1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
|
% Copyright (c) 2007-2024 Karim Belabas.
% Permission is granted to copy, distribute and/or modify this document
% under the terms of the GNU General Public License
% Reference Card for PARI-GP, Algebraic Number Theory.
% Author:
% Karim Belabas
% Universite de Bordeaux, 351 avenue de la Liberation, F-33405 Talence
% email: Karim.Belabas@math.u-bordeaux.fr
%
% See refcard.tex for acknowledgements and thanks.
\def\TITLE{Algebraic Number Theory}
\input refmacro.tex
\def\p{\goth{p}}
\section{Binary Quadratic Forms}
%
\li{create $ax^2+bxy+cy^2$}{Qfb$(a,b,c)$ or Qfb$([a,b,c])$}
\li{reduce $x$ ($s =\sqrt{D}$, $l=\floor{s}$)}
{qfbred$(x,\{\fl\},\{D\},\{l\},\{s\})$}
\li{return $[y,g]$, $g\in \text{SL}_2(\ZZ)$, $y = g\cdot x$ reduced}
{qfbredsl2$(x)$}
\li{composition of forms}{$x$*$y$ {\rm or }qfbnucomp$(x,y,l)$}
\li{$n$-th power of form}{$x$\pow$n$ {\rm or }qfbnupow$(x,n)$}
\li{composition}{qfbcomp$(x,y)$}
\li{\dots without reduction}{qfbcompraw$(x,y)$}
\li{$n$-th power}{qfbpow$(x,n)$}
\li{\dots without reduction}{qfbpowraw$(x,n)$}
\li{prime form of disc. $x$ above prime $p$}{qfbprimeform$(x,p)$}
\li{class number of disc. $x$}{qfbclassno$(x)$}
\li{Hurwitz class number of disc. $x$}{qfbhclassno$(x)$}
\li{solve $Q(x,y) = n$ in integers}{qfbsolve$(Q,n)$}
\li{solve $x^2 + Dy^2 = p$, $p$ prime}{qfbcornacchia$(D,p)$}
\li{\dots $x^2 + Dy^2 = 4p$, $p$ prime}{qfbcornacchia$(D,4*p)$}
\section{Quadratic Fields}
%
\li{quadratic number $\omega=\sqrt x$ or $(1+\sqrt x)/2$}{quadgen$(x)$}
\li{minimal polynomial of $\omega$}{quadpoly$(x)$}
\li{discriminant of $\QQ(\sqrt{x})$}{quaddisc$(x)$}
\li{regulator of real quadratic field}{quadregulator$(x)$}
\li{fundamental unit in $O_D$, $D > 0$}{quadunit$(D,\{\kbd{'w}\})$}
\li{norm of fundamental unit in $O_D$}{quadunitnorm$(D)$}
\li{index of $O_{Df^2}^\times$ in $O_D^\times$}{quadunitindex$(D,f)$}
\li{class group of $\QQ(\sqrt{D})$}{quadclassunit$(D,\{\fl\},\{t\})$}
\li{Hilbert class field of $\QQ(\sqrt{D})$}{quadhilbert$(D,\{\fl\})$}
\li{\dots using specific class invariant ($D<0$)}{polclass$(D,\{\var{inv}\})$}
\li{test if $T$ is \kbd{polclass}$(D)$; if so return $D$}{polisclass$(T)$}
\li{ray class field modulo $f$ of $\QQ(\sqrt{D})$}{quadray$(D,f,\{\fl\})$}
\bigskip
\section{General Number Fields: Initializations}
The number field $K = \QQ[X]/(f)$ is given by irreducible $f\in\QQ[X]$.
We denote $\theta = \bar{X}$ the canonical root of $f$ in $K$.
A \var{nf} structure contains a maximal order and allows operations on
elements and ideals. A \var{bnf} adds class group and units. A \var{bnr} is
attached to ray class groups and class field theory. A \var{rnf} is attached
to relative extensions $L/K$.\hfill\break
%
\li{init number field structure \var{nf}}{nfinit$(f,\{\fl\})$}
\beginindentedkeys
\li{known integer basis $B$}{nfinit$([f,B])$}
\li{order maximal at $\var{vp}=[p_1,\dots,p_k]$}{nfinit$([f,\var{vp}])$}
\li{order maximal at all $p \leq P$}{nfinit$([f,P])$}
\li{certify maximal order}{nfcertify$(\var{nf})$}
\endindentedkeys
\subsec{nf members:}
\beginindentedkeys
\li{a monic $F\in \ZZ[X]$ defining $K$}{\var{nf}.pol}
\li{number of real/complex places}{\var{nf}.r1/r2/sign}
\li{discriminant of \var{nf}}{\var{nf}.disc}
\li{primes ramified in \var{nf}}{\var{nf}.p}
\li{$T_2$ matrix}{\var{nf}.t2}
\li{complex roots of $F$}{\var{nf}.roots}
\li{integral basis of $\ZZ_K$ as powers of $\theta$}{\var{nf}.zk}
\li{different/codifferent}{\var{nf}.diff{\rm, }\var{nf}.codiff}
\li{index $[\ZZ_K:\ZZ[X]/(F)]$}{\var{nf}.index}
\endindentedkeys
\li{recompute \var{nf}\ using current precision}{nfnewprec$(nf)$}
\li{init relative \var{rnf} $L = K[Y]/(g)$}{rnfinit$(\var{nf},g)$}
%
\li{init \var{bnf} structure}{bnfinit$(f, 1)$}
\subsec{bnf members: {\rm same as \var{nf}, plus}}
\beginindentedkeys
\li{underlying \var{nf}}{\var{bnf}.nf}
\li{class group, regulator}{\var{bnf}.clgp, \var{bnf}.reg}
\li{fundamental/torsion units}{\var{bnf}.fu{\rm, }\var{bnf}.tu}
\endindentedkeys
\li{add $S$-class group and units, yield \var{bnf}S}{bnfsunit$(\var{bnf},S)$}
\li{init class field structure \var{bnr}}{bnrinit$(\var{bnf},m,\{\fl\})$}
%
\subsec{bnr members: {\rm same as \var{bnf}, plus}}
\beginindentedkeys
\li{underlying \var{bnf}}{\var{bnr}.bnf}
\li{big ideal structure}{\var{bnr}.bid}
\li{modulus $m$}{\var{bnr}.mod}
\li{structure of $(\ZZ_K/m)^*$}{\var{bnr}.zkst}
\endindentedkeys
\smallskip
\section{Fields, subfields, embeddings}
\subsec{Defining polynomials, embeddings}
\li{(some) number fields with Galois group $G$}{nflist$(G)$}
\li{\dots and $|\text{disc}(K)| = N$ and $s$ complex places}{nflist$(G, N, \{s\})$}
\li{\dots and $a \leq |\text{disc}(K)| \leq b$}{nflist$(G, [a,b], \{s\})$}
\li{smallest poly defining $f=0$ (slow)}{polredabs$(f,\{\fl\})$}
\li{small poly defining $f=0$ (fast)}{polredbest$(f,\{\fl\})$}
\li{monic integral $g = C f(x/L)$}{poltomonic$(f,\{\&L\})$}
\li{random Tschirnhausen transform of $f$}{poltschirnhaus$(f)$}
\li{$\QQ[t]/(f) \subset \QQ[t]/(g)$ ? Isomorphic?}
{nfisincl$(f,g)$, \kbd{nfisisom}}
\li{reverse polmod $a=A(t)\mod T(t)$}{modreverse$(a)$}
\li{compositum of $\QQ[t]/(f)$, $\QQ[t]/(g)$}{polcompositum$(f,g,\{\fl\})$}
\li{compositum of $K[t]/(f)$, $K[t]/(g)$}{nfcompositum$(\var{nf}, f,g,\{\fl\})$}
\li{splitting field of $K$ (degree divides $d$)}
{nfsplitting$(\var{nf},\{d\})$}
\li{signs of real embeddings of $x$}{nfeltsign$(\var{nf},x,\{pl\})$}
\li{complex embeddings of $x$}{nfeltembed$(\var{nf},x,\{pl\})$}
\li{$T\in K[t]$, \# of real roots of $\sigma(T)\in\R[t]$}{nfpolsturm$(\var{nf},T,\{pl\})$}
\li{absolute Weil height}{nfweilheight$(\var{nf}, v)$}
\smallskip
\subsec{Subfields, polynomial factorization}
\li{subfields (of degree $d$) of \var{nf}}{nfsubfields$(\var{nf},\{d\})$}
\li{maximal subfields of \var{nf}}{nfsubfieldsmax$(\var{nf})$}
\li{maximal CM subfield of \var{nf}}{nfsubfieldscm$(\var{nf})$}
\li{$K_d \subset \QQ(\zeta_n)$, using Gaussian periods}
{polsubcyclo$(n,d,\{v\})$}
\li{\dots using class field theory}{polsubcyclofast$(n,d)$}
\li{roots of unity in \var{nf}}{nfrootsof1$(\var{nf}\,)$}
\li{roots of $g$ belonging to \var{nf}}{nfroots$(\var{nf},g)$}
\li{factor $g$ in \var{nf}}{nffactor$(\var{nf},g)$}
\smallskip
\subsec{Linear and algebraic relations}
\li{poly of degree $\le k$ with root $x\in\CC$ or $\QQ_p$}{algdep$(x,k)$}
\li{alg. dep. with pol.~coeffs for series $s$}{seralgdep$(s,x,y)$}
\li{diff. dep. with pol.~coeffs for series $s$}{serdiffdep$(s,x,y)$}
\li{small linear rel.\ on coords of vector $x$}{lindep$(x)$}
\section{Basic Number Field Arithmetic (nf)}
Number field elements are \typ{INT}, \typ{FRAC}, \typ{POL}, \typ{POLMOD}, or
\typ{COL} (on integral basis \kbd{\var{nf}.zk}).
\smallskip
\subsec{Basic operations}
\li{$x+y$}{nfeltadd$(\var{nf},x,y)$}
\li{$x\times y$}{nfeltmul$(\var{nf},x,y)$}
\li{$x^n$, $n\in \ZZ$}{nfeltpow$(\var{nf},x,n)$}
\li{$x / y$}{nfeltdiv$(\var{nf},x,y)$}
\li{$q = x$\kbd{\bs/}$y := $\kbd{round}$(x/y)$}{nfeltdiveuc$(\var{nf},x,y)$}
\li{$r = x$\kbd{\%}$y := x - (x$\kbd{\bs/}$y)y$}{nfeltmod$(\var{nf},x,y)$}
\li{\dots $[q,r]$ as above}{nfeltdivrem$(\var{nf},x,y)$}
\li{reduce $x$ modulo ideal $A$}{nfeltreduce$(\var{nf},x,A)$}
\li{absolute trace $\text{Tr}_{K/\QQ} (x)$}{nfelttrace$(\var{nf},x)$}
\li{absolute norm $\text{N}_{K/\QQ} (x)$}{nfeltnorm$(\var{nf},x)$}
\newcolumn
\li{is $x$ a square?}{nfeltissquare$(\var{nf},x,\{\&y\})$}
\li{\dots an $n$-th power?}{nfeltispower$(\var{nf},x,n,\{\&y\})$}
\smallskip
\subsec{Multiplicative structure of $K^*$; $K^*/(K^*)^n$}
\li{valuation $v_\p(x)$}{nfeltval$(\var{nf},x,\p)$}
\li{\dots write $x = \pi^{v_\p(x)} y$}{nfeltval$(\var{nf},x,\p,\&y)$}
\li{quadratic Hilbert symbol (at $\p$)}
{nfhilbert$(\var{nf},a,b,\{\p\})$}
\li{$b$ such that $x b^n = v$ is small}{idealredmodpower$(\var{nf},x,n)$}
\smallskip
\subsec{Maximal order and discriminant}
\li{integral basis of field $\QQ[x]/(f)$}{nfbasis$(f)$}
\li{field discriminant of $\QQ[x]/(f)$}{nfdisc$(f)$}
\li{\dots and factorization}{nfdiscfactors$(f)$}
\li{express $x$ on integer basis}{nfalgtobasis$(\var{nf},x)$}
\li{express element\ $x$ as a polmod}{nfbasistoalg$(\var{nf},x)$}
\smallskip
\subsec{Hecke Grossencharacters}
Let $K$ be a number field and $m$ a modulus. A gchar structure
describes the group of Hecke Grossencharacters of~$K$ of modulus~$m$
and allows computations with these characters. A character $\chi$
is described by its components modulo \var{gc}\kbd{.cyc}.
\smallskip
\li{init gchar structure \var{gc} for modulus \var{m}}{gcharinit$(\var{bnf},\var{m},\{cm\})$}
\subsec{gc members:}
\beginindentedkeys
\li{underlying \var{bnf}}{\var{gc}.bnf}
%\li{big ideal structure}{\var{bnr}.bid}
\li{modulus}{\var{gc}.mod}
%\li{structure of $(\ZZ_K/m)^*$}{\var{bnr}.zkst}
\li{elementary divisors (including $0$s)}{\var{gc}.cyc}
\endindentedkeys
\li{recompute \var{gc}\ using current precision}{gcharnewprec$(gc)$}
\li{evaluate Hecke character \var{chi} at ideal \var{id}}{gchareval$(\var{gc},\var{chi},\var{id})$}
\li{exponent column of \var{id} in $\RR^n$}{gcharideallog$(\var{gc},\var{id})$}
\li{log representation of ideal \var{id}}{gcharlog$(\var{gc}, \var{id})$}
\li{\dots of character $\chi$}{gcharduallog$(\var{gc},\var{chi})$}
\li{exponent vector of $\chi$ in $\RR^n$}{gcharparameters$(\var{gc},\var{chi})$}
\li{conductor of~$\chi$}{gcharconductor$(gc,chi)$}
\li{L-function of $\chi$}{lfuncreate$([\var{gc},\var{chi}])$}
\li{local component $\chi_v$ of $\chi$}{gcharlocal$(\var{gc},\var{chi},v)$}
\li{$\chi$ s.t. $\chi_v \approx \var{Lchiv}\kbd{[i]}$ for~$v=\var{Lv}\kbd{[i]}$}{gcharidentify$(\var{gc},\var{Lv},\var{Lchiv})$}
\li{basis of group of algebraic characters}{gcharalgebraic$(\var{gc})$}
\li{algebraic character of given infinity type}{gcharalgebraic$(\var{gc},\var{type})$}
\li{is $\chi$ algebraic?}{gcharisalgebraic$(\var{gc},\var{chi})$}
\smallskip
\subsec{Dedekind Zeta Function $\zeta_K$, Hecke $L$ series}
$R = [c,w,h]$ in initialization means we restrict $s\in \CC$
to domain $|\Re(s)-c| < w$, $|\Im(s)| < h$; $R = [w,h]$ encodes $[1/2,w,h]$
and $[h]$ encodes $R = [1/2,0,h]$ (critical line up to height $h$).\hfil\break
\li{$\zeta_K$ as Dirichlet series, $N(I)\leq b$}{dirzetak$(\var{nf},b)$}
\li{init $\zeta_K^{(k)}(s)$ for $k \leq n$}
{L = lfuninit$(\var{bnf}, R, \{n = 0\})$}
\li{compute $\zeta_K(s)$ ($n$-th derivative)}{lfun$(L, s, \{n=0\})$}
\li{compute $\Lambda_K(s)$ ($n$-th derivative)}{lfunlambda$(L, s, \{n=0\})$}
\smallskip
\li{init $L_K^{(k)}(s, \chi)$ for $k \leq n$}
{L = lfuninit$([\var{bnr},\var{chi}], R, \{n = 0\})$}
\li{compute $L_K(s, \chi)$ ($n$-th derivative)}{lfun$(L, s, \{n\})$}
\li{Artin root number of $K$}{bnrrootnumber$(\var{bnr},\var{chi},\{\fl\})$}
\li{$L(1,\chi)$, for all $\chi$ trivial on $H$}
{bnrL1$(\var{bnr},\{H\},\{\fl\})$}
\section{Class Groups \& Units (bnf, bnr)}
Class field theory data $a_1,\{a_2\}$ is usually \var{bnr} (ray class field),
$\var{bnr},H$ (congruence subgroup) or $\var{bnr},\chi$ (character on
\kbd{bnr.clgp}). Any of these define a unique abelian extension of $K$.
\li{units / $S$-units}{bnfunits$(\var{bnf},\{S\})$}
\li{remove GRH assumption from \var{bnf}}{bnfcertify$(\var{bnf})$}
\shortcopyrightnotice
\newcolumn
\li{expo.~of ideal $x$ on class gp}{bnfisprincipal$(\var{bnf},x,\{\fl\})$}
\li{\dots on ray class gp}{bnrisprincipal$(\var{bnr},x,\{\fl\})$}
\li{expo.~of $x$ on fund.~units}{bnfisunit$(\var{bnf},x)$}
\li{\dots on $S$-units, $U$ is \kbd{bnfunits}$(\var{bnf},S)$}
{bnfisunit$(\var{bnfs},x,U)$}
\li{signs of real embeddings of \kbd{\var{bnf}.fu}}{bnfsignunit$(\var{bnf})$}
\li{narrow class group}{bnfnarrow$(\var{bnf})$}
\subsec{Class Field Theory}
\li{ray class number for modulus $m$}{bnrclassno$(\var{bnf},m)$}
\li{discriminant of class field}{bnrdisc$(a_1,\{a_2\})$}
\li{ray class numbers, $l$ list of moduli}{bnrclassnolist$(\var{bnf},l)$}
\li{discriminants of class fields}{bnrdisclist$(\var{bnf},l,\{arch\},\{\fl\})$}
\li{decode output from \kbd{bnrdisclist}}{bnfdecodemodule$(\var{nf},fa)$}
\li{is modulus the conductor?}{bnrisconductor$(a_1,\{a_2\})$}
\li{is class field $(\var{bnr},H)$ Galois over $K^G$}
{bnrisgalois$(\var{bnr},G,H)$}
\li{action of automorphism on \kbd{bnr.gen}}
{bnrgaloismatrix$(\var{bnr},\var{aut})$}
\li{apply \kbd{bnrgaloismatrix} $M$ to $H$}
{bnrgaloisapply$(\var{bnr},M,H)$}
\li{characters on \kbd{bnr.clgp} s.t. $\chi(g_i) = e(v_i)$}
{bnrchar$(\var{bnr},g,\{v\})$}
\li{conductor of character $\chi$}{bnrconductor$(\var{bnr},\var{chi})$}
\li{conductor of extension}{bnrconductor$(a_1,\{a_2\},\{\fl\})$}
\li{conductor of extension $K[Y]/(g)$}{rnfconductor$(\var{bnf},g)$}
\li{canonical projection $\text{Cl}_F\to\text{Cl}_f$, $f\mid F$}{bnrmap}
\li{Artin group of extension $K[Y]/(g)$}{rnfnormgroup$(\var{bnr},g)$}
\li{subgroups of \var{bnr}, index $<=b$}{subgrouplist$(\var{bnr},b,\{\fl\})$}
\li{compositum as \kbd{[bnr,H]}}
{bnrcompositum$(\kbd{[bnr1,H1]}, \kbd{[bnr2,H2]})$}
\li{class field defined by $H < \text{Cl}_f$}{bnrclassfield$(\var{bnr},H)$}
\li{\dots low level equivalent, prime degree}{rnfkummer$(\var{bnr},H)$}
\li{same, using Stark units (real field)}{bnrstark$(\var{bnr},\{sub\},\{\fl\})$}
\li{Stark unit}{bnrstarkunit$(\var{bnr},\{sub\})$}
\li{is $a$ an $n$-th power in $K_v$ ?}{nfislocalpower$(\var{nf},v,a,n)$}
\li{cyclic $L/K$ satisf. local conditions}
{nfgrunwaldwang$(\var{nf},P,D,\var{pl})$}
\subsec{Cyclotomic and Abelian fields theory}
An Abelian field $F$ given by a subgroup $H\subset (\Z/f\Z)^*$ is described
by an argument $F$, e.g. $f$ (for $H = 1$, i.e. $\Q(\zeta_f)$) or $[G,H]$,
where $G$ is \kbd{idealstar}$(f, 1)$, or a minimal polynomial.\hfil\break
\li{minus class number $h^-(F)$}{subcyclohminus$(F)$}
\li{\dots $p$-part}{subcyclohminus$(F, p)$}
\li{minus part of Iwasawa polynomials}{subcycloiwasawa$(F, p)$}
\li{$p$-Sylow of $\text{Cl}(F)$}{subcyclopclgp$(F, p)$}
\subsec{Logarithmic class group}
\li{logarithmic $\ell$-class group}{bnflog$(\var{bnf},\ell)$}
\li{$[\tilde{e}(F_v/\Q_p),\tilde{f}(F_v/\Q_p)]$}
{bnflogef$(\var{bnf},\var{pr})$}
\li{$\exp \deg_F(A)$}{bnflogdegree$(\var{bnf}, A, \ell)$}
\li{is $\ell$-extension $L/K$ locally cyclotomic}{rnfislocalcyclo$(\var{rnf})$}
\section{Ideals: {\rm elements, primes, or matrix of generators in HNF}}
\li{is $id$ an ideal in \var{nf} ?}{nfisideal$(\var{nf},id)$}
\li{is $x$ principal in \var{bnf} ?}{bnfisprincipal$(\var{bnf},x)$}
\li{give $[a,b]$, s.t.~ $a\ZZ_K+b\ZZ_K = x$}{idealtwoelt$(\var{nf},x,\{a\})$}
\li{put ideal $a$ ($a\ZZ_K+b\ZZ_K$) in HNF form}{idealhnf$(\var{nf},a,\{b\})$}
\li{norm of ideal $x$}{idealnorm$(\var{nf},x)$}
\li{minimum of ideal $x$ (direction $v$)}{idealmin$(\var{nf},x,v)$}
\li{LLL-reduce the ideal $x$ (direction $v$)}{idealred$(\var{nf},x,\{v\})$}
\smallskip
\subsec{Ideal Operations}
\li{add ideals $x$ and $y$}{idealadd$(\var{nf},x,y)$}
\li{multiply ideals $x$ and $y$}{idealmul$(\var{nf},x,y,\{\fl\})$}
\li{intersection of ideal $x$ with $\Q$}{idealdown$(\var{nf},x)$}
\li{intersection of ideals $x$ and $y$}{idealintersect$(\var{nf},x,y,\{\fl\})$}
\li{$n$-th power of ideal $x$}{idealpow$(\var{nf},x,n,\{\fl\})$}
\li{inverse of ideal $x$}{idealinv$(\var{nf},x)$}
\newcolumn
\title{\TITLE}
\centerline{(PARI-GP version \PARIversion)}
\smallskip
\li{divide ideal $x$ by $y$}{idealdiv$(\var{nf},x,y,\{\fl\})$}
\li{Find $(a,b)\in x\times y$, $a+b=1$}{idealaddtoone$(\var{nf},x,\{y\})$}
\li{coprime integral $A,B$ such that $x=A/B$}{idealnumden$(\var{nf},x)$}
\smallskip
\subsec{Primes and Multiplicative Structure}
\li{check whether $x$ is a maximal ideal}{idealismaximal$(\var{nf},x)$}
\li{factor ideal $x$ in $\ZZ_K$}{idealfactor$(\var{nf},x)$}
\li{expand ideal factorization in $K$}{idealfactorback$(\var{nf},f,\{e\})$}
\li{is ideal $A$ an $n$-th power ?}{idealispower$(\var{nf},A,n)$}
\li{expand elt factorization in $K$}{nffactorback$(\var{nf},f,\{e\})$}
\li{decomposition of prime $p$ in $\ZZ_K$}{idealprimedec$(\var{nf},p)$}
\li{valuation of $x$ at prime ideal \var{pr}}{idealval$(\var{nf},x,\var{pr})$}
\li{weak approximation theorem in \var{nf}}{idealchinese$(\var{nf},x,y)$}
\li{$a\in K$, s.t. $v_{\p}(a) = v_{\p}(x)$ if
$v_{\p}(x)\neq 0$}
{idealappr$(\var{nf},x)$}
\li{$a\in K$ such that $(a\cdot x, y) = 1$}{idealcoprime$(\var{nf},x,y)$}
\li{give $bid=$structure of $(\ZZ_K/id)^*$}{idealstar$(\var{nf},id,\{\fl\})$}
\li{structure of $(1+\p) / (1+\p^k)$}
{idealprincipalunits$(\var{nf},\var{pr},k)$}
\li{discrete log of $x$ in $(\ZZ_K/bid)^*$}{ideallog$(\var{nf},x,bid)$}
\li{\kbd{idealstar} of all ideals of norm $\le b$}{ideallist$(\var{nf},b,\{\fl\})$}
\li{add Archimedean places}{ideallistarch$(\var{nf},b,\{ar\},\{\fl\})$}
\li{init \kbd{modpr} structure}{nfmodprinit$(\var{nf},\var{pr},\{v\})$}
\li{project $t$ to $\ZZ_K/\var{pr}$}{nfmodpr$(\var{nf},t,\var{modpr})$}
\li{lift from $\ZZ_K/\var{pr}$}{nfmodprlift$(\var{nf},t,\var{modpr})$}
\medskip
\section{Galois theory over $\QQ$}
\li{conjugates of a root $\theta$ of \var{nf}}{nfgaloisconj$(\var{nf},\{\fl\})$}
\li{apply Galois automorphism $s$ to $x$}{nfgaloisapply$(\var{nf},s,x)$}
\li{Galois group of field $\QQ[x]/(f)$}{polgalois$(f)$}
\li{resolvent field of $\QQ[x]/(f)$}{nfresolvent$(f)$}
\li{initializes a Galois group structure $G$}{galoisinit$(\var{pol},\{den\})$}
\li{\dots for the splitting field of \var{pol}}{galoissplittinginit$(\var{pol},\{d\})$}
\li{character table of $G$}{galoischartable$(G)$}
\li{conjugacy classes of $G$}{galoisconjclasses$(G)$}
\li{$\det(1 - \rho(g)T)$, $\chi$ character of $\rho$}
{galoischarpoly$(G,\chi,\{o\})$}
\li{$\det(\rho(g))$, $\chi$ character of $\rho$}
{galoischardet$(G,\chi,\{o\})$}
\li{action of $p$ in nfgaloisconj form}{galoispermtopol$(G,\{p\})$}
\li{identify as abstract group}{galoisidentify$(G)$}
\li{export a group for GAP/MAGMA}{galoisexport$(G,\{\fl\})$}
\li{subgroups of the Galois group $G$}{galoissubgroups$(G)$}
\li{is subgroup $H$ normal?}{galoisisnormal$(G,H)$}
\li{subfields from subgroups}{galoissubfields$(G,\{\fl\},\{v\})$}
\li{fixed field}{galoisfixedfield$(G,\var{perm},\{\fl\},\{v\})$}
\li{Frobenius at maximal ideal $P$}{idealfrobenius$(\var{nf},G,P)$}
\li{ramification groups at $P$}{idealramgroups$(\var{nf},G,P)$}
\li{is $G$ abelian?}{galoisisabelian$(G,\{\fl\})$}
\li{abelian number fields/$\QQ$}{galoissubcyclo(N,H,\{\fl\},\{v\})}
\subsec{The \kbd{galpol} package}
\li{query the package: polynomial}{galoisgetpol(a,b,\{s\})}
\li{\dots : permutation group}{galoisgetgroup(a,{b})}
\li{\dots : group description}{galoisgetname(a,b)}
\medskip
\section{Relative Number Fields (rnf)}
Extension $L/K$ is defined by $T\in K[x]$.
\hfill\break
%
\li{absolute equation of $L$}{rnfequation$(\var{nf},T,\{\fl\})$}
\li{is $L/K$ abelian?}{rnfisabelian$(\var{nf},T)$}
\li{relative {\tt nfalgtobasis}}{rnfalgtobasis$(\var{rnf},x)$}
\li{relative {\tt nfbasistoalg}}{rnfbasistoalg$(\var{rnf},x)$}
\li{relative {\tt idealhnf}}{rnfidealhnf$(\var{rnf},x)$}
\newcolumn
\li{relative {\tt idealmul}}{rnfidealmul$(\var{rnf},x,y)$}
\li{relative {\tt idealtwoelt}}{rnfidealtwoelt$(\var{rnf},x)$}
\smallskip
\subsec{Lifts and Push-downs}
\li{absolute $\rightarrow$ relative representation for $x$}
{rnfeltabstorel$(\var{rnf},x)$}
\li{relative $\rightarrow$ absolute representation for $x$}
{rnfeltreltoabs$(\var{rnf},x)$}
\li{lift $x$ to the relative field}{rnfeltup$(\var{rnf},x)$}
\li{push $x$ down to the base field}{rnfeltdown$(\var{rnf},x)$}
\leavevmode idem for $x$ ideal:
\kbd{$($rnfideal$)$reltoabs}, \kbd{abstorel}, \kbd{up}, \kbd{down}\hfill
\smallskip
\subsec{Norms and Trace}
\li{relative norm of element $x\in L$}{rnfeltnorm$(\var{rnf},x)$}
\li{relative trace of element $x\in L$}{rnfelttrace$(\var{rnf},x)$}
\li{absolute norm of ideal $x$}{rnfidealnormabs$(\var{rnf},x)$}
\li{relative norm of ideal $x$}{rnfidealnormrel$(\var{rnf},x)$}
\li{solutions of $N_{K/\QQ}(y)=x\in \ZZ$}{bnfisintnorm$(\var{bnf},x)$}
\li{is $x\in\QQ$ a norm from $K$?}{bnfisnorm$(\var{bnf},x,\{\fl\})$}
\li{initialize $T$ for norm eq.~solver}{rnfisnorminit$(K,pol,\{\fl\})$}
\li{is $a\in K$ a norm from $L$?}{rnfisnorm$(T,a,\{\fl\})$}
\li{initialize $t$ for Thue equation solver}{thueinit$(f)$}
\li{solve Thue equation $f(x,y)=a$}{thue$(t,a,\{sol\})$}
\li{characteristic poly.\ of $a$ mod $T$}{rnfcharpoly$(\var{nf},T,a,\{v\})$}
\smallskip
\subsec{Factorization}
\li{factor ideal $x$ in $L$}{rnfidealfactor$(\var{rnf},x)$}
\li{$[S,T] \colon T_{i,j} \mid S_i$; $S$ primes of $K$ above $p$}
{rnfidealprimedec$(\var{rnf},p)$}
\smallskip
\subsec{Maximal order $\ZZ_L$ as a $\ZZ_K$-module}
\li{relative {\tt polredbest}}{rnfpolredbest$(\var{nf},T)$}
\li{relative {\tt polredabs}}{rnfpolredabs$(\var{nf},T)$}
\li{relative Dedekind criterion, prime $pr$}{rnfdedekind$(\var{nf},T,pr)$}
\li{discriminant of relative extension}{rnfdisc$(\var{nf},T)$}
\li{pseudo-basis of $\ZZ_L$}{rnfpseudobasis$(\var{nf},T)$}
\smallskip
\subsec{General $\ZZ_K$-modules:
{\rm $M = [{\rm matrix}, {\rm vec.~of~ideals}] \subset L$}}
\li{relative HNF / SNF}{nfhnf$(\var{nf},M)${\rm, }nfsnf}
\li{multiple of $\det M$}{nfdetint$(\var{nf},M)$}
\li{HNF of $M$ where $d = \kbd{nfdetint}(M)$}{nfhnfmod$(x,d)$}
\li{reduced basis for $M$}{rnflllgram$(\var{nf},T,M)$}
\li{determinant of pseudo-matrix $M$}{rnfdet$(\var{nf},M)$}
\li{Steinitz class of $M$}{rnfsteinitz$(\var{nf},M)$}
\li{$\ZZ_K$-basis of $M$ if $\ZZ_K$-free, or $0$}{rnfhnfbasis$(\var{bnf},M)$}
\li{$n$-basis of $M$, or $(n+1)$-generating set}{rnfbasis$(\var{bnf},M)$}
\li{is $M$ a free $\ZZ_K$-module?}{rnfisfree$(\var{bnf},M)$}
\vfill
\copyrightnotice
\newcolumn
\section{Associative Algebras}
$A$ is a general associative algebra given by a multiplication table \var{mt}
(over $\QQ$ or $\FF_p$); represented by \var{al} from \kbd{algtableinit}.
\li{create \var{al} from \var{mt} (over $\FF_p$)}
{algtableinit$(\var{mt},\{p=0\})$}
\li{group algebra $\QQ[G]$ (or $\FF_p[G]$)}{alggroup$(G,\{p = 0\})$}
\li{center of group algebra}{alggroupcenter$(G,\{p = 0\})$}
\subsec{Properties}
\li{is $(\var{mt},p)$ OK for algtableinit?}
{algisassociative$(\var{mt},\{p=0\})$}
\li{multiplication table \var{mt}}{algmultable$(\var{al})$}
\li{dimension of $A$ over prime subfield}{algdim$(\var{al})$}
\li{characteristic of $A$}{algchar$(\var{al})$}
\li{is $A$ commutative?}{algiscommutative$(\var{al})$}
\li{is $A$ simple?}{algissimple$(\var{al})$}
\li{is $A$ semi-simple?}{algissemisimple$(\var{al})$}
\li{center of $A$}{algcenter$(\var{al})$}
\li{Jacobson radical of $A$}{algradical$(\var{al})$}
\li{radical $J$ and simple factors of $A/J$}{algsimpledec$(\var{al})$}
\smallskip
\subsec{Operations on algebras}
\li{create $A/I$, $I$ two-sided ideal}{algquotient$(\var{al},I)$}
\li{create $A_1\otimes A_2$}{algtensor$(\var{al1}, \var{al2})$}
\li{create subalgebra from basis $B$}{algsubalg$(\var{al}, B)$}
\li{quotients by ortho. central idempotents $e$}
{algcentralproj$(\var{al}, e)$}
\li{isomorphic alg. with integral mult. table}{algmakeintegral(\var{mt})}
\li{prime subalgebra of semi-simple $A$ over $\FF_p$}
{algprimesubalg$(\var{al})$}
\li{find isomorphism~$A\cong M_d(\FF_q)$}{algsplit(\var{al})}
\smallskip
\subsec{Operations on lattices in algebras}
\li{lattice generated by cols. of $M$}{alglathnf$(\var{al},M)$}
\li{\dots by the products~$xy$, $x\in lat1$, $y\in lat2$}{alglatmul$(\var{al},\var{lat1},\var{lat2})$}
\li{sum $lat1+lat2$ of the lattices}{alglatadd$(\var{al},\var{lat1},\var{lat2})$}
\li{intersection $lat1\cap lat2$}{alglatinter$(\var{al},\var{lat1},\var{lat2})$}
\li{test~$lat1\subset lat2$}{alglatsubset$(\var{al},\var{lat1},\var{lat2})$}
\li{generalized index~$(lat2:lat1)$}{alglatindex$(\var{al},\var{lat1},\var{lat2})$}
\li{$\{x\in al\mid x\cdot lat1\subset lat2\}$}{alglatlefttransporter$(\var{al},\var{lat1},\var{lat2})$}
\li{$\{x\in al\mid lat1\cdot x\subset lat2\}$}{alglatrighttransporter$(\var{al},\var{lat1},\var{lat2})$}
\li{test~$x\in lat$ (set~$c =$ coord. of~$x$)}{alglatcontains$(\var{al},\var{lat},x,\{\& c\})$}
\li{element of~$lat$ with coordinates~$c$}{alglatelement$(\var{al},\var{lat},c)$}
\subsec{Operations on elements}
\li{$a+b$, $a-b$, $-a$}{algadd$(\var{al},a,b)${\rm, }algsub{\rm, }algneg}
\li{$a\times b$, $a^2$}{algmul$(\var{al},a,b)${\rm, }algsqr}
\li{$a^n$, $a^{-1}$}{algpow$(\var{al},a,n)${\rm, }alginv}
\li{is $x$ invertible ? (then set $z=x^{-1}$)}{algisinv$(\var{al},x,\{\&z\})$}
\li{find $z$ such that $x\times z = y$}{algdivl$(\var{al},x,y)$}
\li{find $z$ such that $z\times x = y$}{algdivr$(\var{al},x,y)$}
\li{does $z$ s.t. $x\times z = y$ exist? (set it)}
{algisdivl$(\var{al},x,y,\{\&z\})$}
\li{matrix of $v\mapsto x\cdot v$}{algtomatrix$(\var{al}, x)$}
\li{absolute norm}{algnorm$(\var{al},x)$}
\li{absolute trace}{algtrace$(\var{al},x)$}
\li{absolute char. polynomial}{algcharpoly$(\var{al},x)$}
\li{given $a\in A$ and polynomial $T$, return $T(a)$}
{algpoleval$(\var{al},T,a)$}
\li{random element in a box}{algrandom$(\var{al}, b)$}
\section{Central Simple Algebras}
$A$ is a central simple algebra over a number field $K$; represented by
\var{al} from \kbd{alginit}; $K$ is given by a \var{nf} structure.
\li{create CSA from data}
{alginit$(B,C,\{v\},\{maxord=1\})$}
\beginindentedkeys
\li{multiplication table over $K$}{$B = K${\rm, }$C = \var{mt}$}
\li{cyclic algebra $(L/K,\sigma,b)$}
{$B = \var{rnf}${\rm, }$C = [\var{sigma},b]$}
\li{quaternion algebra $(a,b)_K$}{$B = K$, $C = [a,b]$}
\li{matrix algebra $M_d(K)$}{$B = K$, $C = d$}
\li{local Hasse invariants over $K$}
{$B = K$, $C = [d, [\var{PR}, \var{HF}], \var{HI}]$}
\endindentedkeys
\smallskip
\subsec{Properties}
\li{type of \var{al} (\var{mt}, CSA)}{algtype$(\var{al})$}
\li{dimension of $A$ over~$\QQ$}{algdim$(\var{al},1)$}
\li{dimension of \var{al} over its center~$K$}{algdim$(\var{al})$}
\li{degree of $A$ ($=\sqrt{\dim_K A}$)}{algdegree$(\var{al})$}
\li{\var{al} a cyclic algebra $(L/K,\sigma,b)$; return $\sigma$}
{algaut$(\var{al})$}
\li{\dots return $b$}{algb$(\var{al})$}
\li{\dots return $L/K$, as an \var{rnf}}
{algsplittingfield$(\var{al})$}
\li{split $A$ over an extension of $K$}{algsplittingdata$(\var{al})$}
\li{splitting field of $A$ as an \var{rnf} over center}
{algsplittingfield$(\var{al})$}
\li{multiplication table over center}{algrelmultable$(\var{al})$}
\li{places of $K$ at which $A$ ramifies}{algramifiedplaces$(\var{al})$}
\li{Hasse invariants at finite places of $K$}{alghassef$(\var{al})$}
\li{Hasse invariants at infinite places of $K$}{alghassei$(\var{al})$}
\li{Hasse invariant at place $v$}{alghasse$(\var{al},v)$}
\li{index of $A$ over $K$ (at place $v$)}{algindex$(\var{al},\{v\})$}
\li{is \var{al} a division algebra? (at place $v$)}
{algisdivision$(\var{al},\{v\})$}
\li{is $A$ ramified? (at place $v$)}{algisramified$(\var{al},\{v\})$}
\li{is $A$ split? (at place $v$)}{algissplit$(\var{al},\{v\})$}
\smallskip
\subsec{Operations on elements}
\li{reduced norm}{algnorm$(\var{al},x)$}
\li{reduced trace}{algtrace$(\var{al},x)$}
\li{reduced char. polynomial}{algcharpoly$(\var{al},x)$}
\li{express $x$ on integral basis}{algalgtobasis$(\var{al},x)$}
\li{convert $x$ to algebraic form}{algbasistoalg$(\var{al},x)$}
\li{map $x\in A$ to $M_d(L)$, $L$ split. field} {algtomatrix$(\var{al},x)$}
\smallskip
\subsec{Orders}
\li{$\ZZ$-basis of order ${\cal O}_0$}{algbasis$(\var{al})$}
\li{discriminant of order ${\cal O}_0$}{algdisc$(\var{al})$}
\li{$\ZZ$-basis of natural order in terms ${\cal O}_0$'s basis}
{alginvbasis$(\var{al})$}
\newcolumn
\strut
\vskip 11cm
\copyrightnotice
\bye
|