1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
|
;;;# ParenScript Language Reference
;;; This chapters describes the core constructs of ParenScript, as
;;; well as its compilation model. This chapter is aimed to be a
;;; comprehensive reference for ParenScript developers. Programmers
;;; looking for how to tweak the ParenScript compiler itself should
;;; turn to the ParenScript Internals chapter.
;;;# Statements and Expressions
;;;t \index{statement}
;;;t \index{expression}
;;; In contrast to Lisp, where everything is an expression, JavaScript
;;; makes the difference between an expression, which evaluates to a
;;; value, and a statement, which has no value. Examples for
;;; JavaScript statements are `for', `with' and `while'. Most
;;; ParenScript forms are expression, but certain special forms are
;;; not (the forms which are transformed to a JavaScript
;;; statement). All ParenScript expressions are statements
;;; though. Certain forms, like `IF' and `PROGN', generate different
;;; JavaScript constructs whether they are used in an expression
;;; context or a statement context. For example:
(+ i (if 1 2 3)) => i + (1 ? 2 : 3)
(if 1 2 3)
=> if (1) {
2;
} else {
3;
}
;;;# Symbol conversion
;;;t \index{symbol}
;;;t \index{symbol conversion}
;;; Lisp symbols are converted to JavaScript symbols by following a
;;; few simple rules. Special characters `!', `?', `#', `@', `%',
;;; '/', `*' and `+' get replaced by their written-out equivalents
;;; "bang", "what", "hash", "at", "percent", "slash",
;;; "start" and "plus" respectively. The `$' character is untouched.
!?#@% => bangwhathashatpercent
;;; The `-' is an indication that the following character should be
;;; converted to uppercase. Thus, `-' separated symbols are converted
;;; to camelcase. The `_' character however is left untouched.
bla-foo-bar => blaFooBar
;;; If you want a JavaScript symbol beginning with an uppercase, you
;;; can either use a leading `-', which can be misleading in a
;;; mathematical context, or a leading `*'.
*array => Array
;;; The `.' character is left as is in symbols. This allows the
;;; ParenScript programmer to use a practical shortcut when accessing
;;; slots or methods of JavaScript objects. Instead of writing
(slot-value foobar 'slot)
;;; we can write
foobar.slot
;;; A symbol beggining and ending with `+' or `*' is converted to all
;;; uppercase, to signify that this is a constant or a global
;;; variable.
*global-array* => GLOBALARRAY
*global-array*.length => GLOBALARRAY.length
;;;## Reserved Keywords
;;;t \index{keyword}
;;;t \index{reserved keywords}
;;; The following keywords and symbols are reserved in ParenScript,
;;; and should not be used as variable names.
! ~ ++ -- * / % + - << >> >>> < > <= >= == != ==== !== & ^ | && ||
*= /= %= += -= <<= >>= >>>= &= ^= |= 1- 1+
ABSTRACT AND AREF ARRAY BOOLEAN BREAK BYTE CASE CATCH CC-IF CHAR CLASS
COMMA CONST CONTINUE CREATE DEBUGGER DECF DEFAULT DEFUN DEFVAR DELETE
DO DOEACH DOLIST DOTIMES DOUBLE ELSE ENUM EQL EXPORT EXTENDS FALSE
FINAL FINALLY FLOAT FLOOR FOR FUNCTION GOTO IF IMPLEMENTS IMPORT IN INCF
INSTANCEOF INT INTERFACE JS LAMBDA LET LISP LIST LONG MAKE-ARRAY NATIVE NEW
NIL NOT OR PACKAGE PRIVATE PROGN PROTECTED PUBLIC RANDOM REGEX RETURN
SETF SHORT SLOT-VALUE STATIC SUPER SWITCH SYMBOL-MACROLET SYNCHRONIZED T
THIS THROW THROWS TRANSIENT TRY TYPEOF UNDEFINED UNLESS VAR VOID VOLATILE
WHEN WHILE WITH WITH-SLOTS
;;;# Literal values
;;;t \index{literal value}
;;;## Number literals
;;;t \index{number}
;;;t \index{number literal}
; number ::= a Lisp number
;;;
;;; ParenScript supports the standard JavaScript literal
;;; values. Numbers are compiled into JavaScript numbers.
1 => 1
123.123 => 123.123
;;; Note that the base is not conserved between Lisp and JavaScript.
#x10 => 16
;;;## String literals
;;;t \index{string}
;;;t \index{string literal}
; string ::= a Lisp string
;;; Lisp strings are converted into JavaScript literals.
"foobar" => 'foobar'
"bratzel bub" => 'bratzel bub'
;;; Escapes in Lisp are not converted to JavaScript escapes. However,
;;; to avoid having to use double backslashes when constructing a
;;; string, you can use the CL-INTERPOL library by Edi Weitz.
;;;## Array literals
;;;t \index{array}
;;;t \index{ARRAY}
;;;t \index{MAKE-ARRAY}
;;;t \index{AREF}
;;;t \index{array literal}
; (ARRAY {values}*)
; (MAKE-ARRAY {values}*)
; (AREF array index)
;
; values ::= a ParenScript expression
; array ::= a ParenScript expression
; index ::= a ParenScript expression
;;; Array literals can be created using the `ARRAY' form.
(array) => [ ]
(array 1 2 3) => [ 1, 2, 3 ]
(array (array 2 3)
(array "foobar" "bratzel bub"))
=> [ [ 2, 3 ], [ 'foobar', 'bratzel bub' ] ]
;;; Arrays can also be created with a call to the `Array' function
;;; using the `MAKE-ARRAY'. The two forms have the exact same semantic
;;; on the JavaScript side.
(make-array) => new Array()
(make-array 1 2 3) => new Array(1, 2, 3)
(make-array
(make-array 2 3)
(make-array "foobar" "bratzel bub"))
=> new Array(new Array(2, 3), new Array('foobar', 'bratzel bub'))
;;; Indexing arrays in ParenScript is done using the form `AREF'. Note
;;; that JavaScript knows of no such thing as an array. Subscripting
;;; an array is in fact reading a property from an object. So in a
;;; semantic sense, there is no real difference between `AREF' and
;;; `SLOT-VALUE'.
;;;## Object literals
;;;t \index{CREATE}
;;;t \index{SLOT-VALUE}
;;;t \index{WITH-SLOTS}
;;;t \index{object literal}
;;;t \index{object}
;;;t \index{object property}
;;;t \index{property}
; (CREATE {name value}*)
; (SLOT-VALUE object slot-name)
; (WITH-SLOTS ({slot-name}*) object body)
;
; name ::= a ParenScript symbol or a Lisp keyword
; value ::= a ParenScript expression
; object ::= a ParenScript object expression
; slot-name ::= a quoted Lisp symbol
; body ::= a list of ParenScript statements
;;;
;;; Object literals can be create using the `CREATE' form. Arguments
;;; to the `CREATE' form is a list of property names and values. To be
;;; more "lispy", the property names can be keywords.
(create :foo "bar" :blorg 1)
=> { foo : 'bar',
blorg : 1 }
(create :foo "hihi"
:blorg (array 1 2 3)
:another-object (create :schtrunz 1))
=> { foo : 'hihi',
blorg : [ 1, 2, 3 ],
anotherObject : { schtrunz : 1 } }
;;; Object properties can be accessed using the `SLOT-VALUE' form,
;;; which takes an object and a slot-name.
(slot-value an-object 'foo) => anObject.foo
;;; A programmer can also use the "." symbol notation explained above.
an-object.foo => anObject.foo
;;; The form `WITH-SLOTS' can be used to bind the given slot-name
;;; symbols to a macro that will expand into a `SLOT-VALUE' form at
;;; expansion time.
(with-slots (a b c) this
(+ a b c))
=> this.a + this.b + this.c;
;;;## Regular Expression literals
;;;t \index{REGEX}
;;;t \index{regular expression}
;;;t \index{CL-INTERPOL}
; (REGEX regex)
;
; regex ::= a Lisp string
;;; Regular expressions can be created by using the `REGEX' form. If
;;; the argument does not start with a slash, it is surrounded by
;;; slashes to make it a proper JavaScript regex. If the argument
;;; starts with a slash it is left as it is. This makes it possible
;;; to use modifiers such as slash-i (case-insensitive) or
;;; slash-g (match-globally (all)).
(regex "foobar") => /foobar/
(regex "/foobar/i") => /foobar/i
;;; Here CL-INTERPOL proves really useful.
(regex #?r"/([^\s]+)foobar/i") => /([^\s]+)foobar/i
;;;## Literal symbols
;;;t \index{T}
;;;t \index{FALSE}
;;;t \index{NIL}
;;;t \index{UNDEFINED}
;;;t \index{THIS}
;;;t \index{literal symbols}
;;;t \index{null}
;;;t \index{true}
; T, FALSE, NIL, UNDEFINED, THIS
;;; The Lisp symbols `T' and `FALSE' are converted to their JavaScript
;;; boolean equivalents `true' and `false'.
T => true
FALSE => false
;;; The Lisp symbol `NIL' is converted to the JavaScript keyword
;;; `null'.
NIL => null
;;; The Lisp symbol `UNDEFINED' is converted to the JavaScript keyword
;;; `undefined'.
UNDEFINED => undefined
;;; The Lisp symbol `THIS' is converted to the JavaScript keyword
;;; `this'.
THIS => this
;;;# Variables
;;;t \index{variable}
;;;t \index{symbol}
; variable ::= a Lisp symbol
;;; All the other literal Lisp values that are not recognized as
;;; special forms or symbol macros are converted to JavaScript
;;; variables. This extreme freedom is actually quite useful, as it
;;; allows the ParenScript programmer to be flexible, as flexible as
;;; JavaScript itself.
variable => variable
a-variable => aVariable
*math => Math
*math.floor => Math.floor
;;;# Function calls and method calls
;;;t \index{function}
;;;t \index{function call}
;;;t \index{method}
;;;t \index{method call}
; (function {argument}*)
; (method object {argument}*)
;
; function ::= a ParenScript expression or a Lisp symbol
; method ::= a Lisp symbol beginning with .
; object ::= a ParenScript expression
; argument ::= a ParenScript expression
;;; Any list passed to the JavaScript that is not recognized as a
;;; macro or a special form (see "Macro Expansion" below) is
;;; interpreted as a function call. The function call is converted to
;;; the normal JavaScript function call representation, with the
;;; arguments given in paren after the function name.
(blorg 1 2) => blorg(1, 2)
(foobar (blorg 1 2) (blabla 3 4) (array 2 3 4))
=> foobar(blorg(1, 2), blabla(3, 4), [ 2, 3, 4 ])
((aref foo i) 1 2) => foo[i](1, 2)
;;; A method call is a function call where the function name is a
;;; symbol and begins with a "." . In a method call, the name of the
;;; function is append to its first argument, thus reflecting the
;;; method call syntax of JavaScript. Please note that most method
;;; calls can be abbreviated using the "." trick in symbol names (see
;;; "Symbol Conversion" above).
(.blorg this 1 2) => this.blorg(1, 2)
(this.blorg 1 2) => this.blorg(1, 2)
(.blorg (aref foobar 1) NIL T)
=> foobar[1].blorg(null, true)
;;;# Operator Expressions
;;;t \index{operator}
;;;t \index{operator expression}
;;;t \index{assignment operator}
;;;t \index{EQL}
;;;t \index{NOT}
;;;t \index{AND}
;;;t \index{OR}
; (operator {argument}*)
; (single-operator argument)
;
; operator ::= one of *, /, %, +, -, <<, >>, >>>, < >, EQL,
; ==, !=, =, ===, !==, &, ^, |, &&, AND, ||, OR.
; single-operator ::= one of INCF, DECF, ++, --, NOT, !
; argument ::= a ParenScript expression
;;; Operator forms are similar to function call forms, but have an
;;; operator as function name.
;;;
;;; Please note that `=' is converted to `==' in JavaScript. The `='
;;; ParenScript operator is not the assignment operator. Unlike
;;; JavaScript, ParenScript supports multiple arguments to the
;;; operators.
(* 1 2) => 1 * 2
(= 1 2) => 1 == 2
(eql 1 2) => 1 == 2
;;; Note that the resulting expression is correctly parenthized,
;;; according to the JavaScript operator precedence that can be found
;;; in table form at:
http://www.codehouse.com/javascript/precedence/
(* 1 (+ 2 3 4) 4 (/ 6 7))
=> 1 * (2 + 3 + 4) * 4 * (6 / 7)
;;; The pre/post increment and decrement operators are also
;;; available. `INCF' and `DECF' are the pre-incrementing and
;;; pre-decrementing operators, and `++' and `--' are the
;;; post-decrementing version of the operators. These operators can
;;; take only one argument.
(++ i) => i++
(-- i) => i--
(incf i) => ++i
(decf i) => --i
;;; The `1+' and `1-' operators are shortforms for adding and
;;; substracting 1.
(1- i) => i - 1
(1+ i) => i + 1
;;; The `not' operator actually optimizes the code a bit. If `not' is
;;; used on another boolean-returning operator, the operator is
;;; reversed.
(not (< i 2)) => i >= 2
(not (eql i 2)) => i != 2
;;;# Body forms
;;;t \index{body form}
;;;t \index{PROGN}
;;;t \index{body statement}
; (PROGN {statement}*) in statement context
; (PROGN {expression}*) in expression context
;
; statement ::= a ParenScript statement
; expression ::= a ParenScript expression
;;; The `PROGN' special form defines a sequence of statements when
;;; used in a statement context, or sequence of expression when used
;;; in an expression context. The `PROGN' special form is added
;;; implicitly around the branches of conditional executions forms,
;;; function declarations and iteration constructs.
;;; For example, in a statement context:
(progn (blorg i) (blafoo i))
=> blorg(i);
blafoo(i);
;;; In an expression context:
(+ i (progn (blorg i) (blafoo i)))
=> i + (blorg(i), blafoo(i))
;;; A `PROGN' form doesn't lead to additional indentation or
;;; additional braces around it's body.
;;;# Function Definition
;;;t \index{function}
;;;t \index{method}
;;;t \index{function definition}
;;;t \index{DEFUN}
;;;t \index{LAMBDA}
;;;t \index{closure}
;;;t \index{anonymous function}
; (DEFUN name ({argument}*) body)
; (LAMBDA ({argument}*) body)
;
; name ::= a Lisp Symbol
; argument ::= a Lisp symbol
; body ::= a list of ParenScript statements
;;; As in Lisp, functions are defined using the `DEFUN' form, which
;;; takes a name, a list of arguments, and a function body. An
;;; implicit `PROGN' is added around the body statements.
(defun a-function (a b)
(return (+ a b)))
=> function aFunction(a, b) {
return a + b;
}
;;; Anonymous functions can be created using the `LAMBDA' form, which
;;; is the same as `DEFUN', but without function name. In fact,
;;; `LAMBDA' creates a `DEFUN' with an empty function name.
(lambda (a b) (return (+ a b)))
=> function (a, b) {
return a + b;
}
;;;# Assignment
;;;t \index{assignment}
;;;t \index{SETF}
;;;t \index{assignment operator}
; (SETF {lhs rhs}*)
;
; lhs ::= a ParenScript left hand side expression
; rhs ::= a ParenScript expression
;;; Assignment is done using the `SETF' form, which is transformed
;;; into a series of assignments using the JavaScript `=' operator.
(setf a 1) => a = 1
(setf a 2 b 3 c 4 x (+ a b c))
=> a = 2;
b = 3;
c = 4;
x = a + b + c;
;;; The `SETF' form can transform assignments of a variable with an
;;; operator expression using this variable into a more "efficient"
;;; assignment operator form. For example:
(setf a (1+ a)) => a++
(setf a (* 2 3 4 a 4 a)) => a *= 2 * 3 * 4 * 4 * a
(setf a (- 1 a)) => a = 1 - a
;;;# Single argument statements
;;;t \index{single-argument statement}
;;;t \index{RETURN}
;;;t \index{THROW}
;;;t \index{THROW}
;;;t \index{function}
; (RETURN {value}?)
; (THROW {value}?)
;
; value ::= a ParenScript expression
;;; The single argument statements `return' and `throw' are generated
;;; by the form `RETURN' and `THROW'. `THROW' has to be used inside a
;;; `TRY' form. `RETURN' is used to return a value from a function
;;; call.
(return 1) => return 1
(throw "foobar") => throw 'foobar'
;;;# Single argument expression
;;;t \index{single-argument expression}
;;;t \index{object creation}
;;;t \index{object deletion}
;;;t \index{DELETE}
;;;t \index{VOID}
;;;t \index{TYPEOF}
;;;t \index{INSTANCEOF}
;;;t \index{NEW}
;;;t \index{new}
; (DELETE {value})
; (VOID {value})
; (TYPEOF {value})
; (INSTANCEOF {value})
; (NEW {value})
;
; value ::= a ParenScript expression
;;; The single argument expressions `delete', `void', `typeof',
;;; `instanceof' and `new' are generated by the forms `DELETE',
;;; `VOID', `TYPEOF', `INSTANCEOF' and `NEW'. They all take a
;;; ParenScript expression.
(delete (new (*foobar 2 3 4))) => delete new Foobar(2, 3, 4)
(if (= (typeof blorg) *string)
(alert (+ "blorg is a string: " blorg))
(alert "blorg is not a string"))
=> if (typeof blorg == String) {
alert('blorg is a string: ' + blorg);
} else {
alert('blorg is not a string');
}
;;;# Conditional Statements
;;;t \index{conditional statements}
;;;t \index{IF}
;;;t \index{WHEN}
;;;t \index{UNLESS}
;;;t \index{conditionals}
; (IF conditional then {else})
; (WHEN condition then)
; (UNLESS condition then)
;
; condition ::= a ParenScript expression
; then ::= a ParenScript statement in statement context, a
; ParenScript expression in expression context
; else ::= a ParenScript statement in statement context, a
; ParenScript expression in expression context
;;; The `IF' form compiles to the `if' javascript construct. An
;;; explicit `PROGN' around the then branch and the else branch is
;;; needed if they consist of more than one statement. When the `IF'
;;; form is used in an expression context, a JavaScript `?', `:'
;;; operator form is generated.
(if (blorg.is-correct)
(progn (carry-on) (return i))
(alert "blorg is not correct!"))
=> if (blorg.isCorrect()) {
carryOn();
return i;
} else {
alert('blorg is not correct!');
}
(+ i (if (blorg.add-one) 1 2))
=> i + (blorg.addOne() ? 1 : 2)
;;; The `WHEN' and `UNLESS' forms can be used as shortcuts for the
;;; `IF' form.
(when (blorg.is-correct)
(carry-on)
(return i))
=> if (blorg.isCorrect()) {
carryOn();
return i;
}
(unless (blorg.is-correct)
(alert "blorg is not correct!"))
=> if (!blorg.isCorrect()) {
alert('blorg is not correct!');
}
;;;# Variable declaration
;;;t \index{variable}
;;;t \index{variable declaration}
;;;t \index{binding}
;;;t \index{scoping}
;;;t \index{DEFVAR}
;;;t \index{LET}
; (DEFVAR var {value}?)
; (LET ({var | (var value)) body)
;
; var ::= a Lisp symbol
; value ::= a ParenScript expression
; body ::= a list of ParenScript statements
;;; Variables (either local or global) can be declared using the
;;; `DEFVAR' form, which is similar to its equivalent form in
;;; Lisp. The `DEFVAR' is converted to "var ... = ..." form in
;;; JavaScript.
(defvar *a* (array 1 2 3)) => var A = [ 1, 2, 3 ];
(if (= i 1)
(progn (defvar blorg "hallo")
(alert blorg))
(progn (defvar blorg "blitzel")
(alert blorg)))
=> if (i == 1) {
var blorg = 'hallo';
alert(blorg);
} else {
var blorg = 'blitzel';
alert(blorg);
}
;;; A more lispy way to declare local variable is to use the `LET'
;;; form, which is similar to its Lisp form.
(if (= i 1)
(let ((blorg "hallo"))
(alert blorg))
(let ((blorg "blitzel"))
(alert blorg)))
=> if (i == 1) {
var blorg = 'hallo';
alert(blorg);
} else {
var blorg = 'blitzel';
alert(blorg);
}
;;; However, beware that scoping in Lisp and JavaScript are quite
;;; different. For example, don't rely on closures capturing local
;;; variables in the way you'd think they would.
;;;# Iteration constructs
;;;t \index{iteration}
;;;t \index{iteration construct}
;;;t \index{loop}
;;;t \index{array traversal}
;;;t \index{property}
;;;t \index{object property}
;;;t \index{DO}
;;;t \index{DOTIMES}
;;;t \index{DOLIST}
;;;t \index{DOEACH}
;;;t \index{WHILE}
; (DO ({var | (var {init}? {step}?)}*) (end-test) body)
; (DOTIMES (var numeric-form) body)
; (DOLIST (var list-form) body)
; (DOEACH (var object) body)
; (WHILE end-test body)
;
; var ::= a Lisp symbol
; numeric-form ::= a ParenScript expression resulting in a number
; list-form ::= a ParenScript expression resulting in an array
; object ::= a ParenScript expression resulting in an object
; init ::= a ParenScript expression
; step ::= a ParenScript expression
; end-test ::= a ParenScript expression
; body ::= a list of ParenScript statements
;;; The `DO' form, which is similar to its Lisp form, is transformed
;;; into a JavaScript `for' statement. Note that the ParenScript `DO'
;;; form does not have a return value, that is because `for' is a
;;; statement and not an expression in JavaScript.
(do ((i 0 (1+ i))
(l (aref blorg i) (aref blorg i)))
((or (= i blorg.length)
(eql l "Fumitastic")))
(document.write (+ "L is " l)))
=> for (var i = 0, l = blorg[i];
!(i == blorg.length || l == 'Fumitastic');
i = i + 1, l = blorg[i]) {
document.write('L is ' + l);
}
;;; The `DOTIMES' form, which lets a variable iterate from 0 upto an
;;; end value, is a shortcut for `DO'.
(dotimes (i blorg.length)
(document.write (+ "L is " (aref blorg i))))
=> for (var i = 0; i < blorg.length; i = i + 1) {
document.write('L is ' + blorg[i]);
}
;;; The `DOLIST' form is a shortcut for iterating over an array. Note
;;; that this form creates temporary variables using a function called
;;; `JS-GENSYM', which is similar to its Lisp counterpart `GENSYM'.
(dolist (l blorg)
(document.write (+ "L is " l)))
=> {
var tmpArr1 = blorg;
for (var tmpI2 = 0; tmpI2 < tmpArr1.length;
tmpI2 = tmpI2 + 1) {
var l = tmpArr1[tmpI2];
document.write('L is ' + l);
};
}
;;; The `DOEACH' form is converted to a `for (var .. in ..)' form in
;;; JavaScript. It is used to iterate over the enumerable properties
;;; of an object.
(doeach (i object)
(document.write (+ i " is " (aref object i))))
=> for (var i in object) {
document.write(i + ' is ' + object[i]);
}
;;; The `WHILE' form is transformed to the JavaScript form `while',
;;; and loops until a termination test evaluates to false.
(while (film.is-not-finished)
(this.eat (new *popcorn)))
=> while (film.isNotFinished()) {
this.eat(new Popcorn);
}
;;;# The `CASE' statement
;;;t \index{CASE}
;;;t \index{SWITCH}
;;;t \index{switch}
; (CASE case-value clause*)
;
; clause ::= (value body) | ((value*) body) | t-clause
; case-value ::= a ParenScript expression
; value ::= a ParenScript expression
; t-clause ::= {t | otherwise | default} body
; body ::= a list of ParenScript statements
;;; The Lisp `CASE' form is transformed to a `switch' statement in
;;; JavaScript. Note that `CASE' is not an expression in
;;; ParenScript.
(case (aref blorg i)
((1 "one") (alert "one"))
(2 (alert "two"))
(t (alert "default clause")))
=> switch (blorg[i]) {
case 1: ;
case 'one':
alert('one');
break;
case 2:
alert('two');
break;
default: alert('default clause');
}
; (SWITCH case-value clause*)
; clause ::= (value body) | (default body)
;;; The `SWITCH' form is the equivalent to a javascript switch statement.
;;; No break statements are inserted, and the default case is named `DEFAULT'.
;;; The `CASE' form should be prefered in most cases.
(switch (aref blorg i)
(1 (alert "If I get here"))
(2 (alert "I also get here"))
(default (alert "I always get here")))
=> switch (blorg[i]) {
case 1: alert('If I get here');
case 2: alert('I also get here');
default: alert('I always get here');
}
;;;# The `WITH' statement
;;;t \index{WITH}
;;;t \index{dynamic scope}
;;;t \index{binding}
;;;t \index{scoping}
;;;t \index{closure}
; (WITH (object) body)
;
; object ::= a ParenScript expression evaluating to an object
; body ::= a list of ParenScript statements
;;; The `WITH' form is compiled to a JavaScript `with' statements, and
;;; adds the object `object' as an intermediary scope objects when
;;; executing the body.
(with ((create :foo "foo" :i "i"))
(alert (+ "i is now intermediary scoped: " i)))
=> with ({ foo : 'foo',
i : 'i' }) {
alert('i is now intermediary scoped: ' + i);
}
;;;# The `TRY' statement
;;;t \index{TRY}
;;;t \index{CATCH}
;;;t \index{FINALLY}
;;;t \index{exception}
;;;t \index{error handling}
; (TRY body {(:CATCH (var) body)}? {(:FINALLY body)}?)
;
; body ::= a list of ParenScript statements
; var ::= a Lisp symbol
;;; The `TRY' form is converted to a JavaScript `try' statement, and
;;; can be used to catch expressions thrown by the `THROW'
;;; form. The body of the catch clause is invoked when an exception
;;; is catched, and the body of the finally is always invoked when
;;; leaving the body of the `TRY' form.
(try (throw "i")
(:catch (error)
(alert (+ "an error happened: " error)))
(:finally
(alert "Leaving the try form")))
=> try {
throw 'i';
} catch (error) {
alert('an error happened: ' + error);
} finally {
alert('Leaving the try form');
}
;;;# The HTML Generator
;;;t \index{HTML}
;;;t \index{HTML generation}
;;;t \index{CSS}
;;;t \index{CSS generation}
; (HTML html-expression)
;;; The HTML generator of ParenScript is very similar to the HTML
;;; generator included in AllegroServe. It accepts the same input
;;; forms as the AllegroServer HTML generator. However, non-HTML
;;; construct are compiled to JavaScript by the ParenScript
;;; compiler. The resulting expression is a JavaScript expression.
(html ((:a :href "foobar") "blorg"))
=> '<a href=\"foobar\">blorg</a>'
(html ((:a :href (generate-a-link)) "blorg"))
=> '<a href=\"' + generateALink() + '\">blorg</a>'
;;; We can recursively call the JS compiler in a HTML expression.
(document.write
(html ((:a :href "#"
:onclick (js-inline (transport))) "link")))
=> document.write
('<a href=\"#\" onclick=\"' + 'javascript:transport();' + '\">link</a>')
; (CSS-INLINE css-expression)
;;; Stylesheets can also be created in ParenScript.
(css-inline :color "red"
:font-size "x-small")
=> 'color:red;font-size:x-small'
(defun make-color-div(color-name)
(return (html ((:div :style (css-inline :color color-name))
color-name " looks like this."))))
=> function makeColorDiv(colorName) {
return '<div style=\"' + ('color:' + colorName) + '\">' + colorName
+ ' looks like this.</div>';
}
;;;# Macrology
;;;t \index{macro}
;;;t \index{macrology}
;;;t \index{DEFJSMACRO}
;;;t \index{MACROLET}
;;;t \index{SYMBOL-MACROLET}
;;;t \index{JS-GENSYM}
;;;t \index{compiler}
; (DEFJSMACRO name lambda-list macro-body)
; (MACROLET ({name lambda-list macro-body}*) body)
; (SYMBOL-MACROLET ({name macro-body}*) body)
; (JS-GENSYM {string}?)
;
; name ::= a Lisp symbol
; lambda-list ::= a lambda list
; macro-body ::= a Lisp body evaluating to ParenScript code
; body ::= a list of ParenScript statements
; string ::= a string
;;; ParenScript can be extended using macros, just like Lisp can be
;;; extended using Lisp macros. Using the special Lisp form
;;; `DEFJSMACRO', the ParenScript language can be
;;; extended. `DEFJSMACRO' adds the new macro to the toplevel macro
;;; environment, which is always accessible during ParenScript
;;; compilation. For example, the `1+' and `1-' operators are
;;; implemented using macros.
(defjsmacro 1- (form)
`(- ,form 1))
(defjsmacro 1+ (form)
`(+ ,form 1))
;;; A more complicated ParenScript macro example is the implementation
;;; of the `DOLIST' form (note how `JS-GENSYM', the ParenScript of
;;; `GENSYM', is used to generate new ParenScript variable names):
(defjsmacro dolist (i-array &rest body)
(let ((var (first i-array))
(array (second i-array))
(arrvar (js-gensym "arr"))
(idx (js-gensym "i")))
`(let ((,arrvar ,array))
(do ((,idx 0 (++ ,idx)))
((>= ,idx (slot-value ,arrvar 'length)))
(let ((,var (aref ,arrvar ,idx)))
,@body)))))
;;; Macros can be added dynamically to the macro environment by using
;;; the ParenScript `MACROLET' form (note that while `DEFJSMACRO' is a
;;; Lisp form, `MACROLET' and `SYMBOL-MACROLET' are ParenScript forms).
;;; ParenScript also supports symbol macros, which can be introduced
;;; using the ParenScript form `SYMBOL-MACROLET'. A new macro
;;; environment is created and added to the current macro environment
;;; list while compiling the body of the `SYMBOL-MACROLET' form. For
;;; example, the ParenScript `WITH-SLOTS' is implemented using symbol
;;; macros.
(defjsmacro with-slots (slots object &rest body)
`(symbol-macrolet ,(mapcar #'(lambda (slot)
`(,slot '(slot-value ,object ',slot)))
slots)
,@body))
;;;# The ParenScript Compiler
;;;t \index{compiler}
;;;t \index{ParenScript compiler}
;;;t \index{JS-COMPILE}
;;;t \index{JS-TO-STRINGS}
;;;t \index{JS-TO-STATEMENT-STRINGS}
;;;t \index{JS-TO-STRING}
;;;t \index{JS-TO-LINE}
;;;t \index{JS}
;;;t \index{JS-INLINE}
;;;t \index{JS-FILE}
;;;t \index{JS-SCRIPT}
;;;t \index{nested compilation}
; (JS-COMPILE expr)
; (JS-TO-STRINGS compiled-expr position)
; (JS-TO-STATEMENT-STRINGS compiled-expr position)
;
; compiled-expr ::= a compiled ParenScript expression
; position ::= a column number
;
; (JS-TO-STRING expression)
; (JS-TO-LINE expression)
;
; expression ::= a Lisp list of ParenScript code
;
; (JS body)
; (JS-INLINE body)
; (JS-FILE body)
; (JS-SCRIPT body)
;
; body ::= a list of ParenScript statements
;;; The ParenScript compiler can be invoked from withing Lisp and from
;;; within ParenScript itself. The primary API function is
;;; `JS-COMPILE', which takes a list of ParenScript, and returns an
;;; internal object representing the compiled ParenScript.
(js-compile '(foobar 1 2))
=> #<JS::FUNCTION-CALL {584AA5DD}>
;;; This internal object can be transformed to a string using the
;;; methods `JS-TO-STRINGS' and `JS-TO-STATEMENT-STRINGS', which
;;; interpret the ParenScript in expression and in statement context
;;; respectively. They take an additional parameter indicating the
;;; start-position on a line (please note that the indentation code is
;;; not perfect, and this string interface will likely be
;;; changed). They return a list of strings, where each string
;;; represents a new line of JavaScript code. They can be joined
;;; together to form a single string.
(js-to-strings (js-compile '(foobar 1 2)) 0)
=> ("foobar(1, 2)")
;;; As a shortcut, ParenScript provides the functions `JS-TO-STRING'
;;; and `JS-TO-LINE', which return the JavaScript string of the
;;; compiled expression passed as an argument.
(js-to-string '(foobar 1 2))
=> "foobar(1, 2)"
;;; For static ParenScript code, the macros `JS', `JS-INLINE',
;;; `JS-FILE' and `JS-SCRIPT' avoid the need to quote the ParenScript
;;; expression. All these forms add an implicit `PROGN' form around
;;; the body. `JS' returns a string of the compiled body, where the
;;; other expression return an expression that can be embedded in a
;;; HTML generation construct using the AllegroServe HTML
;;; generator. `JS-SCRIPT' generates a "SCRIPT" node, `JS-INLINE'
;;; generates a string to be used in node attributs, and `JS-FILE'
;;; prints the compiled ParenScript code to the HTML stream.
;;; These macros are also available inside ParenScript itself, and
;;; generate strings that can be used inside ParenScript code. Note
;;; that `JS-INLINE' in ParenScript is not the same `JS-INLINE' form
;;; as in Lisp, for example. The same goes for the other compilation
;;; macros.
|