1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkBandedPolyDataContourFilter.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkBandedPolyDataContourFilter.h"
#include <algorithm>
#include <iterator>
#include <numeric>
#include <vector>
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkDoubleArray.h"
#include "vtkEdgeTable.h"
#include "vtkExecutive.h"
#include "vtkFloatArray.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPolyData.h"
#include "vtkTriangleStrip.h"
#include <cfloat>
vtkStandardNewMacro(vtkBandedPolyDataContourFilter);
namespace
{
// Symbolic value for recording that no intersection points were generated by
// ClipEdge. vtkEdgeTable::IsEdge uses -1 to indicate that the edge is not
// stored, so we need a different value is not a valid cell index to indicate
// that an edge has no intersection points.
constexpr vtkIdType NO_INTERSECTION = -999;
//------------------------------------------------------------------------------
// Bookkeeping of polygon points
enum class PointType
{
VERTEX = 0, // a point of the original cell with a scalar value
// NOT equal to a clip value
CLIP_VERTEX = 1, // a point of the original cell with a scalar value
// equal to a clip value
EDGE = 2 // a point on the edge of the original cell. By definition
// its scalar value is a clip value
};
struct Point
{
vtkIdType pid;
double scalar;
PointType type;
};
#ifndef NDEBUG
// utility function for debugging: output a polygon point
inline std::ostream& operator<<(std::ostream& os, const Point& p)
{
constexpr const char* const txt[] = { "V", "CV", "CE" };
os << "[" << txt[(int)p.type] << ":"
<< "(" << p.pid << ")" << p.scalar << "]";
return os;
}
// utility function for debugging: output a vector
template <typename T>
std::ostream& operator<<(std::ostream& os, std::vector<T> const& container)
{
auto b = std::begin(container);
auto e = std::end(container);
os << "{";
auto it = b;
if (it != e)
os << *it++;
for (; it != e; ++it)
os << "," << *it;
os << "}";
return os;
}
#endif
} // unnamed namespace
struct vtkBandedPolyDataContourFilterInternals
{
// sorted and cleaned contour values
std::vector<double> ClipValues;
int ClipIndex[2]; // indices outside of this range (inclusive) are clipped
double ClipTolerance; // used to clean up numerical problems
// Find the clip value for val, i.e. the largest clip value <= val+tol
// Expects that the scalar range minimum and maximum are included in the
// range [b,e)
template <typename It>
It ComputeClipValue(double val, It b, It e)
{
It iter = std::upper_bound(b, e, val + ClipTolerance / 2);
if (b != iter)
--iter;
assert(*iter <= val + ClipTolerance / 2 || iter == b);
return iter;
}
std::vector<double>::iterator ComputeClipValue(double val)
{
return ComputeClipValue(val, ClipValues.begin(), ClipValues.end());
}
template <typename It>
bool IsClipValue(double val, It clip)
{
assert(clip != ClipValues.end());
return *clip >= val - ClipTolerance / 2 && *clip <= val + ClipTolerance / 2;
}
double ComputeClipScalar(double val)
{
auto iter = ComputeClipValue(val);
assert(iter != ClipValues.end());
return *iter;
}
int ComputeClipIndex(double val)
{
return static_cast<int>(std::distance(ClipValues.begin(), ComputeClipValue(val)));
}
};
//------------------------------------------------------------------------------
// Construct object.
vtkBandedPolyDataContourFilter::vtkBandedPolyDataContourFilter()
{
Internal = new vtkBandedPolyDataContourFilterInternals;
this->ContourValues = vtkContourValues::New();
this->Clipping = 0;
this->ScalarMode = VTK_SCALAR_MODE_INDEX;
this->Component = 0;
this->SetNumberOfOutputPorts(2);
vtkPolyData* output2 = vtkPolyData::New();
this->GetExecutive()->SetOutputData(1, output2);
output2->Delete();
this->ClipTolerance = FLT_EPSILON;
this->Internal->ClipTolerance = FLT_EPSILON;
this->GenerateContourEdges = 0;
}
//------------------------------------------------------------------------------
vtkBandedPolyDataContourFilter::~vtkBandedPolyDataContourFilter()
{
this->ContourValues->Delete();
delete this->Internal;
}
//------------------------------------------------------------------------------
// Interpolate the input scalars and create intermediate points between
// v1 and v2 at the contour values.
// The point ids are returned in the edgePts array, arranged from v1 to v2 if
// v1<v2 or vice-versa.
// The input array edgePts must be large enough to hold the point ids.
// Return the number of intersection points created in edgePts.
int vtkBandedPolyDataContourFilter::ClipEdge(int v1, int v2, vtkPoints* newPts,
vtkDataArray* inScalars, vtkDoubleArray* outScalars, vtkPointData* inPD, vtkPointData* outPD,
vtkIdType edgePts[])
{
double low = inScalars->GetComponent(v1, this->Component);
double high = inScalars->GetComponent(v2, this->Component);
auto b = this->Internal->ComputeClipValue(low);
auto e = this->Internal->ComputeClipValue(high);
assert(e != this->Internal->ClipValues.end());
if (b == e)
{
return 0;
}
// Insert from back to front if point ids are not ordered by increasing id
bool reverse = (v1 > v2);
// We iterate from lowest to highest end point
bool swap = (low > high);
if (swap)
{
std::swap(low, high);
std::swap(b, e);
reverse = !reverse;
}
// start with the first clip value larger than low
++b;
// ComputeClipValue may have accepted a slightly too large value for the high
// clip value. If the difference between high and low is in the order of the
// internal clip tolerance this may lead to an interpolation factor that
// is significantly larger than 1. To prevent this only include the last
// clip value if it doesn't cause an overshoot of more than .01%
if ((*e - low) / (high - low) < 1.0001)
{
++e;
}
if (b == e)
{
return 0;
}
// Interpolate between x1 and x2
double x1[3];
double x2[3];
if (!swap)
{
newPts->GetPoint(v1, x1);
newPts->GetPoint(v2, x2);
}
else
{
newPts->GetPoint(v2, x1);
newPts->GetPoint(v1, x2);
}
// Initialize the insertion pointer and increment
vtkIdType* pt{ nullptr };
int inc = 0;
if (!reverse)
{
pt = edgePts;
inc = +1;
}
else
{
pt = edgePts + std::distance(b, e) - 1;
inc = -1;
}
for (auto iter = b; iter != e; ++iter)
{
double t = (*iter - low) / (high - low);
double x[3];
x[0] = x1[0] + t * (x2[0] - x1[0]);
x[1] = x1[1] + t * (x2[1] - x1[1]);
x[2] = x1[2] + t * (x2[2] - x1[2]);
vtkIdType ptId = newPts->InsertNextPoint(x);
outPD->InterpolateEdge(inPD, ptId, v1, v2, t);
outScalars->InsertTypedComponent(ptId, 0, *iter);
*pt = ptId;
pt += inc;
}
return std::distance(b, e);
}
//------------------------------------------------------------------------------
inline int vtkBandedPolyDataContourFilter::InsertCell(
vtkCellArray* cells, int npts, const vtkIdType* pts, int cellId, double s, vtkFloatArray* newS)
{
int idx = this->ComputeClippedIndex(s);
if (idx < 0)
{
return cellId;
}
cells->InsertNextCell(npts, pts);
return InsertNextScalar(newS, cellId, idx);
}
//------------------------------------------------------------------------------
inline int vtkBandedPolyDataContourFilter::InsertLine(
vtkCellArray* cells, vtkIdType pt1, vtkIdType pt2, int cellId, double s, vtkFloatArray* newS)
{
int idx = this->ComputeClippedIndex(s);
if (idx < 0)
{
return cellId;
}
cells->InsertNextCell(2);
cells->InsertCellPoint(pt1);
cells->InsertCellPoint(pt2);
return InsertNextScalar(newS, cellId, idx);
}
//------------------------------------------------------------------------------
int vtkBandedPolyDataContourFilter::ComputeClippedIndex(double s)
{
int idx = this->Internal->ComputeClipIndex(s);
if (!this->Clipping ||
(idx >= this->Internal->ClipIndex[0] && idx < this->Internal->ClipIndex[1]))
{
return idx;
}
return -1;
}
//------------------------------------------------------------------------------
int vtkBandedPolyDataContourFilter::InsertNextScalar(vtkFloatArray* scalars, int cellId, int idx)
{
if (idx < 0)
{
return cellId;
}
if (this->ScalarMode == VTK_SCALAR_MODE_INDEX)
{
double value = idx;
scalars->InsertTypedComponent(cellId++, 0, value);
}
else
{
scalars->InsertTypedComponent(cellId++, 0, this->Internal->ClipValues[idx]);
}
return cellId;
}
//------------------------------------------------------------------------------
// Create filled contours for polydata
int vtkBandedPolyDataContourFilter::RequestData(vtkInformation* vtkNotUsed(request),
vtkInformationVector** inputVector, vtkInformationVector* outputVector)
{
// get the info objects
vtkInformation* inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation* outInfo = outputVector->GetInformationObject(0);
// get the input and output
vtkPolyData* input = vtkPolyData::SafeDownCast(inInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkPolyData* output = vtkPolyData::SafeDownCast(outInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkPointData* pd = input->GetPointData();
vtkPointData* outPD = output->GetPointData();
vtkCellData* outCD = output->GetCellData();
vtkPoints* inPts = input->GetPoints();
vtkDataArray* inScalars = pd->GetScalars();
int abort = 0;
vtkPoints* newPts;
vtkIdType npts = 0;
vtkIdType cellId = 0;
const vtkIdType* pts = nullptr;
int numEdgePts, maxCellSize;
vtkIdType v;
vtkIdType vR;
const vtkIdType* intPts;
vtkIdType intCellId;
vtkIdType numIntPts;
vtkIdType numPts, numCells, estimatedSize;
vtkDebugMacro(<< "Executing banded contour filter");
// Check input
//
numCells = input->GetNumberOfCells();
if (!inPts || (numPts = inPts->GetNumberOfPoints()) < 1 || !inScalars || numCells < 1)
{
vtkErrorMacro(<< "No input data!");
return 1;
}
if (inScalars->GetNumberOfComponents() < this->Component + 1)
{
vtkErrorMacro(<< "Input scalars expected to have " << this->Component + 1 << " components");
return 0;
}
if (this->ContourValues->GetNumberOfContours() < 1)
{
vtkWarningMacro(<< "No contour values");
return 1;
}
// Set up supplemental data structures for processing edge/generating
// intersections. First we sort the contour values into an ascending
// list of clip values including the extreme min/max values.
double range[2];
inScalars->GetRange(range);
// base clip tolerance on overall input scalar range
this->Internal->ClipTolerance = this->ClipTolerance * (range[1] - range[0]);
// sort the contour values
std::vector<double> contourValues;
contourValues.reserve(this->ContourValues->GetNumberOfContours());
for (int i = 0; i < this->ContourValues->GetNumberOfContours(); ++i)
{
contourValues.push_back(this->ContourValues->GetValue(i));
}
std::sort(contourValues.begin(), contourValues.end());
// Copy the sorted contour values, and the range minimum and maximum if they
// exceed the contour value extremes
this->Internal->ClipValues.clear();
if (range[0] < contourValues.front())
{
this->Internal->ClipValues.push_back(range[0]);
}
std::copy(
contourValues.begin(), contourValues.end(), std::back_inserter(this->Internal->ClipValues));
if (range[1] > contourValues.back())
{
this->Internal->ClipValues.push_back(range[1]);
}
// Remove clipvalues that are less than the internal tolerance of each other
auto iter1 = this->Internal->ClipValues.begin();
for (auto iter2 = iter1 + 1; iter2 != this->Internal->ClipValues.end(); ++iter2)
{
iter2 = std::upper_bound(
iter2, this->Internal->ClipValues.end(), *iter1 + this->Internal->ClipTolerance);
if (iter2 != this->Internal->ClipValues.end())
{
*(++iter1) = *iter2;
}
else
{
break;
}
}
this->Internal->ClipValues.resize(std::distance(this->Internal->ClipValues.begin(), iter1 + 1));
const int numClipValues = static_cast<int>(this->Internal->ClipValues.size());
this->Internal->ClipIndex[0] = this->Internal->ComputeClipIndex(this->ContourValues->GetValue(0));
this->Internal->ClipIndex[1] = this->Internal->ComputeClipIndex(
this->ContourValues->GetValue(this->ContourValues->GetNumberOfContours() - 1));
//
// Estimate allocation size, stolen from vtkContourGrid...
//
estimatedSize = static_cast<vtkIdType>(pow(static_cast<double>(numCells), .9));
estimatedSize *= numClipValues;
estimatedSize = estimatedSize / 1024 * 1024; // multiple of 1024
if (estimatedSize < 1024)
{
estimatedSize = 1024;
}
// The original set of points and point data are copied. Later on
// intersection points due to clipping will be created.
newPts = vtkPoints::New();
// Note: since we use the output scalars in the execution of the algorithm,
// the output point scalars MUST BE double or bad things happen due to
// numerical precision issues.
newPts->Allocate(estimatedSize, estimatedSize);
outPD->CopyScalarsOff();
outPD->InterpolateAllocate(pd, 3 * numPts, numPts);
vtkDoubleArray* outScalars = vtkDoubleArray::New();
outScalars->Allocate(3 * numPts, numPts);
outPD->SetScalars(outScalars);
outScalars->Delete();
for (int i = 0; i < numPts; i++)
{
newPts->InsertPoint(i, inPts->GetPoint(i));
outPD->CopyData(pd, i, i);
double value = inScalars->GetComponent(i, this->Component);
outScalars->InsertTypedComponent(i, 0, value);
}
// These are the new cell scalars
vtkFloatArray* newScalars = vtkFloatArray::New();
newScalars->Allocate(numCells * 5, numCells);
newScalars->SetName("Scalars");
// Used to keep track of intersections
vtkEdgeTable* edgeTable = vtkEdgeTable::New();
vtkCellArray* intList = vtkCellArray::New(); // intersection point ids
// All vertices are filled and passed through; poly-vertices are broken
// into single vertices. Cell data per vertex is set.
//
if (input->GetVerts()->GetNumberOfCells() > 0)
{
vtkCellArray* verts = input->GetVerts();
vtkCellArray* newVerts = vtkCellArray::New();
newVerts->AllocateCopy(verts);
for (verts->InitTraversal(); verts->GetNextCell(npts, pts) && !abort;
abort = this->GetAbortExecute())
{
for (int i = 0; i < npts; i++)
{
cellId = this->InsertCell(newVerts, 1, pts + i, cellId,
inScalars->GetComponent(pts[i], this->Component), newScalars);
}
}
output->SetVerts(newVerts);
newVerts->Delete();
}
this->UpdateProgress(0.05);
// Lines are chopped into line segments.
//
if (input->GetLines()->GetNumberOfCells() > 0)
{
vtkCellArray* lines = input->GetLines();
maxCellSize = lines->GetMaxCellSize();
maxCellSize *= (1 + numClipValues);
vtkIdType* fullLine = new vtkIdType[maxCellSize];
vtkCellArray* newLines = vtkCellArray::New();
newLines->AllocateCopy(lines);
edgeTable->InitEdgeInsertion(numPts, 1); // store attributes on edge
// start by generating intersection points
for (lines->InitTraversal(); lines->GetNextCell(npts, pts) && !abort;
abort = this->GetAbortExecute())
{
for (int i = 0; i < (npts - 1); i++)
{
numEdgePts =
this->ClipEdge(pts[i], pts[i + 1], newPts, inScalars, outScalars, pd, outPD, fullLine);
if (numEdgePts > 0) // there is an intersection
{
intList->InsertNextCell(numEdgePts, fullLine);
edgeTable->InsertEdge(pts[i], pts[i + 1], // associate ints with edge
intList->GetNumberOfCells() - 1);
}
else // no intersection points along the edge
{
edgeTable->InsertEdge(pts[i], pts[i + 1], -1); //-1 means no points
}
} // for all line segments in this line
}
// now create line segments
for (lines->InitTraversal(); lines->GetNextCell(npts, pts) && !abort;
abort = this->GetAbortExecute())
{
for (int i = 0; i < (npts - 1); i++)
{
v = pts[i];
vR = pts[i + 1];
bool reverse = (v > vR);
double s1 = inScalars->GetComponent(v, this->Component);
double s2 = inScalars->GetComponent(vR, this->Component);
bool increasing = (s2 > s1);
vtkIdType p1 = v;
if ((intCellId = edgeTable->IsEdge(v, vR)) != -1)
{
intList->GetCellAtId(intCellId, numIntPts, intPts);
int incr;
int k;
if (!reverse)
{
k = 0;
incr = 1;
}
else
{
k = numIntPts - 1;
incr = -1;
}
for (int n = 0; n < numIntPts; ++n, k += incr)
{
vtkIdType p2 = intPts[k];
double value = outScalars->GetTypedComponent(increasing ? p1 : p2, 0);
cellId = this->InsertLine(newLines, p1, p2, cellId, value, newScalars);
p1 = p2;
}
double value = outScalars->GetTypedComponent(increasing ? p1 : vR, 0);
cellId = this->InsertLine(newLines, p1, vR, cellId, value, newScalars);
}
else
{
double value = outScalars->GetTypedComponent(vR, 0);
cellId = this->InsertLine(newLines, v, vR, cellId, value, newScalars);
}
}
}
delete[] fullLine;
output->SetLines(newLines);
newLines->Delete();
}
this->UpdateProgress(0.1);
// Polygons are assumed convex and chopped into filled, convex polygons.
// Triangle strips are treated similarly.
//
vtkIdType numPolys = input->GetPolys()->GetNumberOfCells();
vtkIdType numStrips = input->GetStrips()->GetNumberOfCells();
if (numPolys > 0 || numStrips > 0)
{
// Set up processing. We are going to store an ordered list of
// intersections along each edge (ordered from smallest point id
// to largest). These will later be connected into convex polygons
// which represent a filled region in the cell.
//
edgeTable->InitEdgeInsertion(numPts, 1); // store attributes on edge
intList->Reset();
vtkCellArray* polys = input->GetPolys();
vtkCellArray* tmpPolys = nullptr;
// If contour edges requested, set things up.
vtkCellArray* contourEdges = nullptr;
if (this->GenerateContourEdges)
{
contourEdges = vtkCellArray::New();
contourEdges->AllocateEstimate(numCells, 2);
this->GetContourEdgesOutput()->SetLines(contourEdges);
contourEdges->Delete();
this->GetContourEdgesOutput()->SetPoints(newPts);
}
// Set up structures for processing polygons
maxCellSize = polys->GetMaxCellSize();
if (maxCellSize == 0)
{
maxCellSize = input->GetStrips()->GetMaxCellSize();
}
maxCellSize *= (1 + numClipValues);
std::vector<vtkIdType> pointIds;
pointIds.reserve(maxCellSize);
// Lump strips and polygons together.
// Decompose strips into triangles.
if (numStrips > 0)
{
vtkCellArray* strips = input->GetStrips();
tmpPolys = vtkCellArray::New();
if (numPolys > 0)
{
tmpPolys->DeepCopy(polys);
}
else
{
tmpPolys->AllocateEstimate(numStrips, 5);
}
for (strips->InitTraversal(); strips->GetNextCell(npts, pts);)
{
vtkTriangleStrip::DecomposeStrip(npts, pts, tmpPolys);
}
polys = tmpPolys;
}
// Process polygons to produce edge intersections.------------------------
//
numPolys = polys->GetNumberOfCells();
vtkIdType updateCount = numPolys / 20 + 1;
vtkIdType count = 0;
pointIds.resize(this->Internal->ClipValues.size(), -1);
for (polys->InitTraversal(); polys->GetNextCell(npts, pts) && !abort;
abort = this->GetAbortExecute())
{
if (!(++count % updateCount))
{
this->UpdateProgress(0.1 + 0.45 * (static_cast<double>(count) / numPolys));
}
for (int i = 0; i < npts; i++)
{
v = pts[i];
vR = pts[(i + 1) % npts];
if (edgeTable->IsEdge(v, vR) == -1)
{
numEdgePts =
this->ClipEdge(v, vR, newPts, inScalars, outScalars, pd, outPD, &pointIds[0]);
if (numEdgePts > 0)
{
intList->InsertNextCell(numEdgePts, &pointIds[0]);
edgeTable->InsertEdge(v, vR, // associate ints with edge
intList->GetNumberOfCells() - 1);
}
else // no intersection points along the edge
{
edgeTable->InsertEdge(v, vR, NO_INTERSECTION);
}
} // if edge not processed yet
}
} // for all polygons
// Process polygons to produce output triangles------------------------
//
vtkCellArray* newPolys = vtkCellArray::New();
newPolys->AllocateCopy(polys);
count = 0;
// polygon point ids, point types, scalars
std::vector<Point> polygon;
polygon.reserve(maxCellSize + 1);
// indices into the polygon point vector
std::vector<int> index;
index.reserve(maxCellSize + 1);
for (polys->InitTraversal(); polys->GetNextCell(npts, pts) && !abort;
abort = this->GetAbortExecute())
{
if (!(++count % updateCount))
{
this->UpdateProgress(0.55 + 0.45 * (static_cast<double>(count) / numPolys));
}
// Create a new polygon that includes all the points including the
// intersection vertices. This hugely simplifies the logic of the
// code.
polygon.clear();
index.clear();
bool hasClippedEdges = false;
for (int i = 0; i < npts; i++)
{
v = pts[i];
vR = pts[(i + 1) % npts];
double scalar = outScalars->GetTypedComponent(v, 0);
auto iter = this->Internal->ComputeClipValue(scalar);
const bool isClip = this->Internal->IsClipValue(scalar, iter);
polygon.push_back(
{ v, isClip ? *iter : scalar, (isClip ? PointType::CLIP_VERTEX : PointType::VERTEX) });
// see whether intersection points need to be added.
intCellId = edgeTable->IsEdge(v, vR);
if (intCellId != -1 && intCellId != NO_INTERSECTION)
{
hasClippedEdges = true;
intList->GetCellAtId(intCellId, numIntPts, intPts);
int first, last, inc;
if (v < vR)
{
first = 0;
last = numIntPts;
inc = 1;
}
else
{
first = numIntPts - 1;
last = -1;
inc = -1;
}
for (int k = first; k != last; k += inc)
{
polygon.push_back(
{ intPts[k], outScalars->GetTypedComponent(intPts[k], 0), PointType::EDGE });
}
}
} // for all points and edges
auto point_less = [](const Point& p1, const Point& p2) { return p1.scalar < p2.scalar; };
// Trivial output - completely in a contour band or a triangle
if (!hasClippedEdges || polygon.size() == 3)
{
auto it = std::min_element(polygon.begin(), polygon.end(), point_less);
cellId = this->InsertCell(newPolys, npts, pts, cellId, it->scalar, newScalars);
continue;
}
// Initialize the indexing array. Starts with the starting vertex, and
// then iterates around the polygon.
index.resize(polygon.size());
std::iota(index.begin(), index.end(), 0);
// Find the starting vertex, i.e. the vertex with the lowest scalar value,
// and rotate the indexing array such that it is the first of the indices
auto indexed_less = [&polygon, &point_less](
int i1, int i2) { return point_less(polygon[i1], polygon[i2]); };
std::rotate(
index.begin(), std::min_element(index.begin(), index.end(), indexed_less), index.end());
// Add a duplicate of the starting vertex at the end to avoid having to
// test for validity of iterators before dereferencing. Note that the
// duplicate of the point is never referenced from the indexing array.
index.push_back(index.front()); // add another idx at the end
polygon.push_back(polygon.front()); // and a copy of the point
// Contour edges at the boundaries of the cell
if (this->GenerateContourEdges)
{
for (auto it = index.begin(); it != index.end() - 1; ++it)
{
const auto& p1 = polygon[*it];
const auto& p2 = polygon[*(it + 1)];
if (p1.type != PointType::VERTEX && p2.type != PointType::VERTEX &&
p1.scalar == p2.scalar)
{
contourEdges->InsertNextCell(2);
contourEdges->InsertCellPoint(p1.pid);
contourEdges->InsertCellPoint(p2.pid);
}
}
}
// start from the lowest clipvalue
double clip_scalar = this->Internal->ComputeClipScalar(polygon[index.front()].scalar);
vtkDebugMacro(<< "clip_scalar=" << clip_scalar << "\n"
<< "\tpolygon=" << polygon << "\n"
<< "\tindex=" << index);
// traverse the polygon points from the starting vertex going
// left/clockwise (reverse through indices) and
// right/counter-clockwise (forward through indices)
typedef std::vector<int>::iterator It;
typedef std::reverse_iterator<It> RevIt;
It r1 = index.begin();
It l1 = index.end() - 1;
while (r1 < l1)
{
auto in_band = [&clip_scalar, &polygon](int i) {
return (polygon[i].scalar == clip_scalar) ||
((polygon[i].type == PointType::VERTEX && polygon[i].scalar > clip_scalar));
};
assert(polygon[*l1].type == PointType::VERTEX || polygon[*r1].type == PointType::VERTEX ||
polygon[*l1].scalar == polygon[*r1].scalar);
assert(in_band(*r1));
assert(in_band(*l1));
// find next left and right band ends
auto r2 = std::find_if_not(r1, l1, in_band);
auto l2 = std::find_if_not(RevIt(l1), RevIt(r2), in_band).base() - 1;
vtkDebugMacro(<< "band: clip_scalar=" << clip_scalar << " points=[" << *l2 << polygon[*l2]
<< " -> " << *l1 << polygon[*l1] << " -> " << *r1 << polygon[*r1] << " -> "
<< *r2 << polygon[*r2] << "]");
// If r2 or l2 refers to a point with a scalar smaller than the
// current clip scalar, it is on an edge with decreasing scalars.
//
// Restart contouring of the remaining polygon by discarding points
// of lower clip values (i.e. points already traversed by r1 and l1),
// find the new vertex with lowest scalar and initialize iterators and
// clip_scalar
if ((polygon[*l2].scalar < clip_scalar) || (polygon[*r2].scalar < clip_scalar))
{
auto it = index.begin() + std::distance(r1, l1 + 1);
std::rotate(index.begin(), r1, l1 + 1);
// note: the duplicate at the end is automatically discarded
index.resize(std::distance(index.begin(), it));
// find the index of the new starting vertex
auto indexed_vertex_scalar_less = [&polygon](int i1, int i2) {
return (
(polygon[i1].type != PointType::EDGE) && (polygon[i1].scalar < polygon[i2].scalar));
};
it = std::min_element(index.begin(), index.end(), indexed_vertex_scalar_less);
std::rotate(index.begin(), it, index.end());
index.push_back(index.front()); // duplicate of the first point
clip_scalar = this->Internal->ComputeClipScalar(polygon[index.front()].scalar);
vtkDebugMacro(<< "clip_scalar=" << clip_scalar << "\n"
<< "\tpolygon=" << polygon << "\n"
<< "\tindex=" << index);
r1 = index.begin();
l1 = index.end() - 1;
continue;
}
assert(*l1 == *r2 || // first band
r2 == l1 || // last band
((polygon[*l2].type != PointType::VERTEX) && (polygon[*r2].type != PointType::VERTEX) &&
(polygon[*l2].scalar == polygon[*r2].scalar)));
// copy point ids from l2 to l1 and from r1 to r2
auto l = l1 + 1;
auto r = r2 + 1;
// do not duplicate the first point
if (*l1 == *r1)
--l;
// for last contour band r1->r2 spans entire polygon
if (r2 == l1)
l = l2;
pointIds.resize(std::distance(l2, l) + std::distance(r1, r));
if (pointIds.size() >= 3)
{
auto copyPointIds = [&polygon](int i) { return polygon[i].pid; };
auto it = std::transform(l2, l, pointIds.begin(), copyPointIds);
std::transform(r1, r, it, copyPointIds);
vtkDebugMacro(<< "clip_scalar=" << clip_scalar << "\n"
<< " pointIds=" << pointIds);
cellId = this->InsertCell(newPolys, static_cast<int>(pointIds.size()), &pointIds[0],
cellId, clip_scalar, newScalars);
if (this->GenerateContourEdges && r2 != l1)
{
contourEdges->InsertNextCell(2);
contourEdges->InsertCellPoint(polygon[*r2].pid);
contourEdges->InsertCellPoint(polygon[*l2].pid);
}
}
r1 = r2;
l1 = l2;
clip_scalar = polygon[*r1].scalar;
}
} // for all polygons
output->SetPolys(newPolys);
newPolys->Delete();
if (tmpPolys)
{
tmpPolys->Delete();
}
} // for all polygons (and strips) in input
vtkDebugMacro(<< "Created " << cellId << " total cells\n");
vtkDebugMacro(<< "Created " << output->GetVerts()->GetNumberOfCells() << " verts\n");
vtkDebugMacro(<< "Created " << output->GetLines()->GetNumberOfCells() << " lines\n");
vtkDebugMacro(<< "Created " << output->GetPolys()->GetNumberOfCells() << " polys\n");
vtkDebugMacro(<< "Created " << output->GetStrips()->GetNumberOfCells() << " strips\n");
// Update ourselves and release temporary memory
//
intList->Delete();
edgeTable->Delete();
output->SetPoints(newPts);
newPts->Delete();
int arrayIdx = outCD->AddArray(newScalars);
outCD->SetActiveAttribute(arrayIdx, vtkDataSetAttributes::SCALARS);
newScalars->Delete();
output->Squeeze();
return 1;
}
//------------------------------------------------------------------------------
vtkPolyData* vtkBandedPolyDataContourFilter::GetContourEdgesOutput()
{
if (this->GetNumberOfOutputPorts() < 2)
{
return nullptr;
}
return vtkPolyData::SafeDownCast(this->GetExecutive()->GetOutputData(1));
}
//------------------------------------------------------------------------------
vtkMTimeType vtkBandedPolyDataContourFilter::GetMTime()
{
vtkMTimeType mTime = this->Superclass::GetMTime();
vtkMTimeType time;
time = this->ContourValues->GetMTime();
mTime = (time > mTime ? time : mTime);
return mTime;
}
//------------------------------------------------------------------------------
void vtkBandedPolyDataContourFilter::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "Generate Contour Edges: " << (this->GenerateContourEdges ? "On\n" : "Off\n");
this->ContourValues->PrintSelf(os, indent.GetNextIndent());
os << indent << "Clipping: " << (this->Clipping ? "On\n" : "Off\n");
os << indent << "Scalar Mode: ";
if (this->ScalarMode == VTK_SCALAR_MODE_INDEX)
{
os << "INDEX\n";
}
else
{
os << "VALUE\n";
}
os << indent << "Clip Tolerance: " << this->ClipTolerance << "\n";
}
|