File: vtkTrimmedExtrusionFilter.cxx

package info (click to toggle)
paraview 5.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 367,928 kB
  • sloc: cpp: 2,870,477; ansic: 1,329,317; python: 132,607; xml: 98,045; sh: 5,265; java: 4,541; yacc: 4,385; f90: 3,099; perl: 2,363; lex: 1,950; javascript: 1,574; objc: 143; makefile: 135; tcl: 59; pascal: 50; fortran: 27
file content (682 lines) | stat: -rw-r--r-- 21,321 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkTrimmedExtrusionFilter.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkTrimmedExtrusionFilter.h"

#include "vtkAbstractCellLocator.h"
#include "vtkCell.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkExecutive.h"
#include "vtkGenericCell.h"
#include "vtkIdList.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPolyData.h"
#include "vtkSMPThreadLocalObject.h"
#include "vtkSMPTools.h"
#include "vtkStaticCellLocator.h"

#include <cmath>

vtkStandardNewMacro(vtkTrimmedExtrusionFilter);
vtkCxxSetObjectMacro(vtkTrimmedExtrusionFilter, Locator, vtkAbstractCellLocator);

namespace
{

//------------------------------------------------------------------------------
// The threaded core of the algorithm.
template <typename T>
struct ExtrudePoints
{
  vtkIdType NPts;
  T* InPoints;
  T* Points;
  unsigned char* Hits;
  vtkAbstractCellLocator* Locator;
  double ExtrusionDirection[3];
  double BoundsCenter[3];
  double BoundsLength;
  double Tol;

  // Don't want to allocate working arrays on every thread invocation. Thread local
  // storage eliminates lots of new/delete.
  vtkSMPThreadLocalObject<vtkGenericCell> Cell;

  ExtrudePoints(vtkIdType npts, T* inPts, T* points, unsigned char* hits,
    vtkAbstractCellLocator* loc, double ed[3], double bds[6])
    : NPts(npts)
    , InPoints(inPts)
    , Points(points)
    , Hits(hits)
    , Locator(loc)
  {
    this->ExtrusionDirection[0] = ed[0];
    this->ExtrusionDirection[1] = ed[1];
    this->ExtrusionDirection[2] = ed[2];
    vtkMath::Normalize(this->ExtrusionDirection);

    this->BoundsCenter[0] = (bds[0] + bds[1]) / 2.0;
    this->BoundsCenter[1] = (bds[2] + bds[3]) / 2.0;
    this->BoundsCenter[2] = (bds[4] + bds[5]) / 2.0;

    this->BoundsLength = sqrt((bds[1] - bds[0]) * (bds[1] - bds[0]) +
      (bds[3] - bds[2]) * (bds[3] - bds[2]) + (bds[5] - bds[4]) * (bds[5] - bds[4]));

    this->Tol = 0.000001 * this->BoundsLength;
  }

  void Initialize() {}

  void operator()(vtkIdType ptId, vtkIdType endPtId)
  {
    const T* xi = this->InPoints + 3 * ptId;
    T* x = this->Points + 3 * ptId;
    T* xo = this->Points + 3 * (this->NPts + ptId);
    double len, p0[3], p1[3];
    const double* ed = this->ExtrusionDirection;
    double t, pc[3], xint[3];
    vtkIdType cellId;
    int subId;
    unsigned char* hits = this->Hits + ptId;
    vtkGenericCell*& cell = this->Cell.Local();

    for (; ptId < endPtId; ++ptId, xi += 3, x += 3, xo += 3, ++hits)
    {
      // Copy input points to output
      x[0] = xi[0];
      x[1] = xi[1];
      x[2] = xi[2];

      // Find a extrusion ray of appropriate length
      len = sqrt((x[0] - this->BoundsCenter[0]) * (x[0] - this->BoundsCenter[0]) +
              (x[1] - this->BoundsCenter[1]) * (x[1] - this->BoundsCenter[1]) +
              (x[2] - this->BoundsCenter[2]) * (x[2] - this->BoundsCenter[2])) +
        this->BoundsLength;

      p0[0] = x[0] - len * ed[0];
      p0[1] = x[1] - len * ed[1];
      p0[2] = x[2] - len * ed[2];
      p1[0] = x[0] + len * ed[0];
      p1[1] = x[1] + len * ed[1];
      p1[2] = x[2] + len * ed[2];

      // Intersect the surface and update whether a successful intersection hit or not
      *hits = this->Locator->IntersectWithLine(p0, p1, this->Tol, t, xint, pc, subId, cellId, cell);
      if (*hits > 0)
      {
        xo[0] = static_cast<T>(xint[0]);
        xo[1] = static_cast<T>(xint[1]);
        xo[2] = static_cast<T>(xint[2]);
      }
      else
      {
        xo[0] = xi[0];
        xo[1] = xi[1];
        xo[2] = xi[2];
      }
    }
  }

  void Reduce() {}

  static void Execute(vtkIdType numPts, T* inPts, T* points, unsigned char* hits,
    vtkAbstractCellLocator* loc, double ed[3], double bds[6])
  {
    ExtrudePoints extrude(numPts, inPts, points, hits, loc, ed, bds);
    vtkSMPTools::For(0, numPts, extrude);
  }
}; // ExtrudePoints

} // anonymous namespace

//------------------------------------------------------------------------------
// Create object with normal extrusion type, capping on, scale factor=1.0,
// vector (0,0,1), and extrusion point (0,0,0).
vtkTrimmedExtrusionFilter::vtkTrimmedExtrusionFilter()
{
  this->SetNumberOfInputPorts(2);

  this->Capping = 1;

  this->ExtrusionDirection[0] = 0.0;
  this->ExtrusionDirection[1] = 0.0;
  this->ExtrusionDirection[2] = 1.0;

  this->ExtrusionStrategy = vtkTrimmedExtrusionFilter::BOUNDARY_EDGES;
  this->CappingStrategy = vtkTrimmedExtrusionFilter::MAXIMUM_DISTANCE;

  this->Locator = nullptr;
}

//------------------------------------------------------------------------------
// Destructor
vtkTrimmedExtrusionFilter::~vtkTrimmedExtrusionFilter()
{
  this->SetLocator(nullptr);
}

//------------------------------------------------------------------------------
int vtkTrimmedExtrusionFilter::RequestData(vtkInformation* vtkNotUsed(request),
  vtkInformationVector** inputVector, vtkInformationVector* outputVector)
{
  // get the info objects
  vtkInformation* inInfo = inputVector[0]->GetInformationObject(0);
  vtkInformation* in2Info = inputVector[1]->GetInformationObject(0);
  vtkInformation* outInfo = outputVector->GetInformationObject(0);

  vtkDebugMacro(<< "Executing trimmed extrusion");

  // get the input and output
  vtkPolyData* input = vtkPolyData::SafeDownCast(inInfo->Get(vtkDataObject::DATA_OBJECT()));
  vtkPolyData* surface = vtkPolyData::SafeDownCast(in2Info->Get(vtkDataObject::DATA_OBJECT()));
  vtkPolyData* output = vtkPolyData::SafeDownCast(outInfo->Get(vtkDataObject::DATA_OBJECT()));

  if (!input || !output)
  {
    vtkErrorMacro(<< "Missing input and/or output!");
    return 1;
  }

  if (!surface)
  {
    vtkErrorMacro(<< "Missing trim surface!");
    return 1;
  }
  if (surface->GetNumberOfPoints() < 1 || surface->GetNumberOfCells() < 1)
  {
    vtkErrorMacro(<< "Empty trim surface!");
    return 1;
  }

  // Initialize / check input
  //
  vtkIdType numPts = input->GetNumberOfPoints();
  vtkIdType numCells = input->GetNumberOfCells();

  if (numPts < 1 || numCells < 1)
  {
    vtkErrorMacro(<< "No data to extrude!");
    return 1;
  }

  if (vtkMath::Norm(this->ExtrusionDirection) <= 0.0)
  {
    vtkErrorMacro(<< "Must have nonzero extrusion direction");
    return 1;
  }

  // Generate the new points. Basically replicate points, except the new
  // point lies at the intersection of ray (in the extrusion direction)
  // against the trim surface. Also keep track if there are misses and use
  // this information later for capping (if necessary).
  vtkPointData* pd = input->GetPointData();
  vtkPointData* outputPD = output->GetPointData();
  outputPD->CopyNormalsOff();
  outputPD->CopyAllocate(pd, 2 * numPts);
  for (vtkIdType i = 0; i < numPts; ++i)
  {
    outputPD->CopyData(pd, i, i);
    outputPD->CopyData(pd, i, numPts + i);
  }

  vtkPoints* newPts = vtkPoints::New();
  newPts->SetDataType(input->GetPoints()->GetDataType());
  newPts->SetNumberOfPoints(2 * numPts);
  output->SetPoints(newPts);

  // Extrude the points by intersecting with the trim surface. Use a cell
  // locator to accelerate intersection operations.
  //
  if (this->Locator == nullptr)
  {
    this->Locator = vtkStaticCellLocator::New();
  }
  this->Locator->SetDataSet(surface);
  this->Locator->BuildLocator();
  double surfaceBds[6];
  surface->GetBounds(surfaceBds);

  // This performs the intersection of the extrusion ray. If a hit, the xyz
  // of the intersection point is used and hit[i] set to 1. If not, the xyz
  // is set to the xyz of the generating point and hit[i] remains 0. Later we
  // can use hit value to control the extrusion.
  unsigned char* hits = new unsigned char[numPts];
  void* inPtr = input->GetPoints()->GetVoidPointer(0);
  void* outPtr = newPts->GetVoidPointer(0);
  switch (newPts->GetDataType())
  {
    vtkTemplateMacro(ExtrudePoints<VTK_TT>::Execute(numPts, (VTK_TT*)inPtr, (VTK_TT*)outPtr, hits,
      this->Locator, this->ExtrusionDirection, surfaceBds));
  }

  // Prepare to generate the topology. Different topolgy is built depending
  // on extrusion strategy
  if (this->ExtrusionStrategy == vtkTrimmedExtrusionFilter::BOUNDARY_EDGES)
  {
    input->BuildLinks();
  }
  else // every edge is swept
  {
    input->BuildCells();
  }

  // Depending on the capping strategy, update the point coordinates. This has to be
  // done on a cell-by-cell basis. The adjustment is done in place.
  if (this->CappingStrategy != vtkTrimmedExtrusionFilter::INTERSECTION)
  {
    this->AdjustPoints(input, numPts, numCells, hits, newPts);
  }

  // Now generate the topology.
  this->ExtrudeEdges(input, output, numPts, numCells);

  // Cleanup, add the points to the output and clean up.
  newPts->Delete();
  output->Squeeze();

  return 1;
}

//------------------------------------------------------------------------------
// Based on the capping strategy, adjust the point coordinates along the
// extrusion ray. This requires looping over all cells, grabbing the cap
// points, and then adjusting them as appropriate. Note this could be
// templated / sped up if necessary.
void vtkTrimmedExtrusionFilter::AdjustPoints(
  vtkPolyData* input, vtkIdType numPts, vtkIdType numCells, unsigned char* hits, vtkPoints* newPts)
{
  vtkIdType cellId;
  vtkIdType npts;
  const vtkIdType* ptIds;
  vtkIdType pId;
  vtkIdType i;
  double len, sum, min, max, p0[3], p1[3], ed[3];
  double p10[3], dir, minDir = 1.0, maxDir = 1.0, mDir = 1.0;
  vtkIdType numHits;

  ed[0] = this->ExtrusionDirection[0];
  ed[1] = this->ExtrusionDirection[1];
  ed[2] = this->ExtrusionDirection[2];
  vtkMath::Normalize(ed);

  for (cellId = 0; cellId < numCells; ++cellId)
  {
    input->GetCellPoints(cellId, npts, ptIds);

    // Gather information about cell
    min = VTK_FLOAT_MAX;
    max = VTK_FLOAT_MIN;
    sum = 0.0;
    numHits = 0;
    for (i = 0; i < npts; ++i)
    {
      pId = ptIds[i];
      if (hits[pId] > 0)
      {
        numHits++;
        newPts->GetPoint(pId, p0);
        newPts->GetPoint(numPts + pId, p1);

        vtkMath::Subtract(p1, p0, p10);
        dir = vtkMath::Dot(p10, ed);
        dir = (dir > 0.0 ? 1.0 : -1.0);

        len = sqrt(vtkMath::Distance2BetweenPoints(p0, p1));

        if (len < min)
        {
          min = len;
          minDir = dir;
        }
        if (len > max)
        {
          max = len;
          maxDir = dir;
        }
        sum += dir * len;
      }
    } // over primitive points

    // Adjust points if there was an intersection. Note that the extrusion
    // intersection is along the estrusion ray in either the negative or
    // positive direction.
    if (numHits > 0)
    {
      len = fabs(sum / static_cast<double>(numHits));
      if (this->CappingStrategy == vtkTrimmedExtrusionFilter::AVERAGE_DISTANCE)
      {
        mDir = 1.0;
      }
      else if (this->CappingStrategy == vtkTrimmedExtrusionFilter::MINIMUM_DISTANCE)
      {
        mDir = minDir;
      }
      else // if ( this->CappingStrategy == vtkTrimmedExtrusionFilter::MAXIMUM_DISTANCE )
      {
        mDir = maxDir;
      }

      for (i = 0; i < npts; ++i)
      {
        pId = ptIds[i];
        newPts->GetPoint(pId, p0);
        p1[0] = p0[0] + mDir * len * ed[0];
        p1[1] = p0[1] + mDir * len * ed[1];
        p1[2] = p0[2] + mDir * len * ed[2];
        newPts->SetPoint(numPts + pId, p1);
      }
    } // if valid polygon

  } // for all cells
}

//------------------------------------------------------------------------------
vtkIdType vtkTrimmedExtrusionFilter::GetNeighborCount(
  vtkPolyData* input, vtkIdType inCellId, vtkIdType p1, vtkIdType p2, vtkIdList* cellIds)
{
  if (this->ExtrusionStrategy == vtkTrimmedExtrusionFilter::BOUNDARY_EDGES)
  {
    input->GetCellEdgeNeighbors(inCellId, p1, p2, cellIds);
    return cellIds->GetNumberOfIds();
  }
  else // every edge is swept
  {
    return 0;
  }
}

//------------------------------------------------------------------------------
// Somewhat modified from vtkLinearExtrusionFilter
void vtkTrimmedExtrusionFilter::ExtrudeEdges(
  vtkPolyData* input, vtkPolyData* output, vtkIdType numPts, vtkIdType numCells)
{
  vtkIdType inCellId, outCellId;
  int numEdges, dim;
  const vtkIdType* pts = nullptr;
  vtkIdType npts = 0;
  vtkIdType ptId, ncells, p1, p2;
  vtkIdType i, j;
  vtkCellArray *newLines = nullptr, *newPolys = nullptr, *newStrips = nullptr;
  vtkCell* edge;
  vtkIdList *cellIds, *cellPts;
  cellIds = vtkIdList::New();

  // Here is a big pain about ordering of cells. (Copy CellData)
  vtkIdList* lineIds;
  vtkIdList* polyIds;
  vtkIdList* stripIds;

  // Build cell data structure. Create a local copy
  vtkCellArray* inVerts = input->GetVerts();
  vtkCellArray* inLines = input->GetLines();
  vtkCellArray* inPolys = input->GetPolys();
  vtkCellArray* inStrips = input->GetStrips();

  // Allocate memory for output. We don't copy normals because surface geometry
  // is modified. Copy all points - this is the usual requirement and it makes
  // creation of skirt much easier.
  output->GetCellData()->CopyNormalsOff();
  output->GetCellData()->CopyAllocate(input->GetCellData(), 3 * input->GetNumberOfCells());

  if ((ncells = inVerts->GetNumberOfCells()) > 0)
  {
    newLines = vtkCellArray::New();
    newLines->AllocateEstimate(ncells, 2);
  }

  // arbitrary initial allocation size
  ncells = inLines->GetNumberOfCells() + inPolys->GetNumberOfCells() / 10 +
    inStrips->GetNumberOfCells() / 10;
  ncells = (ncells < 100 ? 100 : ncells);

  newPolys = vtkCellArray::New();
  newPolys->AllocateCopy(inPolys);

  vtkIdType progressInterval = numPts / 10 + 1;
  int abort = 0;

  // We need the cellid to copy cell data. Skip points and lines.
  inCellId = outCellId = 0;
  if (input->GetVerts())
  {
    inCellId += input->GetVerts()->GetNumberOfCells();
  }
  if (input->GetLines())
  {
    inCellId += input->GetLines()->GetNumberOfCells();
  }
  // We need to keep track of input cell ids used to generate
  // output cells so that we can copy cell data at the end.
  // We do not know how many lines, polys and strips we will get
  // before hand.
  lineIds = vtkIdList::New();
  polyIds = vtkIdList::New();
  stripIds = vtkIdList::New();

  // If capping is on, copy 2D cells to output (plus create cap)
  //
  if (this->Capping)
  {
    if (inPolys->GetNumberOfCells() > 0)
    {
      for (inPolys->InitTraversal(); inPolys->GetNextCell(npts, pts);)
      {
        newPolys->InsertNextCell(npts, pts);
        polyIds->InsertNextId(inCellId);
        newPolys->InsertNextCell(npts);
        for (i = 0; i < npts; i++)
        {
          newPolys->InsertCellPoint(pts[i] + numPts);
        }
        polyIds->InsertNextId(inCellId);
        ++inCellId;
      }
    }

    if (inStrips->GetNumberOfCells() > 0)
    {
      newStrips = vtkCellArray::New();
      newStrips->AllocateEstimate(ncells, 4);
      for (inStrips->InitTraversal(); inStrips->GetNextCell(npts, pts);)
      {
        newStrips->InsertNextCell(npts, pts);
        stripIds->InsertNextId(inCellId);
        newStrips->InsertNextCell(npts);
        for (i = 0; i < npts; i++)
        {
          newStrips->InsertCellPoint(pts[i] + numPts);
        }
        stripIds->InsertNextId(inCellId);
        ++inCellId;
      }
    }
  }
  this->UpdateProgress(0.4);

  // Loop over all polygons and triangle strips searching for boundary edges.
  // If boundary edge found, extrude quad polygons. (Since the extrusion is
  // linear and guaranteed planar, triangle are not needed.)
  //
  progressInterval = numCells / 10 + 1;
  vtkGenericCell* cell = vtkGenericCell::New();
  for (inCellId = 0; inCellId < numCells && !abort; inCellId++)
  {
    if (!(inCellId % progressInterval)) // manage progress / early abort
    {
      this->UpdateProgress(0.4 + 0.6 * inCellId / numCells);
      abort = this->GetAbortExecute();
    }

    input->GetCell(inCellId, cell);
    cellPts = cell->GetPointIds();

    if ((dim = cell->GetCellDimension()) == 0) // create lines from points
    {
      for (i = 0; i < cellPts->GetNumberOfIds(); i++)
      {
        newLines->InsertNextCell(2);
        ptId = cellPts->GetId(i);
        newLines->InsertCellPoint(ptId);
        newLines->InsertCellPoint(ptId + numPts);
        lineIds->InsertNextId(inCellId);
      }
    }

    else if (dim == 1) // create strips from lines
    {
      for (i = 0; i < (cellPts->GetNumberOfIds() - 1); i++)
      {
        p1 = cellPts->GetId(i);
        p2 = cellPts->GetId(i + 1);
        newPolys->InsertNextCell(4);
        newPolys->InsertCellPoint(p1);
        newPolys->InsertCellPoint(p2);
        newPolys->InsertCellPoint(p2 + numPts);
        newPolys->InsertCellPoint(p1 + numPts);
        polyIds->InsertNextId(inCellId);
      }
    }

    else if (dim == 2) // create strips from boundary edges
    {
      numEdges = cell->GetNumberOfEdges();
      for (i = 0; i < numEdges; i++)
      {
        edge = cell->GetEdge(i);
        for (j = 0; j < (edge->GetNumberOfPoints() - 1); j++)
        {
          p1 = edge->PointIds->GetId(j);
          p2 = edge->PointIds->GetId(j + 1);

          // Check if this is a boundary edge
          if (this->GetNeighborCount(input, inCellId, p1, p2, cellIds) < 1)
          {
            newPolys->InsertNextCell(4);
            newPolys->InsertCellPoint(p1);
            newPolys->InsertCellPoint(p2);
            newPolys->InsertCellPoint(p2 + numPts);
            newPolys->InsertCellPoint(p1 + numPts);
            polyIds->InsertNextId(inCellId);
          }
        } // for each sub-edge
      }   // for each edge
    }     // for each polygon or triangle strip
  }       // for each cell
  cell->Delete();

  // Now Copy cell data.
  outCellId = 0;
  j = lineIds->GetNumberOfIds();
  for (i = 0; i < j; ++i)
  {
    output->GetCellData()->CopyData(input->GetCellData(), lineIds->GetId(i), outCellId);
    ++outCellId;
  }
  j = polyIds->GetNumberOfIds();
  for (i = 0; i < j; ++i)
  {
    output->GetCellData()->CopyData(input->GetCellData(), polyIds->GetId(i), outCellId);
    ++outCellId;
  }
  j = stripIds->GetNumberOfIds();
  for (i = 0; i < j; ++i)
  {
    output->GetCellData()->CopyData(input->GetCellData(), stripIds->GetId(i), outCellId);
    ++outCellId;
  }
  lineIds->Delete();
  stripIds->Delete();
  polyIds->Delete();
  polyIds = nullptr;

  // Send data to output and release memory
  cellIds->Delete();

  if (newLines)
  {
    output->SetLines(newLines);
    newLines->Delete();
  }

  output->SetPolys(newPolys);
  newPolys->Delete();

  if (newStrips)
  {
    output->SetStrips(newStrips);
    newStrips->Delete();
  }
}

//------------------------------------------------------------------------------
// Specify the trim surface
void vtkTrimmedExtrusionFilter::SetTrimSurfaceConnection(vtkAlgorithmOutput* algOutput)
{
  this->SetInputConnection(1, algOutput);
}

//------------------------------------------------------------------------------
// Specify a source object at a specified table location.
void vtkTrimmedExtrusionFilter::SetTrimSurfaceData(vtkPolyData* pd)
{
  this->SetInputData(1, pd);
}

//------------------------------------------------------------------------------
// Get a pointer to a source object at a specified table location.
vtkPolyData* vtkTrimmedExtrusionFilter::GetTrimSurface()
{
  return vtkPolyData::SafeDownCast(this->GetExecutive()->GetInputData(1, 0));
}

//------------------------------------------------------------------------------
vtkPolyData* vtkTrimmedExtrusionFilter::GetTrimSurface(vtkInformationVector* sourceInfo)
{
  vtkInformation* info = sourceInfo->GetInformationObject(1);
  if (!info)
  {
    return nullptr;
  }
  return vtkPolyData::SafeDownCast(info->Get(vtkDataObject::DATA_OBJECT()));
}

//------------------------------------------------------------------------------
int vtkTrimmedExtrusionFilter::FillInputPortInformation(int vtkNotUsed(port), vtkInformation* info)
{
  info->Set(vtkAlgorithm::INPUT_IS_REPEATABLE(), 0);
  info->Set(vtkAlgorithm::INPUT_IS_OPTIONAL(), 0);
  info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkPolyData");
  return 1;
}

//------------------------------------------------------------------------------
void vtkTrimmedExtrusionFilter::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os, indent);

  os << indent << "Extrusion Direction: (" << this->ExtrusionDirection[0] << ", "
     << this->ExtrusionDirection[1] << ", " << this->ExtrusionDirection[2] << ")\n";

  os << indent << "Capping: " << (this->Capping ? "On\n" : "Off\n");

  os << indent << "Extrusion Strategy: " << this->ExtrusionStrategy << "\n";
  os << indent << "Capping Strategy: " << this->CappingStrategy << "\n";

  os << indent << "Locator: " << this->Locator << "\n";
}