vector of COMPONENT_VALUES (and, for
   * vtkDataArray subclasses, COMPONENT_RANGE) keys -- one
   * for each component of the array.  You may add additional per-component
   * key-value pairs to information objects in this vector. However if you
   * do so, you must be sure to either (1) set COMPONENT_VALUES to
   * an invalid variant and set COMPONENT_RANGE to
   * {VTK_DOUBLE_MAX, VTK_DOUBLE_MIN} or (2) call ComputeUniqueValues(component)
   * and ComputeRange(component) <b>before</b> modifying the information object.
   * Otherwise it is possible for modifications to the array to take place
   * without the bounds on the component being updated since the modification
   * time of the vtkInformation object is used to determine when the
   * COMPONENT_RANGE values are out of date.
   */
  static vtkInformationInformationVectorKey* PER_COMPONENT();

  /**
   * A key used to hold discrete values taken on either by the tuples of the
   * array (when present in this->GetInformation()) or individual components
   * (when present in one entry of the PER_COMPONENT() information vector).
   */
  static vtkInformationVariantVectorKey* DISCRETE_VALUES();

  /**
   * A key used to hold conditions under which cached discrete values were generated;
   * the value is a 2-vector of doubles.
   * The first entry corresponds to the maximum uncertainty that prominent values
   * exist but have not been detected. The second entry corresponds to the smallest
   * relative frequency a value is allowed to have and still appear on the list.
   */
  static vtkInformationDoubleVectorKey* DISCRETE_VALUE_SAMPLE_PARAMETERS();

  // Deprecated.  Use vtkAbstractArray::MaxDiscreteValues instead.
  enum {
    MAX_DISCRETE_VALUES = 32
  };

  //@{
  /**
   * Get/Set the maximum number of prominent values this array may contain
   * before it is considered continuous.  Default value is 32.
   */
  vtkGetMacro(MaxDiscreteValues, unsigned int);
  vtkSetMacro(MaxDiscreteValues, unsigned int);
  //@}

  enum {
    AbstractArray = 0,
    DataArray,
    AoSDataArrayTemplate,
    SoADataArrayTemplate,
    TypedDataArray,
    MappedDataArray,

    DataArrayTemplate = AoSDataArrayTemplate //! Legacy
  };

  /**
   * Method for type-checking in FastDownCast implementations. See also
   * vtkArrayDownCast.
   */
  virtual int GetArrayType()
  {
    return AbstractArray;
  }

protected:
  // Construct object with default tuple dimension (number of components) of 1.
  vtkAbstractArray();
  ~vtkAbstractArray() VTK_OVERRIDE;

  /**
   * Set an information object that can be used to annotate the array.
   * Use this with caution as array instances depend on persistence of
   * information keys. See CopyInformation.
   */
  virtual void SetInformation( vtkInformation* );

  /**
   * Obtain the set of unique values taken on by each component of the array,
   * as well as by the tuples of the array.

   * The results are stored in the PER_COMPONENT() vtkInformation objects
   * using the DISCRETE_VALUES() key.
   * If the key is present but stores 0 values, the array either has no
   * entries or does not behave as a discrete set.
   * If the key is not present, the array has not been examined for
   * distinct values or has been modified since the last examination.
   */
  virtual void UpdateDiscreteValueSet(double uncertainty, double minProminence);

  vtkIdType Size;         // allocated size of data
  vtkIdType MaxId;        // maximum index inserted thus far
  int NumberOfComponents; // the number of components per tuple

  // maximum number of prominent values before array is considered continuous.
  unsigned int MaxDiscreteValues;

  char* Name;

  bool RebuildArray;      // whether to rebuild the fast lookup data structure.

  vtkInformation* Information;

  class vtkInternalComponentNames;
  vtkInternalComponentNames* ComponentNames; //names for each component

private:
  vtkAbstractArray(const vtkAbstractArray&) VTK_DELETE_FUNCTION;
  void operator=(const vtkAbstractArray&) VTK_DELETE_FUNCTION;
};

//@{
/**
 * Implementation of vtkArrayDownCast. The templating/etc is moved to this
 * worker struct to get around limitations of template functions (no partial
 * specialization, ambiguities, etc).
 */
template <typename ArrayT>
struct vtkArrayDownCast_impl
{
  inline ArrayT* operator()(vtkAbstractArray* array)
  {
    return ArrayT::SafeDownCast(array);
  }
};
//@}

/**
 * vtkArrayDownCast is to be used by generic (e.g. templated) code for quickly
 * downcasting vtkAbstractArray pointers to more derived classes.
 * The typical VTK downcast pattern (SafeDownCast) performs a string comparison
 * on the class names in the object's inheritance hierarchy, which is quite
 * expensive and can dominate computational resource usage when downcasting is
 * needed in a worker function.
 * To address this, certain arrays support a FastDownCast method, which replaces
 * the chain of string comparisons with 1-2 integer comparisons and thus is
 * significantly more efficient.
 * However, not all arrays support the FastDownCast mechanism. vtkArrayDownCast
 * exists to select between the two; Arrays that support FastDownCast will use
 * it, while others will fallback to the slower SafeDownCast.

 * A more detailed description of this class and related tools can be found
 * \ref VTK-7-1-ArrayDispatch "here".
 */
template <typename ArrayT>
ArrayT* vtkArrayDownCast(vtkAbstractArray *array)
{
  // The default vtkArrayDownCast_impl struct uses SafeDownCast, but is
  // specialized for arrays that support FastDownCast.
  return vtkArrayDownCast_impl<ArrayT>()(array);
}

//@{
/**
 * This macro is used to tell vtkArrayDownCast to use FastDownCast instead of
 * SafeDownCast.
 */
#define vtkArrayDownCast_FastCastMacro(ArrayT) \
  template <> struct vtkArrayDownCast_impl<ArrayT> \
  { \
    inline ArrayT* operator()(vtkAbstractArray *array) \
    { \
      return ArrayT::FastDownCast(array); \
    } \
  };
//@}

//@{
/**
 * Same as vtkArrayDownCast_FastCastMacro, but treats ArrayT as a
 * single-parameter template (the parameter is the value type). Defines a
 * vtkArrayDownCast implementation that uses the specified array template class
 * with any value type.
 */
#define vtkArrayDownCast_TemplateFastCastMacro(ArrayT) \
  template <typename ValueT> struct vtkArrayDownCast_impl<ArrayT<ValueT> > \
  { \
    inline ArrayT<ValueT>* operator()(vtkAbstractArray *array) \
    { \
      return ArrayT<ValueT>::FastDownCast(array); \
    } \
  };
//@}

#endif