File: refcard-nf.tex

package info (click to toggle)
pari 2.17.3-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 24,508 kB
  • sloc: ansic: 281,184; sh: 861; perl: 420; yacc: 214; makefile: 162; f90: 88
file content (570 lines) | stat: -rw-r--r-- 27,406 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
% Copyright (c) 2007-2024 Karim Belabas.
% Permission is granted to copy, distribute and/or modify this document
% under the terms of the GNU General Public License

% Reference Card for PARI-GP, Algebraic Number Theory.
% Author:
%  Karim Belabas
%  Universite de Bordeaux, 351 avenue de la Liberation, F-33405 Talence
%  email: Karim.Belabas@math.u-bordeaux.fr
%
% See refcard.tex for acknowledgements and thanks.
\def\TITLE{Algebraic Number Theory}
\input refmacro.tex
\def\p{\goth{p}}

\section{Binary Quadratic Forms}
%
\li{create $ax^2+bxy+cy^2$}{Qfb$(a,b,c)$ or Qfb$([a,b,c])$}
\li{reduce $x$ ($s =\sqrt{D}$, $l=\floor{s}$)}
   {qfbred$(x,\{\fl\},\{D\},\{l\},\{s\})$}
\li{return $[y,g]$, $g\in \text{SL}_2(\ZZ)$, $y = g\cdot x$ reduced}
   {qfbredsl2$(x)$}
\li{composition of forms}{$x$*$y$ {\rm or }qfbnucomp$(x,y,l)$}
\li{$n$-th power of form}{$x$\pow$n$ {\rm or }qfbnupow$(x,n)$}
\li{composition}{qfbcomp$(x,y)$}
\li{\dots without reduction}{qfbcompraw$(x,y)$}
\li{$n$-th power}{qfbpow$(x,n)$}
\li{\dots without reduction}{qfbpowraw$(x,n)$}
\li{prime form of disc. $x$ above prime $p$}{qfbprimeform$(x,p)$}
\li{class number of disc. $x$}{qfbclassno$(x)$}
\li{Hurwitz class number of disc. $x$}{qfbhclassno$(x)$}
\li{solve $Q(x,y) = n$ in integers}{qfbsolve$(Q,n)$}
\li{solve $x^2 + Dy^2 = p$, $p$ prime}{qfbcornacchia$(D,p)$}
\li{\dots $x^2 + Dy^2 = 4p$, $p$ prime}{qfbcornacchia$(D,4*p)$}

\section{Quadratic Fields}
%
\li{quadratic number $\omega=\sqrt x$ or $(1+\sqrt x)/2$}{quadgen$(x)$}
\li{minimal polynomial of $\omega$}{quadpoly$(x)$}
\li{discriminant of $\QQ(\sqrt{x})$}{quaddisc$(x)$}
\li{regulator of real quadratic field}{quadregulator$(x)$}
\li{fundamental unit in $O_D$, $D > 0$}{quadunit$(D,\{\kbd{'w}\})$}
\li{norm of fundamental unit in $O_D$}{quadunitnorm$(D)$}
\li{index of $O_{Df^2}^\times$ in $O_D^\times$}{quadunitindex$(D,f)$}
\li{class group of $\QQ(\sqrt{D})$}{quadclassunit$(D,\{\fl\},\{t\})$}
\li{Hilbert class field of $\QQ(\sqrt{D})$}{quadhilbert$(D,\{\fl\})$}
\li{\dots using specific class invariant ($D<0$)}{polclass$(D,\{\var{inv}\})$}
\li{test if $T$ is \kbd{polclass}$(D)$; if so return $D$}{polisclass$(T)$}
\li{ray class field modulo $f$ of $\QQ(\sqrt{D})$}{quadray$(D,f,\{\fl\})$}
\bigskip

\section{General Number Fields: Initializations}
The number field $K = \QQ[X]/(f)$ is given by irreducible $f\in\QQ[X]$.
We denote $\theta = \bar{X}$ the canonical root of $f$ in $K$.
A \var{nf} structure contains a maximal order and allows operations on
elements and ideals. A \var{bnf} adds class group and units. A \var{bnr} is
attached to ray class groups and class field theory. A \var{rnf} is attached
to relative extensions $L/K$.\hfill\break
%
\li{init number field structure \var{nf}}{nfinit$(f,\{\fl\})$}
\beginindentedkeys
  \li{known integer basis $B$}{nfinit$([f,B])$}
  \li{order maximal at $\var{vp}=[p_1,\dots,p_k]$}{nfinit$([f,\var{vp}])$}
  \li{order maximal at all $p \leq P$}{nfinit$([f,P])$}
  \li{certify maximal order}{nfcertify$(\var{nf})$}
\endindentedkeys
\subsec{nf members:}
\beginindentedkeys
\li{a monic $F\in \ZZ[X]$ defining $K$}{\var{nf}.pol}
\li{number of real/complex places}{\var{nf}.r1/r2/sign}
\li{discriminant of \var{nf}}{\var{nf}.disc}
\li{primes ramified in \var{nf}}{\var{nf}.p}
\li{$T_2$ matrix}{\var{nf}.t2}
\li{complex roots of $F$}{\var{nf}.roots}
\li{integral basis of $\ZZ_K$ as powers of $\theta$}{\var{nf}.zk}
\li{different/codifferent}{\var{nf}.diff{\rm, }\var{nf}.codiff}
\li{index $[\ZZ_K:\ZZ[X]/(F)]$}{\var{nf}.index}
\endindentedkeys
\li{recompute \var{nf}\ using current precision}{nfnewprec$(nf)$}
\li{init relative \var{rnf} $L = K[Y]/(g)$}{rnfinit$(\var{nf},g)$}
%
\li{init \var{bnf} structure}{bnfinit$(f, 1)$}
\subsec{bnf members: {\rm same as \var{nf}, plus}}
\beginindentedkeys
\li{underlying \var{nf}}{\var{bnf}.nf}
\li{class group, regulator}{\var{bnf}.clgp, \var{bnf}.reg}
\li{fundamental/torsion units}{\var{bnf}.fu{\rm, }\var{bnf}.tu}
\endindentedkeys
\li{add $S$-class group and units, yield \var{bnf}S}{bnfsunit$(\var{bnf},S)$}
\li{init class field structure \var{bnr}}{bnrinit$(\var{bnf},m,\{\fl\})$}
%
\subsec{bnr members: {\rm same as \var{bnf}, plus}}
\beginindentedkeys
\li{underlying \var{bnf}}{\var{bnr}.bnf}
\li{big ideal structure}{\var{bnr}.bid}
\li{modulus $m$}{\var{bnr}.mod}
\li{structure of $(\ZZ_K/m)^*$}{\var{bnr}.zkst}
\endindentedkeys

\smallskip
\section{Fields, subfields, embeddings}
\subsec{Defining polynomials, embeddings}
\li{(some) number fields with Galois group $G$}{nflist$(G)$}
\li{\dots and $|\text{disc}(K)| = N$ and $s$ complex places}{nflist$(G, N, \{s\})$}
\li{\dots and $a \leq |\text{disc}(K)| \leq b$}{nflist$(G, [a,b], \{s\})$}
\li{smallest poly defining $f=0$ (slow)}{polredabs$(f,\{\fl\})$}
\li{small poly defining $f=0$ (fast)}{polredbest$(f,\{\fl\})$}
\li{monic integral $g = C f(x/L)$}{poltomonic$(f,\{\&L\})$}
\li{random Tschirnhausen transform of $f$}{poltschirnhaus$(f)$}
\li{$\QQ[t]/(f) \subset \QQ[t]/(g)$ ? Isomorphic?}
   {nfisincl$(f,g)$, \kbd{nfisisom}}
\li{reverse polmod $a=A(t)\mod T(t)$}{modreverse$(a)$}
\li{compositum of $\QQ[t]/(f)$, $\QQ[t]/(g)$}{polcompositum$(f,g,\{\fl\})$}
\li{compositum of $K[t]/(f)$, $K[t]/(g)$}{nfcompositum$(\var{nf}, f,g,\{\fl\})$}
\li{splitting field of $K$ (degree divides $d$)}
   {nfsplitting$(\var{nf},\{d\})$}
\li{signs of real embeddings of $x$}{nfeltsign$(\var{nf},x,\{pl\})$}
\li{complex embeddings of $x$}{nfeltembed$(\var{nf},x,\{pl\})$}
\li{$T\in K[t]$, \# of real roots of $\sigma(T)\in\R[t]$}{nfpolsturm$(\var{nf},T,\{pl\})$}
\li{absolute Weil height}{nfweilheight$(\var{nf}, v)$}

\smallskip
\subsec{Subfields, polynomial factorization}
\li{subfields (of degree $d$) of \var{nf}}{nfsubfields$(\var{nf},\{d\})$}
\li{maximal subfields of \var{nf}}{nfsubfieldsmax$(\var{nf})$}
\li{maximal CM subfield of \var{nf}}{nfsubfieldscm$(\var{nf})$}
\li{$K_d \subset \QQ(\zeta_n)$, using Gaussian periods}
 {polsubcyclo$(n,d,\{v\})$}
\li{\dots using class field theory}{polsubcyclofast$(n,d)$}
\li{roots of unity in \var{nf}}{nfrootsof1$(\var{nf}\,)$}
\li{roots of $g$ belonging to \var{nf}}{nfroots$(\var{nf},g)$}
\li{factor $g$ in \var{nf}}{nffactor$(\var{nf},g)$}

\smallskip
\subsec{Linear and algebraic relations}
\li{poly of degree $\le k$ with root $x\in\CC$ or $\QQ_p$}{algdep$(x,k)$}
\li{alg. dep. with pol.~coeffs for series $s$}{seralgdep$(s,x,y)$}
\li{diff. dep. with pol.~coeffs for series $s$}{serdiffdep$(s,x,y)$}
\li{small linear rel.\ on coords of vector $x$}{lindep$(x)$}

\section{Basic Number Field Arithmetic (nf)}
Number field elements are \typ{INT}, \typ{FRAC}, \typ{POL}, \typ{POLMOD}, or
\typ{COL} (on integral basis \kbd{\var{nf}.zk}).
\smallskip
\subsec{Basic operations}
\li{$x+y$}{nfeltadd$(\var{nf},x,y)$}
\li{$x\times y$}{nfeltmul$(\var{nf},x,y)$}
\li{$x^n$, $n\in \ZZ$}{nfeltpow$(\var{nf},x,n)$}
\li{$x / y$}{nfeltdiv$(\var{nf},x,y)$}
\li{$q = x$\kbd{\bs/}$y := $\kbd{round}$(x/y)$}{nfeltdiveuc$(\var{nf},x,y)$}
\li{$r = x$\kbd{\%}$y := x - (x$\kbd{\bs/}$y)y$}{nfeltmod$(\var{nf},x,y)$}
\li{\dots $[q,r]$ as above}{nfeltdivrem$(\var{nf},x,y)$}
\li{reduce $x$ modulo ideal $A$}{nfeltreduce$(\var{nf},x,A)$}
\li{absolute trace $\text{Tr}_{K/\QQ} (x)$}{nfelttrace$(\var{nf},x)$}
\li{absolute norm $\text{N}_{K/\QQ} (x)$}{nfeltnorm$(\var{nf},x)$}

\newcolumn
\li{is $x$ a square?}{nfeltissquare$(\var{nf},x,\{\&y\})$}
\li{\dots an $n$-th power?}{nfeltispower$(\var{nf},x,n,\{\&y\})$}
\smallskip

\subsec{Multiplicative structure of $K^*$; $K^*/(K^*)^n$}
\li{valuation $v_\p(x)$}{nfeltval$(\var{nf},x,\p)$}
\li{\dots write $x = \pi^{v_\p(x)} y$}{nfeltval$(\var{nf},x,\p,\&y)$}
\li{quadratic Hilbert symbol (at $\p$)}
   {nfhilbert$(\var{nf},a,b,\{\p\})$}
\li{$b$ such that $x b^n = v$ is small}{idealredmodpower$(\var{nf},x,n)$}

\smallskip
\subsec{Maximal order and discriminant}
\li{integral basis of field $\QQ[x]/(f)$}{nfbasis$(f)$}
\li{field discriminant of $\QQ[x]/(f)$}{nfdisc$(f)$}
\li{\dots and factorization}{nfdiscfactors$(f)$}
\li{express $x$ on integer basis}{nfalgtobasis$(\var{nf},x)$}
\li{express element\ $x$ as a polmod}{nfbasistoalg$(\var{nf},x)$}

\smallskip
\subsec{Hecke Grossencharacters}
Let $K$ be a number field and $m$ a modulus. A gchar structure
describes the group of Hecke Grossencharacters of~$K$ of modulus~$m$
and allows computations with these characters. A character $\chi$
is described by its components modulo \var{gc}\kbd{.cyc}.
\smallskip
\li{init gchar structure \var{gc} for modulus \var{m}}{gcharinit$(\var{bnf},\var{m},\{cm\})$}
\subsec{gc members:}
\beginindentedkeys
\li{underlying \var{bnf}}{\var{gc}.bnf}
%\li{big ideal structure}{\var{bnr}.bid}
\li{modulus}{\var{gc}.mod}
%\li{structure of $(\ZZ_K/m)^*$}{\var{bnr}.zkst}
\li{elementary divisors (including $0$s)}{\var{gc}.cyc}
\endindentedkeys
\li{recompute \var{gc}\ using current precision}{gcharnewprec$(gc)$}
\li{evaluate Hecke character \var{chi} at ideal \var{id}}{gchareval$(\var{gc},\var{chi},\var{id})$}
\li{exponent column of \var{id} in $\RR^n$}{gcharideallog$(\var{gc},\var{id})$}
\li{log representation of ideal \var{id}}{gcharlog$(\var{gc}, \var{id})$}
\li{\dots of character $\chi$}{gcharduallog$(\var{gc},\var{chi})$}
\li{exponent vector of $\chi$ in $\RR^n$}{gcharparameters$(\var{gc},\var{chi})$}
\li{conductor of~$\chi$}{gcharconductor$(gc,chi)$}
\li{L-function of $\chi$}{lfuncreate$([\var{gc},\var{chi}])$}
\li{local component $\chi_v$ of $\chi$}{gcharlocal$(\var{gc},\var{chi},v)$}
\li{$\chi$ s.t. $\chi_v \approx \var{Lchiv}\kbd{[i]}$ for~$v=\var{Lv}\kbd{[i]}$}{gcharidentify$(\var{gc},\var{Lv},\var{Lchiv})$}
\li{basis of group of algebraic characters}{gcharalgebraic$(\var{gc})$}
\li{algebraic character of given infinity type}{gcharalgebraic$(\var{gc},\var{type})$}
\li{is $\chi$ algebraic?}{gcharisalgebraic$(\var{gc},\var{chi})$}

\smallskip
\subsec{Dedekind Zeta Function $\zeta_K$, Hecke $L$ series}
$R = [c,w,h]$ in initialization means we restrict $s\in \CC$
to domain $|\Re(s)-c| < w$, $|\Im(s)| < h$; $R = [w,h]$ encodes $[1/2,w,h]$
and $[h]$ encodes $R = [1/2,0,h]$ (critical line up to height $h$).\hfil\break
\li{$\zeta_K$ as Dirichlet series, $N(I)\leq b$}{dirzetak$(\var{nf},b)$}
\li{init $\zeta_K^{(k)}(s)$ for $k \leq n$}
   {L = lfuninit$(\var{bnf}, R, \{n = 0\})$}
\li{compute $\zeta_K(s)$ ($n$-th derivative)}{lfun$(L, s, \{n=0\})$}
\li{compute $\Lambda_K(s)$ ($n$-th derivative)}{lfunlambda$(L, s, \{n=0\})$}
\smallskip

\li{init $L_K^{(k)}(s, \chi)$ for $k \leq n$}
   {L = lfuninit$([\var{bnr},\var{chi}], R, \{n = 0\})$}
\li{compute $L_K(s, \chi)$ ($n$-th derivative)}{lfun$(L, s, \{n\})$}
\li{Artin root number of $K$}{bnrrootnumber$(\var{bnr},\var{chi},\{\fl\})$}
\li{$L(1,\chi)$, for all $\chi$ trivial on $H$}
   {bnrL1$(\var{bnr},\{H\},\{\fl\})$}

\section{Class Groups \& Units (bnf, bnr)}
Class field theory data $a_1,\{a_2\}$ is usually \var{bnr} (ray class field),
$\var{bnr},H$ (congruence subgroup) or $\var{bnr},\chi$ (character on
\kbd{bnr.clgp}). Any of these define a unique abelian extension of $K$.

\li{units / $S$-units}{bnfunits$(\var{bnf},\{S\})$}
\li{remove GRH assumption from \var{bnf}}{bnfcertify$(\var{bnf})$}
\shortcopyrightnotice
\newcolumn

\li{expo.~of ideal $x$ on class gp}{bnfisprincipal$(\var{bnf},x,\{\fl\})$}
\li{\dots on ray class gp}{bnrisprincipal$(\var{bnr},x,\{\fl\})$}
\li{expo.~of $x$ on fund.~units}{bnfisunit$(\var{bnf},x)$}
\li{\dots on $S$-units, $U$ is \kbd{bnfunits}$(\var{bnf},S)$}
   {bnfisunit$(\var{bnfs},x,U)$}
\li{signs of real embeddings of \kbd{\var{bnf}.fu}}{bnfsignunit$(\var{bnf})$}
\li{narrow class group}{bnfnarrow$(\var{bnf})$}

\subsec{Class Field Theory}
\li{ray class number for modulus $m$}{bnrclassno$(\var{bnf},m)$}
\li{discriminant of class field}{bnrdisc$(a_1,\{a_2\})$}
\li{ray class numbers, $l$ list of moduli}{bnrclassnolist$(\var{bnf},l)$}
\li{discriminants of class fields}{bnrdisclist$(\var{bnf},l,\{arch\},\{\fl\})$}
\li{decode output from \kbd{bnrdisclist}}{bnfdecodemodule$(\var{nf},fa)$}
\li{is modulus the conductor?}{bnrisconductor$(a_1,\{a_2\})$}
\li{is class field $(\var{bnr},H)$ Galois over $K^G$}
   {bnrisgalois$(\var{bnr},G,H)$}
\li{action of automorphism on \kbd{bnr.gen}}
   {bnrgaloismatrix$(\var{bnr},\var{aut})$}
\li{apply \kbd{bnrgaloismatrix} $M$ to $H$}
   {bnrgaloisapply$(\var{bnr},M,H)$}
\li{characters on \kbd{bnr.clgp} s.t. $\chi(g_i) = e(v_i)$}
   {bnrchar$(\var{bnr},g,\{v\})$}
\li{conductor of character $\chi$}{bnrconductor$(\var{bnr},\var{chi})$}
\li{conductor of extension}{bnrconductor$(a_1,\{a_2\},\{\fl\})$}
\li{conductor of extension $K[Y]/(g)$}{rnfconductor$(\var{bnf},g)$}
\li{canonical projection $\text{Cl}_F\to\text{Cl}_f$, $f\mid F$}{bnrmap}
\li{Artin group of extension $K[Y]/(g)$}{rnfnormgroup$(\var{bnr},g)$}
\li{subgroups of \var{bnr}, index $<=b$}{subgrouplist$(\var{bnr},b,\{\fl\})$}
\li{compositum as \kbd{[bnr,H]}}
   {bnrcompositum$(\kbd{[bnr1,H1]}, \kbd{[bnr2,H2]})$}
\li{class field defined by $H < \text{Cl}_f$}{bnrclassfield$(\var{bnr},H)$}
\li{\dots low level equivalent, prime degree}{rnfkummer$(\var{bnr},H)$}
\li{same, using Stark units (real field)}{bnrstark$(\var{bnr},\{sub\},\{\fl\})$}
\li{Stark unit}{bnrstarkunit$(\var{bnr},\{sub\})$}
\li{is $a$ an $n$-th power in $K_v$ ?}{nfislocalpower$(\var{nf},v,a,n)$}
\li{cyclic $L/K$ satisf. local conditions}
   {nfgrunwaldwang$(\var{nf},P,D,\var{pl})$}
\subsec{Cyclotomic and Abelian fields theory}
An Abelian field $F$ given by a subgroup $H\subset (\Z/f\Z)^*$ is described
by an argument $F$, e.g. $f$ (for $H = 1$, i.e. $\Q(\zeta_f)$) or $[G,H]$,
where $G$ is \kbd{idealstar}$(f, 1)$, or a minimal polynomial.\hfil\break
\li{minus class number $h^-(F)$}{subcyclohminus$(F)$}
\li{\dots $p$-part}{subcyclohminus$(F, p)$}
\li{minus part of Iwasawa polynomials}{subcycloiwasawa$(F, p)$}
\li{$p$-Sylow of $\text{Cl}(F)$}{subcyclopclgp$(F, p)$}
\subsec{Logarithmic class group}
\li{logarithmic $\ell$-class group}{bnflog$(\var{bnf},\ell)$}
\li{$[\tilde{e}(F_v/\Q_p),\tilde{f}(F_v/\Q_p)]$}
   {bnflogef$(\var{bnf},\var{pr})$}
\li{$\exp \deg_F(A)$}{bnflogdegree$(\var{bnf}, A, \ell)$}
\li{is $\ell$-extension $L/K$ locally cyclotomic}{rnfislocalcyclo$(\var{rnf})$}

\section{Ideals: {\rm elements, primes, or matrix of generators in HNF}}
\li{is $id$ an ideal in \var{nf} ?}{nfisideal$(\var{nf},id)$}
\li{is $x$ principal in \var{bnf} ?}{bnfisprincipal$(\var{bnf},x)$}
\li{give $[a,b]$, s.t.~ $a\ZZ_K+b\ZZ_K = x$}{idealtwoelt$(\var{nf},x,\{a\})$}
\li{put ideal $a$ ($a\ZZ_K+b\ZZ_K$) in HNF form}{idealhnf$(\var{nf},a,\{b\})$}
\li{norm of ideal $x$}{idealnorm$(\var{nf},x)$}
\li{minimum of ideal $x$ (direction $v$)}{idealmin$(\var{nf},x,v)$}
\li{LLL-reduce the ideal $x$ (direction $v$)}{idealred$(\var{nf},x,\{v\})$}

\smallskip
\subsec{Ideal Operations}
\li{add ideals $x$ and $y$}{idealadd$(\var{nf},x,y)$}
\li{multiply ideals $x$ and $y$}{idealmul$(\var{nf},x,y,\{\fl\})$}
\li{intersection of ideal $x$ with $\Q$}{idealdown$(\var{nf},x)$}
\li{intersection of ideals $x$ and $y$}{idealintersect$(\var{nf},x,y,\{\fl\})$}
\li{$n$-th power of ideal $x$}{idealpow$(\var{nf},x,n,\{\fl\})$}
\li{inverse of ideal $x$}{idealinv$(\var{nf},x)$}

\newcolumn
\title{\TITLE}
\centerline{(PARI-GP version \PARIversion)}
\smallskip

\li{divide ideal $x$ by $y$}{idealdiv$(\var{nf},x,y,\{\fl\})$}
\li{Find $(a,b)\in x\times y$, $a+b=1$}{idealaddtoone$(\var{nf},x,\{y\})$}
\li{coprime integral $A,B$ such that $x=A/B$}{idealnumden$(\var{nf},x)$}

\smallskip
\subsec{Primes and Multiplicative Structure}
\li{check whether $x$ is a maximal ideal}{idealismaximal$(\var{nf},x)$}
\li{factor ideal $x$ in $\ZZ_K$}{idealfactor$(\var{nf},x)$}
\li{expand ideal factorization in $K$}{idealfactorback$(\var{nf},f,\{e\})$}
\li{is ideal $A$ an $n$-th power ?}{idealispower$(\var{nf},A,n)$}
\li{expand elt factorization in $K$}{nffactorback$(\var{nf},f,\{e\})$}
\li{decomposition of prime $p$ in $\ZZ_K$}{idealprimedec$(\var{nf},p)$}
\li{valuation of $x$ at prime ideal \var{pr}}{idealval$(\var{nf},x,\var{pr})$}
\li{weak approximation theorem in \var{nf}}{idealchinese$(\var{nf},x,y)$}
\li{$a\in K$, s.t. $v_{\p}(a) = v_{\p}(x)$ if
   $v_{\p}(x)\neq 0$}
   {idealappr$(\var{nf},x)$}
\li{$a\in K$ such that $(a\cdot x, y) = 1$}{idealcoprime$(\var{nf},x,y)$}
\li{give $bid=$structure of $(\ZZ_K/id)^*$}{idealstar$(\var{nf},id,\{\fl\})$}
\li{structure of $(1+\p) / (1+\p^k)$}
   {idealprincipalunits$(\var{nf},\var{pr},k)$}
\li{discrete log of $x$ in $(\ZZ_K/bid)^*$}{ideallog$(\var{nf},x,bid)$}
\li{\kbd{idealstar} of all ideals of norm $\le b$}{ideallist$(\var{nf},b,\{\fl\})$}
\li{add Archimedean places}{ideallistarch$(\var{nf},b,\{ar\},\{\fl\})$}

\li{init \kbd{modpr} structure}{nfmodprinit$(\var{nf},\var{pr},\{v\})$}
\li{project $t$ to $\ZZ_K/\var{pr}$}{nfmodpr$(\var{nf},t,\var{modpr})$}
\li{lift from $\ZZ_K/\var{pr}$}{nfmodprlift$(\var{nf},t,\var{modpr})$}

\medskip

\section{Galois theory over $\QQ$}
\li{conjugates of a root $\theta$ of \var{nf}}{nfgaloisconj$(\var{nf},\{\fl\})$}
\li{apply Galois automorphism $s$ to $x$}{nfgaloisapply$(\var{nf},s,x)$}
\li{Galois group of field $\QQ[x]/(f)$}{polgalois$(f)$}
\li{resolvent field of $\QQ[x]/(f)$}{nfresolvent$(f)$}
\li{initializes a Galois group structure $G$}{galoisinit$(\var{pol},\{den\})$}
\li{\dots for the splitting field of \var{pol}}{galoissplittinginit$(\var{pol},\{d\})$}
\li{character table of $G$}{galoischartable$(G)$}
\li{conjugacy classes of $G$}{galoisconjclasses$(G)$}
\li{$\det(1 - \rho(g)T)$, $\chi$ character of $\rho$}
   {galoischarpoly$(G,\chi,\{o\})$}
\li{$\det(\rho(g))$, $\chi$ character of $\rho$}
   {galoischardet$(G,\chi,\{o\})$}
\li{action of $p$ in nfgaloisconj form}{galoispermtopol$(G,\{p\})$}
\li{identify as abstract group}{galoisidentify$(G)$}
\li{export a group for GAP/MAGMA}{galoisexport$(G,\{\fl\})$}

\li{subgroups of the Galois group $G$}{galoissubgroups$(G)$}
\li{is subgroup $H$ normal?}{galoisisnormal$(G,H)$}

\li{subfields from subgroups}{galoissubfields$(G,\{\fl\},\{v\})$}
\li{fixed field}{galoisfixedfield$(G,\var{perm},\{\fl\},\{v\})$}
\li{Frobenius at maximal ideal $P$}{idealfrobenius$(\var{nf},G,P)$}
\li{ramification groups at $P$}{idealramgroups$(\var{nf},G,P)$}
\li{is $G$ abelian?}{galoisisabelian$(G,\{\fl\})$}
\li{abelian number fields/$\QQ$}{galoissubcyclo(N,H,\{\fl\},\{v\})}

\subsec{The \kbd{galpol} package}
\li{query the package: polynomial}{galoisgetpol(a,b,\{s\})}
\li{\dots : permutation group}{galoisgetgroup(a,{b})}
\li{\dots : group description}{galoisgetname(a,b)}
\medskip

\section{Relative Number Fields (rnf)}
Extension $L/K$ is defined by $T\in K[x]$.
\hfill\break
%
\li{absolute equation of $L$}{rnfequation$(\var{nf},T,\{\fl\})$}
\li{is $L/K$ abelian?}{rnfisabelian$(\var{nf},T)$}
\li{relative {\tt nfalgtobasis}}{rnfalgtobasis$(\var{rnf},x)$}
\li{relative {\tt nfbasistoalg}}{rnfbasistoalg$(\var{rnf},x)$}
\li{relative {\tt idealhnf}}{rnfidealhnf$(\var{rnf},x)$}
\newcolumn
\li{relative {\tt idealmul}}{rnfidealmul$(\var{rnf},x,y)$}
\li{relative {\tt idealtwoelt}}{rnfidealtwoelt$(\var{rnf},x)$}

\smallskip
\subsec{Lifts and Push-downs}
\li{absolute $\rightarrow$ relative representation for $x$}
  {rnfeltabstorel$(\var{rnf},x)$}
\li{relative $\rightarrow$ absolute representation for $x$}
  {rnfeltreltoabs$(\var{rnf},x)$}
\li{lift $x$ to the relative field}{rnfeltup$(\var{rnf},x)$}
\li{push $x$ down to the base field}{rnfeltdown$(\var{rnf},x)$}
\leavevmode idem for $x$ ideal:
\kbd{$($rnfideal$)$reltoabs}, \kbd{abstorel}, \kbd{up}, \kbd{down}\hfill

\smallskip
\subsec{Norms and Trace}
\li{relative norm of element $x\in L$}{rnfeltnorm$(\var{rnf},x)$}
\li{relative trace of element $x\in L$}{rnfelttrace$(\var{rnf},x)$}
\li{absolute norm of ideal $x$}{rnfidealnormabs$(\var{rnf},x)$}
\li{relative norm of ideal $x$}{rnfidealnormrel$(\var{rnf},x)$}
\li{solutions of $N_{K/\QQ}(y)=x\in \ZZ$}{bnfisintnorm$(\var{bnf},x)$}
\li{is $x\in\QQ$ a norm from $K$?}{bnfisnorm$(\var{bnf},x,\{\fl\})$}
\li{initialize $T$ for norm eq.~solver}{rnfisnorminit$(K,pol,\{\fl\})$}
\li{is $a\in K$ a norm from $L$?}{rnfisnorm$(T,a,\{\fl\})$}
\li{initialize $t$ for Thue equation solver}{thueinit$(f)$}
\li{solve Thue equation $f(x,y)=a$}{thue$(t,a,\{sol\})$}
\li{characteristic poly.\ of $a$ mod $T$}{rnfcharpoly$(\var{nf},T,a,\{v\})$}

\smallskip
\subsec{Factorization}
\li{factor ideal $x$ in $L$}{rnfidealfactor$(\var{rnf},x)$}
\li{$[S,T] \colon T_{i,j} \mid S_i$; $S$ primes of $K$ above $p$}
   {rnfidealprimedec$(\var{rnf},p)$}

\smallskip
\subsec{Maximal order $\ZZ_L$ as a $\ZZ_K$-module}
\li{relative {\tt polredbest}}{rnfpolredbest$(\var{nf},T)$}
\li{relative {\tt polredabs}}{rnfpolredabs$(\var{nf},T)$}
\li{relative Dedekind criterion, prime $pr$}{rnfdedekind$(\var{nf},T,pr)$}
\li{discriminant of relative extension}{rnfdisc$(\var{nf},T)$}
\li{pseudo-basis of $\ZZ_L$}{rnfpseudobasis$(\var{nf},T)$}

\smallskip
\subsec{General $\ZZ_K$-modules:
  {\rm $M = [{\rm matrix}, {\rm vec.~of~ideals}] \subset L$}}
\li{relative HNF / SNF}{nfhnf$(\var{nf},M)${\rm, }nfsnf}
\li{multiple of $\det M$}{nfdetint$(\var{nf},M)$}
\li{HNF of $M$ where $d = \kbd{nfdetint}(M)$}{nfhnfmod$(x,d)$}
\li{reduced basis for $M$}{rnflllgram$(\var{nf},T,M)$}
\li{determinant of pseudo-matrix $M$}{rnfdet$(\var{nf},M)$}
\li{Steinitz class of $M$}{rnfsteinitz$(\var{nf},M)$}
\li{$\ZZ_K$-basis of $M$ if $\ZZ_K$-free, or $0$}{rnfhnfbasis$(\var{bnf},M)$}
\li{$n$-basis of $M$, or $(n+1)$-generating set}{rnfbasis$(\var{bnf},M)$}
\li{is $M$ a free $\ZZ_K$-module?}{rnfisfree$(\var{bnf},M)$}

\vfill
\copyrightnotice
\newcolumn

\section{Associative Algebras}
$A$ is a general associative algebra given by a multiplication table \var{mt}
(over $\QQ$ or $\FF_p$); represented by \var{al} from \kbd{algtableinit}.

\li{create \var{al} from \var{mt} (over $\FF_p$)}
   {algtableinit$(\var{mt},\{p=0\})$}
\li{group algebra $\QQ[G]$ (or $\FF_p[G]$)}{alggroup$(G,\{p = 0\})$}
\li{center of group algebra}{alggroupcenter$(G,\{p = 0\})$}

\subsec{Properties}
\li{is $(\var{mt},p)$ OK for algtableinit?}
   {algisassociative$(\var{mt},\{p=0\})$}
\li{multiplication table \var{mt}}{algmultable$(\var{al})$}
\li{dimension of $A$ over prime subfield}{algdim$(\var{al})$}
\li{characteristic of $A$}{algchar$(\var{al})$}
\li{is $A$ commutative?}{algiscommutative$(\var{al})$}
\li{is $A$ simple?}{algissimple$(\var{al})$}
\li{is $A$ semi-simple?}{algissemisimple$(\var{al})$}
\li{center of $A$}{algcenter$(\var{al})$}
\li{Jacobson radical of $A$}{algradical$(\var{al})$}
\li{radical $J$ and simple factors of $A/J$}{algsimpledec$(\var{al})$}

\smallskip
\subsec{Operations on algebras}
\li{create $A/I$, $I$ two-sided ideal}{algquotient$(\var{al},I)$}
\li{create $A_1\otimes A_2$}{algtensor$(\var{al1}, \var{al2})$}
\li{create subalgebra from basis $B$}{algsubalg$(\var{al}, B)$}
\li{quotients by ortho. central idempotents $e$}
   {algcentralproj$(\var{al}, e)$}
\li{isomorphic alg. with integral mult. table}{algmakeintegral(\var{mt})}
\li{prime subalgebra of semi-simple $A$ over $\FF_p$}
   {algprimesubalg$(\var{al})$}
\li{find isomorphism~$A\cong M_d(\FF_q)$}{algsplit(\var{al})}

\smallskip
\subsec{Operations on lattices in algebras}
\li{lattice generated by cols. of $M$}{alglathnf$(\var{al},M)$}
\li{\dots by the products~$xy$, $x\in lat1$, $y\in lat2$}{alglatmul$(\var{al},\var{lat1},\var{lat2})$}
\li{sum $lat1+lat2$ of the lattices}{alglatadd$(\var{al},\var{lat1},\var{lat2})$}
\li{intersection $lat1\cap lat2$}{alglatinter$(\var{al},\var{lat1},\var{lat2})$}
\li{test~$lat1\subset lat2$}{alglatsubset$(\var{al},\var{lat1},\var{lat2})$}
\li{generalized index~$(lat2:lat1)$}{alglatindex$(\var{al},\var{lat1},\var{lat2})$}
\li{$\{x\in al\mid x\cdot lat1\subset lat2\}$}{alglatlefttransporter$(\var{al},\var{lat1},\var{lat2})$}
\li{$\{x\in al\mid lat1\cdot x\subset lat2\}$}{alglatrighttransporter$(\var{al},\var{lat1},\var{lat2})$}
\li{test~$x\in lat$ (set~$c =$ coord. of~$x$)}{alglatcontains$(\var{al},\var{lat},x,\{\& c\})$}
\li{element of~$lat$ with coordinates~$c$}{alglatelement$(\var{al},\var{lat},c)$}

\subsec{Operations on elements}
\li{$a+b$, $a-b$, $-a$}{algadd$(\var{al},a,b)${\rm, }algsub{\rm, }algneg}
\li{$a\times b$, $a^2$}{algmul$(\var{al},a,b)${\rm, }algsqr}
\li{$a^n$, $a^{-1}$}{algpow$(\var{al},a,n)${\rm, }alginv}
\li{is $x$ invertible ? (then set $z=x^{-1}$)}{algisinv$(\var{al},x,\{\&z\})$}
\li{find $z$ such that $x\times z = y$}{algdivl$(\var{al},x,y)$}
\li{find $z$ such that $z\times x = y$}{algdivr$(\var{al},x,y)$}
\li{does $z$ s.t. $x\times z = y$ exist? (set it)}
   {algisdivl$(\var{al},x,y,\{\&z\})$}
\li{matrix of $v\mapsto x\cdot v$}{algtomatrix$(\var{al}, x)$}
\li{absolute norm}{algnorm$(\var{al},x)$}
\li{absolute trace}{algtrace$(\var{al},x)$}
\li{absolute char. polynomial}{algcharpoly$(\var{al},x)$}
\li{given $a\in A$ and polynomial $T$, return $T(a)$}
   {algpoleval$(\var{al},T,a)$}
\li{random element in a box}{algrandom$(\var{al}, b)$}

\section{Central Simple Algebras}
$A$ is a central simple algebra over a number field $K$; represented by
\var{al} from \kbd{alginit}; $K$ is given by a \var{nf} structure.

\li{create CSA from data}
   {alginit$(B,C,\{v\},\{maxord=1\})$}
\beginindentedkeys
  \li{multiplication table over $K$}{$B = K${\rm, }$C = \var{mt}$}
  \li{cyclic algebra $(L/K,\sigma,b)$}
     {$B = \var{rnf}${\rm, }$C = [\var{sigma},b]$}
  \li{quaternion algebra $(a,b)_K$}{$B = K$, $C = [a,b]$}
  \li{matrix algebra $M_d(K)$}{$B = K$, $C = d$}
  \li{local Hasse invariants over $K$}
     {$B = K$, $C = [d, [\var{PR}, \var{HF}], \var{HI}]$}
\endindentedkeys

\smallskip
\subsec{Properties}
\li{type of \var{al} (\var{mt}, CSA)}{algtype$(\var{al})$}
\li{dimension of $A$ over~$\QQ$}{algdim$(\var{al},1)$}
\li{dimension of \var{al} over its center~$K$}{algdim$(\var{al})$}
\li{degree of $A$ ($=\sqrt{\dim_K A}$)}{algdegree$(\var{al})$}
\li{\var{al} a cyclic algebra $(L/K,\sigma,b)$; return $\sigma$}
   {algaut$(\var{al})$}
\li{\dots return $b$}{algb$(\var{al})$}
\li{\dots return $L/K$, as an \var{rnf}}
   {algsplittingfield$(\var{al})$}
\li{split $A$ over an extension of $K$}{algsplittingdata$(\var{al})$}
\li{splitting field of $A$ as an \var{rnf} over center}
   {algsplittingfield$(\var{al})$}
\li{multiplication table over center}{algrelmultable$(\var{al})$}
\li{places of $K$ at which $A$ ramifies}{algramifiedplaces$(\var{al})$}
\li{Hasse invariants at finite places of $K$}{alghassef$(\var{al})$}
\li{Hasse invariants at infinite places of $K$}{alghassei$(\var{al})$}
\li{Hasse invariant at place $v$}{alghasse$(\var{al},v)$}
\li{index of $A$ over $K$ (at place $v$)}{algindex$(\var{al},\{v\})$}
\li{is \var{al} a division algebra? (at place $v$)}
   {algisdivision$(\var{al},\{v\})$}
\li{is $A$ ramified? (at place $v$)}{algisramified$(\var{al},\{v\})$}
\li{is $A$ split? (at place $v$)}{algissplit$(\var{al},\{v\})$}

\smallskip
\subsec{Operations on elements}
\li{reduced norm}{algnorm$(\var{al},x)$}
\li{reduced trace}{algtrace$(\var{al},x)$}
\li{reduced char. polynomial}{algcharpoly$(\var{al},x)$}
\li{express $x$ on integral basis}{algalgtobasis$(\var{al},x)$}
\li{convert $x$ to algebraic form}{algbasistoalg$(\var{al},x)$}
\li{map $x\in A$ to $M_d(L)$, $L$ split. field} {algtomatrix$(\var{al},x)$}

\smallskip
\subsec{Orders}
\li{$\ZZ$-basis of order ${\cal O}_0$}{algbasis$(\var{al})$}
\li{discriminant of order ${\cal O}_0$}{algdisc$(\var{al})$}
\li{$\ZZ$-basis of natural order in terms ${\cal O}_0$'s basis}
   {alginvbasis$(\var{al})$}
\newcolumn
\strut
\vskip 11cm

\copyrightnotice
\bye