1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
/*=========================================================================
Program: Visualization Toolkit
Module: SGrid.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// This example shows how to manually create a structured grid.
// The basic idea is to instantiate vtkStructuredGrid, set its dimensions,
// and then assign points defining the grid coordinate. The number of
// points must equal the number of points implicit in the dimensions
// (i.e., dimX*dimY*dimZ). Also, data attributes (either point or cell)
// can be added to the dataset.
//
//
#include <vtkActor.h>
#include <vtkCamera.h>
#include <vtkFloatArray.h>
#include <vtkHedgeHog.h>
#include <vtkMath.h>
#include <vtkNamedColors.h>
#include <vtkNew.h>
#include <vtkPointData.h>
#include <vtkPoints.h>
#include <vtkPolyDataMapper.h>
#include <vtkProperty.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkRenderer.h>
#include <vtkStructuredGrid.h>
#include <array>
int main()
{
vtkNew<vtkNamedColors> colors;
float rMin = 0.5, rMax = 1.0, deltaRad, deltaZ;
std::array<int, 3> dims = { { 13, 11, 11 } };
// Create the structured grid.
vtkNew<vtkStructuredGrid> sgrid;
sgrid->SetDimensions(dims.data());
// We also create the points and vectors. The points
// form a hemi-cylinder of data.
vtkNew<vtkFloatArray> vectors;
vectors->SetNumberOfComponents(3);
vectors->SetNumberOfTuples(dims[0] * dims[1] * dims[2]);
vtkNew<vtkPoints> points;
points->Allocate(dims[0] * dims[1] * dims[2]);
deltaZ = 2.0 / (dims[2] - 1);
deltaRad = (rMax - rMin) / (dims[1] - 1);
float x[3], v[3];
v[2] = 0.0;
for (auto k = 0; k < dims[2]; k++)
{
x[2] = -1.0 + k * deltaZ;
int kOffset = k * dims[0] * dims[1];
for (auto j = 0; j < dims[1]; j++)
{
float radius = rMin + j * deltaRad;
int jOffset = j * dims[0];
for (auto i = 0; i < dims[0]; i++)
{
float theta = i * vtkMath::RadiansFromDegrees(15.0);
x[0] = radius * cos(theta);
x[1] = radius * sin(theta);
v[0] = -x[1];
v[1] = x[0];
int offset = i + jOffset + kOffset;
points->InsertPoint(offset, x);
vectors->InsertTuple(offset, v);
}
}
}
sgrid->SetPoints(points);
sgrid->GetPointData()->SetVectors(vectors);
// We create a simple pipeline to display the data.
vtkNew<vtkHedgeHog> hedgehog;
hedgehog->SetInputData(sgrid);
hedgehog->SetScaleFactor(0.1);
vtkNew<vtkPolyDataMapper> sgridMapper;
sgridMapper->SetInputConnection(hedgehog->GetOutputPort());
vtkNew<vtkActor> sgridActor;
sgridActor->SetMapper(sgridMapper);
sgridActor->GetProperty()->SetColor(colors->GetColor3d("Indigo").GetData());
// Create the usual rendering stuff
vtkNew<vtkRenderer> renderer;
vtkNew<vtkRenderWindow> renWin;
renWin->AddRenderer(renderer);
vtkNew<vtkRenderWindowInteractor> iren;
iren->SetRenderWindow(renWin);
renderer->AddActor(sgridActor);
renderer->SetBackground(colors->GetColor3d("Cornsilk").GetData());
renderer->ResetCamera();
renderer->GetActiveCamera()->Elevation(60.0);
renderer->GetActiveCamera()->Azimuth(30.0);
renderer->GetActiveCamera()->Zoom(1.0);
renWin->SetSize(600, 600);
// interact with data
renWin->Render();
iren->Start();
return EXIT_SUCCESS;
}
|