1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25799 25800 25801 25802 25803 25804 25805 25806 25807 25808 25809 25810 25811 25812 25813 25814 25815 25816 25817 25818 25819 25820 25821 25822 25823 25824 25825 25826 25827 25828 25829 25830 25831 25832 25833 25834 25835 25836 25837 25838 25839 25840 25841 25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 25857 25858 25859 25860 25861 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 25889 25890 25891 25892 25893 25894 25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 25907 25908 25909 25910 25911 25912 25913 25914 25915 25916 25917 25918 25919 25920 25921 25922 25923 25924 25925 25926 25927 25928 25929 25930 25931 25932 25933 25934 25935 25936 25937 25938 25939 25940 25941 25942 25943 25944 25945 25946 25947 25948 25949 25950 25951 25952 25953 25954 25955 25956 25957 25958 25959 25960 25961 25962 25963 25964 25965 25966 25967 25968 25969 25970 25971 25972 25973 25974 25975 25976 25977 25978 25979 25980 25981 25982 25983 25984 25985 25986 25987 25988 25989 25990 25991 25992 25993 25994 25995 25996 25997 25998 25999 26000 26001 26002 26003 26004 26005 26006 26007 26008 26009 26010 26011 26012 26013 26014 26015 26016 26017 26018 26019 26020 26021 26022 26023 26024 26025 26026 26027 26028 26029 26030 26031 26032 26033 26034 26035 26036 26037 26038 26039 26040 26041 26042 26043 26044 26045 26046 26047 26048 26049 26050 26051 26052 26053 26054 26055 26056 26057 26058 26059 26060 26061 26062 26063 26064 26065 26066 26067 26068 26069 26070 26071 26072 26073 26074 26075 26076 26077 26078 26079 26080 26081 26082 26083 26084 26085 26086 26087 26088 26089 26090 26091 26092 26093 26094 26095 26096 26097 26098 26099 26100 26101 26102 26103 26104 26105 26106 26107 26108 26109 26110 26111 26112 26113 26114 26115 26116 26117 26118 26119 26120 26121 26122 26123 26124 26125 26126 26127 26128 26129 26130 26131 26132 26133 26134 26135 26136 26137 26138 26139 26140 26141 26142 26143 26144 26145 26146 26147 26148 26149 26150 26151 26152 26153 26154 26155 26156 26157 26158 26159 26160 26161 26162 26163 26164 26165 26166 26167 26168 26169 26170 26171 26172 26173 26174 26175 26176 26177 26178 26179 26180 26181 26182 26183 26184 26185 26186 26187 26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 26218 26219 26220 26221 26222 26223 26224 26225 26226 26227 26228 26229 26230 26231 26232 26233 26234 26235 26236 26237 26238 26239 26240 26241 26242 26243 26244 26245 26246 26247 26248 26249 26250 26251 26252 26253 26254 26255 26256 26257 26258 26259 26260 26261 26262 26263 26264 26265 26266 26267 26268 26269 26270 26271 26272 26273 26274 26275 26276 26277 26278 26279 26280 26281 26282 26283 26284 26285 26286 26287 26288 26289 26290 26291 26292 26293 26294 26295 26296 26297 26298 26299 26300 26301 26302 26303 26304 26305 26306 26307 26308 26309 26310 26311 26312 26313 26314 26315 26316 26317 26318 26319 26320 26321 26322 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333 26334 26335 26336 26337 26338 26339 26340 26341 26342 26343 26344 26345 26346 26347 26348 26349 26350 26351 26352 26353 26354 26355 26356 26357 26358 26359 26360 26361 26362 26363 26364 26365 26366 26367 26368 26369 26370 26371 26372 26373 26374 26375 26376 26377 26378 26379 26380 26381 26382 26383 26384 26385 26386 26387 26388 26389 26390 26391 26392 26393 26394 26395 26396 26397 26398 26399 26400 26401 26402 26403 26404 26405 26406 26407 26408 26409 26410 26411 26412 26413 26414 26415 26416 26417 26418 26419 26420 26421 26422 26423 26424 26425 26426 26427 26428 26429 26430 26431 26432 26433 26434 26435 26436 26437 26438 26439 26440 26441 26442 26443 26444 26445 26446 26447 26448 26449 26450 26451 26452 26453 26454 26455 26456 26457 26458 26459 26460 26461 26462 26463 26464 26465 26466 26467 26468 26469 26470 26471 26472 26473 26474 26475 26476 26477 26478 26479 26480 26481 26482 26483 26484 26485 26486 26487 26488 26489 26490 26491 26492 26493 26494 26495 26496 26497 26498 26499 26500 26501 26502 26503 26504 26505 26506 26507 26508 26509 26510 26511 26512 26513 26514 26515 26516 26517 26518 26519 26520 26521 26522 26523 26524 26525 26526 26527 26528 26529 26530 26531 26532 26533 26534 26535 26536 26537 26538 26539 26540 26541 26542 26543 26544 26545 26546 26547 26548 26549 26550 26551 26552 26553 26554 26555 26556 26557 26558 26559 26560 26561 26562 26563 26564 26565 26566 26567 26568 26569 26570 26571 26572 26573 26574 26575 26576 26577 26578 26579 26580 26581 26582 26583 26584 26585 26586 26587 26588 26589 26590 26591 26592 26593 26594 26595 26596 26597 26598 26599 26600 26601 26602 26603 26604 26605 26606 26607 26608 26609 26610 26611 26612 26613 26614 26615 26616 26617 26618 26619 26620 26621 26622 26623 26624 26625 26626 26627 26628 26629 26630 26631 26632 26633 26634 26635 26636 26637 26638 26639 26640 26641 26642 26643 26644 26645 26646 26647 26648 26649 26650 26651 26652 26653 26654 26655 26656 26657 26658 26659 26660 26661 26662 26663 26664 26665 26666 26667 26668 26669 26670 26671 26672 26673 26674 26675 26676 26677 26678 26679 26680 26681 26682 26683 26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 26698 26699 26700 26701 26702 26703 26704 26705 26706 26707 26708 26709 26710 26711 26712 26713 26714 26715 26716 26717 26718 26719 26720 26721 26722 26723 26724 26725 26726 26727 26728 26729 26730 26731 26732 26733 26734 26735 26736 26737 26738 26739 26740 26741 26742 26743 26744 26745 26746 26747 26748 26749 26750 26751 26752 26753 26754 26755 26756 26757 26758 26759 26760 26761 26762 26763 26764 26765 26766 26767 26768 26769 26770 26771 26772 26773 26774 26775 26776 26777 26778 26779 26780 26781 26782 26783 26784 26785 26786 26787 26788 26789 26790 26791 26792 26793 26794 26795 26796 26797 26798 26799 26800 26801 26802 26803 26804 26805 26806 26807 26808 26809 26810 26811 26812 26813 26814 26815 26816 26817 26818 26819 26820 26821 26822 26823 26824 26825 26826 26827 26828 26829 26830 26831 26832 26833 26834 26835 26836 26837 26838 26839 26840 26841 26842 26843 26844 26845 26846 26847 26848 26849 26850 26851 26852 26853 26854 26855 26856 26857 26858 26859 26860 26861 26862 26863 26864 26865 26866 26867 26868 26869 26870 26871 26872 26873 26874 26875 26876 26877 26878 26879 26880 26881 26882 26883 26884 26885 26886 26887 26888 26889 26890 26891 26892 26893 26894 26895 26896 26897 26898 26899 26900 26901 26902 26903 26904 26905 26906 26907 26908 26909 26910 26911 26912 26913 26914 26915 26916 26917 26918 26919 26920 26921 26922 26923 26924 26925 26926 26927 26928 26929 26930 26931 26932 26933 26934 26935 26936 26937 26938 26939 26940 26941 26942 26943 26944 26945 26946 26947 26948 26949 26950 26951 26952 26953 26954 26955 26956 26957 26958 26959 26960 26961 26962 26963 26964 26965 26966 26967 26968 26969 26970 26971 26972 26973 26974 26975 26976 26977 26978 26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 26990 26991 26992 26993 26994 26995 26996 26997 26998 26999 27000 27001 27002 27003 27004 27005 27006 27007 27008 27009 27010 27011 27012 27013 27014 27015 27016 27017 27018 27019 27020 27021 27022 27023 27024 27025 27026 27027 27028 27029 27030 27031 27032 27033 27034 27035 27036 27037 27038 27039 27040 27041 27042 27043 27044 27045 27046 27047 27048 27049 27050 27051 27052 27053 27054 27055 27056 27057 27058 27059 27060 27061 27062 27063 27064 27065 27066 27067 27068 27069 27070 27071 27072 27073 27074 27075 27076 27077 27078 27079 27080 27081 27082 27083 27084 27085 27086 27087 27088 27089 27090 27091 27092 27093 27094 27095 27096 27097 27098 27099 27100 27101 27102 27103 27104 27105 27106 27107 27108 27109 27110 27111 27112 27113 27114 27115 27116 27117 27118 27119 27120 27121 27122 27123 27124 27125 27126 27127 27128 27129 27130 27131 27132 27133 27134 27135 27136 27137 27138 27139 27140 27141 27142 27143 27144 27145 27146 27147 27148 27149 27150 27151 27152 27153 27154 27155 27156 27157 27158 27159 27160 27161 27162 27163 27164 27165 27166 27167 27168 27169 27170 27171 27172 27173 27174 27175 27176 27177 27178 27179 27180 27181 27182 27183 27184 27185 27186 27187 27188 27189 27190 27191 27192 27193 27194 27195 27196 27197 27198 27199 27200 27201 27202 27203 27204 27205 27206 27207 27208 27209 27210 27211 27212 27213 27214 27215 27216 27217 27218 27219 27220 27221 27222 27223 27224 27225 27226 27227 27228 27229 27230 27231 27232 27233 27234 27235 27236 27237 27238 27239 27240 27241 27242 27243 27244 27245 27246 27247 27248 27249 27250 27251 27252 27253 27254 27255 27256 27257 27258 27259 27260 27261 27262 27263 27264 27265 27266 27267 27268 27269 27270 27271 27272 27273 27274 27275 27276 27277 27278 27279 27280 27281 27282 27283 27284 27285 27286 27287 27288 27289 27290 27291 27292 27293 27294 27295 27296 27297 27298 27299 27300 27301 27302 27303 27304 27305 27306 27307 27308 27309 27310 27311 27312 27313 27314 27315 27316 27317 27318 27319 27320 27321 27322 27323 27324 27325 27326 27327 27328 27329 27330 27331 27332 27333 27334 27335 27336 27337 27338 27339 27340 27341 27342 27343 27344 27345 27346 27347 27348 27349 27350 27351 27352 27353 27354 27355 27356 27357 27358 27359 27360 27361 27362 27363 27364 27365 27366 27367 27368 27369 27370 27371 27372 27373 27374 27375 27376 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 27481 27482 27483 27484 27485 27486 27487 27488 27489 27490 27491 27492 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 27541 27542 27543 27544 27545 27546 27547 27548 27549 27550 27551 27552 27553 27554 27555 27556 27557 27558 27559 27560 27561 27562 27563 27564 27565 27566 27567 27568 27569 27570 27571 27572 27573 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 27590 27591 27592 27593 27594 27595 27596 27597 27598 27599 27600 27601 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 27628 27629 27630 27631 27632 27633 27634 27635 27636 27637 27638 27639 27640 27641 27642 27643 27644 27645 27646 27647 27648 27649 27650 27651 27652 27653 27654 27655 27656 27657 27658 27659 27660 27661 27662 27663 27664 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 27680 27681 27682 27683 27684 27685 27686 27687 27688 27689 27690 27691 27692 27693 27694 27695 27696 27697 27698 27699 27700 27701 27702 27703 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 27725 27726 27727 27728 27729 27730 27731 27732 27733 27734 27735 27736 27737 27738 27739 27740 27741 27742 27743 27744 27745 27746 27747 27748 27749 27750 27751 27752 27753 27754 27755 27756 27757 27758 27759 27760 27761 27762 27763 27764 27765 27766 27767 27768 27769 27770 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 27800 27801 27802 27803 27804 27805 27806 27807 27808 27809 27810 27811 27812 27813 27814 27815 27816 27817 27818 27819 27820 27821 27822 27823 27824 27825 27826 27827 27828 27829 27830 27831 27832 27833 27834 27835 27836 27837 27838 27839 27840 27841 27842 27843 27844 27845 27846 27847 27848 27849 27850 27851 27852 27853 27854 27855 27856 27857 27858 27859 27860 27861 27862 27863 27864 27865 27866 27867 27868 27869 27870 27871 27872 27873 27874 27875 27876 27877 27878 27879 27880 27881 27882 27883 27884 27885 27886 27887 27888 27889 27890 27891 27892 27893 27894 27895 27896 27897 27898 27899 27900 27901 27902 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 27917 27918 27919 27920 27921 27922 27923 27924 27925 27926 27927 27928 27929 27930 27931 27932 27933 27934 27935 27936 27937 27938 27939 27940 27941 27942 27943 27944 27945 27946 27947 27948 27949 27950 27951 27952 27953 27954 27955 27956 27957 27958 27959 27960 27961 27962 27963 27964 27965 27966 27967 27968 27969 27970 27971 27972 27973 27974 27975 27976 27977 27978 27979 27980 27981 27982 27983 27984 27985 27986 27987 27988 27989 27990 27991 27992 27993 27994 27995 27996 27997 27998 27999 28000 28001 28002 28003 28004 28005 28006 28007 28008 28009 28010 28011 28012 28013 28014 28015 28016 28017 28018 28019 28020 28021 28022 28023 28024 28025 28026 28027 28028 28029 28030 28031 28032 28033 28034 28035 28036 28037 28038 28039 28040 28041 28042 28043 28044 28045 28046 28047 28048 28049 28050 28051 28052 28053 28054 28055 28056 28057 28058 28059 28060 28061 28062 28063 28064 28065 28066 28067 28068 28069 28070 28071 28072 28073 28074 28075 28076 28077 28078 28079 28080 28081 28082 28083 28084 28085 28086 28087 28088 28089 28090 28091 28092 28093 28094 28095 28096 28097 28098 28099 28100 28101 28102 28103 28104 28105 28106 28107 28108 28109 28110 28111 28112 28113 28114 28115 28116 28117 28118 28119 28120 28121 28122 28123 28124 28125 28126 28127 28128 28129 28130 28131 28132 28133 28134 28135 28136 28137 28138 28139 28140 28141 28142 28143 28144 28145 28146 28147 28148 28149 28150 28151 28152 28153 28154 28155 28156 28157 28158 28159 28160 28161 28162 28163 28164 28165 28166 28167 28168 28169 28170 28171 28172 28173 28174 28175 28176 28177 28178 28179 28180 28181 28182 28183 28184 28185 28186 28187 28188 28189 28190 28191 28192 28193 28194 28195 28196 28197 28198 28199 28200 28201 28202 28203 28204 28205 28206 28207 28208 28209 28210 28211 28212 28213 28214 28215 28216 28217 28218 28219 28220 28221 28222 28223 28224 28225 28226 28227 28228 28229 28230 28231 28232 28233 28234 28235 28236 28237 28238 28239 28240 28241 28242 28243 28244 28245 28246 28247 28248 28249 28250 28251 28252 28253 28254 28255 28256 28257 28258 28259 28260 28261 28262 28263 28264 28265 28266 28267 28268 28269 28270 28271 28272 28273 28274 28275 28276 28277 28278 28279 28280 28281 28282 28283 28284 28285 28286 28287 28288 28289 28290 28291 28292 28293 28294 28295 28296 28297 28298 28299 28300 28301 28302 28303 28304 28305 28306 28307 28308 28309 28310 28311 28312 28313 28314 28315 28316 28317 28318 28319 28320 28321 28322 28323 28324 28325 28326 28327 28328 28329 28330 28331 28332 28333 28334 28335 28336 28337 28338 28339 28340 28341 28342 28343 28344 28345 28346 28347 28348 28349 28350 28351 28352 28353 28354 28355 28356 28357 28358 28359 28360 28361 28362 28363 28364 28365 28366 28367 28368 28369 28370 28371 28372 28373 28374 28375 28376 28377 28378 28379 28380 28381 28382 28383 28384 28385 28386 28387 28388 28389 28390 28391 28392 28393 28394 28395 28396 28397 28398 28399 28400 28401 28402 28403 28404 28405 28406 28407 28408 28409 28410 28411 28412 28413 28414 28415 28416 28417 28418 28419 28420 28421 28422 28423 28424 28425 28426 28427 28428 28429 28430 28431 28432 28433 28434 28435 28436 28437 28438 28439 28440 28441 28442 28443 28444 28445 28446 28447 28448 28449 28450 28451 28452 28453 28454 28455 28456 28457 28458 28459 28460 28461 28462 28463 28464 28465 28466 28467 28468 28469 28470 28471 28472 28473 28474 28475 28476 28477 28478 28479 28480 28481 28482 28483 28484 28485 28486 28487 28488 28489 28490 28491 28492 28493 28494 28495 28496 28497 28498 28499 28500 28501 28502 28503 28504 28505 28506 28507 28508 28509 28510 28511 28512 28513 28514 28515 28516 28517 28518 28519 28520 28521 28522 28523 28524 28525 28526 28527 28528 28529 28530 28531 28532 28533 28534 28535 28536 28537 28538 28539 28540 28541 28542 28543 28544 28545 28546 28547 28548 28549 28550 28551 28552 28553 28554 28555 28556 28557 28558 28559 28560 28561 28562 28563 28564 28565 28566 28567 28568 28569 28570 28571 28572 28573 28574 28575 28576 28577 28578 28579 28580 28581 28582 28583 28584 28585 28586 28587 28588 28589 28590 28591 28592 28593 28594 28595 28596 28597 28598 28599 28600 28601 28602 28603 28604 28605 28606 28607 28608 28609 28610 28611 28612 28613 28614 28615 28616 28617 28618 28619 28620 28621 28622 28623 28624 28625 28626 28627 28628 28629 28630 28631 28632 28633 28634 28635 28636 28637 28638 28639 28640 28641 28642 28643 28644 28645 28646 28647 28648 28649 28650 28651 28652 28653 28654 28655 28656 28657 28658 28659 28660 28661 28662 28663 28664 28665 28666 28667 28668 28669 28670 28671 28672 28673 28674 28675 28676 28677 28678 28679 28680 28681 28682 28683 28684 28685 28686 28687 28688 28689 28690 28691 28692 28693 28694 28695 28696 28697 28698 28699 28700 28701 28702 28703 28704 28705 28706 28707 28708 28709 28710 28711 28712 28713 28714 28715 28716 28717 28718 28719 28720 28721 28722 28723 28724 28725 28726 28727 28728 28729 28730 28731 28732 28733 28734 28735 28736 28737 28738 28739 28740 28741 28742 28743 28744 28745 28746 28747 28748 28749 28750 28751 28752 28753 28754 28755 28756 28757 28758 28759 28760 28761 28762 28763 28764 28765 28766 28767 28768 28769 28770 28771 28772 28773 28774 28775 28776 28777 28778 28779 28780 28781 28782 28783 28784 28785 28786 28787 28788 28789 28790 28791 28792 28793 28794 28795 28796 28797 28798 28799 28800 28801 28802 28803 28804 28805 28806 28807 28808 28809 28810 28811 28812 28813 28814 28815 28816 28817 28818 28819 28820 28821 28822 28823 28824 28825 28826 28827 28828 28829 28830 28831 28832 28833 28834 28835 28836 28837 28838 28839 28840 28841 28842 28843 28844 28845 28846 28847 28848 28849 28850 28851 28852 28853 28854 28855 28856 28857 28858 28859 28860 28861 28862 28863 28864 28865 28866 28867 28868 28869 28870 28871 28872 28873 28874 28875 28876 28877 28878 28879 28880 28881 28882 28883 28884 28885 28886 28887 28888 28889 28890 28891 28892 28893 28894 28895 28896 28897 28898 28899 28900 28901 28902 28903 28904 28905 28906 28907 28908 28909 28910 28911 28912 28913 28914 28915 28916 28917 28918 28919 28920 28921 28922 28923 28924 28925 28926 28927 28928 28929 28930 28931 28932 28933 28934 28935 28936 28937 28938 28939 28940 28941 28942 28943 28944 28945 28946 28947 28948 28949 28950 28951 28952 28953 28954 28955 28956 28957 28958 28959 28960 28961 28962 28963 28964 28965 28966 28967 28968 28969 28970 28971 28972 28973 28974 28975 28976 28977 28978 28979 28980 28981 28982 28983 28984 28985 28986 28987 28988 28989 28990 28991 28992 28993 28994 28995 28996 28997 28998 28999 29000 29001 29002 29003 29004 29005 29006 29007 29008 29009 29010 29011 29012 29013 29014 29015 29016 29017 29018 29019 29020 29021 29022 29023 29024 29025 29026 29027 29028 29029 29030 29031 29032 29033 29034 29035 29036 29037 29038 29039 29040 29041 29042 29043 29044 29045 29046 29047 29048 29049 29050 29051 29052 29053 29054 29055 29056 29057 29058 29059 29060 29061 29062 29063 29064 29065 29066 29067 29068 29069 29070 29071 29072 29073 29074 29075 29076 29077 29078 29079 29080 29081 29082 29083 29084 29085 29086 29087 29088 29089 29090 29091 29092 29093 29094 29095 29096 29097 29098 29099 29100 29101 29102 29103 29104 29105 29106 29107 29108 29109 29110 29111 29112 29113 29114 29115 29116 29117 29118 29119 29120 29121 29122 29123 29124 29125 29126 29127 29128 29129 29130 29131 29132 29133 29134 29135 29136 29137 29138 29139 29140 29141 29142 29143 29144 29145 29146 29147 29148 29149 29150 29151 29152 29153 29154 29155 29156 29157 29158 29159 29160 29161 29162 29163 29164 29165 29166 29167 29168 29169 29170 29171 29172 29173 29174 29175 29176 29177 29178 29179 29180 29181 29182 29183 29184 29185 29186 29187 29188 29189 29190 29191 29192 29193 29194 29195 29196 29197 29198 29199 29200 29201 29202 29203 29204 29205 29206 29207 29208 29209 29210 29211 29212 29213 29214 29215 29216 29217 29218 29219 29220 29221 29222 29223 29224 29225 29226 29227 29228 29229 29230 29231 29232 29233 29234 29235 29236 29237 29238 29239 29240 29241 29242 29243 29244 29245 29246 29247 29248 29249 29250 29251 29252 29253 29254 29255 29256 29257 29258 29259 29260 29261 29262 29263 29264 29265 29266 29267 29268 29269 29270 29271 29272 29273 29274 29275 29276 29277 29278 29279 29280 29281 29282 29283 29284 29285 29286 29287 29288 29289 29290 29291 29292 29293 29294 29295 29296 29297 29298 29299 29300 29301 29302 29303 29304 29305 29306 29307 29308 29309 29310 29311 29312 29313 29314 29315 29316 29317 29318 29319 29320 29321 29322 29323 29324 29325 29326 29327 29328 29329 29330 29331 29332 29333 29334 29335 29336 29337 29338 29339 29340 29341 29342 29343 29344 29345 29346 29347 29348 29349 29350 29351 29352 29353 29354 29355 29356 29357 29358 29359 29360 29361 29362 29363 29364 29365 29366 29367 29368 29369 29370 29371 29372 29373 29374 29375 29376 29377 29378 29379 29380 29381 29382 29383 29384 29385 29386 29387 29388 29389 29390 29391 29392 29393 29394 29395 29396 29397 29398 29399 29400 29401 29402 29403 29404 29405 29406 29407 29408 29409 29410 29411 29412 29413 29414 29415 29416 29417 29418 29419 29420 29421 29422 29423 29424 29425 29426 29427 29428 29429 29430 29431 29432 29433 29434 29435 29436 29437 29438 29439 29440 29441 29442 29443 29444 29445 29446 29447 29448 29449 29450 29451 29452 29453 29454 29455 29456 29457 29458 29459 29460 29461 29462 29463 29464 29465 29466 29467 29468 29469 29470 29471 29472 29473 29474 29475 29476 29477 29478 29479 29480 29481 29482 29483 29484 29485 29486 29487 29488 29489 29490 29491 29492 29493 29494 29495 29496 29497 29498 29499 29500 29501 29502 29503 29504 29505 29506 29507 29508 29509 29510 29511 29512 29513 29514 29515 29516 29517 29518 29519 29520 29521 29522 29523 29524 29525 29526 29527 29528 29529 29530 29531 29532 29533 29534 29535 29536 29537 29538 29539 29540 29541 29542 29543 29544 29545 29546 29547 29548 29549 29550 29551 29552 29553 29554 29555 29556 29557 29558 29559 29560 29561 29562 29563 29564 29565 29566 29567 29568 29569 29570 29571 29572 29573 29574 29575 29576 29577 29578 29579 29580 29581 29582 29583 29584 29585 29586 29587 29588 29589 29590 29591 29592 29593 29594 29595 29596 29597 29598 29599 29600 29601 29602 29603 29604 29605 29606 29607 29608 29609 29610 29611 29612 29613 29614 29615 29616 29617 29618 29619 29620 29621 29622 29623 29624 29625 29626 29627 29628 29629 29630 29631 29632 29633 29634 29635 29636 29637 29638 29639 29640 29641 29642 29643 29644 29645 29646 29647 29648 29649 29650 29651 29652 29653 29654 29655 29656 29657 29658 29659 29660 29661 29662 29663 29664 29665 29666 29667 29668 29669 29670 29671 29672 29673 29674 29675 29676 29677 29678 29679 29680 29681 29682 29683 29684 29685 29686 29687 29688 29689 29690 29691 29692 29693 29694 29695 29696 29697 29698 29699 29700 29701 29702 29703 29704 29705 29706 29707 29708 29709 29710 29711 29712 29713 29714 29715 29716 29717 29718 29719 29720 29721 29722 29723 29724 29725 29726 29727 29728 29729 29730 29731 29732 29733 29734 29735 29736 29737 29738 29739 29740 29741 29742 29743 29744 29745 29746 29747 29748 29749 29750 29751 29752 29753 29754 29755 29756 29757 29758 29759 29760 29761 29762 29763 29764 29765 29766 29767 29768 29769 29770 29771 29772 29773 29774 29775 29776 29777 29778 29779 29780 29781 29782 29783 29784 29785 29786 29787 29788 29789 29790 29791 29792 29793 29794 29795 29796 29797 29798 29799 29800 29801 29802 29803 29804 29805 29806 29807 29808 29809 29810 29811 29812 29813 29814 29815 29816 29817 29818 29819 29820 29821 29822 29823 29824 29825 29826 29827 29828 29829 29830 29831 29832 29833 29834 29835 29836 29837 29838 29839 29840 29841 29842 29843 29844 29845 29846 29847 29848 29849 29850 29851 29852 29853 29854 29855 29856 29857 29858 29859 29860 29861 29862 29863 29864 29865 29866 29867 29868 29869 29870 29871 29872 29873 29874 29875 29876 29877 29878 29879 29880 29881 29882 29883 29884 29885 29886 29887 29888 29889 29890 29891 29892 29893 29894 29895 29896 29897 29898 29899 29900 29901 29902 29903 29904 29905 29906 29907 29908 29909 29910 29911 29912 29913 29914 29915 29916 29917 29918 29919 29920 29921 29922 29923 29924 29925 29926 29927 29928 29929 29930 29931 29932 29933 29934 29935 29936 29937 29938 29939 29940 29941 29942 29943 29944 29945 29946 29947 29948 29949 29950 29951 29952 29953 29954 29955 29956 29957 29958 29959 29960 29961 29962 29963 29964 29965 29966 29967 29968 29969 29970 29971 29972 29973 29974 29975 29976 29977 29978 29979 29980 29981 29982 29983 29984 29985 29986 29987 29988 29989 29990 29991 29992 29993 29994 29995 29996 29997 29998 29999 30000 30001 30002 30003 30004 30005 30006 30007 30008 30009 30010 30011 30012 30013 30014 30015 30016 30017 30018 30019 30020 30021 30022 30023 30024 30025 30026 30027 30028 30029 30030 30031 30032 30033 30034 30035 30036 30037 30038 30039 30040 30041 30042 30043 30044 30045 30046 30047 30048 30049 30050 30051 30052 30053 30054 30055 30056 30057 30058 30059 30060 30061 30062 30063 30064 30065 30066 30067 30068 30069 30070 30071 30072 30073 30074 30075 30076 30077 30078 30079 30080 30081 30082 30083 30084 30085 30086 30087 30088 30089 30090 30091 30092 30093 30094 30095 30096 30097 30098 30099 30100 30101 30102 30103 30104 30105 30106 30107 30108 30109 30110 30111 30112 30113 30114 30115 30116 30117 30118 30119 30120 30121 30122 30123 30124 30125 30126 30127 30128 30129 30130 30131 30132 30133 30134 30135 30136 30137 30138 30139 30140 30141 30142 30143 30144 30145 30146 30147 30148 30149 30150 30151 30152 30153 30154 30155 30156 30157 30158 30159 30160 30161 30162 30163 30164 30165 30166 30167 30168 30169 30170 30171 30172 30173 30174 30175 30176 30177 30178 30179 30180 30181 30182 30183 30184 30185 30186 30187 30188 30189 30190 30191 30192 30193 30194 30195 30196 30197 30198 30199 30200 30201 30202 30203 30204 30205 30206 30207 30208 30209 30210 30211 30212 30213 30214 30215 30216 30217 30218 30219 30220 30221 30222 30223 30224 30225 30226 30227 30228 30229 30230 30231 30232 30233 30234 30235 30236 30237 30238 30239 30240 30241 30242 30243 30244 30245 30246 30247 30248 30249 30250 30251 30252 30253 30254 30255 30256 30257 30258 30259 30260 30261 30262 30263 30264 30265 30266 30267 30268 30269 30270 30271 30272 30273 30274 30275 30276 30277 30278 30279 30280 30281 30282 30283 30284 30285 30286 30287 30288 30289 30290 30291 30292 30293 30294 30295 30296 30297 30298 30299 30300 30301 30302 30303 30304 30305 30306 30307 30308 30309 30310 30311 30312 30313 30314 30315 30316 30317 30318 30319 30320 30321 30322 30323 30324 30325 30326 30327 30328 30329 30330 30331 30332 30333 30334 30335 30336 30337 30338 30339 30340 30341 30342 30343 30344 30345 30346 30347 30348 30349 30350 30351 30352 30353 30354 30355 30356 30357 30358 30359 30360 30361 30362 30363 30364 30365 30366 30367 30368 30369 30370 30371 30372 30373 30374 30375 30376 30377 30378 30379 30380 30381 30382 30383 30384 30385 30386 30387 30388 30389 30390 30391 30392 30393 30394 30395 30396 30397 30398 30399 30400 30401 30402 30403 30404 30405 30406 30407 30408 30409 30410 30411 30412 30413 30414 30415 30416 30417 30418 30419 30420 30421 30422 30423 30424 30425 30426 30427 30428 30429 30430 30431 30432 30433 30434 30435 30436 30437 30438 30439 30440 30441 30442 30443 30444 30445 30446 30447 30448 30449 30450 30451 30452 30453 30454 30455 30456 30457 30458 30459 30460 30461 30462 30463 30464 30465 30466 30467 30468 30469 30470 30471 30472 30473 30474 30475 30476 30477 30478 30479 30480 30481 30482 30483 30484 30485 30486 30487 30488 30489 30490 30491 30492 30493 30494 30495 30496 30497 30498 30499 30500 30501 30502 30503 30504 30505 30506 30507 30508 30509 30510 30511 30512 30513 30514 30515 30516 30517 30518 30519 30520 30521 30522 30523 30524 30525 30526 30527 30528 30529 30530 30531 30532 30533 30534 30535 30536 30537 30538 30539 30540 30541 30542 30543 30544 30545 30546 30547 30548 30549 30550 30551 30552 30553 30554 30555 30556 30557 30558 30559 30560 30561 30562 30563 30564 30565 30566 30567 30568 30569 30570 30571 30572 30573 30574 30575 30576 30577 30578 30579 30580 30581 30582 30583 30584 30585 30586 30587 30588 30589 30590 30591 30592 30593 30594 30595 30596 30597 30598 30599 30600 30601 30602 30603 30604 30605 30606 30607 30608 30609 30610 30611 30612 30613 30614 30615 30616 30617 30618 30619 30620 30621 30622 30623 30624 30625 30626 30627 30628 30629 30630 30631 30632 30633 30634 30635 30636 30637 30638 30639 30640 30641 30642 30643 30644 30645 30646 30647 30648 30649 30650 30651 30652 30653 30654 30655 30656 30657 30658 30659 30660 30661 30662 30663 30664 30665 30666 30667 30668 30669 30670 30671 30672 30673 30674 30675 30676 30677 30678 30679 30680 30681 30682 30683 30684 30685 30686 30687 30688 30689 30690 30691 30692 30693 30694 30695 30696 30697 30698 30699 30700 30701 30702 30703 30704 30705 30706 30707 30708 30709 30710 30711 30712 30713 30714 30715 30716 30717 30718 30719 30720 30721 30722 30723 30724 30725 30726 30727 30728 30729 30730 30731 30732 30733 30734 30735 30736 30737 30738 30739 30740 30741 30742 30743 30744 30745 30746 30747 30748 30749 30750 30751 30752 30753 30754 30755 30756 30757 30758 30759 30760 30761 30762 30763 30764 30765 30766 30767 30768 30769 30770 30771 30772 30773 30774 30775 30776 30777 30778 30779 30780 30781 30782 30783 30784 30785 30786 30787 30788 30789 30790 30791 30792 30793 30794 30795 30796 30797 30798 30799 30800 30801 30802 30803 30804 30805 30806 30807 30808 30809 30810 30811 30812 30813 30814 30815 30816 30817 30818 30819 30820 30821 30822 30823 30824 30825 30826 30827 30828 30829 30830 30831 30832 30833 30834 30835 30836 30837 30838 30839 30840 30841 30842 30843 30844 30845 30846 30847 30848 30849 30850 30851 30852 30853 30854 30855 30856 30857 30858 30859 30860 30861 30862 30863 30864 30865 30866 30867 30868 30869 30870 30871 30872 30873 30874 30875 30876 30877 30878 30879 30880 30881 30882 30883 30884 30885 30886 30887 30888 30889 30890 30891 30892 30893 30894 30895 30896 30897 30898 30899 30900 30901 30902 30903 30904 30905 30906 30907 30908 30909 30910 30911 30912 30913 30914 30915 30916 30917 30918 30919 30920 30921 30922 30923 30924 30925 30926 30927 30928 30929 30930 30931 30932 30933 30934 30935 30936 30937 30938 30939 30940 30941 30942 30943 30944 30945 30946 30947 30948 30949 30950 30951 30952 30953 30954 30955 30956 30957 30958 30959 30960 30961 30962 30963 30964 30965 30966 30967 30968 30969 30970 30971 30972 30973 30974 30975 30976 30977 30978 30979 30980 30981 30982 30983 30984 30985 30986 30987 30988 30989 30990 30991 30992 30993 30994 30995 30996 30997 30998 30999 31000 31001 31002 31003 31004 31005 31006 31007 31008 31009 31010 31011 31012 31013 31014 31015 31016 31017 31018 31019 31020 31021 31022 31023 31024 31025 31026 31027 31028 31029 31030 31031 31032 31033 31034 31035 31036 31037 31038 31039 31040 31041 31042 31043 31044 31045 31046 31047 31048 31049 31050 31051 31052 31053 31054 31055 31056 31057 31058 31059 31060 31061 31062 31063 31064 31065 31066 31067 31068 31069 31070 31071 31072 31073 31074 31075 31076 31077 31078 31079 31080 31081 31082 31083 31084 31085 31086 31087 31088 31089 31090 31091 31092 31093 31094 31095 31096 31097 31098 31099 31100 31101 31102 31103 31104 31105 31106 31107 31108 31109 31110 31111 31112 31113 31114 31115 31116 31117 31118 31119 31120 31121 31122 31123 31124 31125 31126 31127 31128 31129 31130 31131 31132 31133 31134 31135 31136 31137 31138 31139 31140 31141 31142 31143 31144 31145 31146 31147 31148 31149 31150 31151 31152 31153 31154 31155 31156 31157 31158 31159 31160 31161 31162 31163 31164 31165 31166 31167 31168 31169 31170 31171 31172 31173 31174 31175 31176 31177 31178 31179 31180 31181 31182 31183 31184 31185 31186 31187 31188 31189 31190 31191 31192 31193 31194 31195 31196 31197 31198 31199 31200 31201 31202 31203 31204 31205 31206 31207 31208 31209 31210 31211 31212 31213 31214 31215 31216 31217 31218 31219 31220 31221 31222 31223 31224 31225 31226 31227 31228 31229 31230 31231 31232 31233 31234 31235 31236 31237 31238 31239 31240 31241 31242 31243 31244 31245 31246 31247 31248 31249 31250 31251 31252 31253 31254 31255 31256 31257 31258 31259 31260 31261 31262 31263 31264 31265 31266 31267 31268 31269 31270 31271 31272 31273 31274 31275 31276 31277 31278 31279 31280 31281 31282 31283 31284 31285 31286 31287 31288 31289 31290 31291 31292 31293 31294 31295 31296 31297 31298 31299 31300 31301 31302 31303 31304 31305 31306 31307 31308 31309 31310 31311 31312 31313 31314 31315 31316 31317 31318 31319 31320 31321 31322 31323 31324 31325 31326 31327 31328 31329 31330 31331 31332 31333 31334 31335 31336 31337 31338 31339 31340 31341 31342 31343 31344 31345 31346 31347 31348 31349 31350 31351 31352 31353 31354 31355 31356 31357 31358 31359 31360 31361 31362 31363 31364 31365 31366 31367 31368 31369 31370 31371 31372 31373 31374 31375 31376 31377 31378 31379 31380 31381 31382 31383 31384 31385 31386 31387 31388 31389 31390 31391 31392 31393 31394 31395 31396 31397 31398 31399 31400 31401 31402 31403 31404 31405 31406 31407 31408 31409 31410 31411 31412 31413 31414 31415 31416 31417 31418 31419 31420 31421 31422 31423 31424 31425 31426 31427 31428 31429 31430 31431 31432 31433 31434 31435 31436 31437 31438 31439 31440 31441 31442 31443 31444 31445 31446 31447 31448 31449 31450 31451 31452 31453 31454 31455 31456 31457 31458 31459 31460 31461 31462 31463 31464 31465 31466 31467 31468 31469 31470 31471 31472 31473 31474 31475 31476 31477 31478 31479 31480 31481 31482 31483 31484 31485 31486 31487 31488 31489 31490 31491 31492 31493 31494 31495 31496 31497 31498 31499 31500 31501 31502 31503 31504 31505 31506 31507 31508 31509 31510 31511 31512 31513 31514 31515 31516 31517 31518 31519 31520 31521 31522 31523 31524 31525 31526 31527 31528 31529 31530 31531 31532 31533 31534 31535 31536 31537 31538 31539 31540 31541 31542 31543 31544 31545 31546 31547 31548 31549 31550 31551 31552 31553 31554 31555 31556 31557 31558 31559 31560 31561 31562 31563 31564 31565 31566 31567 31568 31569 31570 31571 31572 31573 31574 31575 31576 31577 31578 31579 31580 31581 31582 31583 31584 31585 31586 31587 31588 31589 31590 31591 31592 31593 31594 31595 31596 31597 31598 31599 31600 31601 31602 31603 31604 31605 31606 31607 31608 31609 31610 31611 31612 31613 31614 31615 31616 31617 31618 31619 31620 31621 31622 31623 31624 31625 31626 31627 31628 31629 31630 31631 31632 31633 31634 31635 31636 31637 31638 31639 31640 31641 31642 31643 31644 31645 31646 31647 31648 31649 31650 31651 31652 31653 31654 31655 31656 31657 31658 31659 31660 31661 31662 31663 31664 31665 31666 31667 31668 31669 31670 31671 31672 31673 31674 31675 31676 31677 31678 31679 31680 31681 31682 31683 31684 31685 31686 31687 31688 31689 31690 31691 31692 31693 31694 31695 31696 31697 31698 31699 31700 31701 31702 31703 31704 31705 31706 31707 31708 31709 31710 31711 31712 31713 31714 31715 31716 31717 31718 31719 31720 31721 31722 31723 31724 31725 31726 31727 31728 31729 31730 31731 31732 31733 31734 31735 31736 31737 31738 31739 31740 31741 31742 31743 31744 31745 31746 31747 31748 31749 31750 31751 31752 31753 31754 31755 31756 31757 31758 31759 31760 31761 31762 31763 31764 31765 31766 31767 31768 31769 31770 31771 31772 31773 31774 31775 31776 31777 31778 31779 31780 31781 31782 31783 31784 31785 31786 31787 31788 31789 31790 31791 31792 31793 31794 31795 31796 31797 31798 31799 31800 31801 31802 31803 31804 31805 31806 31807 31808 31809 31810 31811 31812 31813 31814 31815 31816 31817 31818 31819 31820 31821 31822 31823 31824 31825 31826 31827 31828 31829 31830 31831 31832 31833 31834 31835 31836 31837 31838 31839 31840 31841 31842 31843 31844 31845 31846 31847 31848 31849 31850 31851 31852 31853 31854 31855 31856 31857 31858 31859 31860 31861 31862 31863 31864 31865 31866 31867 31868 31869 31870 31871 31872 31873 31874 31875 31876 31877 31878 31879 31880 31881 31882 31883 31884 31885 31886 31887 31888 31889 31890 31891 31892 31893 31894 31895 31896 31897 31898 31899 31900 31901 31902 31903 31904 31905 31906 31907 31908 31909 31910 31911 31912 31913 31914 31915 31916 31917 31918 31919 31920 31921 31922 31923 31924 31925 31926 31927 31928 31929 31930 31931 31932 31933 31934 31935 31936 31937 31938 31939 31940 31941 31942 31943 31944 31945 31946 31947 31948 31949 31950 31951 31952 31953 31954 31955 31956 31957 31958 31959 31960 31961 31962 31963 31964 31965 31966 31967 31968 31969 31970 31971 31972 31973 31974 31975 31976 31977 31978 31979 31980 31981 31982 31983 31984 31985 31986 31987 31988 31989 31990 31991 31992 31993 31994 31995 31996 31997 31998 31999 32000 32001 32002 32003 32004 32005 32006 32007 32008 32009 32010 32011 32012 32013 32014 32015 32016 32017 32018 32019 32020 32021 32022 32023 32024 32025 32026 32027 32028 32029 32030 32031 32032 32033 32034 32035 32036 32037 32038 32039 32040 32041 32042 32043 32044 32045 32046 32047 32048 32049 32050 32051 32052 32053 32054 32055 32056 32057 32058 32059 32060 32061 32062 32063 32064 32065 32066 32067 32068 32069 32070 32071 32072 32073 32074 32075 32076 32077 32078 32079 32080 32081 32082 32083 32084 32085 32086 32087 32088 32089 32090 32091 32092 32093 32094 32095 32096 32097 32098 32099 32100 32101 32102 32103 32104 32105 32106 32107 32108 32109 32110 32111 32112 32113 32114 32115 32116 32117 32118 32119 32120 32121 32122 32123 32124 32125 32126 32127 32128 32129 32130 32131 32132 32133 32134 32135 32136 32137 32138 32139 32140 32141 32142 32143 32144 32145 32146 32147 32148 32149 32150 32151 32152 32153 32154 32155 32156 32157 32158 32159 32160 32161 32162 32163 32164 32165 32166 32167 32168 32169 32170 32171 32172 32173 32174 32175 32176 32177 32178 32179 32180 32181 32182 32183 32184 32185 32186 32187 32188 32189 32190 32191 32192 32193 32194 32195 32196 32197 32198 32199 32200 32201 32202 32203 32204 32205 32206 32207 32208 32209 32210 32211 32212 32213 32214 32215 32216 32217 32218 32219 32220 32221 32222 32223 32224 32225 32226 32227 32228 32229 32230 32231 32232 32233 32234 32235 32236 32237 32238 32239 32240 32241 32242 32243 32244 32245 32246 32247 32248 32249 32250 32251 32252 32253 32254 32255 32256 32257 32258 32259 32260 32261 32262 32263 32264 32265 32266 32267 32268 32269 32270 32271 32272 32273 32274 32275 32276 32277 32278 32279 32280 32281 32282 32283 32284 32285 32286 32287 32288 32289 32290 32291 32292 32293 32294 32295 32296 32297 32298 32299 32300 32301 32302 32303 32304 32305 32306 32307 32308 32309 32310 32311 32312 32313 32314 32315 32316 32317 32318 32319 32320 32321 32322 32323 32324 32325 32326 32327 32328 32329 32330 32331 32332 32333 32334 32335 32336 32337 32338 32339 32340 32341 32342 32343 32344 32345 32346 32347 32348 32349 32350 32351 32352 32353 32354 32355 32356 32357 32358 32359 32360 32361 32362 32363 32364 32365 32366 32367 32368 32369 32370 32371 32372 32373 32374 32375 32376 32377 32378 32379 32380 32381 32382 32383 32384 32385 32386 32387 32388 32389 32390 32391 32392 32393 32394 32395 32396 32397 32398 32399 32400 32401 32402 32403 32404 32405 32406 32407 32408 32409 32410 32411 32412 32413 32414 32415 32416 32417 32418 32419 32420 32421 32422 32423 32424 32425 32426 32427 32428 32429 32430 32431 32432 32433 32434 32435 32436 32437 32438 32439 32440 32441 32442 32443 32444 32445 32446 32447 32448 32449 32450 32451 32452 32453 32454 32455 32456 32457 32458 32459 32460 32461 32462 32463 32464 32465 32466 32467 32468 32469 32470 32471 32472 32473 32474 32475 32476 32477 32478 32479 32480 32481 32482 32483 32484 32485 32486 32487 32488 32489 32490 32491 32492 32493 32494 32495 32496 32497 32498 32499 32500 32501 32502 32503 32504 32505 32506 32507 32508 32509 32510 32511 32512 32513 32514 32515 32516 32517 32518 32519 32520 32521 32522 32523 32524 32525 32526 32527 32528 32529 32530 32531 32532 32533 32534 32535 32536 32537 32538 32539 32540 32541 32542 32543 32544 32545 32546 32547 32548 32549 32550 32551 32552 32553 32554 32555 32556 32557 32558 32559 32560 32561 32562 32563 32564 32565 32566 32567 32568 32569 32570 32571 32572 32573 32574 32575 32576 32577 32578 32579 32580 32581 32582 32583 32584 32585 32586 32587 32588 32589 32590 32591 32592 32593 32594 32595 32596 32597 32598 32599 32600 32601 32602 32603 32604 32605 32606 32607 32608 32609 32610 32611 32612 32613 32614 32615 32616 32617 32618 32619 32620 32621 32622 32623 32624 32625 32626 32627 32628 32629 32630 32631 32632 32633 32634 32635 32636 32637 32638 32639 32640 32641 32642 32643 32644 32645 32646 32647 32648 32649 32650 32651 32652 32653 32654 32655 32656 32657 32658 32659 32660 32661 32662 32663 32664 32665 32666 32667 32668 32669 32670 32671 32672 32673 32674 32675 32676 32677 32678 32679 32680 32681 32682 32683 32684 32685 32686 32687 32688 32689 32690 32691 32692 32693 32694 32695 32696 32697 32698 32699 32700 32701 32702 32703 32704 32705 32706 32707 32708 32709 32710 32711 32712 32713 32714 32715 32716 32717 32718 32719 32720 32721 32722 32723 32724 32725 32726 32727 32728 32729 32730 32731 32732 32733 32734 32735 32736 32737 32738 32739 32740 32741 32742 32743 32744 32745 32746 32747 32748 32749 32750 32751 32752 32753 32754 32755 32756 32757 32758 32759 32760 32761 32762 32763 32764 32765 32766 32767 32768 32769 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779 32780 32781 32782 32783 32784 32785 32786 32787 32788 32789 32790 32791 32792 32793 32794 32795 32796 32797 32798 32799 32800 32801 32802 32803 32804 32805 32806 32807 32808 32809 32810 32811 32812 32813 32814 32815 32816 32817 32818 32819 32820 32821 32822 32823 32824 32825 32826 32827 32828 32829 32830 32831 32832 32833 32834 32835 32836 32837 32838 32839 32840 32841 32842 32843 32844 32845 32846 32847 32848 32849 32850 32851 32852 32853 32854 32855 32856 32857 32858 32859 32860 32861 32862 32863 32864 32865 32866 32867 32868 32869 32870 32871 32872 32873 32874 32875 32876 32877 32878 32879 32880 32881 32882 32883 32884 32885 32886 32887 32888 32889 32890 32891 32892 32893 32894 32895 32896 32897 32898 32899 32900 32901 32902 32903 32904 32905 32906 32907 32908 32909 32910 32911 32912 32913 32914 32915 32916 32917 32918 32919 32920 32921 32922 32923 32924 32925 32926 32927 32928 32929 32930 32931 32932 32933 32934 32935 32936 32937 32938 32939 32940 32941 32942 32943 32944 32945 32946 32947 32948 32949 32950 32951 32952 32953 32954 32955 32956 32957 32958 32959 32960 32961 32962 32963 32964 32965 32966 32967 32968 32969 32970 32971 32972 32973 32974 32975 32976 32977 32978 32979 32980 32981 32982 32983 32984 32985 32986 32987 32988 32989 32990 32991 32992 32993 32994 32995 32996 32997 32998 32999 33000 33001 33002 33003 33004 33005 33006 33007 33008 33009 33010 33011 33012 33013 33014 33015 33016 33017 33018 33019 33020 33021 33022 33023 33024 33025 33026 33027 33028 33029 33030 33031 33032 33033 33034 33035 33036 33037 33038 33039 33040 33041 33042 33043 33044 33045 33046 33047 33048 33049 33050 33051 33052 33053 33054 33055 33056 33057 33058 33059 33060 33061 33062 33063 33064 33065 33066 33067 33068 33069 33070 33071 33072 33073 33074 33075 33076 33077 33078 33079 33080 33081 33082 33083 33084 33085 33086 33087 33088 33089 33090 33091 33092 33093 33094 33095 33096 33097 33098 33099 33100 33101 33102 33103 33104 33105 33106 33107 33108 33109 33110 33111 33112 33113 33114 33115 33116 33117 33118 33119 33120 33121 33122 33123 33124 33125 33126 33127 33128 33129 33130 33131 33132 33133 33134 33135 33136 33137 33138 33139 33140 33141 33142 33143 33144 33145 33146 33147 33148 33149 33150 33151 33152 33153 33154 33155 33156 33157 33158 33159 33160 33161 33162 33163 33164 33165 33166 33167 33168 33169 33170 33171 33172 33173 33174 33175 33176 33177 33178 33179 33180 33181 33182 33183 33184 33185 33186 33187 33188 33189 33190 33191 33192 33193 33194 33195 33196 33197 33198 33199 33200 33201 33202 33203 33204 33205 33206 33207 33208 33209 33210 33211 33212 33213 33214 33215 33216 33217 33218 33219 33220 33221 33222 33223 33224 33225 33226 33227 33228 33229 33230 33231 33232 33233 33234 33235 33236 33237 33238 33239 33240 33241 33242 33243 33244 33245 33246 33247 33248 33249 33250 33251 33252 33253 33254 33255 33256 33257 33258 33259 33260 33261 33262 33263 33264 33265 33266 33267 33268 33269 33270 33271 33272 33273 33274 33275 33276 33277 33278 33279 33280 33281 33282 33283 33284 33285 33286 33287 33288 33289 33290 33291 33292 33293 33294 33295 33296 33297 33298 33299 33300 33301 33302 33303 33304 33305 33306 33307 33308 33309 33310 33311 33312 33313 33314 33315 33316 33317 33318 33319 33320 33321 33322 33323 33324 33325 33326 33327 33328 33329 33330 33331 33332 33333 33334 33335 33336 33337 33338 33339 33340 33341 33342 33343 33344 33345 33346 33347 33348 33349 33350 33351 33352 33353 33354 33355 33356 33357 33358 33359 33360 33361 33362 33363 33364 33365 33366 33367 33368 33369 33370 33371 33372 33373 33374 33375 33376 33377 33378 33379 33380 33381 33382 33383 33384 33385 33386 33387 33388 33389 33390 33391 33392 33393 33394 33395 33396 33397 33398 33399 33400 33401 33402 33403 33404 33405 33406 33407 33408 33409 33410 33411 33412 33413 33414 33415 33416 33417 33418 33419 33420 33421 33422 33423 33424 33425 33426 33427 33428 33429 33430 33431 33432 33433 33434 33435 33436 33437 33438 33439 33440 33441 33442 33443 33444 33445 33446 33447 33448 33449 33450 33451 33452 33453 33454 33455 33456 33457 33458 33459 33460 33461 33462 33463 33464 33465 33466 33467 33468 33469 33470 33471 33472 33473 33474 33475 33476 33477 33478 33479 33480 33481 33482 33483 33484 33485 33486 33487 33488 33489 33490 33491 33492 33493 33494 33495 33496 33497 33498 33499 33500 33501 33502 33503 33504 33505 33506 33507 33508 33509 33510 33511 33512 33513 33514 33515 33516 33517 33518 33519 33520 33521 33522 33523 33524 33525 33526 33527 33528 33529 33530 33531 33532 33533 33534 33535 33536 33537 33538 33539 33540 33541 33542 33543 33544 33545 33546 33547 33548 33549 33550 33551 33552 33553 33554 33555 33556 33557 33558 33559 33560 33561 33562 33563 33564 33565 33566 33567 33568 33569 33570 33571 33572 33573 33574 33575 33576 33577 33578 33579 33580 33581 33582 33583 33584 33585 33586 33587 33588 33589 33590 33591 33592 33593 33594 33595 33596 33597 33598 33599 33600 33601 33602 33603 33604 33605 33606 33607 33608 33609 33610 33611 33612 33613 33614 33615 33616 33617 33618 33619 33620 33621 33622 33623 33624 33625 33626 33627 33628 33629 33630 33631 33632 33633 33634 33635 33636 33637 33638 33639 33640 33641 33642 33643 33644 33645 33646 33647 33648 33649 33650 33651 33652 33653 33654 33655 33656 33657 33658 33659 33660 33661 33662 33663 33664 33665 33666 33667 33668 33669 33670 33671 33672 33673 33674 33675 33676 33677 33678 33679 33680 33681 33682 33683 33684 33685 33686 33687 33688 33689 33690 33691 33692 33693 33694 33695 33696 33697 33698 33699 33700 33701 33702 33703 33704 33705 33706 33707 33708 33709 33710 33711 33712 33713 33714 33715 33716 33717 33718 33719 33720 33721 33722 33723 33724 33725 33726 33727 33728 33729 33730 33731 33732 33733 33734 33735 33736 33737 33738 33739 33740 33741 33742 33743 33744 33745 33746 33747 33748 33749 33750 33751 33752 33753 33754 33755 33756 33757 33758 33759 33760 33761 33762 33763 33764 33765 33766 33767 33768 33769 33770 33771 33772 33773 33774 33775 33776 33777 33778 33779 33780 33781 33782 33783 33784 33785 33786 33787 33788 33789 33790 33791 33792 33793 33794 33795 33796 33797 33798 33799 33800 33801 33802 33803 33804 33805 33806 33807 33808 33809 33810 33811 33812 33813 33814 33815 33816 33817 33818 33819 33820 33821 33822 33823 33824 33825 33826 33827 33828 33829 33830 33831 33832 33833 33834 33835 33836 33837 33838 33839 33840 33841 33842 33843 33844 33845 33846 33847 33848 33849 33850 33851 33852 33853 33854 33855 33856 33857 33858 33859 33860 33861 33862 33863 33864 33865 33866 33867 33868 33869 33870 33871 33872 33873 33874 33875 33876 33877 33878 33879 33880 33881 33882 33883 33884 33885 33886 33887 33888 33889 33890 33891 33892 33893 33894 33895 33896 33897 33898 33899 33900 33901 33902 33903 33904 33905 33906 33907 33908 33909 33910 33911 33912 33913 33914 33915 33916 33917 33918 33919 33920 33921 33922 33923 33924 33925 33926 33927 33928 33929 33930 33931 33932 33933 33934 33935 33936 33937 33938 33939 33940 33941 33942 33943 33944 33945 33946 33947 33948 33949 33950 33951 33952 33953 33954 33955 33956 33957 33958 33959 33960 33961 33962 33963 33964 33965 33966 33967 33968 33969 33970 33971 33972 33973 33974 33975 33976 33977 33978 33979 33980 33981 33982 33983 33984 33985 33986 33987 33988 33989 33990 33991 33992 33993 33994 33995 33996 33997 33998 33999 34000 34001 34002 34003 34004 34005 34006 34007 34008 34009 34010 34011 34012 34013 34014 34015 34016 34017 34018 34019 34020 34021 34022 34023 34024 34025 34026 34027 34028 34029 34030 34031 34032 34033 34034 34035 34036 34037 34038 34039 34040 34041 34042 34043 34044 34045 34046 34047 34048 34049 34050 34051 34052 34053 34054 34055 34056 34057 34058 34059 34060 34061 34062 34063 34064 34065 34066 34067 34068 34069 34070 34071 34072 34073 34074 34075 34076 34077 34078 34079 34080 34081 34082 34083 34084 34085 34086 34087 34088 34089 34090 34091 34092 34093 34094 34095 34096 34097 34098 34099 34100 34101 34102 34103 34104 34105 34106 34107 34108 34109 34110 34111 34112 34113 34114 34115 34116 34117 34118 34119 34120 34121 34122 34123 34124 34125 34126 34127 34128 34129 34130 34131 34132 34133 34134 34135 34136 34137 34138 34139 34140 34141 34142 34143 34144 34145 34146 34147 34148 34149 34150 34151 34152 34153 34154 34155 34156 34157 34158 34159 34160 34161 34162 34163 34164 34165 34166 34167 34168 34169 34170 34171 34172 34173 34174 34175 34176 34177 34178 34179 34180 34181 34182 34183 34184 34185 34186 34187 34188 34189 34190 34191 34192 34193 34194 34195 34196 34197 34198 34199 34200 34201 34202 34203 34204 34205 34206 34207 34208 34209 34210 34211 34212 34213 34214 34215 34216 34217 34218 34219 34220 34221 34222 34223 34224 34225 34226 34227 34228 34229 34230 34231 34232 34233 34234 34235 34236 34237 34238 34239 34240 34241 34242 34243 34244 34245 34246 34247 34248 34249 34250 34251 34252 34253 34254 34255 34256 34257 34258 34259 34260 34261 34262 34263 34264 34265 34266 34267 34268 34269 34270 34271 34272 34273 34274 34275 34276 34277 34278 34279 34280 34281 34282 34283 34284 34285 34286 34287 34288 34289 34290 34291 34292 34293 34294 34295 34296 34297 34298 34299 34300 34301 34302 34303 34304 34305 34306 34307 34308 34309 34310 34311 34312 34313 34314 34315 34316 34317 34318 34319 34320 34321 34322 34323 34324 34325 34326 34327 34328 34329 34330 34331 34332 34333 34334 34335 34336 34337 34338 34339 34340 34341 34342 34343 34344 34345 34346 34347 34348 34349 34350 34351 34352 34353 34354 34355 34356 34357 34358 34359 34360 34361 34362 34363 34364 34365 34366 34367 34368 34369 34370 34371 34372 34373 34374 34375 34376 34377 34378 34379 34380 34381 34382 34383 34384 34385 34386 34387 34388 34389 34390 34391 34392 34393 34394 34395 34396 34397 34398 34399 34400 34401 34402 34403 34404 34405 34406 34407 34408 34409 34410 34411 34412 34413 34414 34415 34416 34417 34418 34419 34420 34421 34422 34423 34424 34425 34426 34427 34428 34429 34430 34431 34432 34433 34434 34435 34436 34437 34438 34439 34440 34441 34442 34443 34444 34445 34446 34447 34448 34449 34450 34451 34452 34453 34454 34455 34456 34457 34458 34459 34460 34461 34462 34463 34464 34465 34466 34467 34468 34469 34470 34471 34472 34473 34474 34475 34476 34477 34478 34479 34480 34481 34482 34483 34484 34485 34486 34487 34488 34489 34490 34491 34492 34493 34494 34495 34496 34497 34498 34499 34500 34501 34502 34503 34504 34505 34506 34507 34508 34509 34510 34511 34512 34513 34514 34515 34516 34517 34518 34519 34520 34521 34522 34523 34524 34525 34526 34527 34528 34529 34530 34531 34532 34533 34534 34535 34536 34537 34538 34539 34540 34541 34542 34543 34544 34545 34546 34547 34548 34549 34550 34551 34552 34553 34554 34555 34556 34557 34558 34559 34560 34561 34562 34563 34564 34565 34566 34567 34568 34569 34570 34571 34572 34573 34574 34575 34576 34577 34578 34579 34580 34581 34582 34583 34584 34585 34586 34587 34588 34589 34590 34591 34592 34593 34594 34595 34596 34597 34598 34599 34600 34601 34602 34603 34604 34605 34606 34607 34608 34609 34610 34611 34612 34613 34614 34615 34616 34617 34618 34619 34620 34621 34622 34623 34624 34625 34626 34627 34628 34629 34630 34631 34632 34633 34634 34635 34636 34637 34638 34639 34640 34641 34642 34643 34644 34645 34646 34647 34648 34649 34650 34651 34652 34653 34654 34655 34656 34657 34658 34659 34660 34661 34662 34663 34664 34665 34666 34667 34668 34669 34670 34671 34672 34673 34674 34675 34676 34677 34678 34679 34680 34681 34682 34683 34684 34685 34686 34687 34688 34689 34690 34691 34692 34693 34694 34695 34696 34697 34698 34699 34700 34701 34702 34703 34704 34705 34706 34707 34708 34709 34710 34711 34712 34713 34714 34715 34716 34717 34718 34719 34720 34721 34722 34723 34724 34725 34726 34727 34728 34729 34730 34731 34732 34733 34734 34735 34736 34737 34738 34739 34740 34741 34742 34743 34744 34745 34746 34747 34748 34749 34750 34751 34752 34753 34754 34755 34756 34757 34758 34759 34760 34761 34762 34763 34764 34765 34766 34767 34768 34769 34770 34771 34772 34773 34774 34775 34776 34777 34778 34779 34780 34781 34782 34783 34784 34785 34786 34787 34788 34789 34790 34791 34792 34793 34794 34795 34796 34797 34798 34799 34800 34801 34802 34803 34804 34805 34806 34807 34808 34809 34810 34811 34812 34813 34814 34815 34816 34817 34818 34819 34820 34821 34822 34823 34824 34825 34826 34827 34828 34829 34830 34831 34832 34833 34834 34835 34836 34837 34838 34839 34840 34841 34842 34843 34844 34845 34846 34847 34848 34849 34850 34851 34852 34853 34854 34855 34856 34857 34858 34859 34860 34861 34862 34863 34864 34865 34866 34867 34868 34869 34870 34871 34872 34873 34874 34875 34876 34877 34878 34879 34880 34881 34882 34883 34884 34885 34886 34887 34888 34889 34890 34891 34892 34893 34894 34895 34896 34897 34898 34899 34900 34901 34902 34903 34904 34905 34906 34907 34908 34909 34910 34911 34912 34913 34914 34915 34916 34917 34918 34919 34920 34921 34922 34923 34924 34925 34926 34927 34928 34929 34930 34931 34932 34933 34934 34935 34936 34937 34938 34939 34940 34941 34942 34943 34944 34945 34946 34947 34948 34949 34950 34951 34952 34953 34954 34955 34956 34957 34958 34959 34960 34961 34962 34963 34964 34965 34966 34967 34968 34969 34970 34971 34972 34973 34974 34975 34976 34977 34978 34979 34980 34981 34982 34983 34984 34985 34986 34987 34988 34989 34990 34991 34992 34993 34994 34995 34996 34997 34998 34999 35000 35001 35002 35003 35004 35005 35006 35007 35008 35009 35010 35011 35012 35013 35014 35015 35016 35017 35018 35019 35020 35021 35022 35023 35024 35025 35026 35027 35028 35029 35030 35031 35032 35033 35034 35035 35036 35037 35038 35039 35040 35041 35042 35043 35044 35045 35046 35047 35048 35049 35050 35051 35052 35053 35054 35055 35056 35057 35058 35059 35060 35061 35062 35063 35064 35065 35066 35067 35068 35069 35070 35071 35072 35073 35074 35075 35076 35077 35078 35079 35080 35081 35082 35083 35084 35085 35086 35087 35088 35089 35090 35091 35092 35093 35094 35095 35096 35097 35098 35099 35100 35101 35102 35103 35104 35105 35106 35107 35108 35109 35110 35111 35112 35113 35114 35115 35116 35117 35118 35119 35120 35121 35122 35123 35124 35125 35126 35127 35128 35129 35130 35131 35132 35133 35134 35135 35136 35137 35138 35139 35140 35141 35142 35143 35144 35145 35146 35147 35148 35149 35150 35151 35152 35153 35154 35155 35156 35157 35158 35159 35160 35161 35162 35163 35164 35165 35166 35167 35168 35169 35170 35171 35172 35173 35174 35175 35176 35177 35178 35179 35180 35181 35182 35183 35184 35185 35186 35187 35188 35189 35190 35191 35192 35193 35194 35195 35196 35197 35198 35199 35200 35201 35202 35203 35204 35205 35206 35207 35208 35209 35210 35211 35212 35213 35214 35215 35216 35217 35218 35219 35220 35221 35222 35223 35224 35225 35226 35227 35228 35229 35230 35231 35232 35233 35234 35235 35236 35237 35238 35239 35240 35241 35242 35243 35244 35245 35246 35247 35248 35249 35250 35251 35252 35253 35254 35255 35256 35257 35258 35259 35260 35261 35262 35263 35264 35265 35266 35267 35268 35269 35270 35271 35272 35273 35274 35275 35276 35277 35278 35279 35280 35281 35282 35283 35284 35285 35286 35287 35288 35289 35290 35291 35292 35293 35294 35295 35296 35297 35298 35299 35300 35301 35302 35303 35304 35305 35306 35307 35308 35309 35310 35311 35312 35313 35314 35315 35316 35317 35318 35319 35320 35321 35322 35323 35324 35325 35326 35327 35328 35329 35330 35331 35332 35333 35334 35335 35336 35337 35338 35339 35340 35341 35342 35343 35344 35345 35346 35347 35348 35349 35350 35351 35352 35353 35354 35355 35356 35357 35358 35359 35360 35361 35362 35363 35364 35365 35366 35367 35368 35369 35370 35371 35372 35373 35374 35375 35376 35377 35378 35379 35380 35381 35382 35383 35384 35385 35386 35387 35388 35389 35390 35391 35392 35393 35394 35395 35396 35397 35398 35399 35400 35401 35402 35403 35404 35405 35406 35407 35408 35409 35410 35411 35412 35413 35414 35415 35416 35417 35418 35419 35420 35421 35422 35423 35424 35425 35426 35427 35428 35429 35430 35431 35432 35433 35434 35435 35436 35437 35438 35439 35440 35441 35442 35443 35444 35445 35446 35447 35448 35449 35450 35451 35452 35453 35454 35455 35456 35457 35458 35459 35460 35461 35462 35463 35464 35465 35466 35467 35468 35469 35470 35471 35472 35473 35474 35475 35476 35477 35478 35479 35480 35481 35482 35483 35484 35485 35486 35487 35488 35489 35490 35491 35492 35493 35494 35495 35496 35497 35498 35499 35500 35501 35502 35503 35504 35505 35506 35507 35508 35509 35510 35511 35512 35513 35514 35515 35516 35517 35518 35519 35520 35521 35522 35523 35524 35525 35526 35527 35528 35529 35530 35531 35532 35533 35534 35535 35536 35537 35538 35539 35540 35541 35542 35543 35544 35545 35546 35547 35548 35549 35550 35551 35552 35553 35554 35555 35556 35557 35558 35559 35560 35561 35562 35563 35564 35565 35566 35567 35568 35569 35570 35571 35572 35573 35574 35575 35576 35577 35578 35579 35580 35581 35582 35583 35584 35585 35586 35587 35588 35589 35590 35591 35592 35593 35594 35595 35596 35597 35598 35599 35600 35601 35602 35603 35604 35605 35606 35607 35608 35609 35610 35611 35612 35613 35614 35615 35616 35617 35618 35619 35620 35621 35622 35623 35624 35625 35626 35627 35628 35629 35630 35631 35632 35633 35634 35635 35636 35637 35638 35639 35640 35641 35642 35643 35644 35645 35646 35647 35648 35649 35650 35651 35652 35653 35654 35655 35656 35657 35658 35659 35660 35661 35662 35663 35664 35665 35666 35667 35668 35669 35670 35671 35672 35673 35674 35675 35676 35677 35678 35679 35680 35681 35682 35683 35684 35685 35686 35687 35688 35689 35690 35691 35692 35693 35694 35695 35696 35697 35698 35699 35700 35701 35702 35703 35704 35705 35706 35707 35708 35709 35710 35711 35712 35713 35714 35715 35716 35717 35718 35719 35720 35721 35722 35723 35724 35725 35726 35727 35728 35729 35730 35731 35732 35733 35734 35735 35736 35737 35738 35739 35740 35741 35742 35743 35744 35745 35746 35747 35748 35749 35750 35751 35752 35753 35754 35755 35756 35757 35758 35759 35760 35761 35762 35763 35764 35765 35766 35767 35768 35769 35770 35771 35772 35773 35774 35775 35776 35777 35778 35779 35780 35781 35782 35783 35784 35785 35786 35787 35788 35789 35790 35791 35792 35793 35794 35795 35796 35797 35798 35799 35800 35801 35802 35803 35804 35805 35806 35807 35808 35809 35810 35811 35812 35813 35814 35815 35816 35817 35818 35819 35820 35821 35822 35823 35824 35825 35826 35827 35828 35829 35830 35831 35832 35833 35834 35835 35836 35837 35838 35839 35840 35841 35842 35843 35844 35845 35846 35847 35848 35849 35850 35851 35852 35853 35854 35855 35856 35857 35858 35859 35860 35861 35862 35863 35864 35865 35866 35867 35868 35869 35870 35871 35872 35873 35874 35875 35876 35877 35878 35879 35880 35881 35882 35883 35884 35885 35886 35887 35888 35889 35890 35891 35892 35893 35894 35895 35896 35897 35898 35899 35900 35901 35902 35903 35904 35905 35906 35907 35908 35909 35910 35911 35912 35913 35914 35915 35916 35917 35918 35919 35920 35921 35922 35923 35924 35925 35926 35927 35928 35929 35930 35931 35932 35933 35934 35935 35936 35937 35938 35939 35940 35941 35942 35943 35944 35945 35946 35947 35948 35949 35950 35951 35952 35953 35954 35955 35956 35957 35958 35959 35960 35961 35962 35963 35964 35965 35966 35967 35968 35969 35970 35971 35972 35973 35974 35975 35976 35977 35978 35979 35980 35981 35982 35983 35984 35985 35986 35987 35988 35989 35990 35991 35992 35993 35994 35995 35996 35997 35998 35999 36000 36001 36002 36003 36004 36005 36006 36007 36008 36009 36010 36011 36012 36013 36014 36015 36016 36017 36018 36019 36020 36021 36022 36023 36024 36025 36026 36027 36028 36029 36030 36031 36032 36033 36034 36035 36036 36037 36038 36039 36040 36041 36042 36043 36044 36045 36046 36047 36048 36049 36050 36051 36052 36053 36054 36055 36056 36057 36058 36059 36060 36061 36062 36063 36064 36065 36066 36067 36068 36069 36070 36071 36072 36073 36074 36075 36076 36077 36078 36079 36080 36081 36082 36083 36084 36085 36086 36087 36088 36089 36090 36091 36092 36093 36094 36095 36096 36097 36098 36099 36100 36101 36102 36103 36104 36105 36106 36107 36108 36109 36110 36111 36112 36113 36114 36115 36116 36117 36118 36119 36120 36121 36122 36123 36124 36125 36126 36127 36128 36129 36130 36131 36132 36133 36134 36135 36136 36137 36138 36139 36140 36141 36142 36143 36144 36145 36146 36147 36148 36149 36150 36151 36152 36153 36154 36155 36156 36157 36158 36159 36160 36161 36162 36163 36164 36165 36166 36167 36168 36169 36170 36171 36172 36173 36174 36175 36176 36177 36178 36179 36180 36181 36182 36183 36184 36185 36186 36187 36188 36189 36190 36191 36192 36193 36194 36195 36196 36197 36198 36199 36200 36201 36202 36203 36204 36205 36206 36207 36208 36209 36210 36211 36212 36213 36214 36215 36216 36217 36218 36219 36220 36221 36222 36223 36224 36225 36226 36227 36228 36229 36230 36231 36232 36233 36234 36235 36236 36237 36238 36239 36240 36241 36242 36243 36244 36245 36246 36247 36248 36249 36250 36251 36252 36253 36254 36255 36256 36257 36258 36259 36260 36261 36262 36263 36264 36265 36266 36267 36268 36269 36270 36271 36272 36273 36274 36275 36276 36277 36278 36279 36280 36281 36282 36283 36284 36285 36286 36287 36288 36289 36290 36291 36292 36293 36294 36295 36296 36297 36298 36299 36300 36301 36302 36303 36304 36305 36306 36307 36308 36309 36310 36311 36312 36313 36314 36315 36316 36317 36318 36319 36320 36321 36322 36323 36324 36325 36326 36327 36328 36329 36330 36331 36332 36333 36334 36335 36336 36337 36338 36339 36340 36341 36342 36343 36344 36345 36346 36347 36348 36349 36350 36351 36352 36353 36354 36355 36356 36357 36358 36359 36360 36361 36362 36363 36364 36365 36366 36367 36368 36369 36370 36371 36372 36373 36374 36375 36376 36377 36378 36379 36380 36381 36382 36383 36384 36385 36386 36387 36388 36389 36390 36391 36392 36393 36394 36395 36396 36397 36398 36399 36400 36401 36402 36403 36404 36405 36406 36407 36408 36409 36410 36411 36412 36413 36414 36415 36416 36417 36418 36419 36420 36421 36422 36423 36424 36425 36426 36427 36428 36429 36430 36431 36432 36433 36434 36435 36436 36437 36438 36439 36440 36441 36442 36443 36444 36445 36446 36447 36448 36449 36450 36451 36452 36453 36454 36455 36456 36457 36458 36459 36460 36461 36462 36463 36464 36465 36466 36467 36468 36469 36470 36471 36472 36473 36474 36475 36476 36477 36478 36479 36480 36481 36482 36483 36484 36485 36486 36487 36488 36489 36490 36491 36492 36493 36494 36495 36496 36497 36498 36499 36500 36501 36502 36503 36504 36505 36506 36507 36508 36509 36510 36511 36512 36513 36514 36515 36516 36517 36518 36519 36520 36521 36522 36523 36524 36525 36526 36527 36528 36529 36530 36531 36532 36533 36534 36535 36536 36537 36538 36539 36540 36541 36542 36543 36544 36545 36546 36547 36548 36549 36550 36551 36552 36553 36554 36555 36556 36557 36558 36559 36560 36561 36562 36563 36564 36565 36566 36567 36568 36569 36570 36571 36572 36573 36574 36575 36576 36577 36578 36579 36580 36581 36582 36583 36584 36585 36586 36587 36588 36589 36590 36591 36592 36593 36594 36595 36596 36597 36598 36599 36600 36601 36602 36603 36604 36605 36606 36607 36608 36609 36610 36611 36612 36613 36614 36615 36616 36617 36618 36619 36620 36621 36622 36623 36624 36625 36626 36627 36628 36629 36630 36631 36632 36633 36634 36635 36636 36637 36638 36639 36640 36641 36642 36643 36644 36645 36646 36647 36648 36649 36650 36651 36652 36653 36654 36655 36656 36657 36658 36659 36660 36661 36662 36663 36664 36665 36666 36667 36668 36669 36670 36671 36672 36673 36674 36675 36676 36677 36678 36679 36680 36681 36682 36683 36684 36685 36686 36687 36688 36689 36690 36691 36692 36693 36694 36695 36696 36697 36698 36699 36700 36701 36702 36703 36704 36705 36706 36707 36708 36709 36710 36711 36712 36713 36714 36715 36716 36717 36718 36719 36720 36721 36722 36723 36724 36725 36726 36727 36728 36729 36730 36731 36732 36733 36734 36735 36736 36737 36738 36739 36740 36741 36742 36743 36744 36745 36746 36747 36748 36749 36750 36751 36752 36753 36754 36755 36756 36757 36758 36759 36760 36761 36762 36763 36764 36765 36766 36767 36768 36769 36770 36771 36772 36773 36774 36775 36776 36777 36778 36779 36780 36781 36782 36783 36784 36785 36786 36787 36788 36789 36790 36791 36792 36793 36794 36795 36796 36797 36798 36799 36800 36801 36802 36803 36804 36805 36806 36807 36808 36809 36810 36811 36812 36813 36814 36815 36816 36817 36818 36819 36820 36821 36822 36823 36824 36825 36826 36827 36828 36829 36830 36831 36832 36833 36834 36835 36836 36837 36838 36839 36840 36841 36842 36843 36844 36845 36846 36847 36848 36849 36850 36851 36852 36853 36854 36855 36856 36857 36858 36859 36860 36861 36862 36863 36864 36865 36866 36867 36868 36869 36870 36871 36872 36873 36874 36875 36876 36877 36878 36879 36880 36881 36882 36883 36884 36885 36886 36887 36888 36889 36890 36891 36892 36893 36894 36895 36896 36897 36898 36899 36900 36901 36902 36903 36904 36905 36906 36907 36908 36909 36910 36911 36912 36913 36914 36915 36916 36917 36918 36919 36920 36921 36922 36923 36924 36925 36926 36927 36928 36929 36930 36931 36932 36933 36934 36935 36936 36937 36938 36939 36940 36941 36942 36943 36944 36945 36946 36947 36948 36949 36950 36951 36952 36953 36954 36955 36956 36957 36958 36959 36960 36961 36962 36963 36964 36965 36966 36967 36968 36969 36970 36971 36972 36973 36974 36975 36976 36977 36978 36979 36980 36981 36982 36983 36984 36985 36986 36987 36988 36989 36990 36991 36992 36993 36994 36995 36996 36997 36998 36999 37000 37001 37002 37003 37004 37005 37006 37007 37008 37009 37010 37011 37012 37013 37014 37015 37016 37017 37018 37019 37020 37021 37022 37023 37024 37025 37026 37027 37028 37029 37030 37031 37032 37033 37034 37035 37036 37037 37038 37039 37040 37041 37042 37043 37044 37045 37046 37047 37048 37049 37050 37051 37052 37053 37054 37055 37056 37057 37058 37059 37060 37061 37062 37063 37064 37065 37066 37067 37068 37069 37070 37071 37072 37073 37074 37075 37076 37077 37078 37079 37080 37081 37082 37083 37084 37085 37086 37087 37088 37089 37090 37091 37092 37093 37094 37095 37096 37097 37098 37099 37100 37101 37102 37103 37104 37105 37106 37107 37108 37109 37110 37111 37112 37113 37114 37115 37116 37117 37118 37119 37120 37121 37122 37123 37124 37125 37126 37127 37128 37129 37130 37131 37132 37133 37134 37135 37136 37137 37138 37139 37140 37141 37142 37143 37144 37145 37146 37147 37148 37149 37150 37151 37152 37153 37154 37155 37156 37157 37158 37159 37160 37161 37162 37163 37164 37165 37166 37167 37168 37169 37170 37171 37172 37173 37174 37175 37176 37177 37178 37179 37180 37181 37182 37183 37184 37185 37186 37187 37188 37189 37190 37191 37192 37193 37194 37195 37196 37197 37198 37199 37200 37201 37202 37203 37204 37205 37206 37207 37208 37209 37210 37211 37212 37213 37214 37215 37216 37217 37218 37219 37220 37221 37222 37223 37224 37225 37226 37227 37228 37229 37230 37231 37232 37233 37234 37235 37236 37237 37238 37239 37240 37241 37242 37243 37244 37245 37246 37247 37248 37249 37250 37251 37252 37253 37254 37255 37256 37257 37258 37259 37260 37261 37262 37263 37264 37265 37266 37267 37268 37269 37270 37271 37272 37273 37274 37275 37276 37277 37278 37279 37280 37281 37282 37283 37284 37285 37286 37287 37288 37289 37290 37291 37292 37293 37294 37295 37296 37297 37298 37299 37300 37301 37302 37303 37304 37305 37306 37307 37308 37309 37310 37311 37312 37313 37314 37315 37316 37317 37318 37319 37320 37321 37322 37323 37324 37325 37326 37327 37328 37329 37330 37331 37332 37333 37334 37335 37336 37337 37338 37339 37340 37341 37342 37343 37344 37345 37346 37347 37348 37349 37350 37351 37352 37353 37354 37355 37356 37357 37358 37359 37360 37361 37362 37363 37364 37365 37366 37367 37368 37369 37370 37371 37372 37373 37374 37375 37376 37377 37378 37379 37380 37381 37382 37383 37384 37385 37386 37387 37388 37389 37390 37391 37392 37393 37394 37395 37396 37397 37398 37399 37400 37401 37402 37403 37404 37405 37406 37407 37408 37409 37410 37411 37412 37413 37414 37415 37416 37417 37418 37419 37420 37421 37422 37423 37424 37425 37426 37427 37428 37429 37430 37431 37432 37433 37434 37435 37436 37437 37438 37439 37440 37441 37442 37443 37444 37445 37446 37447 37448 37449 37450 37451 37452 37453 37454 37455 37456 37457 37458 37459 37460 37461 37462 37463 37464 37465 37466 37467 37468 37469 37470 37471 37472 37473 37474 37475 37476 37477 37478 37479 37480 37481 37482 37483 37484 37485 37486 37487 37488 37489 37490 37491 37492 37493 37494 37495 37496 37497 37498 37499 37500 37501 37502 37503 37504 37505 37506 37507 37508 37509 37510 37511 37512 37513 37514 37515 37516 37517 37518 37519 37520 37521 37522 37523 37524 37525 37526 37527 37528 37529 37530 37531 37532 37533 37534 37535 37536 37537 37538 37539 37540 37541 37542 37543 37544 37545 37546 37547 37548 37549 37550 37551 37552 37553 37554 37555 37556 37557 37558 37559 37560 37561 37562 37563 37564 37565 37566 37567 37568 37569 37570 37571 37572 37573 37574 37575 37576 37577 37578 37579 37580 37581 37582 37583 37584 37585 37586 37587 37588 37589 37590 37591 37592 37593 37594 37595 37596 37597 37598 37599 37600 37601 37602 37603 37604 37605 37606 37607 37608 37609 37610 37611 37612 37613 37614 37615 37616 37617 37618 37619 37620 37621 37622 37623 37624 37625 37626 37627 37628 37629 37630 37631 37632 37633 37634 37635 37636 37637 37638 37639 37640 37641 37642 37643 37644 37645 37646 37647 37648 37649 37650 37651 37652 37653 37654 37655 37656 37657 37658 37659
|
% Copyright (c) 2000 The PARI Group
%
% This file is part of the PARI/GP documentation
%
% Permission is granted to copy, distribute and/or modify this document
% under the terms of the GNU General Public License
\chapter{Functions and Operations Available in PARI and GP}
\label{se:functions}
The functions and operators available in PARI and in the GP/PARI calculator
are numerous and ever-expanding. Here is a description of the ones available
in version \vers. It should be noted that many of these functions accept
quite different types as arguments, but others are more restricted. The list
of acceptable types will be given for each function or class of functions.
Except when stated otherwise, it is understood that a function or operation
which should make natural sense is legal.
On the other hand, many routines list explicit preconditions for some of their
arguments, e.g. $p$ is a prime number, or $q$ is a positive definite quadratic
form. For reasons of efficiency, all routines trust the user input and only
perform minimal sanity checks. When a precondition is not satisfied, any of the
following may occur: a regular exception is raised, the PARI stack overflows, a
\kbd{SIGSEGV} or \kbd{SIGBUS} signal is generated, or we enter an infinite
loop. The function can also quietly return a mathematically meaningless
result: junk in, junk out. In the following, we document the results
as \emph{undefined} in this case.
In this chapter, we will describe the functions according to a rough
classification. The general entry looks something like:
\key{foo}$(x,\{\fl=0\})$: short description.
The library syntax is \kbd{GEN foo(GEN x, long flag = 0)}.
\noindent
This means that the GP function \kbd{foo} has one mandatory argument $x$, and
an optional one, $\fl$, whose default value is 0. (The $\{\}$ should not be
typed, it is just a convenient notation that we will use throughout to denote
optional arguments.) That is, you can type \kbd{foo(x,2)}, or \kbd{foo(x)},
which is then understood to mean \kbd{foo(x,0)}. As well, a comma or closing
parenthesis, where an optional argument should have been, signals to GP it
should use the default. Thus, the syntax \kbd{foo(x,)} is also accepted as a
synonym for our last expression. When a function has more than one optional
argument, the argument list is filled with user supplied values, in order.
When none are left, the defaults are used instead. Thus, assuming that
\kbd{foo}'s prototype had been
$$\hbox{%
\key{foo}$(\{x=1\},\{y=2\},\{z=3\})$,%
}$$
typing in \kbd{foo(6,4)} would give
you \kbd{foo(6,4,3)}. In the rare case when you want to set some far away
argument, and leave the defaults in between as they stand, you can use the
``empty arg'' trick alluded to above: \kbd{foo(6,,1)} would yield
\kbd{foo(6,2,1)}. By the way, \kbd{foo()} by itself yields
\kbd{foo(1,2,3)} as was to be expected.
In this rather special case of a function having no mandatory argument, you
can even omit the $()$: a standalone \kbd{foo} would be enough (though we
do not recommend it for your scripts, for the sake of clarity). In defining
GP syntax, we strove to put optional arguments at the end of the argument
list (of course, since they would not make sense otherwise), and in order of
decreasing usefulness so that, most of the time, you will be able to ignore
them.
Finally, an optional argument (between braces) followed by a star, like
$\{\var{x}\}*$, means that any number of such arguments (possibly none) can
be given. This is in particular used by the various \kbd{print} routines.
\misctitle{Flags} A \tev{flag} is an argument which, rather than conveying
actual information to the routine, instructs it to change its default
behavior, e.g.~return more or less information. All such
flags are optional, and will be called \fl\ in the function descriptions to
follow. There are two different kind of flags
\item generic: all valid values for the flag are individually
described (``If \fl\ is equal to $1$, then\dots'').
\item binary:\sidx{binary flag} use customary binary notation as a
compact way to represent many toggles with just one integer. Let
$(p_0,\dots,p_n)$ be a list of switches (i.e.~of properties which take either
the value $0$ or~$1$), the number $2^3 + 2^5 = 40$ means that $p_3$ and $p_5$
are set (that is, set to $1$), and none of the others are (that is, they
are set to $0$). This is announced as ``The binary digits of $\fl$ mean 1:
$p_0$, 2: $p_1$, 4: $p_2$'', and so on, using the available consecutive
powers of~$2$.
\misctitle{Mnemonics for binary flags} Numeric flags as mentioned above are
obscure, error-prone, and quite rigid: should the authors want to adopt a new
flag numbering scheme, it would break backward compatibility. The only
advantage of explicit numeric values is that they are fast to type, so their
use is only advised when using the calculator \kbd{gp}.
As an alternative, one can replace a binary flag by a character string
containing symbolic identifiers (mnemonics). In the function description,
mnemonics corresponding to the various toggles are given after each of them.
They can be negated by prepending \kbd{no\_} to the mnemonic, or by removing
such a prefix. These toggles are grouped together using any punctuation
character (such as ',' or ';'). For instance (taken from description of
$\tet{ploth}(X=a,b,\var{expr},\{\fl=0\},\{n=0\})$)
\centerline{Binary digits of flags mean: $1=\kbd{Parametric}$,
$2=\kbd{Recursive}$, \dots}
\noindent so that, instead of $1$, one could use the mnemonic
\kbd{"Parametric; no\_Recursive"}, or simply \kbd{"Parametric"} since
\kbd{Recursive} is unset by default (default value of $\fl$ is $0$,
i.e.~everything unset). People used to the bit-or notation in languages like
C may also use the form \kbd{"Parametric | no\_Recursive"}.
\misctitle{Pointers} \varsidx{pointer} If a parameter in the function
prototype is prefixed with a \& sign, as in
\key{foo}$(x,\&e)$
\noindent it means that, besides the normal return value, the function may
assign a value to $e$ as a side effect. When passing the argument, the \&
sign has to be typed in explicitly. As of version \vers, this \tev{pointer}
argument is optional for all documented functions, hence the \& will always
appear between brackets as in \kbd{Z\_issquare}$(x,\{\&e\})$.
\misctitle{About library programming}
The \var{library} function \kbd{foo}, as defined at the beginning of this
section, is seen to have two mandatory arguments, $x$ and \fl: no function
seen in the present chapter has been implemented so as to accept a variable
number of arguments, so all arguments are mandatory when programming with the
library (usually, variants are provided corresponding to the various flag values).
We include an \kbd{= default value} token in the prototype to signal how a missing
argument should be encoded. Most of the time, it will be a \kbd{NULL} pointer, or
-1 for a variable number. Refer to the \emph{User's Guide to the PARI library}
for general background and details.
\section{Programming in GP: control statements}
\sidx{programming}\label{se:programming}
A number of control statements are available in GP. They are simpler and
have a syntax slightly different from their C counterparts, but are quite
powerful enough to write any kind of program. Some of them are specific to
GP, since they are made for number theorists. As usual, $X$ will denote any
simple variable name, and \var{seq} will always denote a sequence of
expressions, including the empty sequence.
\misctitle{Caveat} In constructs like
\bprog
for (X = a,b, seq)
@eprog\noindent
the variable \kbd{X} is lexically scoped to the loop, leading to possibly
unexpected behavior:
\bprog
n = 5;
for (n = 1, 10,
if (something_nice(), break);
);
\\ @com at this point \kbd{n} is 5 !
@eprog\noindent
If the sequence \kbd{seq} modifies the loop index, then the loop
is modified accordingly:
\bprog
? for (n = 1, 10, n += 2; print(n))
3
6
9
12
@eprog
\subsec{break$(\{n=1\})$}\kbdsidx{break}\label{se:break}
Interrupts execution of current \var{seq}, and
immediately exits from the $n$ innermost enclosing loops, within the
current function call (or the top level loop); the integer $n$ must be
positive. If $n$ is greater than the number of enclosing loops, all
enclosing loops are exited.
\subsec{breakpoint$()$}\kbdsidx{breakpoint}\label{se:breakpoint}
Interrupt the program and enter the breakloop. The program continues when
the breakloop is exited.
\bprog
? f(N,x)=my(z=x^2+1);breakpoint();gcd(N,z^2+1-z);
? f(221,3)
*** at top-level: f(221,3)
*** ^--------
*** in function f: my(z=x^2+1);breakpoint();gcd(N,z
*** ^--------------------
*** Break loop: type <Return> to continue; 'break' to go back to GP
break> z
10
break>
%2 = 13
@eprog
\subsec{dbg\_down$(\{n=1\})$}\kbdsidx{dbg_down}\label{se:dbg_down}
(In the break loop) go down $n$ frames. This allows to cancel a previous
call to \kbd{dbg\_up}.
\bprog
? x = 0;
? g(x) = x-3;
? f(x) = 1 / g(x+1);
? for (x = 1, 5, f(x+1))
*** at top-level: for(x=1,5,f(x+1))
*** ^-------
*** in function f: 1/g(x+1)
*** ^-------
*** _/_: impossible inverse in gdiv: 0.
*** Break loop: type 'break' to go back to GP prompt
break> dbg_up(3) \\ go up 3 frames
*** at top-level: for(x=1,5,f(x+1))
*** ^-----------------
break> x
0
break> dbg_down()
*** at top-level: for(x=1,5,f(x+1))
*** ^-------
break> x
1
break> dbg_down()
*** at top-level: for(x=1,5,f(x+1))
*** ^-------
break> x
1
break> dbg_down()
*** at top-level: for(x=1,5,f(x+1))
*** ^-------
*** in function f: 1/g(x+1)
*** ^-------
break> x
2
@eprog\noindent The above example shows that the notion of GP frame is
finer than the usual stack of function calls (as given for instance by the
GDB \kbd{backtrace} command): GP frames are attached to variable scopes
and there are frames attached to control flow instructions such as a
\kbd{for} loop above.
\subsec{dbg\_err$()$}\kbdsidx{dbg_err}\label{se:dbg_err}
In the break loop, return the error data of the current error, if any.
See \tet{iferr} for details about error data. Compare:
\bprog
? iferr(1/(Mod(2,12019)^(6!)-1),E,Vec(E))
%1 = ["e_INV", "Fp_inv", Mod(119, 12019)]
? 1/(Mod(2,12019)^(6!)-1)
*** at top-level: 1/(Mod(2,12019)^(6!)-
*** ^--------------------
*** _/_: impossible inverse in Fp_inv: Mod(119, 12019).
*** Break loop: type 'break' to go back to GP prompt
break> Vec(dbg_err())
["e_INV", "Fp_inv", Mod(119, 12019)]
@eprog
\subsec{dbg\_up$(\{n=1\})$}\kbdsidx{dbg_up}\label{se:dbg_up}
(In the break loop) go up $n$ frames, which allows to inspect data of the
parent function. To cancel a \tet{dbg_up} call, use \tet{dbg_down}.
\bprog
? x = 0;
? g(x) = x-3;
? f(x) = 1 / g(x+1);
? for (x = 1, 5, f(x+1))
*** at top-level: for(x=1,5,f(x+1))
*** ^-------
*** in function f: 1/g(x+1)
*** ^-------
*** _/_: impossible inverse in gdiv: 0.
*** Break loop: type 'break' to go back to GP prompt
break> x
2
break> dbg_up()
*** at top-level: for(x=1,5,f(x+1))
*** ^-------
break> x
1
break> dbg_up()
*** at top-level: for(x=1,5,f(x+1))
*** ^-------
break> x
1
break> dbg_up()
*** at top-level: for(x=1,5,f(x+1))
*** ^-----------------
break> x
0
break> dbg_down() \\ back up once
*** at top-level: for(x=1,5,f(x+1))
*** ^-------
break> x
1
@eprog\noindent The above example shows that the notion of GP frame is
finer than the usual stack of function calls (as given for instance by the
GDB \kbd{backtrace} command): GP frames are attached to variable scopes
and there are frames attached to control flow instructions such as a
\kbd{for} loop above.
\subsec{dbg\_x$(A,\{n\})$}\kbdsidx{dbg_x}\label{se:dbg_x}
Print the inner structure of $A$, complete if $n$ is omitted, up
to level $n$ otherwise. This function is useful for debugging. It is similar
to \b{x} but does not require $A$ to be a history entry. In particular,
it can be used in the break loop.
\subsec{for$(X=a,b,\var{seq})$}\kbdsidx{for}\label{se:for}
Evaluates \var{seq}, where
the formal variable $X$ goes from $a$ to $b$, where $a$ and $b$ must be in
$\R$. Nothing is done if $a>b$. If $b$ is set to \kbd{+oo}, the loop will not
stop; it is expected that the caller will break out of the loop itself at some
point, using \kbd{break} or \kbd{return}.
\subsec{forcomposite$(n=a,\{b\},\var{seq})$}\kbdsidx{forcomposite}\label{se:forcomposite}
Evaluates \var{seq},
where the formal variable $n$ ranges over the composite numbers between the
nonnegative real numbers $a$ to $b$, including $a$ and $b$ if they are
composite. Nothing is done if $a>b$.
\bprog
? forcomposite(n = 0, 10, print(n))
4
6
8
9
10
@eprog\noindent Omitting $b$ means we will run through all composites $\geq a$,
starting an infinite loop; it is expected that the user will break out of
the loop himself at some point, using \kbd{break} or \kbd{return}.
Note that the value of $n$ cannot be modified within \var{seq}:
\bprog
? forcomposite(n = 2, 10, n = [])
*** at top-level: forcomposite(n=2,10,n=[])
*** ^---
*** index read-only: was changed to [].
@eprog
\subsec{fordiv$(n,X,\var{seq})$}\kbdsidx{fordiv}\label{se:fordiv}
Evaluates \var{seq}, where
the formal variable $X$ ranges through the divisors of $n$
(see \tet{divisors}, which is used as a subroutine). It is assumed that
\kbd{factor} can handle $n$, without negative exponents. Instead of $n$,
it is possible to input a factorization matrix, i.e. the output of
\kbd{factor(n)}.
This routine uses \kbd{divisors} as a subroutine, then loops over the
divisors. In particular, if $n$ is an integer, divisors are sorted by
increasing size.
To avoid storing all divisors, possibly using a lot of memory, the following
(slower) routine loops over the divisors using essentially constant space:
\bprog
FORDIV(N)=
{ my(F = factor(N), P = F[,1], E = F[,2]);
forvec(v = vector(#E, i, [0,E[i]]), X = factorback(P, v));
}
? for(i=1, 10^6, FORDIV(i))
time = 11,180 ms.
? for(i=1, 10^6, fordiv(i, d, ))
time = 2,667 ms.
@eprog\noindent Of course, the divisors are no longer sorted by inreasing
size.
\subsec{fordivfactored$(n,X,\var{seq})$}\kbdsidx{fordivfactored}\label{se:fordivfactored}
Evaluates \var{seq}, where
the formal variable $X$ ranges through $[d, \kbd{factor}(d)]$,
where $d$ is a divisors of $n$
(see \tet{divisors}, which is used as a subroutine). Note that such a pair
is accepted as argument to all multiplicative functions.
It is assumed that
\kbd{factor} can handle $n$, without negative exponents. Instead of $n$,
it is possible to input a factorization matrix, i.e. the output of
\kbd{factor(n)}. This routine uses \kbd{divisors}$(,1)$ as a subroutine,
then loops over the divisors. In particular, if $n$ is an integer, divisors
are sorted by increasing size.
This function is particularly useful when $n$ is hard to factor and one
must evaluate multiplicative function on its divisors: we avoid
refactoring each divisor in turn. It also provides a small speedup
when $n$ is easy to factor; compare
\bprog
? A = 10^8; B = A + 10^5;
? for (n = A, B, fordiv(n, d, eulerphi(d)));
time = 2,091 ms.
? for (n = A, B, fordivfactored(n, d, eulerphi(d)));
time = 1,298 ms. \\ avoid refactoring the divisors
? forfactored (n = A, B, fordivfactored(n, d, eulerphi(d)));
time = 1,270 ms. \\ also avoid factoring the consecutive n's !
@eprog
\subsec{foreach$(V,X,\var{seq})$}\kbdsidx{foreach}\label{se:foreach}
Evaluates \var{seq}, where the formal variable $X$ ranges through the
components of $V$ (\typ{VEC}, \typ{COL}, \typ{LIST} or \typ{MAT}). A matrix
argument is interpreted as a vector containing column vectors, as in
\kbd{Vec}$(V)$.
\subsec{forell$(E,a,b,\var{seq},\{\fl=0\})$}\kbdsidx{forell}\label{se:forell}
Evaluates \var{seq}, where the formal variable $E = [\var{name}, M, G]$
ranges through all elliptic curves of conductors from $a$ to $b$. In this
notation \var{name} is the curve name in Cremona's elliptic curve database,
$M$ is the minimal model, $G$ is a $\Z$-basis of the free part of the
Mordell-Weil group $E(\Q)$. If $\fl$ is nonzero, select
only the first curve in each isogeny class.
\bprog
? forell(E, 1, 500, my([name,M,G] = E); \
if (#G > 1, print(name)))
389a1
433a1
446d1
? c = 0; forell(E, 1, 500, c++); c \\ number of curves
%2 = 2214
? c = 0; forell(E, 1, 500, c++, 1); c \\ number of isogeny classes
%3 = 971
@eprog\noindent
The \tet{elldata} database must be installed and contain data for the
specified conductors.
\synt{forell}{void *data, long (*f)(void*,GEN), long a, long b, long flag}.
\subsec{forfactored$(N=a,b,\var{seq})$}\kbdsidx{forfactored}\label{se:forfactored}
Evaluates \var{seq}, where
the formal variable $N$ is $[n, \kbd{factor}(n)]$ and $n$ goes from
$a$ to $b$; $a$ and $b$ must be integers. Nothing is done if $a>b$.
This function is only implemented for $|a|, |b| < 2^{64}$ ($2^{32}$ on a 32-bit
machine). It uses a sieve and runs in time $O(\sqrt{b} + b-a)$. It should
be at least 3 times faster than regular factorization as long as the interval
length $b-a$ is much larger than $\sqrt{b}$ and get relatively faster as
the bounds increase. The function slows down dramatically
if $\kbd{primelimit} < \sqrt{b}$.
\bprog
? B = 10^9;
? for (N = B, B+10^6, factor(N))
time = 4,538 ms.
? forfactored (N = B, B+10^6, [n,fan] = N)
time = 1,031 ms.
? B = 10^11;
? for (N = B, B+10^6, factor(N))
time = 15,575 ms.
? forfactored (N = B, B+10^6, [n,fan] = N)
time = 2,375 ms.
? B = 10^14;
? for (N = B, B+10^6, factor(N))
time = 1min, 4,948 ms.
? forfactored (N = B, B+10^6, [n,fan] = N)
time = 58,601 ms.
@eprog\noindent The last timing is with the default \kbd{primelimit}
(500000) which is much less than $\sqrt{B+10^{6}}$; it goes down
to \kbd{26,750ms} if \kbd{primelimit} gets bigger than that bound.
In any case $\sqrt{B+10^{6}}$ is much larger than the interval length $10^{6}$
so \kbd{forfactored} gets relatively slower for that reason as well.
Note that all PARI multiplicative functions accept the \kbd{[n,fan]}
argument natively:
\bprog
? s = 0; forfactored(N = 1, 10^7, s += moebius(N)*eulerphi(N)); s
time = 6,001 ms.
%1 = 6393738650
? s = 0; for(N = 1, 10^7, s += moebius(N)*eulerphi(N)); s
time = 28,398 ms. \\ slower, we must factor N. Twice.
%2 = 6393738650
@eprog
The following loops over the fundamental dicriminants less than $X$:
\bprog
? X = 10^8;
? forfactored(d=1,X, if (isfundamental(d),));
time = 34,030 ms.
? for(d=1,X, if (isfundamental(d),))
time = 1min, 24,225 ms.
@eprog
\subsec{forpart$(X=k,\var{seq},\{a=k\},\{n=k\})$}\kbdsidx{forpart}\label{se:forpart}
Evaluate \var{seq} over the partitions $X=[x_{1},\dots x_{n}]$ of the
integer $k$, i.e.~increasing sequences $x_{1}\leq x_{2}\dots \leq x_{n}$ of sum
$x_{1}+\dots + x_{n}=k$. By convention, $0$ admits only the empty partition and
negative numbers have no partitions. A partition is given by a
\typ{VECSMALL}, where parts are sorted in nondecreasing order. The
partitions are listed by increasing size and in lexicographic order when
sizes are equal:
\bprog
? forpart(X=4, print(X))
Vecsmall([4])
Vecsmall([1, 3])
Vecsmall([2, 2])
Vecsmall([1, 1, 2])
Vecsmall([1, 1, 1, 1])
@eprog\noindent Optional parameters $n$ and $a$ are as follows:
\item $n=\var{nmax}$ (resp. $n=[\var{nmin},\var{nmax}]$) restricts
partitions to length less than $\var{nmax}$ (resp. length between
$\var{nmin}$ and $nmax$), where the \emph{length} is the number of nonzero
entries.
\item $a=\var{amax}$ (resp. $a=[\var{amin},\var{amax}]$) restricts the parts
to integers less than $\var{amax}$ (resp. between $\var{amin}$ and
$\var{amax}$).
By default, parts are positive and we remove zero entries unless $amin\leq0$,
in which case we fix the size $\#X = \var{nmax}$:
\bprog
\\ at most 3 nonzero parts, all <= 4
? forpart(v=5,print(Vec(v)), 4, 3)
[1, 4]
[2, 3]
[1, 1, 3]
[1, 2, 2]
\\ between 2 and 4 parts less than 5, fill with zeros
? forpart(v=5,print(Vec(v)),[0,5],[2,4])
[0, 0, 1, 4]
[0, 0, 2, 3]
[0, 1, 1, 3]
[0, 1, 2, 2]
[1, 1, 1, 2]
\\ no partitions of 1 with 2 to 4 nonzero parts
? forpart(v=1,print(v),[0,5],[2,4])
?
@eprog\noindent
The behavior is unspecified if $X$ is modified inside the loop.
\synt{forpart}{void *data, long (*call)(void*,GEN), long k, GEN a, GEN n}.
\subsec{forperm$(a,p,\var{seq})$}\kbdsidx{forperm}\label{se:forperm}
Evaluates \var{seq}, where the formal variable $p$ goes through some
permutations given by a \typ{VECSMALL}. If $a$ is a positive integer then
$P$ goes through the permutations of $\{1, 2, ..., a\}$ in lexicographic
order and if $a$ is a small vector then $p$ goes through the
(multi)permutations lexicographically larger than or equal to $a$.
\bprog
? forperm(3, p, print(p))
Vecsmall([1, 2, 3])
Vecsmall([1, 3, 2])
Vecsmall([2, 1, 3])
Vecsmall([2, 3, 1])
Vecsmall([3, 1, 2])
Vecsmall([3, 2, 1])
@eprog\noindent
When $a$ is itself a \typ{VECSMALL} or a \typ{VEC} then $p$ iterates through
multipermutations
\bprog
? forperm([2,1,1,3], p, print(p))
Vecsmall([2, 1, 1, 3])
Vecsmall([2, 1, 3, 1])
Vecsmall([2, 3, 1, 1])
Vecsmall([3, 1, 1, 2])
Vecsmall([3, 1, 2, 1])
Vecsmall([3, 2, 1, 1])
@eprog\noindent
\subsec{forprime$(p=a,\{b\},\var{seq})$}\kbdsidx{forprime}\label{se:forprime}
Evaluates \var{seq},
where the formal variable $p$ ranges over the prime numbers between the real
numbers $a$ to $b$, including $a$ and $b$ if they are prime. More precisely,
the value of
$p$ is incremented to \kbd{nextprime($p$ + 1)}, the smallest prime strictly
larger than $p$, at the end of each iteration. Nothing is done if $a>b$.
\bprog
? forprime(p = 4, 10, print(p))
5
7
@eprog\noindent Setting $b$ to \kbd{+oo} means we will run through all primes
$\geq a$, starting an infinite loop; it is expected that the caller will break
out of the loop itself at some point, using \kbd{break} or \kbd{return}.
Note that the value of $p$ cannot be modified within \var{seq}:
\bprog
? forprime(p = 2, 10, p = [])
*** at top-level: forprime(p=2,10,p=[])
*** ^---
*** prime index read-only: was changed to [].
@eprog
\subsec{forprimestep$(p=a,b,q,\var{seq})$}\kbdsidx{forprimestep}\label{se:forprimestep}
Evaluates \var{seq}, where the formal variable $p$ ranges over the prime
numbers in an arithmetic progression in $[a,b]$: $q$ is either an integer
($p \equiv a \pmod{q}$) or an intmod \kbd{Mod(c,N)} and we restrict
to that congruence class. Nothing is done if $a>b$.
\bprog
? forprimestep(p = 4, 30, 5, print(p))
19
29
? forprimestep(p = 4, 30, Mod(1,5), print(p))
11
@eprog\noindent Setting $b$ to \kbd{+oo} means we will run through all primes
$\geq a$, starting an infinite loop; it is expected that the caller will break
out of the loop itself at some point, using \kbd{break} or \kbd{return}.
Note that the value of $p$ cannot be modified within \var{seq}:
\bprog
? forprimestep(p = 2, 10, 3, p = [])
*** at top-level: forprimestep(p=2,10,3,p=[])
*** ^---
*** prime index read-only: was changed to [].
@eprog
\subsec{forsquarefree$(N=a,b,\var{seq})$}\kbdsidx{forsquarefree}\label{se:forsquarefree}
Evaluates \var{seq}, where the formal variable $N$ is $[n,
\kbd{factor}(n)]$ and $n$ goes through squarefree integers from $a$ to $b$;
$a$ and $b$ must be integers. Nothing is done if $a>b$.
\bprog
? forsquarefree(N=-3,9,print(N))
[-3, [-1, 1; 3, 1]]
[-2, [-1, 1; 2, 1]]
[-1, Mat([-1, 1])]
[1, matrix(0,2)]
[2, Mat([2, 1])]
[3, Mat([3, 1])]
[5, Mat([5, 1])]
[6, [2, 1; 3, 1]]
[7, Mat([7, 1])]
@eprog
This function is only implemented for $|a|, |b| < 2^{64}$ ($2^{32}$ on a 32-bit
machine). It uses a sieve and runs in time $O(\sqrt{b} + b-a)$. It should
be at least 5 times faster than regular factorization as long as the interval
length $b-a$ is much larger than $\sqrt{b}$ and get relatively faster as
the bounds increase. The function slows down dramatically
if $\kbd{primelimit} < \sqrt{b}$. It is comparable to \kbd{forfactored}, but
about $\zeta(2) = \pi^{2}/6$ times faster due to the relative density
of squarefree integers.
\bprog
? B = 10^9;
? for (N = B, B+10^6, factor(N))
time = 2,463 ms.
? forfactored (N = B, B+10^6, [n,fan] = N)
time = 567 ms.
? forsquarefree (N = B, B+10^6, [n,fan] = N)
time = 343 ms.
? B = 10^11;
? for (N = B, B+10^6, factor(N))
time = 8,012 ms.
? forfactored (N = B, B+10^6, [n,fan] = N)
time = 1,293 ms.
? forsquarefree (N = B, B+10^6, [n,fan] = N)
time = 713 ms.
? B = 10^14;
? for (N = B, B+10^6, factor(N))
time = 41,283 ms.
? forsquarefree (N = B, B+10^6, [n,fan] = N)
time = 33,399 ms.
@eprog\noindent The last timing is with the default \kbd{primelimit}
(500000) which is much less than $\sqrt{B+10^{6}}$; it goes down
to \kbd{29,253ms} if \kbd{primelimit} gets bigger than that bound.
In any case $\sqrt{B+10^{6}}$ is much larger than the interval length $10^{6}$
so \kbd{forsquarefree} gets relatively slower for that reason as well.
Note that all PARI multiplicative functions accept the \kbd{[n,fan]}
argument natively:
\bprog
? s = 0; forsquarefree(N = 1, 10^7, s += moebius(N)*eulerphi(N)); s
time = 2,003 ms.
%1 = 6393738650
? s = 0; for(N = 1, 10^7, s += moebius(N)*eulerphi(N)); s
time = 18,024 ms. \\ slower, we must factor N. Twice.
%2 = 6393738650
@eprog
The following loops over the fundamental dicriminants less than $X$:
\bprog
? X = 10^8;
? for(d=1,X, if (isfundamental(d),))
time = 53,387 ms.
? forfactored(d=1,X, if (isfundamental(d),));
time = 13,861 ms.
? forsquarefree(d=1,X, D = quaddisc(d); if (D <= X, ));
time = 14,341 ms.
@eprog\noindent Note that in the last loop, the fundamental discriminants
$D$ are not evaluated in order (since \kbd{quaddisc(d)} for squarefree $d$
is either $d$ or $4d$) but the set of numbers we run through is the same.
Not worth the complication since it's slower than testing \kbd{isfundamental}.
A faster, more complicated approach uses two loops. For simplicity, assume
$X$ is divisible by $4$:
\bprog
? forsquarefree(d=1,X/4, D = quaddisc(d));
time = 3,642 ms.
? forsquarefree(d=X/4+1,X, if (d[1] % 4 == 1,));
time = 7,772 ms.
@eprog\noindent This is the price we pay for a faster evaluation,
We can run through negative fundamental discriminants in the same way:
\bprog
? forfactored(d=-X,-1, if (isfundamental(d),));
@eprog
\subsec{forstep$(X=a,b,s,\var{seq})$}\kbdsidx{forstep}\label{se:forstep}
Evaluates \var{seq}, where the formal variable $X$ goes from $a$ to $b$
in increments of $s$. Nothing is done if $s>0$ and $a>b$ or if $s<0$
and $a<b$. The $s$ can be
\item a positive real number, preferably an integer: $X = a, a+s, a+2s\dots$
\item an intmod \kbd{Mod(c,N)} (restrict to the corresponding arithmetic
progression starting at the smallest integer $A \geq a$ and congruent to $c$
modulo $N$): $X = A, A + N, \dots$
\item a vector of steps $[s_{1},\dots,s_{n}]$ (the successive steps in $\R^{*}$
are used in the order they appear in $s$): $X = a, a+s_{1}, a+s_{1}+s_{2},
\dots$
\bprog
? forstep(x=5, 10, 2, print(x))
5
7
9
? forstep(x=5, 10, Mod(1,3), print(x))
7
10
? forstep(x=5, 10, [1,2], print(x))
5
6
8
9
@eprog\noindent Setting $b$ to \kbd{+oo} will start an infinite loop; it is
expected that the caller will break out of the loop itself at some point,
using \kbd{break} or \kbd{return}.
\subsec{forsubgroup$(H=G,\{\var{bound}\},\var{seq})$}\kbdsidx{forsubgroup}\label{se:forsubgroup}
Evaluates \var{seq} for
each subgroup $H$ of the \emph{abelian} group $G$ (given in
SNF\sidx{Smith normal form} form or as a vector of elementary divisors).
If \var{bound} is present, and is a positive integer, restrict the output to
subgroups of index less than \var{bound}. If \var{bound} is a vector
containing a single positive integer $B$, then only subgroups of index
exactly equal to $B$ are computed
The subgroups are not ordered in any
obvious way, unless $G$ is a $p$-group in which case Birkhoff's algorithm
produces them by decreasing index. A \idx{subgroup} is given as a matrix
whose columns give its generators on the implicit generators of $G$. For
example, the following prints all subgroups of index less than 2 in $G =
\Z/2\Z g_{1} \times \Z/2\Z g_{2}$:
\bprog
? G = [2,2]; forsubgroup(H=G, 2, print(H))
[1; 1]
[1; 2]
[2; 1]
[1, 0; 1, 1]
@eprog\noindent
The last one, for instance is generated by $(g_{1}, g_{1} + g_{2})$. This
routine is intended to treat huge groups, when \tet{subgrouplist} is not an
option due to the sheer size of the output.
For maximal speed the subgroups have been left as produced by the algorithm.
To print them in canonical form (as left divisors of $G$ in HNF form), one
can for instance use
\bprog
? G = matdiagonal([2,2]); forsubgroup(H=G, 2, print(mathnf(concat(G,H))))
[2, 1; 0, 1]
[1, 0; 0, 2]
[2, 0; 0, 1]
[1, 0; 0, 1]
@eprog\noindent
Note that in this last representation, the index $[G:H]$ is given by the
determinant. See \tet{galoissubcyclo} and \tet{galoisfixedfield} for
applications to \idx{Galois} theory.
\synt{forsubgroup}{void *data, long (*call)(void*,GEN), GEN G, GEN bound}.
\subsec{forsubset$(\var{nk},s,\var{seq})$}\kbdsidx{forsubset}\label{se:forsubset}
If \var{nk} is a nonnegative integer $n$, evaluates \kbd{seq}, where
the formal variable $s$ goes through all subsets of $\{1, 2, \ldots, n\}$;
if \var{nk} is a pair $[n,k]$ of integers, $s$ goes through subsets
of size $k$ of $\{1, 2, \ldots, n\}$. In both cases $s$ goes through subsets
in lexicographic order among subsets of the same size and smaller subsets
come first.
\bprog
? forsubset([5,3], s, print(s))
Vecsmall([1, 2, 3])
Vecsmall([1, 2, 4])
Vecsmall([1, 2, 5])
Vecsmall([1, 3, 4])
Vecsmall([1, 3, 5])
Vecsmall([1, 4, 5])
Vecsmall([2, 3, 4])
Vecsmall([2, 3, 5])
Vecsmall([2, 4, 5])
Vecsmall([3, 4, 5])
@eprog
\bprog
? forsubset(3, s, print(s))
Vecsmall([])
Vecsmall([1])
Vecsmall([2])
Vecsmall([3])
Vecsmall([1, 2])
Vecsmall([1, 3])
Vecsmall([2, 3])
Vecsmall([1, 2, 3])
@eprog\noindent The running time is proportional to the number
of subsets enumerated, respectively $2^{n}$ and \kbd{binomial}$(n,k)$:
\bprog
? c = 0; forsubset([40,35],s,c++); c
time = 128 ms.
%4 = 658008
? binomial(40,35)
%5 = 658008
@eprog
\subsec{forvec$(X=v,\var{seq},\{\fl=0\})$}\kbdsidx{forvec}\label{se:forvec}
Let $v$ be an $n$-component vector (where $n$ is arbitrary) of
two-component vectors $[a_{i},b_{i}]$ for $1\le i\le n$, where all entries
$a_{i}$, $b_{i}$ are real numbers.
This routine lets $X$ vary over the $n$-dimensional
box given by $v$ with unit steps: $X$ is an $n$-dimensional vector whose $i$-th
entry $X[i]$ runs through $a_{i}, a_{i}+1, a_{i}+2, \dots $ stopping with the
first value greater than $b_{i}$ (note that neither $a_{i}$ nor
$b_{i} - a_{i}$ are required to be integers). The values of $X$ are ordered
lexicographically, like embedded \kbd{for} loops, and the expression
\var{seq} is evaluated with the successive values of $X$. The type of $X$ is
the same as the type of $v$: \typ{VEC} or \typ{COL}.
If $\fl=1$, generate only nondecreasing vectors $X$, and
if $\fl=2$, generate only strictly increasing vectors $X$.
\bprog
? forvec (X=[[0,1],[-1,1]], print(X));
[0, -1]
[0, 0]
[0, 1]
[1, -1]
[1, 0]
[1, 1]
? forvec (X=[[0,1],[-1,1]], print(X), 1);
[0, 0]
[0, 1]
[1, 1]
? forvec (X=[[0,1],[-1,1]], print(X), 2)
[0, 1]
@eprog
As a shortcut, a vector of the form $v=[[0,c_{1}-1],\dots [0,c_{n}-1]]$
can be abbreviated as $v=[c_{1},\dots c_{n}]$ and $\fl$ is ignored in this
case.
More generally, if $v$ is a vector of nonnegative integers $c_{i}$ the loop
runs over representatives of $\Z^{n}/v\Z^{n}$; and $\fl$ is again ignored.
The vector $v$ may contain zero entries, in which case the loop spans an
infinite lattice. The values are ordered lexicographically, graded by
increasing $L_{1}$-norm on free ($c_{i}=0$) components.
This allows to iterate over elements of abelian groups using their
\kbd{.cyc} vector.
\bprog
? forvec (X=[2,3], print(X));
[0, 0]
[0, 1]
[0, 2]
[1, 0]
[1, 1]
[1, 2]
? my(i);forvec (X=[0,0], print(X); if (i++ > 10, break));
[0, 0]
[-1, 0]
[0, -1]
[0, 1]
[1, 0]
[-2, 0]
[-1, -1]
[-1, 1]
[0, -2]
[0, 2]
[1, -1]
? zn = znstar(36,1);
? forvec (chi = zn.cyc, if (chareval(zn,chi,5) == 5/6, print(chi)));
[1, 0]
[1, 1]
? bnrchar(zn, [5], [5/6]) \\ much more efficient in general
%5 = [[1, 1], [1, 0]]
@eprog
\subsec{if$(a,\{\var{seq1}\},\{\var{seq2}\})$}\kbdsidx{if}\label{se:if}
Evaluates the expression sequence \var{seq1} if $a$ is nonzero, otherwise
the expression \var{seq2}. Of course, \var{seq1} or \var{seq2} may be empty:
\kbd{if ($a$,\var{seq})} evaluates \var{seq} if $a$ is not equal to zero
(you don't have to write the second comma), and does nothing otherwise,
\kbd{if ($a$,,\var{seq})} evaluates \var{seq} if $a$ is equal to zero, and
does nothing otherwise. You could get the same result using the \kbd{!}
(\kbd{not}) operator: \kbd{if (!$a$,\var{seq})}.
The value of an \kbd{if} statement is the value of the branch that gets
evaluated: for instance
\bprog
x = if(n % 4 == 1, y, z);
@eprog\noindent sets $x$ to $y$ if $n$ is $1$ modulo $4$, and to $z$
otherwise.
Successive 'else' blocks can be abbreviated in a single compound \kbd{if}
as follows:
\bprog
if (test1, seq1,
test2, seq2,
...
testn, seqn,
seqdefault);
@eprog\noindent is equivalent to
\bprog
if (test1, seq1
, if (test2, seq2
, ...
if (testn, seqn, seqdefault)...));
@eprog For instance, this allows to write traditional switch / case
constructions:
\bprog
if (x == 0, do0(),
x == 1, do1(),
x == 2, do2(),
dodefault());
@eprog
\misctitle{Remark}
The boolean operators \kbd{\&\&} and \kbd{||} are evaluated
according to operator precedence as explained in \secref{se:operators}, but,
contrary to other operators, the evaluation of the arguments is stopped
as soon as the final truth value has been determined. For instance
\bprog
if (x != 0 && f(1/x), ...)
@eprog
\noindent is a perfectly safe statement.
\misctitle{Remark} Functions such as \kbd{break} and \kbd{next} operate on
\emph{loops}, such as \kbd{for$xxx$}, \kbd{while}, \kbd{until}. The \kbd{if}
statement is \emph{not} a loop. (Obviously!)
\subsec{iferr$(\var{seq1},E,\var{seq2},\{\var{pred}\})$}\kbdsidx{iferr}\label{se:iferr}
Evaluates the expression sequence \var{seq1}. If an error occurs,
set the formal parameter \var{E} set to the error data.
If \var{pred} is not present or evaluates to true, catch the error
and evaluate \var{seq2}. Both \var{pred} and \var{seq2} can reference \var{E}.
The error type is given by \kbd{errname(E)}, and other data can be
accessed using the \tet{component} function. The code \var{seq2} should check
whether the error is the one expected. In the negative the error can be
rethrown using \tet{error(E)} (and possibly caught by an higher \kbd{iferr}
instance). The following uses \kbd{iferr} to implement Lenstra's ECM factoring
method
\bprog
? ecm(N, B = 1000!, nb = 100)=
{
for(a = 1, nb,
iferr(ellmul(ellinit([a,1]*Mod(1,N)), [0,1]*Mod(1,N), B),
E, return(gcd(lift(component(E,2)),N)),
errname(E)=="e_INV" && type(component(E,2)) == "t_INTMOD"))
}
? ecm(2^101-1)
%2 = 7432339208719
@eprog
The return value of \kbd{iferr} itself is the value of \var{seq2} if an
error occurs, and the value of \var{seq1} otherwise. We now describe the
list of valid error types, and the attached error data \var{E}; in each
case, we list in order the components of \var{E}, accessed via
\kbd{component(E,1)}, \kbd{component(E,2)}, etc.
\misctitle{Internal errors, ``system'' errors}
\item \kbd{"e\_ARCH"}. A requested feature $s$ is not available on this
architecture or operating system.
\var{E} has one component (\typ{STR}): the missing feature name $s$.
\item \kbd{"e\_BUG"}. A bug in the PARI library, in function $s$.
\var{E} has one component (\typ{STR}): the function name $s$.
\item \kbd{"e\_FILE"}. Error while trying to open a file.
\var{E} has two components, 1 (\typ{STR}): the file type (input, output,
etc.), 2 (\typ{STR}): the file name.
\item \kbd{"e\_IMPL"}. A requested feature $s$ is not implemented.
\var{E} has one component, 1 (\typ{STR}): the feature name $s$.
\item \kbd{"e\_PACKAGE"}. Missing optional package $s$.
\var{E} has one component, 1 (\typ{STR}): the package name $s$.
\misctitle{Syntax errors, type errors}
\item \kbd{"e\_DIM"}. The dimensions of arguments $x$ and $y$ submitted
to function $s$ does not match up.
E.g., multiplying matrices of inconsistent dimension, adding vectors of
different lengths,\dots
\var{E} has three component, 1 (\typ{STR}): the function name $s$, 2: the
argument $x$, 3: the argument $y$.
\item \kbd{"e\_FLAG"}. A flag argument is out of bounds in function $s$.
\var{E} has one component, 1 (\typ{STR}): the function name $s$.
\item \kbd{"e\_NOTFUNC"}. Generated by the PARI evaluator; tried to use a
\kbd{GEN} $x$ which is not a \typ{CLOSURE} in a function call syntax (as in
\kbd{f = 1; f(2);}).
\var{E} has one component, 1: the offending \kbd{GEN} $x$.
\item \kbd{"e\_OP"}. Impossible operation between two objects than cannot
be typecast to a sensible common domain for deeper reasons than a type
mismatch, usually for arithmetic reasons. As in \kbd{O(2) + O(3)}: it is
valid to add two \typ{PADIC}s, provided the underlying prime is the same; so
the addition is not forbidden a priori for type reasons, it only becomes so
when inspecting the objects and trying to perform the operation.
\var{E} has three components, 1 (\typ{STR}): the operator name \var{op},
2: first argument, 3: second argument.
\item \kbd{"e\_TYPE"}. An argument $x$ of function $s$ had an unexpected type.
(As in \kbd{factor("blah")}.)
\var{E} has two components, 1 (\typ{STR}): the function name $s$,
2: the offending argument $x$.
\item \kbd{"e\_TYPE2"}. Forbidden operation between two objects than cannot be
typecast to a sensible common domain, because their types do not match up.
(As in \kbd{Mod(1,2) + Pi}.)
\var{E} has three components, 1 (\typ{STR}): the operator name \var{op},
2: first argument, 3: second argument.
\item \kbd{"e\_PRIORITY"}. Object $o$ in function $s$ contains
variables whose priority is incompatible with the expected operation.
E.g.~\kbd{Pol([x,1], 'y)}: this raises an error because it's not possible to
create a polynomial whose coefficients involve variables with higher priority
than the main variable. $E$ has four components: 1 (\typ{STR}): the function
name $s$, 2: the offending argument $o$, 3 (\typ{STR}): an operator
$\var{op}$ describing the priority error, 4 (\typ{POL}):
the variable $v$ describing the priority error. The argument
satisfies $\kbd{variable}(x)~\var{op} \kbd{variable}(v)$.
\item \kbd{"e\_VAR"}. The variables of arguments $x$ and $y$ submitted
to function $s$ does not match up. E.g., considering the algebraic number
\kbd{Mod(t,t\pow2+1)} in \kbd{nfinit(x\pow2+1)}.
\var{E} has three component, 1 (\typ{STR}): the function name $s$, 2
(\typ{POL}): the argument $x$, 3 (\typ{POL}): the argument $y$.
\misctitle{Overflows}
\item \kbd{"e\_COMPONENT"}. Trying to access an inexistent component in a
vector/matrix/list in a function: the index is less than $1$ or greater
than the allowed length.
\var{E} has four components,
1 (\typ{STR}): the function name
2 (\typ{STR}): an operator $\var{op}$ ($<$ or $>$),
2 (\typ{GEN}): a numerical limit $l$ bounding the allowed range,
3 (\kbd{GEN}): the index $x$. It satisfies $x$ \var{op} $l$.
\item \kbd{"e\_DOMAIN"}. An argument is not in the function's domain.
\var{E} has five components, 1 (\typ{STR}): the function name,
2 (\typ{STR}): the mathematical name of the out-of-domain argument
3 (\typ{STR}): an operator $\var{op}$ describing the domain error,
4 (\typ{GEN}): the numerical limit $l$ describing the domain error,
5 (\kbd{GEN}): the out-of-domain argument $x$. The argument satisfies $x$
\var{op} $l$, which prevents it from belonging to the function's domain.
\item \kbd{"e\_MAXPRIME"}. A function using the precomputed list of prime
numbers ran out of primes.
\var{E} has one component, 1 (\typ{INT}): the requested prime bound, which
overflowed \kbd{primelimit} or $0$ (bound is unknown).
\item \kbd{"e\_MEM"}. A call to \tet{pari_malloc} or \tet{pari_realloc}
failed. \var{E} has no component.
\item \kbd{"e\_OVERFLOW"}. An object in function $s$ becomes too large to be
represented within PARI's hardcoded limits. (As in \kbd{2\pow2\pow2\pow10} or
\kbd{exp(1e100)}, which overflow in \kbd{lg} and \kbd{expo}.)
\var{E} has one component, 1 (\typ{STR}): the function name $s$.
\item \kbd{"e\_PREC"}. Function $s$ fails because input accuracy is too low.
(As in \kbd{floor(1e100)} at default accuracy.)
\var{E} has one component, 1 (\typ{STR}): the function name $s$.
\item \kbd{"e\_STACK"}. The PARI stack overflows.
\var{E} has no component.
\misctitle{Errors triggered intentionally}
\item \kbd{"e\_ALARM"}. A timeout, generated by the \tet{alarm} function.
\var{E} has one component (\typ{STR}): the error message to print.
\item \kbd{"e\_USER"}. A user error, as triggered by
\tet{error}($g_{1},\dots,g_{n})$.
\var{E} has one component, 1 (\typ{VEC}): the vector of $n$ arguments given
to \kbd{error}.
\misctitle{Mathematical errors}
\item \kbd{"e\_CONSTPOL"}. An argument of function $s$ is a constant
polynomial, which does not make sense. (As in \kbd{galoisinit(Pol(1))}.)
\var{E} has one component, 1 (\typ{STR}): the function name $s$.
\item \kbd{"e\_COPRIME"}. Function $s$ expected coprime arguments,
and did receive $x,y$, which were not.
\var{E} has three component, 1 (\typ{STR}): the function name $s$,
2: the argument $x$, 3: the argument $y$.
\item \kbd{"e\_INV"}. Tried to invert a noninvertible object $x$ in
function $s$.
\var{E} has two components, 1 (\typ{STR}): the function name $s$,
2: the noninvertible $x$. If $x = \kbd{Mod}(a,b)$
is a \typ{INTMOD} and $a$ is not $0$ mod $b$, this allows to factor
the modulus, as \kbd{gcd}$(a,b)$ is a nontrivial divisor of $b$.
\item \kbd{"e\_IRREDPOL"}. Function $s$ expected an irreducible polynomial,
and did receive $T$, which was not. (As in \kbd{nfinit(x\pow2-1)}.)
\var{E} has two component, 1 (\typ{STR}): the function name $s$,
2 (\typ{POL}): the polynomial $x$.
\item \kbd{"e\_MISC"}. Generic uncategorized error.
\var{E} has one component (\typ{STR}): the error message to print.
\item \kbd{"e\_MODULUS"}. moduli $x$ and $y$ submitted to function $s$ are
inconsistent. As in
\bprog
nfalgtobasis(nfinit(t^3-2), Mod(t,t^2+1))
@eprog\noindent
\var{E} has three component, 1 (\typ{STR}): the function $s$,
2: the argument $x$, 3: the argument $y$.
\item \kbd{"e\_PRIME"}. Function $s$ expected a prime number,
and did receive $p$, which was not. (As in \kbd{idealprimedec(nf, 4)}.)
\var{E} has two component, 1 (\typ{STR}): the function name $s$,
2: the argument $p$.
\item \kbd{"e\_ROOTS0"}. An argument of function $s$ is a zero polynomial,
and we need to consider its roots. (As in \kbd{polroots(0)}.) \var{E} has
one component, 1 (\typ{STR}): the function name $s$.
\item \kbd{"e\_SQRTN"}. Trying to compute an $n$-th root of $x$, which does
not exist, in function $s$. (As in \kbd{sqrt(Mod(-1,3))}.)
\var{E} has two components, 1 (\typ{STR}): the function name $s$,
2: the argument $x$.
\subsec{next$(\{n=1\})$}\kbdsidx{next}\label{se:next}
Interrupts execution of current $seq$,
resume the next iteration of the innermost enclosing loop, within the
current function call (or top level loop). If $n$ is specified, resume at
the $n$-th enclosing loop. If $n$ is bigger than the number of enclosing
loops, all enclosing loops are exited.
\subsec{return$(\{x=0\})$}\kbdsidx{return}\label{se:return}
Returns from current subroutine, with
result $x$. If $x$ is omitted, return the \kbd{(void)} value (return no
result, like \kbd{print}).
\subsec{setdebug$(\{D\},\{n\})$}\kbdsidx{setdebug}\label{se:setdebug}
Sets debug level for domain $D$ to $n$ ($0 \leq n \leq 20$).
The domain $D$ is a character string describing a Pari feature or code
module, such as \kbd{"bnf"}, \kbd{"qflll"} or \kbd{"polgalois"}. This allows
to selectively increase or decrease the diagnostics attached to a particular
feature.
If $n$ is omitted, returns the current level for domain $D$.
If $D$ is omitted, returns a two-column matrix which lists the available
domains with their levels. The \kbd{debug} default allows to reset all debug
levels to a given value.
\bprog
? setdebug()[,1] \\ list of all domains
["alg", "arith", "bern", "bnf", "bnr", "bnrclassfield", ..., "zetamult"]
? \g 1 \\ sets all debug levels to 1
debug = 1
? setdebug("bnf", 0); \\ kills messages related to bnfinit and bnfisrincipal
@eprog
\subsec{until$(a,\var{seq})$}\kbdsidx{until}\label{se:until}
Evaluates \var{seq} until $a$ is not
equal to 0 (i.e.~until $a$ is true). If $a$ is initially not equal to 0,
\var{seq} is evaluated once (more generally, the condition on $a$ is tested
\emph{after} execution of the \var{seq}, not before as in \kbd{while}).
\subsec{while$(a,\var{seq})$}\kbdsidx{while}\label{se:while}
While $a$ is nonzero, evaluates the expression sequence \var{seq}. The
test is made \emph{before} evaluating the $seq$, hence in particular if $a$
is initially equal to zero the \var{seq} will not be evaluated at all.
\section{Programming in GP: other specific functions}
\label{se:gp_program}
In addition to the general PARI functions, it is necessary to have some
functions which will be of use specifically for \kbd{gp}, though a few of these
can be accessed under library mode. Before we start describing these, we recall
the difference between \emph{strings} and \emph{keywords} (see
\secref{se:strings}): the latter don't get expanded at all, and you can type
them without any enclosing quotes. The former are dynamic objects, where
everything outside quotes gets immediately expanded.
\subsec{Strchr$(x)$}\kbdsidx{Strchr}\label{se:Strchr}
Deprecated alias for strchr.
The library syntax is \fun{GEN}{pari_strchr}{GEN x}.
\subsec{Strexpand$(\{x\}*)$}\kbdsidx{Strexpand}\label{se:Strexpand}
Deprecated alias for strexpand
The library syntax is \fun{GEN}{strexpand}{GEN vec_x}.
\subsec{Strprintf$(\var{fmt},\{x\}*)$}\kbdsidx{Strprintf}\label{se:Strprintf}
Deprecated alias for strprintf.
The library syntax is \fun{GEN}{strprintf}{const char *fmt, GEN vec_x}.
\subsec{Strtex$(\{x\}*)$}\kbdsidx{Strtex}\label{se:Strtex}
Deprecated alias for strtex.
The library syntax is \fun{GEN}{strtex}{GEN vec_x}.
\subsec{addhelp$(\var{sym},\var{str})$}\kbdsidx{addhelp}\label{se:addhelp}
Changes the help message for the symbol \kbd{sym}. The string \var{str}
is expanded on the spot and stored as the online help for \kbd{sym}. It is
recommended to document global variables and user functions in this way,
although \kbd{gp} will not protest if you don't.
You can attach a help text to an alias, but it will never be
shown: aliases are expanded by the \kbd{?} help operator and we get the help
of the symbol the alias points to. Nothing prevents you from modifying the
help of built-in PARI functions. But if you do, we would like to hear why you
needed it!
Without \tet{addhelp}, the standard help for user functions consists of its
name and definition.
\bprog
gp> f(x) = x^2;
gp> ?f
f =
(x)->x^2
@eprog\noindent Once addhelp is applied to $f$, the function code is no
longer included. It can still be consulted by typing the function name:
\bprog
gp> addhelp(f, "Square")
gp> ?f
Square
gp> f
%2 = (x)->x^2
@eprog
The library syntax is \fun{void}{addhelp}{const char *sym, const char *str}.
\subsec{alarm$(\{s = 0\},\{\var{code}\})$}\kbdsidx{alarm}\label{se:alarm}
If \var{code} is omitted, trigger an \var{e\_ALARM} exception after $s$
seconds (wall-clock time), cancelling any previously set alarm; stop a pending
alarm if $s = 0$ or is omitted.
Otherwise, if $s$ is positive, the function evaluates \var{code},
aborting after $s$ seconds. The return value is the value of \var{code} if
it ran to completion before the alarm timeout, and a \typ{ERROR} object
otherwise.
\bprog
? p = nextprime(10^25); q = nextprime(10^26); N = p*q;
? E = alarm(1, factor(N));
? type(E)
%3 = "t_ERROR"
? print(E)
%4 = error("alarm interrupt after 964 ms.")
? alarm(10, factor(N)); \\ enough time
%5 =
[ 10000000000000000000000013 1]
[100000000000000000000000067 1]
@eprog\noindent Here is a more involved example: the function
\kbd{timefact(N,sec)} below tries to factor $N$ and gives up after \var{sec}
seconds, returning a partial factorization.
\bprog
\\ Time-bounded partial factorization
default(factor_add_primes,1);
timefact(N,sec)=
{
F = alarm(sec, factor(N));
if (type(F) == "t_ERROR", factor(N, 2^24), F);
}
@eprog\noindent We either return the factorization directly, or replace the
\typ{ERROR} result by a simple bounded factorization \kbd{factor(N, 2\pow 24)}.
Note the \tet{factor_add_primes} trick: any prime larger than $2^{24}$
discovered while attempting the initial factorization is stored and
remembered. When the alarm rings, the subsequent bounded factorization finds
it right away.
\misctitle{Caveat} It is not possible to set a new alarm \emph{within}
another \kbd{alarm} code: the new timer erases the parent one.
\misctitle{Caveat2} In a parallel-enabled \kbd{gp}, if the \var{code}
involves parallel subtasks, then \kbd{alarm} may not return right away: il
will prevent new tasks from being launched but will not interrupt previously
launched secondary threads. This avoids leaving the system in an
inconsistent state.
The library syntax is \fun{GEN}{gp_alarm}{long s, GEN code = NULL}.
\subsec{alias$(\var{newsym},\var{sym})$}\kbdsidx{alias}\label{se:alias}
Defines the symbol \var{newsym} as an alias for the symbol \var{sym}:
\bprog
? alias("det", "matdet");
? det([1,2;3,4])
%1 = -2
@eprog\noindent
You are not restricted to ordinary functions, as in the above example:
to alias (from/to) member functions, prefix them with `\kbd{\_.}';
to alias operators, use their internal name, obtained by writing
\kbd{\_} in lieu of the operators argument: for instance, \kbd{\_!} and
\kbd{!\_} are the internal names of the factorial and the
logical negation, respectively.
\bprog
? alias("mod", "_.mod");
? alias("add", "_+_");
? alias("_.sin", "sin");
? mod(Mod(x,x^4+1))
%2 = x^4 + 1
? add(4,6)
%3 = 10
? Pi.sin
%4 = 0.E-37
@eprog
Alias expansion is performed directly by the internal GP compiler.
Note that since alias is performed at compilation-time, it does not
require any run-time processing, however it only affects GP code
compiled \emph{after} the alias command is evaluated. A slower but more
flexible alternative is to use variables. Compare
\bprog
? fun = sin;
? g(a,b) = intnum(t=a,b,fun(t));
? g(0, Pi)
%3 = 2.0000000000000000000000000000000000000
? fun = cos;
? g(0, Pi)
%5 = 1.8830410776607851098 E-39
@eprog\noindent
with
\bprog
? alias(fun, sin);
? g(a,b) = intnum(t=a,b,fun(t));
? g(0,Pi)
%2 = 2.0000000000000000000000000000000000000
? alias(fun, cos); \\ Oops. Does not affect *previous* definition!
? g(0,Pi)
%3 = 2.0000000000000000000000000000000000000
? g(a,b) = intnum(t=a,b,fun(t)); \\ Redefine, taking new alias into account
? g(0,Pi)
%5 = 1.8830410776607851098 E-39
@eprog
A sample alias file \kbd{misc/gpalias} is provided with
the standard distribution.
The library syntax is \fun{void}{alias0}{const char *newsym, const char *sym}.
\subsec{allocatemem$(\{s=0\})$}\kbdsidx{allocatemem}\label{se:allocatemem}
This special operation changes the stack size \emph{after}
initialization. The argument $s$ must be a nonnegative integer.
If $s > 0$, a new stack of at least $s$ bytes is allocated. We may allocate
more than $s$ bytes if $s$ is way too small, or for alignment reasons: the
current formula is $\max(16*\ceil{s/16}, 500032)$ bytes.
If $s=0$, the size of the new stack is twice the size of the old one.
This command is much more useful if \tet{parisizemax} is nonzero, and we
describe this case first. With \kbd{parisizemax} enabled, there are three
sizes of interest:
\item a virtual stack size, \tet{parisizemax}, which is an absolute upper
limit for the stack size; this is set by \kbd{default(parisizemax, ...)}.
\item the desired typical stack size, \tet{parisize}, that will grow as
needed, up to \tet{parisizemax}; this is set by \kbd{default(parisize, ...)}.
\item the current stack size, which is less that \kbd{parisizemax},
typically equal to \kbd{parisize} but possibly larger and increasing
dynamically as needed; \kbd{allocatemem} allows to change that one
explicitly.
The \kbd{allocatemem} command forces stack
usage to increase temporarily (up to \kbd{parisizemax} of course); for
instance if you notice using \kbd{\bs gm2} that we seem to collect garbage a
lot, e.g.
\bprog
? \gm2
debugmem = 2
? default(parisize,"32M")
*** Warning: new stack size = 32000000 (30.518 Mbytes).
? bnfinit('x^2+10^30-1)
*** bnfinit: collecting garbage in hnffinal, i = 1.
*** bnfinit: collecting garbage in hnffinal, i = 2.
*** bnfinit: collecting garbage in hnffinal, i = 3.
@eprog\noindent and so on for hundred of lines. Then, provided the
\tet{breakloop} default is set, you can interrupt the computation, type
\kbd{allocatemem(100*10\pow6)} at the break loop prompt, then let the
computation go on by typing \kbd{<Enter>}. Back at the \kbd{gp} prompt,
the desired stack size of \kbd{parisize} is restored. Note that changing either
\kbd{parisize} or \kbd{parisizemax} at the break loop prompt would interrupt
the computation, contrary to the above.
In most cases, \kbd{parisize} will increase automatically (up to
\kbd{parisizemax}) and there is no need to perform the above maneuvers.
But that the garbage collector is sufficiently efficient that
a given computation can still run without increasing the stack size,
albeit very slowly due to the frequent garbage collections.
\misctitle{Deprecated: when \kbd{parisizemax} is unset}
This is currently still the default behavior in order not to break backward
compatibility. The rest of this section documents the
behavior of \kbd{allocatemem} in that (deprecated) situation: it becomes a
synonym for \kbd{default(parisize,...)}. In that case, there is no
notion of a virtual stack, and the stack size is always equal to
\kbd{parisize}. If more memory is needed, the PARI stack overflows, aborting
the computation.
Thus, increasing \kbd{parisize} via \kbd{allocatemem} or
\kbd{default(parisize,...)} before a big computation is important.
Unfortunately, either must be typed at the \kbd{gp} prompt in
interactive usage, or left by itself at the start of batch files.
They cannot be used meaningfully in loop-like constructs, or as part of a
larger expression sequence, e.g
\bprog
allocatemem(); x = 1; \\@com This will not set \kbd{x}!
@eprog\noindent
In fact, all loops are immediately exited, user functions terminated, and
the rest of the sequence following \kbd{allocatemem()} is silently
discarded, as well as all pending sequences of instructions. We just go on
reading the next instruction sequence from the file we are in (or from the
user). In particular, we have the following possibly unexpected behavior: in
\bprog
read("file.gp"); x = 1
@eprog\noindent were \kbd{file.gp} contains an \kbd{allocatemem} statement,
the \kbd{x = 1} is never executed, since all pending instructions in the
current sequence are discarded.
The reason for these unfortunate side-effects is that, with
\kbd{parisizemax} disabled, increasing the stack size physically
moves the stack, so temporary objects created during the current expression
evaluation are not correct anymore. (In particular byte-compiled expressions,
which are allocated on the stack.) To avoid accessing obsolete pointers to
the old stack, this routine ends by a \kbd{longjmp}.
The library syntax is \fun{void}{gp_allocatemem}{GEN s = NULL}.
\subsec{apply$(f,A)$}\kbdsidx{apply}\label{se:apply}
Apply the \typ{CLOSURE} \kbd{f} to the entries of \kbd{A}.
\item If \kbd{A} is a scalar, return \kbd{f(A)}.
\item If \kbd{A} is a polynomial or power series $\sum a_{i} x^{i}$ ($+
O(x^{N})$), apply \kbd{f} on all coefficients and return $\sum f(a_{i})
x^{i}$ ($+ O(x^{N})$).
\item If \kbd{A} is a vector or list $[a_{1},\dots,a_{n}]$, return the vector
or list $[f(a_{1}),\dots, f(a_{n})]$. If \kbd{A} is a matrix, return the matrix
whose entries are the $f(\kbd{A[i,j]})$.
\bprog
? apply(x->x^2, [1,2,3,4])
%1 = [1, 4, 9, 16]
? apply(x->x^2, [1,2;3,4])
%2 =
[1 4]
[9 16]
? apply(x->x^2, 4*x^2 + 3*x+ 2)
%3 = 16*x^2 + 9*x + 4
? apply(sign, 2 - 3* x + 4*x^2 + O(x^3))
%4 = 1 - x + x^2 + O(x^3)
@eprog\noindent Note that many functions already act componentwise on
vectors or matrices, but they almost never act on lists; in this case,
\kbd{apply} is a good solution:
\bprog
? L = List([Mod(1,3), Mod(2,4)]);
? lift(L)
*** at top-level: lift(L)
*** ^-------
*** lift: incorrect type in lift.
? apply(lift, L);
%2 = List([1, 2])
@eprog
\misctitle{Remark} For $v$ a \typ{VEC}, \typ{COL}, \typ{VECSMALL},
\typ{LIST} or \typ{MAT}, the alternative set-notations
\bprog
[g(x) | x <- v, f(x)]
[x | x <- v, f(x)]
[g(x) | x <- v]
@eprog\noindent
are available as shortcuts for
\bprog
apply(g, select(f, Vec(v)))
select(f, Vec(v))
apply(g, Vec(v))
@eprog\noindent respectively:
\bprog
? L = List([Mod(1,3), Mod(2,4)]);
? [ lift(x) | x<-L ]
%2 = [1, 2]
@eprog
\synt{genapply}{void *E, GEN (*fun)(void*,GEN), GEN a}.
\subsec{arity$(C)$}\kbdsidx{arity}\label{se:arity}
Return the arity of the closure $C$, i.e., the number of its arguments.
\bprog
? f1(x,y=0)=x+y;
? arity(f1)
%1 = 2
? f2(t,s[..])=print(t,":",s);
? arity(f2)
%2 = 2
@eprog\noindent Note that a variadic argument, such as $s$ in \kbd{f2} above,
is counted as a single argument.
The library syntax is \fun{GEN}{arity0}{GEN C}.
\subsec{call$(f,A)$}\kbdsidx{call}\label{se:call}
$A=[a_{1},\dots, a_{n}]$ being a vector and $f$ being a function,
returns the evaluation of $f(a_{1},\dots,a_{n})$.
$f$ can also be the name of a built-in GP function.
If $\# A =1$, \tet{call}($f,A$) = \tet{apply}($f,A$)[1].
If $f$ is variadic (has a variable number of arguments), then
the variadic arguments are grouped in a vector in the last component of $A$.
This function is useful
\item when writing a variadic function, to call another one:
\bprog
fprintf(file,format,args[..]) = write(file, call(strprintf,[format,args]))
@eprog
\item when dealing with function arguments with unspecified arity.
The function below implements a global memoization interface:
\bprog
memo=Map();
memoize(f,A[..])=
{
my(res);
if(!mapisdefined(memo, [f,A], &res),
res = call(f,A);
mapput(memo,[f,A],res));
res;
}
@eprog
for example:
\bprog
? memoize(factor,2^128+1)
%3 = [59649589127497217,1;5704689200685129054721,1]
? ##
*** last result computed in 76 ms.
? memoize(factor,2^128+1)
%4 = [59649589127497217,1;5704689200685129054721,1]
? ##
*** last result computed in 0 ms.
? memoize(ffinit,3,3)
%5 = Mod(1,3)*x^3+Mod(1,3)*x^2+Mod(1,3)*x+Mod(2,3)
? fibo(n)=if(n==0,0,n==1,1,memoize(fibo,n-2)+memoize(fibo,n-1));
? fibo(100)
%7 = 354224848179261915075
@eprog
\item to call operators through their internal names without using
\kbd{alias}
\bprog
matnbelts(M) = call("_*_",matsize(M))
@eprog
The library syntax is \fun{GEN}{call0}{GEN f, GEN A}.
\subsec{default$(\{\var{key}\},\{\var{val}\})$}\kbdsidx{default}\label{se:default}
Returns the default corresponding to keyword \var{key}. If \var{val} is
present, sets the default to \var{val} first (which is subject to string
expansion first). Typing \kbd{default()} (or \b{d}) yields the complete
default list as well as their current values. See \secref{se:defaults} for an
introduction to GP defaults, \secref{se:gp_defaults} for a
list of available defaults, and \secref{se:meta} for some shortcut
alternatives. Note that the shortcuts are meant for interactive use and
usually display more information than \kbd{default}.
The library syntax is \fun{GEN}{default0}{const char *key = NULL, const char *val = NULL}.
\subsec{errname$(E)$}\kbdsidx{errname}\label{se:errname}
Returns the type of the error message \kbd{E} as a string.
\bprog
? iferr(1 / 0, E, print(errname(E)))
e_INV
? ?? e_INV
[...]
* "e_INV". Tried to invert a noninvertible object x in function s.
[...]
@eprog
The library syntax is \fun{GEN}{errname}{GEN E}.
\subsec{error$(\{\var{str}\}*)$}\kbdsidx{error}\label{se:error}
Outputs its argument list (each of
them interpreted as a string), then interrupts the running \kbd{gp} program,
returning to the input prompt. For instance
\bprog
error("n = ", n, " is not squarefree!")
@eprog\noindent
The library syntax is \fun{void}{error0}{GEN vec_str}.
The variadic version \fun{void}{pari_err}{e_USER,...} is usually preferable.
\subsec{export$(x\{=...\},...,z\{=...\})$}\kbdsidx{export}\label{se:export}
Export the variables $x,\ldots, z$ to the parallel world.
Such variables are visible inside parallel sections in place of global
variables, but cannot be modified inside a parallel section.
\kbd{export(a)} set the variable $a$ in the parallel world to current value of $a$.
\kbd{export(a=z)} set the variable $a$ in the parallel world to $z$, without
affecting the current value of $a$.
\bprog
? fun(x)=x^2+1;
? parvector(10,i,fun(i))
*** mt: please use export(fun).
? export(fun)
? parvector(10,i,fun(i))
%4 = [2,5,10,17,26,37,50,65,82,101]
@eprog
\subsec{exportall$()$}\kbdsidx{exportall}\label{se:exportall}
Declare all current dynamic variables as exported variables.
Such variables are visible inside parallel sections in place of global variables.
\bprog
? fun(x)=x^2+1;
? parvector(10,i,fun(i))
*** mt: please use export(fun).
? exportall()
? parvector(10,i,fun(i))
%4 = [2,5,10,17,26,37,50,65,82,101]
@eprog
The library syntax is \fun{void}{exportall}{}.
\subsec{extern$(\var{str})$}\kbdsidx{extern}\label{se:extern}
The string \var{str} is the name of an external command (i.e.~one you
would type from your UNIX shell prompt). This command is immediately run and
its output fed into \kbd{gp}, just as if read from a file.
The library syntax is \fun{GEN}{gpextern}{const char *str}.
\subsec{externstr$(\var{str})$}\kbdsidx{externstr}\label{se:externstr}
The string \var{str} is the name of an external command (i.e.~one you
would type from your UNIX shell prompt). This command is immediately run and
its output is returned as a vector of GP strings, one component per output
line.
The library syntax is \fun{GEN}{externstr}{const char *str}.
\subsec{fileclose$(n)$}\kbdsidx{fileclose}\label{se:fileclose}
Close the file descriptor $n$, created via \kbd{fileopen} or
\kbd{fileextern}. Finitely many files can be opened at a given time,
closing them recycles file descriptors and avoids running out of them:
\bprog
? n = 0; while(n++, fileopen("/tmp/test", "w"))
*** at top-level: n=0;while(n++,fileopen("/tmp/test","w"))
*** ^--------------------------
*** fileopen: error opening requested file: `/tmp/test'.
*** Break loop: type 'break' to go back to GP prompt
break> n
65533
@eprog\noindent This is a limitation of the operating system and does not
depend on PARI: if you open too many files in \kbd{gp} without closing them,
the operating system will also prevent unrelated applications from opening
files. Independently, your operating system (e.g. Windows) may prevent other
applications from accessing or deleting your file while it is opened by
\kbd{gp}. Quitting \kbd{gp} implicitly calls this function on all opened
file descriptors.
On files opened for writing, this function also forces a write of all
buffered data to the file system and completes all pending write operations.
This function is implicitly called for all open file descriptors when
exiting \kbd{gp} but it is cleaner and safer to call it explicitly, for
instance in case of a \kbd{gp} crash or general system failure, which could
cause data loss.
\bprog
? n = fileopen("./here");
? while(l = fileread(n), print(l));
? fileclose(n);
? n = fileopen("./there", "w");
? for (i = 1, 100, filewrite(n, i^2+1))
? fileclose(n)
@eprog Until a \kbd{fileclose}, there is no guarantee that the file on disk
contains all the expected data from previous \kbd{filewrite}s. (And even
then the operating system may delay the actual write to hardware.)
Closing a file twice raises an exception:
\bprog
? n = fileopen("/tmp/test");
? fileclose(n)
? fileclose(n)
*** at top-level: fileclose(n)
*** ^------------
*** fileclose: invalid file descriptor 0
@eprog
The library syntax is \fun{void}{gp_fileclose}{long n}.
\subsec{fileextern$(\var{str})$}\kbdsidx{fileextern}\label{se:fileextern}
The string \var{str} is the name of an external command, i.e.~one you
would type from your UNIX shell prompt. This command is immediately run and
the function returns a file descriptor attached to the command output as if
it were read from a file.
\bprog
? n = fileextern("ls -l");
? while(l = filereadstr(n), print(l))
? fileclose(n)
@eprog\noindent If the \kbd{secure} default is set, this function will raise
en exception.
The library syntax is \fun{long}{gp_fileextern}{const char *str}.
\subsec{fileflush$(\{n\})$}\kbdsidx{fileflush}\label{se:fileflush}
Flushes the file descriptor $n$, created via \kbd{fileopen} or
\kbd{fileextern}. On files opened for writing, this function forces a write
of all buffered data to the file system and completes all pending write
operations. This function is implicitly called by \kbd{fileclose} but you may
want to call it explicitly at synchronization points, for instance after
writing a large result to file and before printing diagnostics on screen.
(In order to be sure that the file contains the expected content on
inspection.)
If $n$ is omitted, flush all descriptors to output streams.
\bprog
? n = fileopen("./here", "w");
? for (i = 1, 10^5, \
filewrite(n, i^2+1); \
if (i % 10000 == 0, fileflush(n)))
@eprog Until a \kbd{fileflush} or \kbd{fileclose}, there is no guarantee
that the file contains all the expected data from previous \kbd{filewrite}s.
The library syntax is \fun{void}{gp_fileflush0}{GEN n = NULL}.
But the direct and more specific variant
\fun{void}{gp_fileflush}{long n} is also available.
\subsec{fileopen$(\var{path},\var{mode})$}\kbdsidx{fileopen}\label{se:fileopen}
Open the file pointed to by 'path' and return a file descriptor which
can be used with other file functions.
The mode can be
\item \kbd{"r"} (default): open for reading; allow \kbd{fileread} and
\kbd{filereadstr}.
\item \kbd{"w"}: open for writing, discarding existing content; allow
\kbd{filewrite}, \kbd{filewrite1}.
\item \kbd{"a"}: open for writing, appending to existing content; same
operations allowed as \kbd{"w"}.
Eventually, the file should be closed and the descriptor recycled using
\kbd{fileclose}.
\bprog
? n = fileopen("./here"); \\ "r" by default
? while (l = filereadstr(n), print(l)) \\ print successive lines
? fileclose(n) \\ done
@eprog\noindent In \emph{read} mode, raise an exception if the file does not
exist or the user does not have read permission. In \emph{write} mode, raise
an exception if the file cannot be written to. Trying to read or write to a
file that was not opend with the right mode raises an exception.
\bprog
? n = fileopen("./read", "r");
? filewrite(n, "test") \\ not open for writing
*** at top-level: filewrite(n,"test")
*** ^-------------------
*** filewrite: invalid file descriptor 0
@eprog
The library syntax is \fun{long}{gp_fileopen}{const char *path, const char *mode}.
\subsec{fileread$(n)$}\kbdsidx{fileread}\label{se:fileread}
Read a logical line from the file attached to the descriptor $n$, opened
for reading with \kbd{fileopen}. Return 0 at end of file.
A logical line is a full command as it is prepared by gp's
preprocessor (skipping blanks and comments or assembling multiline commands
between braces) before being fed to the interpreter. The function
\kbd{filereadstr} would read a \emph{raw} line exactly as input, up to the
next carriage return \kbd{\bs n}.
Compare raw lines
\bprog
? n = fileopen("examples/bench.gp");
? while(l = filereadstr(n), print(l));
{
u=v=p=q=1;
for (k=1, 2000,
[u,v] = [v,u+v];
p *= v; q = lcm(q,v);
if (k%50 == 0,
print(k, " ", log(p)/log(q))
)
)
}
@eprog\noindent and logical lines
\bprog
? n = fileopen("examples/bench.gp");
? while(l = fileread(n), print(l));
u=v=p=q=1;for(k=1,2000,[u,v]=[v,u+v];p*=v;q=lcm(q,v);[...]
@eprog
The library syntax is \fun{GEN}{gp_fileread}{long n}.
\subsec{filereadstr$(n)$}\kbdsidx{filereadstr}\label{se:filereadstr}
Read a raw line from the file attached to the descriptor $n$, opened
for reading with \kbd{fileopen}, discarding the terminating newline.
In other words the line is read exactly as input, up to the
next carriage return \kbd{\bs n}. By comparison, \kbd{fileread} would
read a logical line, as assembled by gp's preprocessor (skipping blanks
and comments for instance).
The library syntax is \fun{GEN}{gp_filereadstr}{long n}.
\subsec{filewrite$(n,s)$}\kbdsidx{filewrite}\label{se:filewrite}
Write the string $s$ to the file attached to descriptor $n$, ending with
a newline. The file must have been opened with \kbd{fileopen} in
\kbd{"w"} or \kbd{"a"} mode. There is no guarantee that $s$ is completely
written to disk until \kbd{fileclose$(n)$} is executed, which is automatic
when quitting \kbd{gp}.
If the newline is not desired, use \kbd{filewrite1}.
\misctitle{Variant} The high-level function \kbd{write} is expensive when many
consecutive writes are expected because it cannot use buffering. The low-level
interface \kbd{fileopen} / \kbd{filewrite} / \kbd{fileclose} is more efficient:
\bprog
? f = "/tmp/bigfile";
? for (i = 1, 10^5, write(f, i^2+1))
time = 240 ms.
? v = vector(10^5, i, i^2+1);
time = 10 ms. \\ computing the values is fast
? write("/tmp/bigfile2",v)
time = 12 ms. \\ writing them in one operation is fast
? n = fileopen("/tmp/bigfile", "w");
? for (i = 1, 10^5, filewrite(n, i^2+1))
time = 24 ms. \\ low-level write is ten times faster
? fileclose(n);
@eprog\noindent In the final example, the file needs not be in a consistent
state until the ending \kbd{fileclose} is evaluated, e.g. some lines might be
half-written or not present at all even though the corresponding
\kbd{filewrite} was executed already. Both a single high-level \kbd{write}
and a succession of low-level \kbd{filewrite}s achieve the same efficiency,
but the latter is often more natural. In fact, concatenating naively
the entries to be written is quadratic in the number of entries, hence
much more expensive than the original write operations:
\bprog
? v = []; for (i = 1, 10^5, v = concat(v,i))
time = 1min, 41,456 ms.
@eprog
The library syntax is \fun{void}{gp_filewrite}{long n, const char *s}.
\subsec{filewrite1$(n,s)$}\kbdsidx{filewrite1}\label{se:filewrite1}
Write the string $s$ to the file attached to descriptor $n$.
The file must have been opened with \kbd{fileopen} in \kbd{"w"} or \kbd{"a"}
mode.
If you want to append a newline at the end of $s$, you can use
\kbd{Str(s,"\bs n")} or \kbd{filewrite}.
The library syntax is \fun{void}{gp_filewrite1}{long n, const char *s}.
\subsec{fold$(f,A)$}\kbdsidx{fold}\label{se:fold}
Apply the \typ{CLOSURE} \kbd{f} of arity $2$ to the entries of \kbd{A},
in order to return \kbd{f(\dots f(f(A[1],A[2]),A[3])\dots ,A[\#A])}.
\bprog
? fold((x,y)->x*y, [1,2,3,4])
%1 = 24
? fold((x,y)->[x,y], [1,2,3,4])
%2 = [[[1, 2], 3], 4]
? fold((x,f)->f(x), [2,sqr,sqr,sqr])
%3 = 256
? fold((x,y)->(x+y)/(1-x*y),[1..5])
%4 = -9/19
? bestappr(tan(sum(i=1,5,atan(i))))
%5 = -9/19
@eprog
The library syntax is \fun{GEN}{fold0}{GEN f, GEN A}.
Also available is
\fun{GEN}{genfold}{void *E, GEN (*fun)(void*,GEN, GEN), GEN A}.
\subsec{getabstime$()$}\kbdsidx{getabstime}\label{se:getabstime}
Returns the CPU time (in milliseconds) elapsed since \kbd{gp} startup.
This provides a reentrant version of \kbd{gettime}:
\bprog
my (t = getabstime());
...
print("Time: ", strtime(getabstime() - t));
@eprog
For a version giving wall-clock time, see \tet{getwalltime}.
The library syntax is \fun{long}{getabstime}{}.
\subsec{getcache$()$}\kbdsidx{getcache}\label{se:getcache}
Returns information about various auto-growing caches. For
each resource, we report its name, its size, the number of cache misses
(since the last extension), the largest cache miss and the size of the cache
in bytes.
The caches are initially empty, then set automatically to a small
inexpensive default value, then grow on demand up to some maximal value.
Their size never decreases, they are only freed on exit.
The current caches are
\item Hurwitz class numbers $H(D)$ for $|D| \leq N$, computed in time
$O(N^{3/2})$ using $O(N)$ space.
\item Factorizations of small integers up to $N$, computed in time
$O(N^{1+\varepsilon})$ using $O(N\log N)$ space.
\item Divisors of small integers up to $N$, computed in time
$O(N^{1+\varepsilon})$ using $O(N\log N)$ space.
\item Coredisc's of negative integers down to $-N$, computed in time
$O(N^{1+\varepsilon})$ using $O(N)$ space.
\item Primitive dihedral forms of weight $1$ and level up to $N$,
computed in time $O(N^{2+\varepsilon})$ and space $O(N^{2})$.
\bprog
? getcache() \\ on startup, all caches are empty
%1 =
[ "Factors" 0 0 0 0]
[ "Divisors" 0 0 0 0]
[ "H" 0 0 0 0]
["CorediscF" 0 0 0 0]
[ "Dihedral" 0 0 0 0]
? mfdim([500,1,0],0); \\ nontrivial computation
time = 540 ms.
? getcache()
%3 =
[ "Factors" 50000 0 0 4479272]
["Divisors" 50000 1 100000 5189808]
[ "H" 50000 0 0 400008]
["Dihedral" 1000 0 0 2278208]
@eprog
The library syntax is \fun{GEN}{getcache}{}.
\subsec{getenv$(s)$}\kbdsidx{getenv}\label{se:getenv}
Return the value of the environment variable \kbd{s} if it is defined, otherwise return 0.
The library syntax is \fun{GEN}{gp_getenv}{const char *s}.
\subsec{getheap$()$}\kbdsidx{getheap}\label{se:getheap}
Returns a two-component row vector giving the
number of objects on the heap and the amount of memory they occupy in long
words. Useful mainly for debugging purposes.
The library syntax is \fun{GEN}{getheap}{}.
\subsec{getlocalbitprec$()$}\kbdsidx{getlocalbitprec}\label{se:getlocalbitprec}
Returns the current dynamic bit precision.
%\syn{NO}
\subsec{getlocalprec$()$}\kbdsidx{getlocalprec}\label{se:getlocalprec}
Returns the current dynamic precision, in decimal digits.
%\syn{NO}
\subsec{getrand$()$}\kbdsidx{getrand}\label{se:getrand}
Returns the current value of the seed used by the
pseudo-random number generator \tet{random}. Useful mainly for debugging
purposes, to reproduce a specific chain of computations. The returned value
is technical (reproduces an internal state array), and can only be used as an
argument to \tet{setrand}.
The library syntax is \fun{GEN}{getrand}{}.
\subsec{getstack$()$}\kbdsidx{getstack}\label{se:getstack}
Returns the current value of $\kbd{top}-\kbd{avma}$, i.e.~the number of
bytes used up to now on the stack. Useful mainly for debugging purposes.
The library syntax is \fun{long}{getstack}{}.
\subsec{gettime$()$}\kbdsidx{gettime}\label{se:gettime}
Returns the CPU time (in milliseconds) used since either the last call to
\kbd{gettime}, or to the beginning of the containing GP instruction (if
inside \kbd{gp}), whichever came last.
For a reentrant version, see \tet{getabstime}.
For a version giving wall-clock time, see \tet{getwalltime}.
The library syntax is \fun{long}{gettime}{}.
\subsec{getwalltime$()$}\kbdsidx{getwalltime}\label{se:getwalltime}
Returns the time (in milliseconds) elapsed since
00:00:00 UTC Thursday 1, January 1970 (the Unix epoch).
\bprog
my (t = getwalltime());
...
print("Time: ", strtime(getwalltime() - t));
@eprog
The library syntax is \fun{GEN}{getwalltime}{}.
\subsec{global$(\var{list} \var{of} \var{variables})$}\kbdsidx{global}\label{se:global}
Obsolete. Scheduled for deletion.
% \syn{NO}
\subsec{inline$(x,...,z)$}\kbdsidx{inline}\label{se:inline}
Declare $x,\ldots, z$ as inline variables. Such variables
behave like lexically scoped variable (see my()) but with unlimited scope.
It is however possible to exit the scope by using \kbd{uninline()}.
When used in a GP script, it is recommended to call \kbd{uninline()} before
the script's end to avoid inline variables leaking outside the script.
DEPRECATED, use \kbd{export}.
\subsec{input$()$}\kbdsidx{input}\label{se:input}
Reads a string, interpreted as a GP expression,
from the input file, usually standard input (i.e.~the keyboard). If a
sequence of expressions is given, the result is the result of the last
expression of the sequence. When using this instruction, it is useful to
prompt for the string by using the \kbd{print1} function. Note that in the
present version 2.19 of \kbd{pari.el}, when using \kbd{gp} under GNU Emacs (see
\secref{se:emacs}) one \emph{must} prompt for the string, with a string
which ends with the same prompt as any of the previous ones (a \kbd{"? "}
will do for instance).
The library syntax is \fun{GEN}{gp_input}{}.
\subsec{install$(\var{name},\var{code},\{\var{gpname}\},\{\var{lib}\})$}\kbdsidx{install}\label{se:install}
Loads from dynamic library \var{lib} the function \var{name}. Assigns to it
the name \var{gpname} in this \kbd{gp} session, with \emph{prototype}
\var{code} (see below). If \var{gpname} is omitted, uses \var{name}.
If \var{lib} is omitted, all symbols known to \kbd{gp} are available: this
includes the whole of \kbd{libpari.so} and possibly others (such as
\kbd{libc.so}).
Most importantly, \kbd{install} gives you access to all nonstatic functions
defined in the PARI library. For instance, the function
\bprog
GEN addii(GEN x, GEN y)
@eprog\noindent adds two PARI integers, and is not directly accessible under
\kbd{gp} (it is eventually called by the \kbd{+} operator of course):
\bprog
? install("addii", "GG")
? addii(1, 2)
%1 = 3
@eprog\noindent
It also allows to add external functions to the \kbd{gp} interpreter.
For instance, it makes the function \tet{system} obsolete:
\bprog
? install(system, vs, sys,/*omitted*/)
? sys("ls gp*")
gp.c gp.h gp_rl.c
@eprog\noindent This works because \kbd{system} is part of \kbd{libc.so},
which is linked to \kbd{gp}. It is also possible to compile a shared library
yourself and provide it to gp in this way: use \kbd{gp2c}, or do it manually
(see the \kbd{modules\_build} variable in \kbd{pari.cfg} for hints).
Re-installing a function will print a warning and update the prototype code
if needed. However, it will not reload a symbol from the library, even if the
latter has been recompiled.
\misctitle{Prototype} We only give a simplified description here, covering
most functions, but there are many more possibilities. The full documentation
is available in \kbd{libpari.dvi}, see
\bprog
??prototype
@eprog
\item First character \kbd{i}, \kbd{l}, \kbd{u}, \kbd{v} : return type
\kbd{int} / \kbd{long} / \kbd{ulong} / \kbd{void}. (Default: \kbd{GEN})
\item One letter for each mandatory argument, in the same order as they appear
in the argument list: \kbd{G} (\kbd{GEN}), \kbd{\&}
(\kbd{GEN*}), \kbd{L} (\kbd{long}), \kbd{U} (\kbd{ulong}),
\kbd{s} (\kbd{char *}), \kbd{n} (variable).
\item \kbd{p} to supply \kbd{realprecision} (usually \kbd{long prec} in the
argument list), \kbd{b} to supply \kbd{realbitprecision}
(usually \kbd{long bitprec}), \kbd{P} to supply \kbd{seriesprecision}
(usually \kbd{long precdl}).
\noindent We also have special constructs for optional arguments and default
values:
\item \kbd{DG} (optional \kbd{GEN}, \kbd{NULL} if omitted),
\item \kbd{D\&} (optional \kbd{GEN*}, \kbd{NULL} if omitted),
\item \kbd{Dn} (optional variable, $-1$ if omitted),
For instance the prototype corresponding to
\bprog
long issquareall(GEN x, GEN *n = NULL)
@eprog\noindent is \kbd{lGD\&}.
\misctitle{Caution} This function may not work on all systems, especially
when \kbd{gp} has been compiled statically. In that case, the first use of an
installed function will provoke a Segmentation Fault (this should never
happen with a dynamically linked executable). If you intend to use this
function, please check first on some harmless example such as the one above
that it works properly on your machine.
The library syntax is \fun{void}{gpinstall}{const char *name, const char *code, const char *gpname, const char *lib}.
\subsec{kill$(\var{sym})$}\kbdsidx{kill}\label{se:kill}
Restores the symbol \kbd{sym} to its ``undefined'' status, and deletes any
help messages attached to \kbd{sym} using \kbd{addhelp}. Variable names
remain known to the interpreter and keep their former priority: you cannot
make a variable ``less important" by killing it!
\bprog
? z = y = 1; y
%1 = 1
? kill(y)
? y \\ restored to ``undefined'' status
%2 = y
? variable()
%3 = [x, y, z] \\ but the variable name y is still known, with y > z !
@eprog\noindent
For the same reason, killing a user function (which is an ordinary
variable holding a \typ{CLOSURE}) does not remove its name from the list of
variable names.
If the symbol is attached to a variable --- user functions being an
important special case ---, one may use the \idx{quote} operator
\kbd{a = 'a} to reset variables to their starting values. However, this
will not delete a help message attached to \kbd{a}, and is also slightly
slower than \kbd{kill(a)}.
\bprog
? x = 1; addhelp(x, "foo"); x
%1 = 1
? x = 'x; x \\ same as 'kill', except we don't delete help.
%2 = x
? ?x
foo
@eprog\noindent
On the other hand, \kbd{kill} is the only way to remove aliases and installed
functions.
\bprog
? alias(fun, sin);
? kill(fun);
? install(addii, GG);
? kill(addii);
@eprog
The library syntax is \fun{void}{kill0}{const char *sym}.
\subsec{listcreate$(\{n\})$}\kbdsidx{listcreate}\label{se:listcreate}
This function is obsolete, use \kbd{List}.
Creates an empty list. This routine used to have a mandatory argument,
which is now ignored (for backward compatibility).
% \syn{NO}
\subsec{listinsert$(\til{}L,x,n)$}\kbdsidx{listinsert}\label{se:listinsert}
Inserts the object $x$ at
position $n$ in $L$ (which must be of type \typ{LIST}).
This has complexity $O(\#L - n + 1)$: all the
remaining elements of \var{list} (from position $n+1$ onwards) are shifted
to the right. If $n$ is greater than the list length, appends $x$.
\bprog
? L = List([1,2,3]);
? listput(~L, 4); L \\ listput inserts at end
%4 = List([1, 2, 3, 4])
? listinsert(~L, 5, 1); L \\insert at position 1
%5 = List([5, 1, 2, 3, 4])
? listinsert(~L, 6, 1000); L \\ trying to insert beyond position #L
%6 = List([5, 1, 2, 3, 4, 6]) \\ ... inserts at the end
@eprog\noindent Note the \kbd{\til L}: this means that the function is
called with a \emph{reference} to \kbd{L} and changes \kbd{L} in place.
The library syntax is \fun{GEN}{listinsert0}{GEN ~L, GEN x, long n}.
\subsec{listkill$(\til{}L)$}\kbdsidx{listkill}\label{se:listkill}
Obsolete, retained for backward compatibility. Just use \kbd{L = List()}
instead of \kbd{listkill(L)}. In most cases, you won't even need that, e.g.
local variables are automatically cleared when a user function returns.
The library syntax is \fun{void}{listkill}{GEN ~L}.
\subsec{listpop$(\til{}\var{list},\{n\})$}\kbdsidx{listpop}\label{se:listpop}
Removes the $n$-th element of the list
\var{list} (which must be of type \typ{LIST}). If $n$ is omitted,
or greater than the list current length, removes the last element.
If the list is already empty, do nothing. This runs in time $O(\#L - n + 1)$.
\bprog
? L = List([1,2,3,4]);
? listpop(~L); L \\ remove last entry
%2 = List([1, 2, 3])
? listpop(~L, 1); L \\ remove first entry
%3 = List([2, 3])
@eprog\noindent Note the \kbd{\til L}: this means that the function is
called with a \emph{reference} to \kbd{L} and changes \kbd{L} in place.
The library syntax is \fun{void}{listpop0}{GEN ~list, long n}.
\subsec{listput$(\til{}\var{list},x,\{n\})$}\kbdsidx{listput}\label{se:listput}
Sets the $n$-th element of the list
\var{list} (which must be of type \typ{LIST}) equal to $x$. If $n$ is omitted,
or greater than the list length, appends $x$.
\bprog
? L = List();
? listput(~L, 1)
? listput(~L, 2)
? L
%4 = List([1, 2])
@eprog\noindent Note the \kbd{\til L}: this means that the function is
called with a \emph{reference} to \kbd{L} and changes \kbd{L} in place.
You may put an element into an occupied cell (not changing the
list length), but it is easier to use the standard \kbd{list[n] = x}
construct.
\bprog
? listput(~L, 3, 1) \\ insert at position 1
? L
%6 = List([3, 2])
? L[2] = 4 \\ simpler
%7 = List([3, 4])
? L[10] = 1 \\ can't insert beyond the end of the list
*** at top-level: L[10]=1
*** ^------
*** nonexistent component: index > 2
? listput(L, 1, 10) \\ but listput can
? L
%9 = List([3, 2, 1])
@eprog
This function runs in time $O(\#L)$ in the worst case (when the list must
be reallocated), but in time $O(1)$ on average: any number of successive
\kbd{listput}s run in time $O(\#L)$, where $\#L$ denotes the list
\emph{final} length.
The library syntax is \fun{GEN}{listput0}{GEN ~list, GEN x, long n}.
\subsec{listsort$(\til{}L,\{\fl=0\})$}\kbdsidx{listsort}\label{se:listsort}
Sorts the \typ{LIST} \var{list} in place, with respect to the (somewhat
arbitrary) universal comparison function \tet{cmp}. In particular, the
ordering is the same as for sets and \tet{setsearch} can be used on a sorted
list. No value is returned. If $\fl$ is nonzero, suppresses all repeated
coefficients.
\bprog
? L = List([1,2,4,1,3,-1]); listsort(~L); L
%1 = List([-1, 1, 1, 2, 3, 4])
? setsearch(L, 4)
%2 = 6
? setsearch(L, -2)
%3 = 0
? listsort(~L, 1); L \\ remove duplicates
%4 = List([-1, 1, 2, 3, 4])
@eprog\noindent Note the \kbd{\til L}: this means that the function is
called with a \emph{reference} to \kbd{L} and changes \kbd{L} in place:
this is faster than the \kbd{vecsort} command since the list
is sorted in place and we avoid unnecessary copies.
\bprog
? v = vector(100,i,random); L = List(v);
? for(i=1,10^4, vecsort(v))
time = 162 ms.
? for(i=1,10^4, vecsort(L))
time = 162 ms.
? for(i=1,10^4, listsort(~L))
time = 63 ms.
@eprog
The library syntax is \fun{void}{listsort}{GEN ~L, long flag}.
\subsec{localbitprec$(p)$}\kbdsidx{localbitprec}\label{se:localbitprec}
Set the real precision to $p$ bits in the dynamic scope.
All computations are performed as if \tet{realbitprecision} was $p$:
transcendental constants (e.g.~\kbd{Pi}) and
conversions from exact to floating point inexact data use $p$ bits, as well as
iterative routines implicitly using a floating point
accuracy as a termination criterion (e.g.~\tet{solve} or \tet{intnum}).
But \kbd{realbitprecision} itself is unaffected
and is ``unmasked'' when we exit the dynamic (\emph{not} lexical) scope.
In effect, this is similar to
\bprog
my(bit = default(realbitprecision));
default(realbitprecision,p);
...
default(realbitprecision, bit);
@eprog\noindent but is both less cumbersome, cleaner (no need to manipulate
a global variable, which in fact never changes and is only temporarily masked)
and more robust: if the above computation is interrupted or an exception
occurs, \kbd{realbitprecision} will not be restored as intended.
Such \kbd{localbitprec} statements can be nested, the innermost one taking
precedence as expected. Beware that \kbd{localbitprec} follows the semantic of
\tet{local}, not \tet{my}: a subroutine called from \kbd{localbitprec} scope
uses the local accuracy:
\bprog
? f()=bitprecision(1.0);
? f()
%2 = 128
? localbitprec(1000); f()
%3 = 1024
@eprog\noindent Note that the bit precision of \emph{data} (\kbd{1.0} in the
above example) increases by steps of 64 (32 on a 32-bit machine) so we get
$1024$ instead of the expected $1000$; \kbd{localbitprec} bounds the
relative error exactly as specified in functions that support that
granularity (e.g.~\kbd{lfun}), and rounded to the next multiple of 64
(resp.~32) everywhere else.
\misctitle{Warning} Changing \kbd{realbitprecision} or \kbd{realprecision}
in programs is deprecated in favor of \kbd{localbitprec} and
\kbd{localprec}. Think about the \kbd{realprecision} and
\kbd{realbitprecision} defaults as interactive commands for the \kbd{gp}
interpreter, best left out of GP programs. Indeed, the above rules imply that
mixing both constructs yields surprising results:
\bprog
? \p38
? localprec(19); default(realprecision,1000); Pi
%1 = 3.141592653589793239
? \p
realprecision = 1001 significant digits (1000 digits displayed)
@eprog\noindent Indeed, \kbd{realprecision} itself is ignored within
\kbd{localprec} scope, so \kbd{Pi} is computed to a low accuracy. And when
we leave the \kbd{localprec} scope, \kbd{realprecision} only regains precedence,
it is not ``restored'' to the original value.
%\syn{NO}
\subsec{localprec$(p)$}\kbdsidx{localprec}\label{se:localprec}
Set the real precision to $p$ in the dynamic scope and return $p$.
All computations are performed as if \tet{realprecision} was $p$:
transcendental constants (e.g.~\kbd{Pi}) and
conversions from exact to floating point inexact data use $p$ decimal
digits, as well as iterative routines implicitly using a floating point
accuracy as a termination criterion (e.g.~\tet{solve} or \tet{intnum}).
But \kbd{realprecision} itself is unaffected
and is ``unmasked'' when we exit the dynamic (\emph{not} lexical) scope.
In effect, this is similar to
\bprog
my(prec = default(realprecision));
default(realprecision,p);
...
default(realprecision, prec);
@eprog\noindent but is both less cumbersome, cleaner (no need to manipulate
a global variable, which in fact never changes and is only temporarily masked)
and more robust: if the above computation is interrupted or an exception
occurs, \kbd{realprecision} will not be restored as intended.
Such \kbd{localprec} statements can be nested, the innermost one taking
precedence as expected. Beware that \kbd{localprec} follows the semantic of
\tet{local}, not \tet{my}: a subroutine called from \kbd{localprec} scope
uses the local accuracy:
\bprog
? f()=precision(1.);
? f()
%2 = 38
? localprec(19); f()
%3 = 19
@eprog\noindent
\misctitle{Warning} Changing \kbd{realprecision} itself in programs is
now deprecated in favor of \kbd{localprec}. Think about the
\kbd{realprecision} default as an interactive command for the \kbd{gp}
interpreter, best left out of GP programs. Indeed, the above rules
imply that mixing both constructs yields surprising results:
\bprog
? \p38
? localprec(19); default(realprecision,100); Pi
%1 = 3.141592653589793239
? \p
realprecision = 115 significant digits (100 digits displayed)
@eprog\noindent Indeed, \kbd{realprecision} itself is ignored within
\kbd{localprec} scope, so \kbd{Pi} is computed to a low accuracy. And when
we leave \kbd{localprec} scope, \kbd{realprecision} only regains precedence,
it is not ``restored'' to the original value.
%\syn{NO}
\subsec{mapapply$(\til{}M,x,f,\{u\})$}\kbdsidx{mapapply}\label{se:mapapply}
Applies the closure $f$ to the image $y$ of $x$ by the map $M$
and returns the evaluation $f(y)$. The closure $f$ is allowed to
modify the components of $y$ in place. If $M$ is not defined at $x$, and
the optional argument \kbd{u} (for \var{undefined}) is present and is
a closure of arity $0$, return the evaluation $u()$.
To apply $f$ to \emph{all} entries (values) of $M$, use \kbd{apply}$(f, M)$
instead. There are two main use-cases:
\item performing a computation on a value directly, without using
\kbd{mapget}, avoiding a copy:
\bprog
? M = Map(); mapput(~M, "a", mathilbert(2000));
? matsize(mapget(M, "a")) \\ Slow because mapget(M, "a") copies the value
%2 = [2000, 2000]
time = 101 ms.
? mapapply(~M, "a", matsize) \\ Fast
time = 0 ms.
%3 = [2000, 2000]
@eprog
\item modifying a value in place, for example to append an element to a value
in a map of lists. This requires to use \kbd{\til} in the function
declaration. In the following \kbd{maplistput}, $M$ is a map of lists and we
append $v$ to the list \kbd{mapget(M,k)}, except this is done in place !
When the map is undefined at $k$, we use the $u$(ndefined) argument
\kbd{()->List(v)} to convert $v$ to a list then insert it in the map:
\bprog
? maplistput(~M, k, v) = mapapply(~M, k, (~y)->listput(~y,v), ()->List(v));
? M = Map();
%2 = Map([;])
? maplistput(~M, "a", 1); M
%3 = Map(["a", List([1])])
? maplistput(~M, "a", 2); M
%4 = Map(["a", List([1, 2])])
? maplistput(~M, "b", 3); M
%5 = Map(["a", List([1, 2]); "b", List([3])])
? maplistput(~M, "a", 4); M
%6 = Map(["a", List([1, 2, 4]); "b", List([])])
@eprog
The library syntax is \fun{GEN}{mapapply}{GEN ~M, GEN x, GEN f, GEN u = NULL}.
\subsec{mapdelete$(\til{}M,x)$}\kbdsidx{mapdelete}\label{se:mapdelete}
Removes $x$ from the domain of the map $M$.
\bprog
? M = Map(["a",1; "b",3; "c",7]);
? mapdelete(M,"b");
? Mat(M)
["a" 1]
["c" 7]
@eprog
The library syntax is \fun{void}{mapdelete}{GEN ~M, GEN x}.
\subsec{mapget$(M,x)$}\kbdsidx{mapget}\label{se:mapget}
Returns the image of $x$ by the map $M$.
\bprog
? M=Map(["a",23;"b",43]);
? mapget(M,"a")
%2 = 23
? mapget(M,"b")
%3 = 43
@eprog\noindent Raises an exception when the key $x$ is not present in $M$.
\bprog
? mapget(M,"c")
*** at top-level: mapget(M,"c")
*** ^-------------
*** mapget: nonexistent component in mapget: index not in map
@eprog
The library syntax is \fun{GEN}{mapget}{GEN M, GEN x}.
\subsec{mapisdefined$(M,x,\{\&z\})$}\kbdsidx{mapisdefined}\label{se:mapisdefined}
Returns true ($1$) if $x$ has an image by the map $M$, false ($0$)
otherwise. If $z$ is present, set $z$ to the image of $x$, if it exists.
\bprog
? M1 = Map([1, 10; 2, 20]);
? mapisdefined(M1,3)
%1 = 0
? mapisdefined(M1, 1, &z)
%2 = 1
? z
%3 = 10
@eprog
\bprog
? M2 = Map(); N = 19;
? for (a=0, N-1, mapput(M2, a^3%N, a));
? {for (a=0, N-1,
if (mapisdefined(M2, a, &b),
printf("%d is the cube of %d mod %d\n",a,b,N)));}
0 is the cube of 0 mod 19
1 is the cube of 11 mod 19
7 is the cube of 9 mod 19
8 is the cube of 14 mod 19
11 is the cube of 17 mod 19
12 is the cube of 15 mod 19
18 is the cube of 18 mod 19
@eprog
The library syntax is \fun{int}{mapisdefined}{GEN M, GEN x, GEN *z = NULL}.
\subsec{mapput$(\til{}M,x,y)$}\kbdsidx{mapput}\label{se:mapput}
Associates $x$ to $y$ in the map $M$. The value $y$ can be retrieved
with \tet{mapget}.
\bprog
? M = Map();
? mapput(~M, "foo", 23);
? mapput(~M, 7718, "bill");
? mapget(M, "foo")
%4 = 23
? mapget(M, 7718)
%5 = "bill"
? Vec(M) \\ keys
%6 = [7718, "foo"]
? Mat(M)
%7 =
[ 7718 "bill"]
["foo" 23]
@eprog
The library syntax is \fun{void}{mapput}{GEN ~M, GEN x, GEN y}.
\subsec{print$(\{\var{str}\}*)$}\kbdsidx{print}\label{se:print}
Outputs its arguments in raw format ending with a newline.
The arguments are converted to strings following the rules in
\secref{se:strings}.
\bprog
? m = matid(2);
? print(m) \\ raw format
[1, 0; 0, 1]
? printp(m) \\ prettymatrix format
[1 0]
[0 1]
@eprog
The library syntax is \fun{void}{print}{GEN vec_str}.
\subsec{print1$(\{\var{str}\}*)$}\kbdsidx{print1}\label{se:print1}
Outputs its arguments in raw
format, without ending with a newline. Note that you can still embed newlines
within your strings, using the \b{n} notation~!
The arguments are converted to strings following the rules in
\secref{se:strings}.
The library syntax is \fun{void}{print1}{GEN vec_str}.
\subsec{printf$(\var{fmt},\{x\}*)$}\kbdsidx{printf}\label{se:printf}
This function is based on the C library command of the same name.
It prints its arguments according to the format \var{fmt}, which specifies how
subsequent arguments are converted for output. The format is a
character string composed of zero or more directives:
\item ordinary characters (not \kbd{\%}), printed unchanged,
\item conversions specifications (\kbd{\%} followed by some characters)
which fetch one argument from the list and prints it according to the
specification.
More precisely, a conversion specification consists in a \kbd{\%}, one or more
optional flags (among \kbd{\#}, \kbd{0}, \kbd{-}, \kbd{+}, ` '), an optional
decimal digit string specifying a minimal field width, an optional precision
in the form of a period (`\kbd{.}') followed by a decimal digit string, and
the conversion specifier (among \kbd{d},\kbd{i}, \kbd{o}, \kbd{u},
\kbd{x},\kbd{X}, \kbd{p}, \kbd{e},\kbd{E}, \kbd{f}, \kbd{g},\kbd{G}, \kbd{s}).
\misctitle{The flag characters} The character \kbd{\%} is followed by zero or
more of the following flags:
\item \kbd{\#}: the value is converted to an ``alternate form''. For
\kbd{o} conversion (octal), a \kbd{0} is prefixed to the string. For \kbd{x}
and \kbd{X} conversions (hexa), respectively \kbd{0x} and \kbd{0X} are
prepended. For other conversions, the flag is ignored.
\item \kbd{0}: the value should be zero padded. For
\kbd{d},
\kbd{i},
\kbd{o},
\kbd{u},
\kbd{x},
\kbd{X}
\kbd{e},
\kbd{E},
\kbd{f},
\kbd{F},
\kbd{g}, and
\kbd{G} conversions, the value is padded on the left with zeros rather than
blanks. (If the \kbd{0} and \kbd{-} flags both appear, the \kbd{0} flag is
ignored.)
\item \kbd{-}: the value is left adjusted on the field boundary. (The
default is right justification.) The value is padded on the right with
blanks, rather than on the left with blanks or zeros. A \kbd{-} overrides a
\kbd{0} if both are given.
\item \kbd{` '} (a space): a blank is left before a positive number
produced by a signed conversion.
\item \kbd{+}: a sign (+ or -) is placed before a number produced by a
signed conversion. A \kbd{+} overrides a space if both are used.
\misctitle{The field width} An optional decimal digit string (whose first
digit is nonzero) specifying a \emph{minimum} field width. If the value has
fewer characters than the field width, it is padded with spaces on the left
(or right, if the left-adjustment flag has been given). In no case does a
small field width cause truncation of a field; if the value is wider than
the field width, the field is expanded to contain the conversion result.
Instead of a decimal digit string, one may write \kbd{*} to specify that the
field width is given in the next argument.
\misctitle{The precision} An optional precision in the form of a period
(`\kbd{.}') followed by a decimal digit string. This gives
the number of digits to appear after the radix character for \kbd{e},
\kbd{E}, \kbd{f}, and \kbd{F} conversions, the maximum number of significant
digits for \kbd{g} and \kbd{G} conversions, and the maximum number of
characters to be printed from an \kbd{s} conversion.
Instead of a decimal digit string, one may write \kbd{*} to specify that the
field width is given in the next argument.
\misctitle{The length modifier} This is ignored under \kbd{gp}, but
necessary for \kbd{libpari} programming. Description given here for
completeness:
\item \kbd{l}: argument is a \kbd{long} integer.
\item \kbd{P}: argument is a \kbd{GEN}.
\misctitle{The conversion specifier} A character that specifies the type of
conversion to be applied.
\item \kbd{d}, \kbd{i}: a signed integer.
\item \kbd{o}, \kbd{u}, \kbd{x}, \kbd{X}: an unsigned integer, converted
to unsigned octal (\kbd{o}), decimal (\kbd{u}) or hexadecimal (\kbd{x} or
\kbd{X}) notation. The letters \kbd{abcdef} are used for \kbd{x}
conversions; the letters \kbd{ABCDEF} are used for \kbd{X} conversions.
\item \kbd{e}, \kbd{E}: the (real) argument is converted in the style
\kbd{[ -]d.ddd e[ -]dd}, where there is one digit before the decimal point,
and the number of digits after it is equal to the precision; if the
precision is missing, use the current \kbd{realprecision} for the total
number of printed digits. If the precision is explicitly 0, no decimal-point
character appears. An \kbd{E} conversion uses the letter \kbd{E} rather
than \kbd{e} to introduce the exponent.
\item \kbd{f}, \kbd{F}: the (real) argument is converted in the style
\kbd{[ -]ddd.ddd}, where the number of digits after the decimal point
is equal to the precision; if the precision is missing, use the current
\kbd{realprecision} for the total number of printed digits. If the precision
is explicitly 0, no decimal-point character appears. If a decimal point
appears, at least one digit appears before it.
\item \kbd{g}, \kbd{G}: the (real) argument is converted in style
\kbd{e} or \kbd{f} (or \kbd{E} or \kbd{F} for \kbd{G} conversions)
\kbd{[ -]ddd.ddd}, where the total number of digits printed
is equal to the precision; if the precision is missing, use the current
\kbd{realprecision}. If the precision is explicitly 0, it is treated as 1.
Style \kbd{e} is used when
the decimal exponent is $< -4$, to print \kbd{0.}, or when the integer
part cannot be decided given the known significant digits, and the \kbd{f}
format otherwise.
\item \kbd{c}: the integer argument is converted to an unsigned char, and the
resulting character is written.
\item \kbd{s}: convert to a character string. If a precision is given, no
more than the specified number of characters are written.
\item \kbd{p}: print the address of the argument in hexadecimal (as if by
\kbd{\%\#x}).
\item \kbd{\%}: a \kbd{\%} is written. No argument is converted. The complete
conversion specification is \kbd{\%\%}.
\noindent Examples:
\bprog
? printf("floor: %d, field width 3: %3d, with sign: %+3d\n", Pi, 1, 2);
floor: 3, field width 3: 1, with sign: +2
? printf("%.5g %.5g %.5g\n",123,123/456,123456789);
123.00 0.26974 1.2346 e8
? printf("%-2.5s:%2.5s:%2.5s\n", "P", "PARI", "PARIGP");
P :PARI:PARIG
\\ min field width and precision given by arguments
? x = 23; y=-1/x; printf("x=%+06.2f y=%+0*.*f\n", x, 6, 2, y);
x=+23.00 y=-00.04
\\ minimum fields width 5, pad left with zeroes
? for (i = 2, 5, printf("%05d\n", 10^i))
00100
01000
10000
100000 \\@com don't truncate fields whose length is larger than the minimum width
? printf("%.2f |%06.2f|", Pi,Pi)
3.14 | 3.14|
@eprog\noindent All numerical conversions apply recursively to the entries
of complex numbers, vectors and matrices:
\bprog
? printf("%4d", [1,2,3]);
[ 1, 2, 3]
? printf("%5.2f", mathilbert(3));
[ 1.00 0.50 0.33]
[ 0.50 0.33 0.25]
[ 0.33 0.25 0.20]
? printf("%.3g", Pi+I)
3.14+1.00I
@eprog
\misctitle{Technical note} Our implementation of \tet{printf}
deviates from the C89 and C99 standards in a few places:
\item whenever a precision is missing, the current \kbd{realprecision} is
used to determine the number of printed digits (C89: use 6 decimals after
the radix character).
\item in conversion style \kbd{e}, we do not impose that the
exponent has at least two digits; we never write a \kbd{+} sign in the
exponent; 0 is printed in a special way, always as \kbd{0.E\var{exp}}.
\item in conversion style \kbd{f}, we switch to style \kbd{e} if the
exponent is greater or equal to the precision.
\item in conversion \kbd{g} and \kbd{G}, we do not remove trailing zeros
from the fractional part of the result; nor a trailing decimal point;
0 is printed in a special way, always as \kbd{0.E\var{exp}}.
The library syntax is \fun{void}{printf0}{const char *fmt, GEN vec_x}.
The variadic version \fun{void}{pari_printf}{const char *fmt, ...} is usually preferable.
\subsec{printp$(\{\var{str}\}*)$}\kbdsidx{printp}\label{se:printp}
Outputs its arguments in prettymatrix format, ending with a
newline. The arguments are converted to strings following the rules in
\secref{se:strings}.
\bprog
? m = matid(2);
? print(m) \\ raw format
[1, 0; 0, 1]
? printp(m) \\ prettymatrix format
[1 0]
[0 1]
@eprog
The library syntax is \fun{void}{printp}{GEN vec_str}.
\subsec{printsep$(\var{sep},\{\var{str}\}*)$}\kbdsidx{printsep}\label{se:printsep}
Outputs its arguments in raw format, ending with a newline.
The arguments are converted to strings following the rules in
\secref{se:strings}. Successive entries are separated by \var{sep}:
\bprog
? printsep(":", 1,2,3,4)
1:2:3:4
@eprog
The library syntax is \fun{void}{printsep}{const char *sep, GEN vec_str}.
\subsec{printsep1$(\var{sep},\{\var{str}\}*)$}\kbdsidx{printsep1}\label{se:printsep1}
Outputs its arguments in raw format, without ending with a
newline. The arguments are converted to strings following the rules in
\secref{se:strings}. Successive entries are separated by \var{sep}:
\bprog
? printsep1(":", 1,2,3,4);print("|")
1:2:3:4|
@eprog
The library syntax is \fun{void}{printsep1}{const char *sep, GEN vec_str}.
\subsec{printtex$(\{\var{str}\}*)$}\kbdsidx{printtex}\label{se:printtex}
Outputs its arguments in \TeX\ format. This output can then be
used in a \TeX\ manuscript, see \kbd{strtex} for details. The arguments are
converted to strings following the rules in \secref{se:strings}. The printing
is done on the standard output. If you want to print it to a file you should
use \kbd{writetex} (see there).
Another possibility is to enable the \tet{log} default
(see~\secref{se:defaults}).
You could for instance do:\sidx{logfile}
%
\bprog
default(logfile, "new.tex");
default(log, 1);
printtex(result);
@eprog
The library syntax is \fun{void}{printtex}{GEN vec_str}.
\subsec{quit$(\{\var{status} = 0\})$}\kbdsidx{quit}\label{se:quit}
Exits \kbd{gp} and return to the system with exit status
\kbd{status}, a small integer. A nonzero exit status normally indicates
abnormal termination. (Note: the system actually sees only
\kbd{status} mod $256$, see your man pages for \kbd{exit(3)} or \kbd{wait(2)}).
\subsec{read$(\{\var{filename}\})$}\kbdsidx{read}\label{se:read}
Reads in the file
\var{filename} (subject to string expansion). If \var{filename} is
omitted, re-reads the last file that was fed into \kbd{gp}. The return
value is the result of the last expression evaluated.
If a GP \tet{binary file} is read using this command (see
\secref{se:writebin}), the file is loaded and the last object in the file
is returned.
In case the file you read in contains an \tet{allocatemem} statement (to be
generally avoided), you should leave \kbd{read} instructions by themselves,
and not part of larger instruction sequences.
\misctitle{Variants} \kbd{readvec} allows to read a whole file at once;
\kbd{fileopen} followed by either \kbd{fileread} (evaluated lines) or
\kbd{filereadstr} (lines as nonevaluated strings) allows to read a file
one line at a time.
The library syntax is \fun{GEN}{gp_read_file}{const char *filename}.
\subsec{readstr$(\{\var{filename}\})$}\kbdsidx{readstr}\label{se:readstr}
Reads in the file \var{filename} and return a vector of GP strings,
each component containing one line from the file. If \var{filename} is
omitted, re-reads the last file that was fed into \kbd{gp}.
The library syntax is \fun{GEN}{readstr}{const char *filename}.
\subsec{readvec$(\{\var{filename}\})$}\kbdsidx{readvec}\label{se:readvec}
Reads in the file
\var{filename} (subject to string expansion). If \var{filename} is
omitted, re-reads the last file that was fed into \kbd{gp}. The return
value is a vector whose components are the evaluation of all sequences
of instructions contained in the file. For instance, if \var{file} contains
\bprog
1
2
3
@eprog\noindent
then we will get:
\bprog
? \r a
%1 = 1
%2 = 2
%3 = 3
? read(a)
%4 = 3
? readvec(a)
%5 = [1, 2, 3]
@eprog
In general a sequence is just a single line, but as usual braces and
\kbd{\bs} may be used to enter multiline sequences.
The library syntax is \fun{GEN}{gp_readvec_file}{const char *filename}.
The underlying library function
\fun{GEN}{gp_readvec_stream}{FILE *f} is usually more flexible.
\subsec{select$(f,A,\{\fl=0\})$}\kbdsidx{select}\label{se:select}
We first describe the default behavior, when $\fl$ is 0 or omitted.
Given a vector or list \kbd{A} and a \typ{CLOSURE} \kbd{f}, \kbd{select}
returns the elements $x$ of \kbd{A} such that $f(x)$ is nonzero. In other
words, \kbd{f} is seen as a selection function returning a boolean value.
\bprog
? select(x->isprime(x), vector(50,i,i^2+1))
%1 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
? select(x->(x<100), %)
%2 = [2, 5, 17, 37]
@eprog\noindent returns the primes of the form $i^{2}+1$ for some $i\leq 50$,
then the elements less than 100 in the preceding result. The \kbd{select}
function also applies to a matrix \kbd{A}, seen as a vector of columns, i.e. it
selects columns instead of entries, and returns the matrix whose columns are
the selected ones.
\misctitle{Remark} For $v$ a \typ{VEC}, \typ{COL}, \typ{VECSMALL},
\typ{LIST} or \typ{MAT}, the alternative set-notations
\bprog
[g(x) | x <- v, f(x)]
[x | x <- v, f(x)]
[g(x) | x <- v]
@eprog\noindent
are available as shortcuts for
\bprog
apply(g, select(f, Vec(v)))
select(f, Vec(v))
apply(g, Vec(v))
@eprog\noindent respectively:
\bprog
? [ x | x <- vector(50,i,i^2+1), isprime(x) ]
%1 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
@eprog
\noindent If $\fl = 1$, this function returns instead the \emph{indices} of
the selected elements, and not the elements themselves (indirect selection):
\bprog
? V = vector(50,i,i^2+1);
? select(x->isprime(x), V, 1)
%2 = Vecsmall([1, 2, 4, 6, 10, 14, 16, 20, 24, 26, 36, 40])
? vecextract(V, %)
%3 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
@eprog\noindent
The following function lists the elements in $(\Z/N\Z)^{*}$:
\bprog
? invertibles(N) = select(x->gcd(x,N) == 1, [1..N])
@eprog
\noindent Finally
\bprog
? select(x->x, M)
@eprog\noindent selects the nonzero entries in \kbd{M}. If the latter is a
\typ{MAT}, we extract the matrix of nonzero columns. Note that \emph{removing}
entries instead of selecting them just involves replacing the selection
function \kbd{f} with its negation:
\bprog
? select(x->!isprime(x), vector(50,i,i^2+1))
@eprog
\synt{genselect}{void *E, long (*fun)(void*,GEN), GEN a}. Also available
is \fun{GEN}{genindexselect}{void *E, long (*fun)(void*, GEN), GEN a},
corresponding to $\fl = 1$.
\subsec{self$()$}\kbdsidx{self}\label{se:self}
Return the calling function or closure as a \typ{CLOSURE} object.
This is useful for defining anonymous recursive functions.
\bprog
? (n -> if(n==0,1,n*self()(n-1)))(5)
%1 = 120 \\ 5!
? (n -> if(n<=1, n, self()(n-1)+self()(n-2)))(20)
%2 = 6765 \\ Fibonacci(20)
@eprog
The library syntax is \fun{GEN}{pari_self}{}.
\subsec{setrand$(n)$}\kbdsidx{setrand}\label{se:setrand}
Reseeds the random number generator using the seed $n$. No value is
returned. The seed is a small positive integer $0 < n < 2^{64}$ used to
generate deterministically a suitable state array. All gp session start
by an implicit \kbd{setrand(1)}, so resetting the seed to this value allows
to replay all computations since the session start. Alternatively,
running a randomized computation starting by \kbd{setrand}($n$)
twice with the same $n$ will generate the exact same output.
In the other direction, including a call to \kbd{setrand(getwalltime())}
from your gprc will cause GP to produce different streams of random numbers
in each session. (Unix users may want to use \kbd{/dev/urandom} instead
of \kbd{getwalltime}.)
For debugging purposes, one can also record a particular random state
using \kbd{getrand} (the value is encoded as a huge integer) and feed it to
\kbd{setrand}:
\bprog
? state = getrand(); \\ record seed
...
? setrand(state); \\ we can now replay the exact same computations
@eprog
The library syntax is \fun{void}{setrand}{GEN n}.
\subsec{strchr$(x)$}\kbdsidx{strchr}\label{se:strchr}
Converts integer or vector of integers $x$ to a string, translating each
integer (in the range $[1,255]$) into a character using ASCII encoding.
\bprog
? strchr(97)
%1 = "a"
? Vecsmall("hello world")
%2 = Vecsmall([104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100])
? strchr(%)
%3 = "hello world"
@eprog
The library syntax is \fun{GEN}{pari_strchr}{GEN x}.
\subsec{strexpand$(\{x\}*)$}\kbdsidx{strexpand}\label{se:strexpand}
Converts its argument list into a
single character string (type \typ{STR}, the empty string if $x$ is omitted).
Then perform \idx{environment expansion}, see \secref{se:envir}.
This feature can be used to read \idx{environment variable} values.
\bprog
? strexpand("$HOME/doc")
%1 = "/home/pari/doc"
? module = "aprcl"; n = 10;
? strexpand("$HOME/doc/", module, n, ".tex")
%3 = "/home/pari/doc/aprcl10.tex"
@eprog
The individual arguments are read in string context, see \secref{se:strings}.
The library syntax is \fun{GEN}{strexpand}{GEN vec_x}.
\subsec{strjoin$(v,\{p = ""\})$}\kbdsidx{strjoin}\label{se:strjoin}
Joins the strings in vector $v$, separating them with delimiter $p$.
The reverse operation is \kbd{strsplit}.
\bprog
? v = ["abc", "def", "ghi"]
? strjoin(v, "/")
%2 = "abc/def/ghi"
? strjoin(v)
%3 = "abcdefghi"
@eprog
The library syntax is \fun{GEN}{strjoin}{GEN v, GEN p = NULL}.
\subsec{strprintf$(\var{fmt},\{x\}*)$}\kbdsidx{strprintf}\label{se:strprintf}
Returns a string built from the remaining arguments according to the
format fmt. The format consists of ordinary characters (not \%), printed
unchanged, and conversions specifications. See \kbd{printf}.
\bprog
? dir = "/home/pari"; file = "aprcl"; n = 10;
? strprintf("%s/%s%ld.tex", dir, file, n)
%2 = "/home/pari/aprcl10.tex"
@eprog
The library syntax is \fun{GEN}{strprintf}{const char *fmt, GEN vec_x}.
The variadic version \fun{char *}{pari_sprintf}{const char *fmt, ...} is usually preferable.
\subsec{strsplit$(s,\{p = ""\})$}\kbdsidx{strsplit}\label{se:strsplit}
Splits the string $s$ into a vector of strings, with $p$ acting as a
delimiter. If $p$ is empty or omitted, split the string into characters.
\bprog
? strsplit("abc::def::ghi", "::")
%1 = ["abc", "def", "ghi"]
? strsplit("abc", "")
%2 = ["a", "b", "c"]
? strsplit("aba", "a")
@eprog\noindent If $s$ starts (resp.~ends) with the pattern $p$, then the
first (resp.~last) entry in the vector is the empty string:
\bprog
? strsplit("aba", "a")
%3 = ["", "b", ""]
@eprog
The library syntax is \fun{GEN}{strsplit}{GEN s, GEN p = NULL}.
\subsec{strtex$(\{x\}*)$}\kbdsidx{strtex}\label{se:strtex}
Translates its arguments to TeX format, and concatenates the results into a
single character string (type \typ{STR}, the empty string if $x$ is omitted).
The individual arguments are read in string context, see \secref{se:strings}.
\bprog
? v = [1, 2, 3]
%1 [1, 2, 3]
? strtex(v)
%2 = "\\pmatrix{ 1&2&3\\cr}\n"
@eprog
\misctitle{\TeX-nical notes} The TeX output engine was originally written
for plain TeX and designed for maximal portability. Unfortunately later
\kbd{LaTeX} packages have obsoleted valid \TeX\ primitives, leading us
to replace TeX's \kbd{\bs{}over} by LaTeX's \kbd{\bs{}frac} in PARI's TeX
output. We have decided not to update further our TeX markup and let the
users of various LaTeX engines customize their preambles. The following
documents the precise changes you may need to include in your style files to
incorporate PARI TeX output verbatim:
\item if you enabled bit 4 in \tet{TeXstyle} default, you must define
\kbd{\bs{}PARIbreak}; see \kbd{??TeXstyle};
\item if you use plain TeX only: you must define \kbd{\bs{}frac} as follows
\bprog
\def\frac#1#2{{#1\over#2}}
@eprog
\item if you use LaTeX and \kbd{amsmath}, \kbd{\bs{}pmatrix} is
obsoleted in favor of the \kbd{pmatrix} environment; see
\kbd{examples/parigp.sty} for how to re-enable the deprecated construct.
The library syntax is \fun{GEN}{strtex}{GEN vec_x}.
\subsec{strtime$(t)$}\kbdsidx{strtime}\label{se:strtime}
Return a string describing the time t in milliseconds in the format used by
the GP timer.
\bprog
? print(strtime(12345678))
3h, 25min, 45,678 ms
? {
my(t=getabstime());
F=factor(2^256+1);t=getabstime()-t;
print("factor(2^256+1) took ",strtime(t));
}
factor(2^256+1) took 1,320 ms
@eprog
The library syntax is \fun{GEN}{strtime}{long t}.
\subsec{system$(\var{str})$}\kbdsidx{system}\label{se:system}
\var{str} is a string representing a system command. This command is
executed, its output written to the standard output (this won't get into your
logfile), and control returns to the PARI system. This simply calls the C
\kbd{system} command. Return the shell return value (which is system-dependent).
Beware that UNIX shell convention for boolean is opposite to GP, true is $0$
and false is non-$0$.
\bprog
? system("test -d /") \\ test if '/' is a directory (true)
%1 = 0
? system("test -f /") \\ test if '/' is a file (false)
%2 = 1
@eprog
The library syntax is \fun{long}{gpsystem}{const char *str}.
\subsec{trap$(\{e\},\{\var{rec}\},\var{seq})$}\kbdsidx{trap}\label{se:trap}
This function is obsolete, use \tet{iferr}, which has a nicer and much
more powerful interface. For compatibility's sake we now describe the
\emph{obsolete} function \tet{trap}.
This function tries to
evaluate \var{seq}, trapping runtime error $e$, that is effectively preventing
it from aborting computations in the usual way; the recovery sequence
\var{rec} is executed if the error occurs and the evaluation of \var{rec}
becomes the result of the command. If $e$ is omitted, all exceptions are
trapped. See \secref{se:errorrec} for an introduction to error recovery
under \kbd{gp}.
\bprog
? \\@com trap division by 0
? inv(x) = trap (e_INV, INFINITY, 1/x)
? inv(2)
%1 = 1/2
? inv(0)
%2 = INFINITY
@eprog\noindent
Note that \var{seq} is effectively evaluated up to the point that produced
the error, and the recovery sequence is evaluated starting from that same
context, it does not "undo" whatever happened in the other branch (restore
the evaluation context):
\bprog
? x = 1; trap (, /* recover: */ x, /* try: */ x = 0; 1/x)
%1 = 0
@eprog
\misctitle{Note} The interface is currently not adequate for trapping
individual exceptions. In the current version \vers, the following keywords
are recognized, but the name list will be expanded and changed in the
future (all library mode errors can be trapped: it's a matter of defining
the keywords to \kbd{gp}):
\kbd{e\_ALARM}: alarm time-out
\kbd{e\_ARCH}: not available on this architecture or operating system
\kbd{e\_STACK}: the PARI stack overflows
\kbd{e\_INV}: impossible inverse
\kbd{e\_IMPL}: not yet implemented
\kbd{e\_OVERFLOW}: all forms of arithmetic overflow, including length
or exponent overflow (when a larger value is supplied than the
implementation can handle).
\kbd{e\_SYNTAX}: syntax error
\kbd{e\_MISC}: miscellaneous error
\kbd{e\_TYPE}: wrong type
\kbd{e\_USER}: user error (from the \kbd{error} function)
The library syntax is \fun{GEN}{trap0}{const char *e = NULL, GEN rec = NULL, GEN seq = NULL}.
\subsec{type$(x)$}\kbdsidx{type}\label{se:type}
This is useful only under \kbd{gp}. Returns the internal type name of
the PARI object $x$ as a string. Check out existing type names with the
metacommand \b{t}. For example \kbd{type(1)} will return "\typ{INT}".
The library syntax is \fun{GEN}{type0}{GEN x}.
The macro \kbd{typ} is usually simpler to use since it returns a
\kbd{long} that can easily be matched with the symbols \typ{*}. The name
\kbd{type} was avoided since it is a reserved identifier for some compilers.
\subsec{unexport$(x,...,z)$}\kbdsidx{unexport}\label{se:unexport}
Remove $x,\ldots, z$ from the list of variables exported
to the parallel world. See \key{export}.
\subsec{unexportall$()$}\kbdsidx{unexportall}\label{se:unexportall}
Empty the list of variables exported to the parallel world.
The library syntax is \fun{void}{unexportall}{}.
\subsec{uninline$()$}\kbdsidx{uninline}\label{se:uninline}
Exit the scope of all current \kbd{inline} variables. DEPRECATED, use
\kbd{export} / \kbd{unexport}.
\subsec{version$()$}\kbdsidx{version}\label{se:version}
Returns the current version number as a \typ{VEC} with three integer
components (major version number, minor version number and patchlevel);
if your sources were obtained through our version control system, this will
be followed by further more precise arguments, including
e.g.~a~\kbd{git} \emph{commit hash}.
This function is present in all versions of PARI following releases 2.3.4
(stable) and 2.4.3 (testing).
Unless you are working with multiple development versions, you probably only
care about the 3 first numeric components. In any case, the \kbd{lex} function
offers a clever way to check against a particular version number, since it will
compare each successive vector entry, numerically or as strings, and will not
mind if the vectors it compares have different lengths:
\bprog
if (lex(version(), [2,3,5]) >= 0,
\\ code to be executed if we are running 2.3.5 or more recent.
,
\\ compatibility code
);
@eprog\noindent On a number of different machines, \kbd{version()} could return either of
\bprog
%1 = [2, 3, 4] \\ released version, stable branch
%1 = [2, 4, 3] \\ released version, testing branch
%1 = [2, 6, 1, 15174, ""505ab9b"] \\ development
@eprog
In particular, if you are only working with released versions, the first
line of the gp introductory message can be emulated by
\bprog
[M,m,p] = version();
printf("GP/PARI CALCULATOR Version %s.%s.%s", M,m,p);
@eprog\noindent If you \emph{are} working with many development versions of
PARI/GP, the 4th and/or 5th components can be profitably included in the
name of your logfiles, for instance.
\misctitle{Technical note} For development versions obtained via \kbd{git},
the 4th and 5th components are liable to change eventually, but we document
their current meaning for completeness. The 4th component counts the number
of reachable commits in the branch (analogous to \kbd{svn}'s revision
number), and the 5th is the \kbd{git} commit hash. In particular, \kbd{lex}
comparison still orders correctly development versions with respect to each
others or to released versions (provided we stay within a given branch,
e.g. \kbd{master})!
The library syntax is \fun{GEN}{pari_version}{}.
\subsec{warning$(\{\var{str}\}*)$}\kbdsidx{warning}\label{se:warning}
Outputs the message ``user warning''
and the argument list (each of them interpreted as a string).
If colors are enabled, this warning will be in a different color,
making it easy to distinguish.
\bprog
warning(n, " is very large, this might take a while.")
@eprog
The library syntax is \fun{void}{warning0}{GEN vec_str}.
\subsec{whatnow$(\var{key})$}\kbdsidx{whatnow}\label{se:whatnow}
If keyword \var{key} is the name of a function that was present in GP
version 1.39.15, outputs the new function name and syntax, if it
changed at all. Functions that where introduced since then, then modified
are also recognized.
\bprog
? whatnow("mu")
New syntax: mu(n) ===> moebius(n)
moebius(x): Moebius function of x.
? whatnow("sin")
This function did not change
@eprog When a function was removed and the underlying functionality
is not available under a compatible interface, no equivalent is mentioned:
\bprog
? whatnow("buchfu")
This function no longer exists
@eprog\noindent (The closest equivalent would be to set \kbd{K = bnfinit(T)}
then access \kbd{K.fu}.)
\subsec{write$(\var{filename},\{\var{str}\}*)$}\kbdsidx{write}\label{se:write}
Writes (appends) to \var{filename} the remaining arguments, and appends a
newline (same output as \kbd{print}).
\misctitle{Variant} The high-level function \kbd{write} is expensive when many
consecutive writes are expected because it cannot use buffering. The low-level
interface \kbd{fileopen} / \kbd{filewrite} / \kbd{fileclose} is more efficient.
It also allows to truncate existing files and replace their contents.
The library syntax is \fun{void}{write0}{const char *filename, GEN vec_str}.
\subsec{write1$(\var{filename},\{\var{str}\}*)$}\kbdsidx{write1}\label{se:write1}
Writes (appends) to \var{filename} the remaining arguments without a
trailing newline (same output as \kbd{print1}).
The library syntax is \fun{void}{write1}{const char *filename, GEN vec_str}.
\subsec{writebin$(\var{filename},\{x\})$}\kbdsidx{writebin}\label{se:writebin}
Writes (appends) to
\var{filename} the object $x$ in binary format. This format is not human
readable, but contains the exact internal structure of $x$, and is much
faster to save/load than a string expression, as would be produced by
\tet{write}. The binary file format includes a magic number, so that such a
file can be recognized and correctly input by the regular \tet{read} or \b{r}
function. If saved objects refer to polynomial variables that are not
defined in the new session, they will be displayed as \kbd{t$n$} for some
integer $n$ (the attached variable number).
Installed functions and history objects can not be saved via this function.
If $x$ is omitted, saves all user variables from the session, together with
their names. Reading such a ``named object'' back in a \kbd{gp} session will set
the corresponding user variable to the saved value. E.g after
\bprog
x = 1; writebin("log")
@eprog\noindent
reading \kbd{log} into a clean session will set \kbd{x} to $1$.
The relative variables priorities (see \secref{se:priority}) of new variables
set in this way remain the same (preset variables retain their former
priority, but are set to the new value). In particular, reading such a
session log into a clean session will restore all variables exactly as they
were in the original one.
Just as a regular input file, a binary file can be compressed
using \tet{gzip}, provided the file name has the standard \kbd{.gz}
extension.\sidx{binary file}
In the present implementation, the binary files are architecture dependent
and compatibility with future versions of \kbd{gp} is not guaranteed. Hence
binary files should not be used for long term storage (also, they are
larger and harder to compress than text files).
The library syntax is \fun{void}{gpwritebin}{const char *filename, GEN x = NULL}.
\subsec{writetex$(\var{filename},\{\var{str}\}*)$}\kbdsidx{writetex}\label{se:writetex}
As \kbd{write}, in \TeX\ format. See \tet{strtex} for details:
this function is essentially equivalent to calling \kbd{strtex} on remaining
arguments and writing them to file.
The library syntax is \fun{void}{writetex}{const char *filename, GEN vec_str}.
\section{Parallel programming}
These function are only available if PARI was configured using
\kbd{Configure --mt=\dots}. Two multithread interfaces are supported:
\item POSIX threads
\item Message passing interface (MPI)
As a rule, POSIX threads are well-suited for single systems, while MPI is used
by most clusters. However the parallel GP interface does not depend on the
chosen multithread interface: a properly written GP program will work
identically with both.
\subsec{parapply$(f,x)$}\kbdsidx{parapply}\label{se:parapply}
Parallel evaluation of $f$ on the elements of $x$.
The function $f$ must not access global variables or variables
declared with local(), and must be free of side effects.
\bprog
parapply(factor,[2^256 + 1, 2^193 - 1])
@eprog
factors $2^{256} + 1$ and $2^{193} - 1$ in parallel.
\bprog
{
my(E = ellinit([1,3]), V = vector(12,i,randomprime(2^200)));
parapply(p->ellcard(E,p), V)
}
@eprog
computes the order of $E(\F_{p})$ for $12$ random primes of $200$ bits.
The library syntax is \fun{GEN}{parapply}{GEN f, GEN x}.
\subsec{pareval$(x)$}\kbdsidx{pareval}\label{se:pareval}
Parallel evaluation of the elements of \kbd{x}, where \kbd{x} is a
vector of closures. The closures must be of arity $0$, must not access
global variables or variables declared with \kbd{local} and must be
free of side effects.
Here is an artificial example explaining the MOV attack on the elliptic
discrete log problem (by reducing it to a standard discrete log over a
finite field):
\bprog
{
my(q = 2^30 + 3, m = 40 * q, p = 1 + m^2); \\ p, q are primes
my(E = ellinit([0,0,0,1,0] * Mod(1,p)));
my([P, Q] = ellgenerators(E));
\\ E(F_p) ~ Z/m P + Z/m Q and the order of the
\\ Weil pairing <P,Q> in (Z/p)^* is m
my(F = [m,factor(m)], e = random(m), R, wR, wQ);
R = ellpow(E, Q, e);
wR = ellweilpairing(E,P,R,m);
wQ = ellweilpairing(E,P,Q,m); \\ wR = wQ^e
pareval([()->znlog(wR,wQ,F), ()->elllog(E,R,Q), ()->e])
}
@eprog\noindent Note the use of \kbd{my} to pass "arguments" to the
functions we need to evaluate while satisfying the listed requirements:
closures of arity $0$ and no global variables (another possibility would be
to use \kbd{export}). As a result, the final three statements satisfy all
the listed requirements and are run in parallel. (Which is silly for
this computation but illustrates the use of pareval.) The function
\kbd{parfor} is more powerful but harder to use.
The library syntax is \fun{GEN}{pareval}{GEN x}.
\subsec{parfor$(i=a,\{b\},\var{expr1},\{r\},\{\var{expr2}\})$}\kbdsidx{parfor}\label{se:parfor}
Evaluates in parallel the expression \kbd{expr1} in the formal
argument $i$ running from $a$ to $b$.
If $b$ is set to \kbd{+oo}, the loop runs indefinitely.
If $r$ and \kbd{expr2} are present, the expression \kbd{expr2} in the
formal variables $r$ and $i$ is evaluated with $r$ running through all
the different results obtained for \kbd{expr1} and $i$ takes the
corresponding argument.
The computations of \kbd{expr1} are \emph{started} in increasing order
of $i$; otherwise said, the computation for $i=c$ is started after those
for $i=1, \ldots, c-1$ have been started, but before the computation for
$i=c+1$ is started. Notice that the order of \emph{completion}, that is,
the order in which the different $r$ become available, may be different;
\kbd{expr2} is evaluated sequentially on each $r$ as it appears.
The following example computes the sum of the squares of the integers
from $1$ to $10$ by computing the squares in parallel and is equivalent
to \kbd{parsum (i=1, 10, i\^{}2)}:
\bprog
? s=0;
? parfor (i=1, 10, i^2, r, s=s+r)
? s
%3 = 385
@eprog
More precisely, apart from a potentially different order of evaluation
due to the parallelism, the line containing \kbd{parfor} is equivalent to
\bprog
? my (r); for (i=1, 10, r=i^2; s=s+r)
@eprog
The sequentiality of the evaluation of \kbd{expr2} ensures that the
variable \kbd{s} is not modified concurrently by two different additions,
although the order in which the terms are added is nondeterministic.
It is allowed for \kbd{expr2} to exit the loop using
\kbd{break}/\kbd{next}/\kbd{return}. If that happens for $i=c$,
then the evaluation of \kbd{expr1} and \kbd{expr2} is continued
for all values $i<c$, and the return value is the one obtained for
the smallest $i$ causing an interruption in \kbd{expr2} (it may be
undefined if this is a \kbd{break}/\kbd{next}).
In that case, using side-effects
in \kbd{expr2} may lead to undefined behavior, as the exact
number of values of $i$ for which it is executed is nondeterministic.
The following example computes \kbd{nextprime(1000)} in parallel:
\bprog
? parfor (i=1000, , isprime (i), r, if (r, return (i)))
%1 = 1009
@eprog
%\syn{NO}
\subsec{parforeach$(V,x,\var{expr1},\{r\},\{\var{expr2}\})$}\kbdsidx{parforeach}\label{se:parforeach}
Evaluates in parallel the expression \kbd{expr1} in the formal
argument $x$, where $x$ runs through all components of $V$.
If $r$ and \kbd{expr2} are present, evaluate sequentially the expression
\kbd{expr2}, in which the formal variables $x$ and $r$ are replaced
by the successive arguments and corresponding values. The sequential
evaluation ordering is not specified:
\bprog
? parforeach([50..100], x,isprime(x), r, if(r,print(x)))
53
67
71
79
83
89
97
73
59
61
@eprog
%\syn{NO}
\subsec{parforprime$(p=a,\{b\},\var{expr1},\{r\},\{\var{expr2}\})$}\kbdsidx{parforprime}\label{se:parforprime}
Behaves exactly as \kbd{parfor}, but loops only over prime values $p$.
Precisely, the functions evaluates in parallel the expression \kbd{expr1}
in the formal
argument $p$ running through the primes from $a$ to $b$.
If $b$ is set to \kbd{+oo}, the loop runs indefinitely.
If $r$ and \kbd{expr2} are present, the expression \kbd{expr2} in the
formal variables $r$ and $p$ is evaluated with $r$ running through all
the different results obtained for \kbd{expr1} and $p$ takes the
corresponding argument.
It is allowed fo \kbd{expr2} to exit the loop using
\kbd{break}/\kbd{next}/\kbd{return}; see the remarks in the documentation
of \kbd{parfor} for details.
%\syn{NO}
\subsec{parforprimestep$(p=a,\{b\},q,\var{expr1},\{r\},\{\var{expr2}\})$}\kbdsidx{parforprimestep}\label{se:parforprimestep}
Behaves exactly as \kbd{parfor}, but loops only over prime values $p$
in an arithmetic progression
Precisely, the functions evaluates in parallel the expression \kbd{expr1}
in the formal argument $p$ running through the primes from $a$ to $b$
in an arithmetic progression of the form $a + k\*q$.
($p \equiv a \pmod{q}$) or an intmod \kbd{Mod(c,N)}.
If $b$ is set to \kbd{+oo}, the loop runs indefinitely.
If $r$ and \kbd{expr2} are present, the expression \kbd{expr2} in the
formal variables $r$ and $p$ is evaluated with $r$ running through all
the different results obtained for \kbd{expr1} and $p$ takes the
corresponding argument.
It is allowed fo \kbd{expr2} to exit the loop using
\kbd{break}/\kbd{next}/\kbd{return}; see the remarks in the documentation
of \kbd{parfor} for details.
%\syn{NO}
\subsec{parforstep$(i=a,\{b\},s,\var{expr1},\{r\},\{\var{expr2}\})$}\kbdsidx{parforstep}\label{se:parforstep}
Evaluates in parallel the expression \kbd{expr1} in the formal
argument $i$ running from $a$ to $b$ in steps of $s$
(can be a positive real number, an intmod for an arithmetic
progression, or finally a vector of steps, see \kbd{forstep}).
If $r$ and \kbd{expr2} are present, the expression \kbd{expr2} in the
formal variables $r$ and $i$ is evaluated with $r$ running through all
the different results obtained for \kbd{expr1} and $i$ takes the
corresponding argument.
\bprog
? parforstep(i=3,8,2,2*i,x,print([i,x]))
[3, 6]
[5, 10]
[7, 14]
? parforstep(i=3,8,Mod(1,3),2*i,x,print([i,x]))
[4, 8]
[7, 14]
? parforstep(i=3,10,[1,3],2*i,x,print([i,x]))
[3, 6]
[4, 8]
[7, 14]
[8, 16]
@eprog
The library syntax is \fun{void}{parforstep0}{GEN i, GEN b = NULL, GEN s, GEN expr1, GEN r = NULL}.
\subsec{parforvec$(X=v,\var{expr1},\{j\},\{\var{expr2}\},\{\fl\})$}\kbdsidx{parforvec}\label{se:parforvec}
Evaluates the sequence \kbd{expr2} (dependent on $X$ and $j$) for $X$
as generated by \kbd{forvec}, in random order, computed in parallel. Substitute
for $j$ the value of \kbd{expr1} (dependent on $X$).
It is allowed fo \kbd{expr2} to exit the loop using
\kbd{break}/\kbd{next}/\kbd{return}, however in that case, \kbd{expr2} will
still be evaluated for all remaining value of $p$ less than the current one,
unless a subsequent \kbd{break}/\kbd{next}/\kbd{return} happens.
%\syn{NO}
\subsec{parselect$(f,A,\{\fl=0\})$}\kbdsidx{parselect}\label{se:parselect}
Selects elements of $A$ according to the selection function $f$, done in
parallel. If \fl is $1$, return the indices of those elements (indirect
selection) The function \kbd{f} must not access global variables or
variables declared with local(), and must be free of side effects.
The library syntax is \fun{GEN}{parselect}{GEN f, GEN A, long flag}.
\subsec{parsum$(i=a,b,\var{expr})$}\kbdsidx{parsum}\label{se:parsum}
Sum of expression \var{expr}, the formal parameter
going from $a$ to $b$, evaluated in parallel in random order.
The expression \kbd{expr} must not access global variables or
variables declared with \kbd{local()}, and must be free of side effects.
\bprog
? parsum(i=1,1000,ispseudoprime(2^prime(i)-1))
cpu time = 1min, 26,776 ms, real time = 5,854 ms.
%1 = 20
@eprog
returns the number of prime numbers among the first $1000$ Mersenne numbers.
\misctitle{Note} This function is only useful when summing entries
that are too large to fit in memory simultaneously. To sum a small number of
values, using \kbd{vecsum(parvector())} is likely to be more efficient; the
sumation order also becomes deterministic.
%\syn{NO}
\subsec{parvector$(N,i,\var{expr})$}\kbdsidx{parvector}\label{se:parvector}
As \kbd{vector(N,i,expr)} but the evaluations of \kbd{expr} are done in
parallel. The expression \kbd{expr} must not access global variables or
variables declared with \kbd{local()}, and must be free of side effects.
\bprog
parvector(10,i,quadclassunit(2^(100+i)+1).no)
@eprog\noindent
computes the class numbers in parallel.
%\syn{NO}
\section{GP defaults}
\label{se:gp_defaults} This section documents the GP defaults,
that can be set either by the GP function \tet{default} or in your GPRC.
Be sure to check out \tet{parisize} and \tet{parisizemax} !
\subsec{TeXstyle}\kbdsidx{TeXstyle}\label{se:def,TeXstyle}
The bits of this default allow
\kbd{gp} to use less rigid TeX formatting commands in the logfile. This
default is only taken into account when $\kbd{log} = 3$. The bits of
\kbd{TeXstyle} have the following meaning
2: insert \kbd{{\bs}right} / \kbd{{\bs}left} pairs where appropriate.
4: insert discretionary breaks in polynomials, to enhance the probability of
a good line break. You \emph{must} then define \kbd{{\bs}PARIbreak} as
follows:
\bprog
\def\PARIbreak{\hskip 0pt plus \hsize\relax\discretionary{}{}{}}
@eprog
The default value is \kbd{0}.
\subsec{breakloop}\kbdsidx{breakloop}\label{se:def,breakloop}
If true, enables the ``break loop'' debugging mode, see
\secref{se:break_loop}.
The default value is \kbd{1} if we are running an interactive \kbd{gp}
session, and \kbd{0} otherwise.
\subsec{colors}\kbdsidx{colors}\label{se:def,colors}
This default is only usable if \kbd{gp}
is running within certain color-capable terminals. For instance \kbd{rxvt},
\kbd{color\_xterm} and modern versions of \kbd{xterm} under X Windows, or
standard Linux/DOS text consoles. It causes \kbd{gp} to use a small palette of
colors for its output. With xterms, the colormap used corresponds to the
resources \kbd{Xterm*color$n$} where $n$ ranges from $0$ to $15$ (see the
file \kbd{misc/color.dft} for an example). Accepted values for this
default are strings \kbd{"$a_{1}$,\dots,$a_{k}$"} where $k\le7$ and each
$a_{i}$ is either
\noindent\item the keyword \kbd{no} (use the default color, usually
black on transparent background)
\noindent\item an integer between 0 and 15 corresponding to the
aforementioned colormap
\noindent\item a triple $[c_{0},c_{1},c_{2}]$ where $c_{0}$ stands for
foreground color, $c_{1}$ for background color, and $c_{2}$ for attributes
(0 is default, 1 is bold, 4 is underline).
The output objects thus affected are respectively error messages,
history numbers, prompt, input line, output, help messages, timer (that's
seven of them). If $k < 7$, the remaining $a_{i}$ are assumed to be \kbd{no}.
For instance
%
\bprog
default(colors, "9, 5, no, no, 4")
@eprog
\noindent
typesets error messages in color $9$, history numbers in color $5$, output in
color $4$, and does not affect the rest.
A set of default colors for dark (reverse video or PC console) and light
backgrounds respectively is activated when \kbd{colors} is set to
\kbd{darkbg}, resp.~\kbd{lightbg} (or any proper prefix: \kbd{d} is
recognized as an abbreviation for \kbd{darkbg}). A bold variant of
\kbd{darkbg}, called \kbd{boldfg}, is provided if you find the former too
pale.
\emacs In the present version, this default is incompatible with PariEmacs.
Changing it will just fail silently (the alternative would be to display
escape sequences as is, since Emacs will refuse to interpret them).
You must customize color highlighting from the PariEmacs side, see its
documentation.
The default value is \kbd{""} (no colors).
\subsec{compatible}\kbdsidx{compatible}\label{se:def,compatible}
Obsolete. This default is now a no-op.
\subsec{datadir}\kbdsidx{datadir}\label{se:def,datadir}
The name of directory containing the optional data files. For now,
this includes the \kbd{elldata}, \kbd{galdata}, \kbd{galpol}, \kbd{seadata}
packages.
The default value is \kbd{/usr/local/share/pari}, or the override specified
via \kbd{Configure --datadir=}.
\misctitle{Windows-specific note} On Windows operating systems, the
special value \kbd{@} stands for ``the directory where the \kbd{gp}
binary is installed''. This is the default value.
\subsec{debug}\kbdsidx{debug}\label{se:def,debug}
Debugging level. If it is nonzero, some extra messages may be printed,
according to what is going on (see~\b{g}). To turn on and off diagnostics
attached to a specific feature (such as the LLL algorithm), use
\tet{setdebug}.
The default value is \kbd{0} (no debugging messages).
\subsec{debugfiles}\kbdsidx{debugfiles}\label{se:def,debugfiles}
This is a deprecated alias for \kbd{setdebug("io",)}. If nonzero,
\kbd{gp} will print information on file descriptors in use and I/O
operations (see~\b{gf}).
The default value is \kbd{0} (no debugging messages).
\subsec{debugmem}\kbdsidx{debugmem}\label{se:def,debugmem}
Memory debugging level (see \b{gm}). If this is nonzero, \kbd{gp} will
print increasingly precise notifications about memory use:
\item $\kbd{debugmem} > 0$, notify when \kbd{parisize} changes (within the
boundaries set by \kbd{parisizemax});
\item $\kbd{debugmem} > 1$, indicate any important garbage collection and the
function it is taking place in;
\item $\kbd{debugmem} > 2$, indicate the creation/destruction of
``blocks'' (or clones); expect lots of messages.
\noindent {\bf Important Note:}
if you are running a version compiled for debugging (see Appendix~A) and
$\kbd{debugmem} > 1$, \kbd{gp} will further regularly print information on
memory usage, notifying whenever stack usage goes up or down by 1 MByte.
This functionality is disabled on non-debugging builds as it noticeably
slows down the performance.
The default value is \kbd{1}.
\subsec{echo}\kbdsidx{echo}\label{se:def,echo}
This default can be 0 (off), 1 (on) or 2 (on, raw). When \kbd{echo}
mode is on, each command is reprinted before being executed. This can be
useful when reading a file with the \b{r} or \kbd{read} commands. For
example, it is turned on at the beginning of the test files used to check
whether \kbd{gp} has been built correctly (see \b{e}). When \kbd{echo} is set
to 1 the input is cleaned up, removing white space and comments and uniting
multi-line input. When set to 2 (raw), the input is written as-is, without any
pre-processing.
The default value is \kbd{0} (no echo).
\subsec{factor\_add\_primes}\kbdsidx{def,factor_add_primes}\label{se:def,factor_add_primes}
This toggle is either 1 (on) or 0 (off). If on,
the integer factorization machinery calls \tet{addprimes} on prime
factors that were difficult to find (larger than $2^{24}$), so they are
automatically tried first in other factorizations. If a routine is performing
(or has performed) a factorization and is interrupted by an error or via
Control-C, this lets you recover the prime factors already found. The
downside is that a huge \kbd{addprimes} table unrelated to the current
computations will slow down arithmetic functions relying on integer
factorization; one should then empty the table using \tet{removeprimes}.
The default value is \kbd{0}.
\subsec{factor\_proven}\kbdsidx{def,factor_proven}\label{se:def,factor_proven}
This toggle is either 1 (on) or 0 (off). By
default, the factors output by the integer factorization machinery are
only pseudo-primes, not proven primes. If this toggle is
set, a primality proof is done for each factor and all results depending on
integer factorization are fully proven. This flag does not affect partial
factorization when it is explicitly requested. It also does not affect the
private table managed by \tet{addprimes}: its entries are included as is in
factorizations, without being tested for primality.
The default value is \kbd{0}.
\subsec{factorlimit}\kbdsidx{factorlimit}\label{se:def,factorlimit}
\kbd{gp} precomputes a list of
all primes less than \kbd{primelimit} at initialization time (and can quickly
generate more primes on demand, up to the square of that bound). Let $N$
be an integer. The command \kbd{factor}$(N)$ factors the integer, starting
by trial division by all primes up to some bound (which depends on the size
of $N$ and less than $2^{19}$ is any case), then moving on to more advanced
algorithms. When additionally $D$ is an integer, \kbd{factor}$(N, D)$ uses
\emph{only} trial division by primes less than $D$. In both case, trial
division is sped up by precomputations involving primes up to another bound
called \kbd{factorlimit}. Trial division up to a larger bound is possible,
but will be slower than for bounds lower than \kbd{factorlimit} and will
slow down factorization on average. If \kbd{factorlimit} is larger than
\kbd{primelimit}, then \kbd{primelimit} is increased to match
\kbd{factorlimit}.
In the present version, precomputations are only used on startup and
changing either \kbd{primelimit} or \kbd{factorlimit} will not recompute
new tables. Changing \kbd{primelimit} has no effect, while changing
\kbd{factorlimit} affects the behavior in factorizations.
The default value is $2^{20}$, which is the default \kbd{primelimit}.
This default is only used on startup: changing it will not recompute a new
table.
Note that the precomputations are expensive both in terms of time and space,
although softly linear in the bound, and the ones attached to
\kbd{factorlimit} more so. So neither should be taken too large. Here are
sample timings: in the first column are the increasing
values of \kbd{primelimit}, in the second column is the startup time
keeping \kbd{factorlimit} at its default value, and the third column
is the startup time with $\kbd{factorlimit} = \kbd{primelimit}$.
\bprog
2^20: 40 ms 40 ms
2^23: 40 ms 230 ms
2^26: 140 ms 2,410 ms
2^29: 810 ms 27,240 ms
2^32: 6,040 ms 293,660 ms
@eprog\noindent The final $2^{32}$ for \kbd{factorlimit} requires a 10GB
stack. On the other hand,
here are timings trying \kbd{factor}$(p, D)$ for some random $1000$-bit prime
(so we are in the worst case of performing trial division in a setting where
it cannot succeed)
and increasing values of $D$. We use a \kbd{primelimit} of $2^{32}$;
the first column corresponds to the values of $D$, the second to the times for
the default \kbd{factorlimit} and the third to fifth for \kbd{factorlimit}
matching $D$, $D/2$ and $D/4$ respectively.
\bprog
2^20: 1 ms 1 ms 6 ms 18 ms
2^23: 72 ms 18 ms 21 ms 63 ms
2^26: 296 ms 50 ms 176 ms 233 ms
2^29: 1,911 ms 266 ms 1,023 ms 1,404 ms
2^32: 15,505 ms 2,406 ms 6,954 ms 15,264 ms
@eprog\noindent As expected, matching \kbd{factorlimit}'s fast trial
division to the desired trial division bound $D$ is optimal if we do not
take precomputation time into account. But this data
also shows that if you need to often trial divide above 4 \kbd{factorlimit},
then you should not bother and can just as well stick with the default value:
the extra efficiency up to \kbd{factorlimit} is negligible compared to the
naive trial division that will follow. Whereas the increase in memory usage
and startup time are \emph{very} noticeable.
The default value is $2^{20}$.
\subsec{format}\kbdsidx{format}\label{se:def,format}
Of the form x$.n$, where x (conversion style)
is a letter in $\{\kbd{e},\kbd{f},\kbd{g}\}$, and $n$ (precision) is an
integer; this affects the way real numbers are printed:
\item If the conversion style is \kbd{e}, real numbers are printed in
\idx{scientific format}, always with an explicit exponent,
e.g.~\kbd{3.3 E-5}.
\item In style \kbd{f}, real numbers are generally printed in
\idx{fixed floating point format} without exponent, e.g.~\kbd{0.000033}. A
large real number, whose integer part is not well defined (not enough
significant digits), is printed in style~\kbd{e}. For instance
\kbd{10.\pow 100} known to ten significant digits is always printed in style
\kbd{e}.
\item In style \kbd{g}, nonzero real numbers are printed in \kbd{f} format,
except when their decimal exponent is $< -4$, in which case they are printed
in \kbd{e} format. Real zeroes (of arbitrary exponent) are printed in \kbd{e}
format.
The precision $n$ is the number of significant digits printed for real
numbers, except if $n<0$ where all the significant digits will be printed
(initial default is 38 decimal digits). For more powerful formatting
possibilities, see \tet{printf} and \tet{strprintf}.
The default value is \kbd{"g.38"}.
\subsec{graphcolormap}\kbdsidx{graphcolormap}\label{se:def,graphcolormap}
A vector of colors, to be used by hi-res graphing routines. Its length is
arbitrary, but it must contain at least 3 entries: the first 3 colors are
used for background, frame/ticks and axes respectively. All colors in the
colormap may be freely used in \tet{plotcolor} calls.
A color is either given as in the default by character strings or by an RGB
code. For valid color names, see the standard \kbd{rgb.txt} file in X11
distributions, where we restrict to lowercase letters and remove all
whitespace from color names. An RGB code is a vector with 3 integer entries
between 0 and 255 or a \kbd{\#} followed by 6 hexadecimal digits.
For instance \kbd{[250, 235, 215]}, \kbd{"\#faebd7"} and
\kbd{"antiquewhite"} all represent the same color.
The default value is [\kbd{"white"}, \kbd{"black"}, \kbd{"blue"},
\kbd{"violetred"}, \kbd{"red"}, \kbd{"green"}, \kbd{"grey"},
\kbd{"gainsboro"}].
The colormap elements can not be changed individually as in a vector (you must
either leave the colormap alone or change it globally). All color functions
allow you either to hardcode a color given its descriptive name or RGB code,
or to use a relative color scheme by changing the colormap and referring to an
index in that table: for historical and compatibility reasons,
the indexing is $0$-based (as in C) and not $1$-based as would be expected in
a GP vector. This means that the index~$0$ in the default colormap represents
\kbd{"white"}, $1$ is \kbd{"black"}, and so on.
\subsec{graphcolors}\kbdsidx{graphcolors}\label{se:def,graphcolors}
Entries in the
\tet{graphcolormap} that will be used to plot multi-curves. The successive
curves are drawn in colors whose index in \kbd{graphcolormap} are the
non-negative integers
\kbd{graphcolors[1]}, \kbd{graphcolors[2]}, \dots
cycling when the \kbd{graphcolors} list is exhausted. Beware that for
historical and compatibility reasons, \kbd{graphcolormap} is $0$-based.
The default value is \kbd{[4,5]}. With factory settings for
\kbd{graphcolormap}, this corresponds to \kbd{"red"} then \kbd{"green"}.
\subsec{help}\kbdsidx{help}\label{se:def,help}
Name of the external help program to use from within \kbd{gp} when
extended help is invoked, usually through a \kbd{??} or \kbd{???} request
(see \secref{se:exthelp}), or \kbd{M-H} under readline (see
\secref{se:readline}).
\misctitle{Windows-specific note} On Windows operating systems, if the
first character of \kbd{help} is \kbd{@}, it is replaced by ``the directory
where the \kbd{gp} binary is installed''.
The default value is the path to the \kbd{gphelp} script we install.
\subsec{histfile}\kbdsidx{histfile}\label{se:def,histfile}
Name of a file where
\kbd{gp} will keep a history of all \emph{input} commands (results are
omitted). If this file exists when the value of \kbd{histfile} changes,
it is read in and becomes part of the session history. Thus, setting this
default in your gprc saves your readline history between sessions. Setting
this default to the empty string \kbd{""} changes it to
\kbd{$<$undefined$>$}. Note that, by default, the number of history entries
saved is not limited: set \kbd{history-size} in readline's \kbd{.inputrc}
to limit the file size.
The default value is \kbd{$<$undefined$>$} (no history file).
\subsec{histsize}\kbdsidx{histsize}\label{se:def,histsize}
\kbd{gp} keeps a history of the last
\kbd{histsize} results computed so far, which you can recover using the
\kbd{\%} notation (see \secref{se:history}). When this number is exceeded,
the oldest values are erased. Tampering with this default is the only way to
get rid of the ones you do not need anymore.
The default value is \kbd{5000}.
\subsec{lines}\kbdsidx{lines}\label{se:def,lines}
If set to a positive value, \kbd{gp} prints at
most that many lines from each result, terminating the last line shown with
\kbd{[+++]} if further material has been suppressed. The various \kbd{print}
commands (see \secref{se:gp_program}) are unaffected, so you can always type
\kbd{print(\%)} or \b{a} to view the full result. If the actual screen width
cannot be determined, a ``line'' is assumed to be 80 characters long.
The default value is \kbd{0}.
\subsec{linewrap}\kbdsidx{linewrap}\label{se:def,linewrap}
If set to a positive value, \kbd{gp} wraps every single line after
printing that many characters.
The default value is \kbd{0} (unset).
\subsec{log}\kbdsidx{log}\label{se:def,log}
This can be either 0 (off) or 1, 2, 3
(on, see below for the various modes). When logging mode is turned on, \kbd{gp}
opens a log file, whose exact name is determined by the \kbd{logfile}
default. Subsequently, all the commands and results will be written to that
file (see \b{l}). In case a file with this precise name already existed, it
will not be erased: your data will be \emph{appended} at the end.
The specific positive values of \kbd{log} have the following meaning
1: plain logfile
2: emit color codes to the logfile (if \kbd{colors} is set).
3: write LaTeX output to the logfile (can be further customized using
\tet{TeXstyle}).
The default value is \kbd{0}.
\misctitle{Note} Logging starts as soon as \kbd{log} is set to a nonzero
value. In particular, when \kbd{log} is set in \kbd{gprc}, warnings and
errors triggered from the rest of the file will be written in the logfile.
For instance, on clean startup, the logfile will start by \kbd{Done.}
(from the \kbd{Reading GPRC:\dots Done.} diagnostic printed when starting
\kbd{gp}), then the \kbd{gp} header and prompt.
\subsec{logfile}\kbdsidx{logfile}\label{se:def,logfile}
Name of the log file to be used when the \kbd{log} toggle is on.
Environment and time expansion are performed.
The default value is \kbd{"pari.log"}.
\subsec{nbthreads}\kbdsidx{nbthreads}\label{se:def,nbthreads}
This default is specific to the \emph{parallel} version of PARI and gp
(built via \kbd{Configure --mt=pthread} or \kbd{mpi}) and is ignored
otherwise. In parallel mode, it governs the number of threads to use for
parallel computing. The exact meaning and default value depend on the
\kbd{mt} engine used:
\item \kbd{single}: not used (always a single thread).
\item \kbd{pthread}: number of threads (unlimited, default: number of cores)
\item \kbd{mpi}: number of MPI processes to use (limited to the number
allocated by \kbd{mpirun}, default: use all allocated processes).
See also \kbd{threadsize} and \kbd{threadsizemax}.
\subsec{new\_galois\_format}\kbdsidx{def,new_galois_format}\label{se:def,new_galois_format}
This toggle is either 1 (on) or 0 (off). If on,
the \tet{polgalois} command will use a different, more
consistent, naming scheme for Galois groups. This default is provided to
ensure that scripts can control this behavior and do not break unexpectedly.
The default value is \kbd{0}. This value will change to $1$ (set) in the next
major version.
\subsec{output}\kbdsidx{output}\label{se:def,output}
There are three possible values: 0
(=~\var{raw}), 1 (=~\var{prettymatrix}), or 3
(=~\var{external} \var{prettyprint}). This
means that, independently of the default \kbd{format} for reals which we
explained above, you can print results in three ways:
\item \tev{raw format}, i.e.~a format which is equivalent to what you
input, including explicit multiplication signs, and everything typed on a
line instead of two dimensional boxes. This can have several advantages, for
instance it allows you to pick the result with a mouse or an editor, and to
paste it somewhere else.
\item \tev{prettymatrix format}: this is identical to raw format, except
that matrices are printed as boxes instead of horizontally. This is
prettier, but takes more space and cannot be used for input. Column vectors
are still printed horizontally.
\item \tev{external prettyprint}: pipes all \kbd{gp}
output in TeX format to an external prettyprinter, according to the value of
\tet{prettyprinter}. The default script (\tet{tex2mail}) converts its input
to readable two-dimensional text.
Independently of the setting of this default, an object can be printed
in any of the three formats at any time using the commands \b{a} and \b{m}
and \b{B} respectively.
The default value is \kbd{1} (\var{prettymatrix}).
\subsec{parisize}\kbdsidx{parisize}\label{se:def,parisize}
\kbd{gp}, and in fact any program using the PARI
library, needs a \tev{stack} in which to do its computations; \kbd{parisize}
is the stack size, in bytes. It is recommended to increase this
default using a \tet{gprc}, to the value you believe PARI should be happy
with, given your typical computation. We strongly recommend to also
set \tet{parisizemax} to a much larger value in your \kbd{gprc}, about what
you believe your machine can stand: PARI will then try to fit its
computations within about \kbd{parisize} bytes, but will increase the stack
size if needed (up to \kbd{parisizemax}). PARI will restore the stack size
to the originally requested \kbd{parisize} once we get back to the user's
prompt.
If \tet{parisizemax} is unset, this command has a very unintuitive behaviour
since it must abort pending operations, see \kbd{??allocatemem}.
The default value is 8M.
\subsec{parisizemax}\kbdsidx{parisizemax}\label{se:def,parisizemax}
\kbd{gp}, and in fact any program using the PARI library, needs a
\tev{stack} in which to do its computations. If nonzero, \tet{parisizemax}
is the maximum size the stack can grow to, in bytes. If zero, the stack will
not automatically grow, and will be limited to the value of \kbd{parisize}.
When \kbd{parisizemax} is set, PARI tries to fit its
computations within about \kbd{parisize} bytes, but will increase the stack
size if needed, roughly doubling it each time (up to \kbd{parisizemax}
of course!) and printing a message such as \kbd{Warning: increasing stack size to}
\var{some value}. Once the memory intensive computation is over, PARI
will restore the stack size to the originally requested \kbd{parisize}
without printing further messages.
We \emph{strongly} recommend to set \tet{parisizemax} permanently to a large
nonzero value in your \tet{gprc}, about what you believe your machine can
stand. It is possible to increase or decrease \kbd{parisizemax} inside a
running \kbd{gp} session, just use \kbd{default} as usual.
The default value is $0$, for backward compatibility reasons.
\subsec{path}\kbdsidx{path}\label{se:def,path}
This is a list of directories, separated by colons ':'
(semicolons ';' in the DOS world, since colons are preempted for drive names).
When asked to read a file whose name is not given by an absolute path
(does not start with \kbd{/}, \kbd{./} or \kbd{../}), \kbd{gp} will look for
it in these directories, in the order they were written in \kbd{path}. Here,
as usual, \kbd{.} means the current directory, and \kbd{..} its immediate
parent. Environment expansion is performed.
The default value is \kbd{".:\til:\til/gp"} on UNIX systems,
\kbd{".;C:\bs;C:\bs GP"} on DOS, OS/2 and Windows, and \kbd{"."} otherwise.
\subsec{plothsizes}\kbdsidx{plothsizes}\label{se:def,plothsizes}
If the graphic driver allows it, the array contains the size of the
terminal, the size of the font, the size of the ticks.
\subsec{prettyprinter}\kbdsidx{prettyprinter}\label{se:def,prettyprinter}
The name of an external prettyprinter to use when
\kbd{output} is~3 (alternate prettyprinter). Note that the default
\tet{tex2mail} looks much nicer than the built-in ``beautified
format'' ($\kbd{output} = 2$).
The default value is \kbd{"tex2mail -TeX -noindent -ragged -by\_par"}.
\subsec{primelimit}\kbdsidx{primelimit}\label{se:def,primelimit}
\kbd{gp} precomputes a list of
all primes less than \kbd{primelimit} at initialization time, and can build
fast sieves on demand to quickly iterate over primes up to the \emph{square}
of \kbd{primelimit}. These are used by functions looping over consecutive
small primes. A related default is \kbd{factorlimit}, setting an upper
bound for the small primes that can be quickly detected through fast trial
division; you can still trial divide far above \kbd{factorlimit}, through
$\kbd{factor}(N, B)$ with large $B$ but a slow algorithm will be used
above \kbd{factorlimit}. If \kbd{primelimit} is set to a lower value than
\kbd{factorlimit}, it is silently increased to match \kbd{factorlimit}.
The default value is $2^{20}$. Since almost all arithmetic functions
eventually require some table of prime numbers, PARI guarantees that the
first 6547 primes, up to and including $65557 = 2^{16} + 21$, are precomputed,
even if \kbd{primelimit} is $1$.
A value of $2^{32}$ allows to quickly iterate over consecutive primes up
to $2^{64}$, and is
the upper range of what is generally useful. (Allow for a startup time of
about 6 seconds.) On the other hand, \kbd{factorlimit} is more expensive: it
must build a product tree of all primes up to the bound, which can
considerably increase startup time. A \kbd{factorlimit} of $2^{32}$ will
increase startup time to about 5 minutes; and is only useful if you
intend to call \kbd{factor}$(N, D)$ \emph{many} times with values of $D$ about
$2^{32}$ or $2^{33}$.
This default is only used on startup: changing it will not recompute a new
table. Here are sample timings for startup using increasing
values of \kbd{primelimit}:
\bprog
2^20: 40 ms
2^23: 230 ms
2^26: 2,410 ms
2^29: 27,240 ms
2^32: 293,660 ms
@eprog
\misctitle{Deprecated feature} \kbd{factorlimit} was used in some
situations by algebraic number theory functions using the
\tet{nf_PARTIALFACT} flag (\tet{nfbasis}, \tet{nfdisc}, \tet{nfinit}, \dots):
this assumes that all primes $p > \kbd{factorlimit}$ have a certain
property (the equation order is $p$-maximal). This is never done by default,
and must be explicitly set by the user of such functions. Nevertheless,
these functions now provide a more flexible interface, and their use
of the global default \kbd{factorlimit} is deprecated.
\misctitle{Deprecated feature} \kbd{factor(N, 0)} is used to partially
factor integers by removing all prime factors $\leq$ \kbd{factorlimit}.
Don't use this, supply an explicit bound: \kbd{factor(N, bound)},
which avoids relying on an unpredictable global variable.
The default value is $2^{20} = 1048576$.
\subsec{prompt}\kbdsidx{prompt}\label{se:def,prompt}
A string that will be printed as
prompt. Note that most usual escape sequences are available there: \b{e} for
Esc, \b{n} for Newline, \dots, \kbd{\bs\bs} for \kbd{\bs}. Time expansion is
performed.
This string is sent through the library function \tet{strftime} (on a
Unix system, you can try \kbd{man strftime} at your shell prompt). This means
that \kbd{\%} constructs have a special meaning, usually related to the time
and date. For instance, \kbd{\%H} = hour (24-hour clock) and \kbd{\%M} =
minute [00,59] (use \kbd{\%\%} to get a real \kbd{\%}).
If you use \kbd{readline}, escape sequences in your prompt will result in
display bugs. If you have a relatively recent \kbd{readline} (see the comment
at the end of \secref{se:def,colors}), you can brace them with special sequences
(\kbd{\bs[} and \kbd{\bs]}), and you will be safe. If these just result in
extra spaces in your prompt, then you'll have to get a more recent
\kbd{readline}. See the file \kbd{misc/gprc.dft} for an example.
\emacs {\bf Caution}: PariEmacs needs to know about the prompt pattern to
separate your input from previous \kbd{gp} results, without ambiguity. It is
not a trivial problem to adapt automatically this regular expression to an
arbitrary prompt (which can be self-modifying!). See PariEmacs's
documentation.
The default value is \kbd{"? "}.
\subsec{prompt\_cont}\kbdsidx{def,prompt_cont}\label{se:def,prompt_cont}
A string that will be printed
to prompt for continuation lines (e.g. in between braces, or after a
line-terminating backslash). Everything that applies to \kbd{prompt}
applies to \kbd{prompt\_cont} as well.
The default value is \kbd{""}.
\subsec{psfile}\kbdsidx{psfile}\label{se:def,psfile}
This default is obsolete, use one of plotexport, plothexport or
plothrawexport functions and write the result to file.
\subsec{readline}\kbdsidx{readline}\label{se:def,readline}
Switches readline line-editing
facilities on and off. This may be useful if you are running \kbd{gp} in a Sun
\tet{cmdtool}, which interacts badly with readline. Of course, until readline
is switched on again, advanced editing features like automatic completion
and editing history are not available.
The default value is \kbd{1}.
\subsec{realbitprecision}\kbdsidx{realbitprecision}\label{se:def,realbitprecision}
The number of significant bits used to convert exact inputs given to
transcendental functions (see \secref{se:trans}), or to create
absolute floating point constants (input as \kbd{1.0} or \kbd{Pi} for
instance). Unless you tamper with the \tet{format} default, this is also
the number of significant bits used to print a \typ{REAL} number;
\kbd{format} will override this latter behavior, and allow you to have a
large internal precision while outputting few digits for instance.
Note that most PARI's functions currently handle precision on a word basis (by
increments of 32 or 64 bits), hence bit precision may be a little larger
than the number of bits you expected. For instance to get 10 bits of
precision, you need one word of precision which, on a 64-bit machine,
correspond to 64 bits. To make things even more confusing, this internal bit
accuracy is converted to decimal digits when printing floating point numbers:
now 64 bits correspond to 19 printed decimal digits
($19 < \log_{10}(2^{64}) < 20$).
The value returned when typing \kbd{default(realbitprecision)} is the internal
number of significant bits, not the number of printed decimal digits:
\bprog
? default(realbitprecision, 10)
? \pb
realbitprecision = 64 significant bits
? default(realbitprecision)
%1 = 64
? \p
realprecision = 3 significant digits
? default(realprecision)
%2 = 19
@eprog\noindent Note that \tet{realprecision} and \kbd{\bs p} allow
to view and manipulate the internal precision in decimal digits.
The default value is \kbd{128} bits.
\subsec{realprecision}\kbdsidx{realprecision}\label{se:def,realprecision}
The number of significant digits used to convert exact inputs given to
transcendental functions (see \secref{se:trans}), or to create
absolute floating point constants (input as \kbd{1.0} or \kbd{Pi} for
instance). Unless you tamper with the \tet{format} default, this is also
the number of significant digits used to print a \typ{REAL} number;
\kbd{format} will override this latter behavior, and allow you to have a
large internal precision while outputting few digits for instance.
Note that PARI's internal precision works on a word basis (by increments of
32 or 64 bits), hence may be a little larger than the number of decimal
digits you expected. For instance to get 2 decimal digits you need one word
of precision which, on a 64-bit machine, actually gives you 19 digits ($19 <
\log_{10}(2^{64}) < 20$). The value returned when typing
\kbd{default(realprecision)} is the internal number of significant digits,
not the number of printed digits:
\bprog
? default(realprecision, 2)
realprecision = 19 significant digits (2 digits displayed)
? default(realprecision)
%1 = 19
@eprog
The default value is \kbd{38} decimal digits.
\subsec{recover}\kbdsidx{recover}\label{se:def,recover}
This toggle is either 1 (on) or 0 (off). If you change this to $0$, any
error becomes fatal and causes the gp interpreter to exit immediately. Can be
useful in batch job scripts.
The default value is \kbd{1}.
\subsec{secure}\kbdsidx{secure}\label{se:def,secure}
This toggle is either 1 (on) or 0 (off). If on, the \tet{system} and
\tet{extern} command are disabled. These two commands are potentially
dangerous when you execute foreign scripts since they let \kbd{gp} execute
arbitrary UNIX commands. \kbd{gp} will ask for confirmation before letting
you (or a script) unset this toggle.
The default value is \kbd{0}.
\subsec{seriesprecision}\kbdsidx{seriesprecision}\label{se:def,seriesprecision}
Number of significant terms
when converting a polynomial or rational function to a power series
(see~\b{ps}).
The default value is \kbd{16}.
\subsec{simplify}\kbdsidx{simplify}\label{se:def,simplify}
This toggle is either 1 (on) or 0 (off). When the PARI library computes
something, the type of the
result is not always the simplest possible. The only type conversions which
the PARI library does automatically are rational numbers to integers (when
they are of type \typ{FRAC} and equal to integers), and similarly rational
functions to polynomials (when they are of type \typ{RFRAC} and equal to
polynomials). This feature is useful in many cases, and saves time, but can
be annoying at times. Hence you can disable this and, whenever you feel like
it, use the function \kbd{simplify} (see Chapter 3) which allows you to
simplify objects to the simplest possible types recursively (see~\b{y}).
\sidx{automatic simplification}
The default value is \kbd{1}.
\subsec{sopath}\kbdsidx{sopath}\label{se:def,sopath}
This is a list of directories, separated by colons ':'
(semicolons ';' in the DOS world, since colons are preempted for drive names).
When asked to \tet{install} an external symbol from a shared library whose
name is not given by an absolute path (does not start with \kbd{/}, \kbd{./}
or \kbd{../}), \kbd{gp} will look for it in these directories, in the order
they were written in \kbd{sopath}. Here, as usual, \kbd{.} means the current
directory, and \kbd{..} its immediate parent. Environment expansion is
performed.
The default value is \kbd{""}, corresponding to an empty list of
directories: \tet{install} will use the library name as input (and look in
the current directory if the name is not an absolute path).
\subsec{strictargs}\kbdsidx{strictargs}\label{se:def,strictargs}
This toggle is either 1 (on) or 0 (off). If on, all arguments to \emph{new}
user functions are mandatory unless the function supplies an explicit default
value.
Otherwise arguments have the default value $0$.
In this example,
\bprog
fun(a,b=2)=a+b
@eprog
\kbd{a} is mandatory, while \kbd{b} is optional. If \kbd{strictargs} is on:
\bprog
? fun()
*** at top-level: fun()
*** ^-----
*** in function fun: a,b=2
*** ^-----
*** missing mandatory argument 'a' in user function.
@eprog
This applies to functions defined while \kbd{strictargs} is on. Changing \kbd{strictargs}
does not affect the behavior of previously defined functions.
The default value is \kbd{0}.
\subsec{strictmatch}\kbdsidx{strictmatch}\label{se:def,strictmatch}
Obsolete. This toggle is now a no-op.
\subsec{threadsize}\kbdsidx{threadsize}\label{se:def,threadsize}
This default is specific to the \emph{parallel} version of PARI and gp
(built via \kbd{Configure --mt=pthread} or \kbd{mpi}) and is ignored
otherwise. In parallel mode,
each thread allocates its own private \tev{stack} for its
computations, see \kbd{parisize}. This value determines the size in bytes of
the stacks of each thread, so the total memory allocated will be
$\kbd{parisize}+\kbd{nbthreads}\times\kbd{threadsize}$.
If set to $0$, the value used is the same as \kbd{parisize}. It is not
easy to estimate reliably a sufficient value for this parameter because PARI
itself will parallelize computations and we recommend to not set this value
explicitly unless it solves a specific problem for you. For instance if you
see frequent messages of the form
\bprog
*** Warning: not enough memory, new thread stack 10000002048
@eprog (Meaning that \kbd{threadsize} had to be temporarily increased.)
On the other hand we strongly recommend to set \kbd{parisizemax} and
\kbd{threadsizemax} to a nonzero value.
The default value is $0$.
\subsec{threadsizemax}\kbdsidx{threadsizemax}\label{se:def,threadsizemax}
This default is specific to the \emph{parallel} version of PARI and gp
(built via \kbd{Configure --mt=pthread} or \kbd{mpi}) and is ignored
otherwise. In parallel mode,
each threads allocates its own private \tev{stack} for
its computations, see \kbd{parisize} and \kbd{parisizemax}. The
values of \kbd{threadsize} and \kbd{threadsizemax} determine the usual
and maximal size in bytes of the stacks of each thread, so the total memory
allocated will
be between $\kbd{parisize}+\kbd{nbthreads}\times\kbd{threadsize}$. and
$\kbd{parisizemax}+\kbd{nbthreads}\times\kbd{threadsizemax}$.
If set to $0$, the value used is the same as \kbd{threadsize}. We strongy
recommend to set both \kbd{parisizemax} and \kbd{threadsizemax} to a
nonzero value.
The default value is $0$.
\subsec{timer}\kbdsidx{timer}\label{se:def,timer}
This toggle is either 1 (on) or 0 (off). Every instruction sequence
in the gp calculator (anything ended by a newline in your input) is timed,
to some accuracy depending on the hardware and operating system. When
\tet{timer} is on, each such timing is printed immediately before the
output as follows:
\bprog
? factor(2^2^7+1)
time = 108 ms. \\ this line omitted if 'timer' is 0
%1 =
[ 59649589127497217 1]
[5704689200685129054721 1]
@eprog\noindent (See also \kbd{\#} and \kbd{\#\#}.)
The time measured is the user \idx{CPU time}, not including the time
for printing the results. If the time is negligible ($< 1$ ms.), nothing is
printed: in particular, no timing should be printed when defining a user
function or an alias, or installing a symbol from the library.
If you are using a parallel version of \kbd{gp}, the output is more
complex, such as
\bprog
? isprime( 10^300 + 331 )
cpu time = 3,206 ms, real time = 1,289 ms. \\ omitted if 'timer' is 0
%1 = 1
@eprog\noindent Now, \kbd{real time} is the wallclock time, and \kbd{cpu time}
is the sum of the CPU times spent by the different threads.
The default value is \kbd{0} (off).
\section{Standard monadic or dyadic operators}
\subsec{Boolean operators}\sidx{Boolean operators}
Any nonzero value is interpreted as \var{true} and any zero as \var{false}
(this includes empty vectors or matrices). The standard boolean operators
\kbd{||} (\idx{inclusive or}), \kbd{\&\&} (\idx{and})\sidx{or} and \kbd{!}
in prefix notation (\idx{not}) are available.
Their value is $1$ (true) or $0$ (false):
\bprog
? a && b \\ 1 iff a and b are nonzero
? a || b \\ 1 iff a or b is nonzero
? !a \\ 1 iff a is zero
@eprog
\subsec{Comparison}
The standard real \idx{comparison operators} \kbd{<=}, \kbd{<}, \kbd{>=},
\kbd{>}, are available in GP. The result is 1 if the comparison is true, 0
if it is false. These operators allow to compare integers (\typ{INT}),
rational (\typ{FRAC}) or real (\typ{REAL}) numbers,
real quadratic numbers (\typ{QUAD} of positive discriminant) and infinity
(\kbd{oo}, \typ{INFINITY}).
By extension, two character strings (\typ{STR}) are compared using
the standard lexicographic order. Comparing a string to an object of a
different type raises an exception. See also the \tet{cmp} universal
comparison function.
\subsec{Equality}
Two operators allow to test for equality: \kbd{==} (equality up to type
coercion) and \kbd{===} (identity). The result is $1$ if equality is decided,
else $0$.
The operator \kbd{===} is strict: objects of different type or length are
never identical, polynomials in different variables are never identical,
even if constant. On the contrary, \kbd{==} is very liberal: $a~\kbd{==}~b$
decides whether there is a natural map sending $a$ to the domain of $b$
or sending $b$ to the domain of $a$, such that the comparison makes sense
and equality holds. For instance
\bprog
? 4 == Mod(1,3) \\ equal
%1 = 1
? 4 === Mod(1,3) \\ but not identical
%2 = 0
? 'x == 'y \\ not equal (nonconstant and different variables)
%3 = 0
? Pol(0,'x) == Pol(0,'y) \\ equal (constant: ignore variable)
%4 = 1
? Pol(0,'x) === Pol(0,'y) \\ not identical
%5 = 0
? 0 == Pol(0) \\ equal (not identical)
%6 = 1
? [0] == 0 \\ equal (not identical)
%7 = 1
? [0, 0] == 0 \\ equal (not identical)
%8 = 1
? [0] == [0,0] \\ not equal
%9 = 0
@eprog\noindent In particular \kbd{==} is not transitive in general. The
operator \kbd{===} is transitive. The \kbd{==} operator allows two
equivalent negated forms: \kbd{!=} or \kbd{<>}; there is no negated form for
\kbd{===}.
Do not mistake \kbd{=} for \kbd{==}: the former is the assignment statement.
\subseckbd{+$/$-} The expressions \kbd{+}$x$ and \kbd{-}$x$ refer
to monadic operators: the first does nothing, the second negates $x$.
The library syntax is \fun{GEN}{gneg}{GEN x} for \kbd{-}$x$.
\subseckbd{+} The expression $x$ \kbd{+} $y$ is the \idx{sum} of $x$ and $y$.
Addition between a scalar type $x$ and a \typ{COL} or \typ{MAT} $y$ returns
respectively $[y[1] + x, y[2],\dots]$ and $y + x \text{Id}$. Other additions
between a scalar type and a vector or a matrix, or between vector/matrices of
incompatible sizes are forbidden.
The library syntax is \fun{GEN}{gadd}{GEN x, GEN y}.
\subseckbd{-} The expression $x$ \kbd{-} $y$ is the \idx{difference} of $x$
and $y$. Subtraction between a scalar type $x$ and a \typ{COL} or \typ{MAT}
$y$ returns respectively $[y[1] - x, y[2],\dots]$ and $y - x \text{Id}$.
Other subtractions between a scalar type and a vector or a matrix, or
between vector/matrices of incompatible sizes are forbidden.
The library syntax is \fun{GEN}{gsub}{GEN x, GEN y} for $x$ \kbd{-} $y$.
\subseckbd{*} The expression $x$ \kbd{*} $y$ is the \idx{product} of $x$
and $y$. Among the prominent impossibilities are multiplication between
vector/matrices of incompatible sizes, between a \typ{INTMOD} or \typ{PADIC}.
Restricted to scalars, \kbd{*} is commutative; because of vector and matrix
operations, it is not commutative in general.
Multiplication between two \typ{VEC}s or two \typ{COL}s is not
allowed; to take the \idx{scalar product} of two vectors of the same length,
transpose one of the vectors (using the operator \kbd{\til} or the function
\kbd{mattranspose}, see \secref{se:linear_algebra}) and multiply a row vector
by a column vector:
\bprog
? a = [1,2,3];
? a * a
*** at top-level: a*a
*** ^--
*** _*_: forbidden multiplication t_VEC * t_VEC.
? a * a~
%2 = 14
@eprog
If $x,y$ are binary quadratic forms, compose them; see also
\kbd{qfbnucomp} and \kbd{qfbnupow}. If $x,y$ are \typ{VECSMALL} of the same
length, understand them as permutations and compose them.
The library syntax is \fun{GEN}{gmul}{GEN x, GEN y} for $x$ \kbd{*} $y$.
Also available is \fun{GEN}{gsqr}{GEN x} for $x$ \kbd{*} $x$.
\subseckbd{/} The expression $x$ \kbd{/} $y$ is the \idx{quotient} of $x$
and $y$. In addition to the impossibilities for multiplication, note that if
the divisor is a matrix, it must be an invertible square matrix, and in that
case the result is $x*y^{-1}$. Furthermore note that the result is as exact
as possible: in particular, division of two integers always gives a rational
number (which may be an integer if the quotient is exact) and \emph{not} the
Euclidean quotient (see $x$ \kbd{\bs} $y$ for that), and similarly the
quotient of two polynomials is a rational function in general. To obtain the
approximate real value of the quotient of two integers, add \kbd{0.} to the
result; to obtain the approximate $p$-adic value of the quotient of two
integers, add \kbd{O(p\pow k)} to the result; finally, to obtain the
\idx{Taylor series} expansion of the quotient of two polynomials, add
\kbd{O(X\pow k)} to the result or use the \kbd{taylor} function
(see \secref{se:taylor}). \label{se:gdiv}
The library syntax is \fun{GEN}{gdiv}{GEN x, GEN y} for $x$ \kbd{/} $y$.
\subseckbd{\bs} The expression \kbd{$x$ \bs\ $y$} is the
\idx{Euclidean quotient} of $x$ and $y$. If $y$ is a real scalar, this is
defined as \kbd{floor($x$/$y$)} if $y > 0$, and \kbd{ceil($x$/$y$)} if
$y < 0$ and the division is not exact. Hence the remainder
\kbd{$x$ - ($x$\bs$y$)*$y$} is in $[0, |y|[$.
Note that when $y$ is an integer and $x$ a polynomial, $y$ is first promoted
to a polynomial of degree $0$. When $x$ is a vector or matrix, the operator
is applied componentwise.
The library syntax is \fun{GEN}{gdivent}{GEN x, GEN y}
for $x$ \kbd{\bs} $y$.
\subseckbd{\bs/} The expression $x$ \b{/} $y$ evaluates to the rounded
\idx{Euclidean quotient} of $x$ and $y$. This is the same as \kbd{$x$ \bs\ $y$}
except for scalar division: the quotient is such that the corresponding
remainder is smallest in absolute value and in case of a tie the quotient
closest to $+\infty$ is chosen (hence the remainder would belong to
$[{-}|y|/2, |y|/2[$).
When $x$ is a vector or matrix, the operator is applied componentwise.
The library syntax is \fun{GEN}{gdivround}{GEN x, GEN y}
for $x$ \b{/} $y$.
\subseckbd{\%} The expression \kbd{$x$ \% $y$} evaluates to the modular
\idx{Euclidean remainder} of $x$ and $y$, which we now define. When $x$ or $y$
is a nonintegral real number, \kbd{$x$\%$y$} is defined as
\kbd{$x$ - ($x$\bs$y$)*$y$}. Otherwise, if $y$ is an integer, this is
the smallest
nonnegative integer congruent to $x$ modulo $y$. (This actually coincides
with the previous definition if and only if $x$ is an integer.) If $y$ is a
polynomial, this is the polynomial of smallest degree congruent to
$x$ modulo $y$. For instance:
\bprog
? (1/2) % 3
%1 = 2
? 0.5 % 3
%2 = 0.5000000000000000000000000000
? (1/2) % 3.0
%3 = 1/2
@eprog
Note that when $y$ is an integer and $x$ a polynomial, $y$ is first promoted
to a polynomial of degree $0$. When $x$ is a vector or matrix, the operator
is applied componentwise.
The library syntax is \fun{GEN}{gmod}{GEN x, GEN y}
for $x$ \kbd{\%} $y$.
\subseckbd{!} The expression \kbd{$n!$} is the factorial of the
non-negative integer $n$.
The library syntax is \fun{GEN}{mpfact}{long n}
\subseckbd{\#} The expression \kbd{$n\#$} is the primorial of the
non-negative integer $n$, that is the product of all prime numbers less than
or equal to $x$.
The library syntax is \fun{GEN}{mpprimorial}{long n}
\subseckbd{op=} When \kbd{op} is a binary arithmetic operator among
\kbd{+}, \kbd{-}, \kbd{*}, \kbd{\%}, \kbd{/}, \kbd{\bs} or \kbd{\bs/}, the
construct $x$~\kbd{op=}~$y$ is a shortcut for $x$~\kbd{=}~$x\ \kbd{op}\ y$.
\bprog
? v[1] += 10 \\ increment v[1] by 10
? a /= 2 \\ divide a by 2
@eprog
\subseckbd{++} \kbd{$x$++} is a shortcut for \kbd{$x$ = $x$ + 1} and for
\kbd{$x$ += 1}.
\subseckbd{--} \kbd{$x$--} is a shortcut for \kbd{$x$ = $x$ - 1} and for
\kbd{$x$ -= 1}.
\subseckbd{\pow} The expression $x\hbox{\kbd{\pow}}n$ is \idx{powering}.
\item If the exponent $n$ is an integer, then exact operations are performed
using binary (left-shift) powering techniques. By definition, $x^{0}$ is
(an empty product interpreted as) an exact $1$ in the underlying prime
ring:
\bprog
? 0.0 ^ 0
%1 = 1
? (1 + O(2^3)) ^ 0
%2 = 1
? (1 + O(x)) ^ 0
%3 = 1
? Mod(2,4)^0
%4 = Mod(1,4)
? Mod(x,x^2)^0
%5 = Mod(1, x^2)
@eprog\noindent
If $x$ is a $p$-adic number, its precision will increase if $v_{p}(n) > 0$ and
$n \neq 0$. Powering a binary quadratic form (type \typ{QFB}) returns a
representative of the class, which is reduced if the input was.
(In particular, \kbd{x \pow 1} returns $x$ itself, whether it is reduced or
not.)
PARI rewrites the multiplication $x * x$ of two \emph{identical}
objects as $x^{2}$. Here, identical means the operands are reference the same
chunk of memory; no equality test is performed. This is no longer true when
more than two arguments are involved.
\bprog
? a = 1 + O(2); b = a;
? a * a \\ = a^2, precision increases
%2 = 1 + O(2^3)
? a * b \\ not rewritten as a^2
%3 = 1 + O(2)
? a*a*a \\ not rewritten as a^3
%4 = 1 + O(2)
@eprog
\item If the exponent is a rational number $p/q$ the behaviour depends
on~$x$. If $x$ is a complex number, return $\exp(n \log x)$ (principal
branch), in an exact form if possible:
\bprog
? 4^(1/2) \\ 4 being a square, this is exact
%1 = 2
? 2^(1/2) \\ now inexact
%2 = 1.4142135623730950488016887242096980786
? (-1/4)^(1/2) \\ exact again
%3 = 1/2*I
? (-1)^(1/3)
%4 = 0.500...+ 0.866...*I
@eprog\noindent Note that even though $-1$ is an exact cube root of $-1$,
it is not $\exp(\log(-1)/3)$; the latter is returned.
Otherwise return a solution $y$ of $y^{q} = x^{p}$ if it exists; beware that
this is defined up to $q$-th roots of 1 in the base field. Intmods modulo
composite numbers are not supported.
\bprog
? Mod(7,19)^(1/2)
%1 = Mod(11, 19) \\ is any square root
? sqrt(Mod(7,19))
%2 = Mod(8, 19) \\ is the smallest square root
? Mod(1,4)^(1/2)
*** at top-level: Mod(1,4)^(1/2)
*** ^------
*** _^_: not a prime number in gpow: 4.
@eprog
\item If the exponent is a negative integer or rational number,
an \idx{inverse} must be computed. For noninvertible \typ{INTMOD} $x$, this
will fail and (for $n$ an integer) implicitly exhibit a factor of the modulus:
\bprog
? Mod(4,6)^(-1)
*** at top-level: Mod(4,6)^(-1)
*** ^-----
*** _^_: impossible inverse modulo: Mod(2, 6).
@eprog\noindent
Here, a factor 2 is obtained directly. In general, take the gcd of the
representative and the modulus. This is most useful when performing
complicated operations modulo an integer $N$ whose factorization is
unknown. Either the computation succeeds and all is well, or a factor $d$
is discovered and the computation may be restarted modulo $d$ or $N/d$.
For noninvertible \typ{POLMOD} $x$, the behavior is the same:
\bprog
? Mod(x^2, x^3-x)^(-1)
*** at top-level: Mod(x^2,x^3-x)^(-1)
*** ^-----
*** _^_: impossible inverse in RgXQ_inv: Mod(x^2, x^3 - x).
@eprog\noindent Note that the underlying algorihm (subresultant) assumes
that the base ring is a domain:
\bprog
? a = Mod(3*y^3+1, 4); b = y^6+y^5+y^4+y^3+y^2+y+1; c = Mod(a,b);
? c^(-1)
*** at top-level: Mod(a,b)^(-1)
*** ^-----
*** _^_: impossible inverse modulo: Mod(2, 4).
@eprog\noindent
In fact $c$ is invertible, but $\Z/4\Z$ is not a domain and the algorithm
fails. It is possible for the algorithm to succeed in such situations
and any returned result will be correct, but chances are that an error
will occur first. In this specific case, one should work with $2$-adics.
In general, one can also try the following approach
\bprog
? inversemod(a, b) =
{ my(m, v = variable(b));
m = polsylvestermatrix(polrecip(a), polrecip(b));
m = matinverseimage(m, matid(#m)[,1]);
Polrev(m[1..poldegree(b)], v);
}
? inversemod(a,b)
%2 = Mod(2,4)*y^5 + Mod(3,4)*y^3 + Mod(1,4)*y^2 + Mod(3,4)*y + Mod(2,4)
@eprog\noindent
This is not guaranteed to work either since \kbd{matinverseimage} must also
invert pivots. See \secref{se:linear_algebra}.
For a \typ{MAT} $x$, the matrix is expected to be square and invertible, except
in the special case \kbd{x\pow(-1)} which returns a left inverse if one exists
(rectangular $x$ with full column rank).
\bprog
? x = Mat([1;2])
%1 =
[1]
[2]
? x^(-1)
%2 =
[1 0]
@eprog
\item Finally, if the exponent $n$ is not an rational number, powering is
treated as the transcendental function $\exp(n\log x)$, although it will be
more precise than the latter when $n$ and $x$ are exact:
\bprog
? s = 1/2 + 10^14 * I
? localprec(200); z = 2^s \\ for reference
? exponent(2^s - z)
%3 = -127 \\ perfect
? exponent(exp(s * log(2)) - z)
%4 = -84 \\ not so good
@eprog\noindent The second computation is less precise because $\log(2)$ is
first computed to $38$ decimal digits, then multiplied by $s$, which has a
huge imaginary part amplifying the error.
In this case, $x \mapsto x^{n}$ is treated as a transcendental function and
and in particular acts
componentwise on vector or matrices, even square matrices ! (See
\secref{se:trans}.) If $x$ is $0$ and $n$ is an inexact $0$, this will raise
an exception:
\bprog
? 4 ^ 1.0
%1 = 4.0000000000000000000000000000000000000
? 0^ 0.0
*** at top-level: 0^0.0
*** ^----
*** _^_: domain error in gpow(0,n): n <= 0
@eprog
The library syntax is \fun{GEN}{gpow}{GEN x, GEN n, long prec}
for $x\hbox{\kbd{\pow}}n$.
\subsec{cmp$(x,y)$}\kbdsidx{cmp}\label{se:cmp}
Gives the result of a comparison between arbitrary objects $x$ and $y$
(as $-1$, $0$ or $1$). The underlying order relation is transitive,
the function returns $0$ if and only if $x~\kbd{===}~y$. It has no
mathematical meaning but satisfies the following properties when comparing
entries of the same type:
\item two \typ{INT}s compare as usual (i.e. \kbd{cmp}$(x,y) < 0$ if and only
if $x < y$);
\item two \typ{VECSMALL}s of the same length compare lexicographically;
\item two \typ{STR}s compare lexicographically.
In case all components are equal up to the smallest length of the operands,
the more complex is considered to be larger. More precisely, the longest is
the largest; when lengths are equal, we have matrix $>$ vector $>$ scalar.
For example:
\bprog
? cmp(1, 2)
%1 = -1
? cmp(2, 1)
%2 = 1
? cmp(1, 1.0) \\ note that 1 == 1.0, but (1===1.0) is false.
%3 = -1
? cmp(x + Pi, [])
%4 = -1
@eprog\noindent This function is mostly useful to handle sorted lists or
vectors of arbitrary objects. For instance, if $v$ is a vector, the
construction \kbd{vecsort(v, cmp)} is equivalent to \kbd{Set(v)}.
The library syntax is \fun{int}{cmp_universal}{GEN x, GEN y}.
\subsec{divrem$(x,y,\{v\})$}\kbdsidx{divrem}\label{se:divrem}
Creates a column vector with two components, the first being the Euclidean
quotient (\kbd{$x$ \bs\ $y$}), the second the Euclidean remainder
(\kbd{$x$ - ($x$\bs$y$)*$y$}), of the division of $x$ by $y$. This avoids the
need to do two divisions if one needs both the quotient and the remainder.
If $v$ is present, and $x$, $y$ are multivariate
polynomials, divide with respect to the variable $v$.
Beware that \kbd{divrem($x$,$y$)[2]} is in general not the same as
\kbd{$x$ \% $y$}; no GP operator corresponds to it:
\bprog
? divrem(1/2, 3)[2]
%1 = 1/2
? (1/2) % 3
%2 = 2
? divrem(Mod(2,9), 3)[2]
*** at top-level: divrem(Mod(2,9),3)[2
*** ^--------------------
*** forbidden division t_INTMOD \ t_INT.
? Mod(2,9) % 6
%3 = Mod(2,3)
@eprog
The library syntax is \fun{GEN}{divrem}{GEN x, GEN y, long v = -1} where \kbd{v} is a variable number.
Also available is \fun{GEN}{gdiventres}{GEN x, GEN y} when $v$ is
not needed.
\subsec{lex$(x,y)$}\kbdsidx{lex}\label{se:lex}
Gives the result of a lexicographic comparison
between $x$ and $y$ (as $-1$, $0$ or $1$). This is to be interpreted in quite
a wide sense: it is admissible to compare objects of different types
(scalars, vectors, matrices), provided the scalars can be compared, as well
as vectors/matrices of different lengths; finally, when comparing two scalars,
a complex number $a + I*b$ is interpreted as a vector $[a,b]$ and a real
number $a$ as $[a,0]$. The comparison is recursive.
In case all components are equal up to the smallest length of the operands,
the more complex is considered to be larger. More precisely, the longest is
the largest; when lengths are equal, we have matrix $>$ vector $>$ scalar.
For example:
\bprog
? lex([1,3], [1,2,5])
%1 = 1
? lex([1,3], [1,3,-1])
%2 = -1
? lex([1], [[1]])
%3 = -1
? lex([1], [1]~)
%4 = 0
? lex(2 - I, 1)
%5 = 1
? lex(2 - I, 2)
%6 = -1
@eprog
The library syntax is \fun{int}{lexcmp}{GEN x, GEN y}.
\subsec{max$(x,y)$}\kbdsidx{max}\label{se:max}
Creates the maximum of $x$ and $y$ when they can be compared.
The library syntax is \fun{GEN}{gmax}{GEN x, GEN y}.
\subsec{min$(x,y)$}\kbdsidx{min}\label{se:min}
Creates the minimum of $x$ and $y$ when they can be compared.
The library syntax is \fun{GEN}{gmin}{GEN x, GEN y}.
\subsec{shift$(x,n)$}\kbdsidx{shift}\label{se:shift}
Shifts $x$ componentwise left by $n$ bits if $n\ge0$ and right by $|n|$
bits if $n<0$. May be abbreviated as $x$ \kbd{<<} $n$ or $x$ \kbd{>>} $(-n)$.
A left shift by $n$ corresponds to multiplication by $2^{n}$. A right shift
of an integer $x$ by $|n|$ corresponds to a Euclidean division of $x$ by
$2^{|n|}$ with a remainder of the same sign as $x$, hence is not the same (in
general) as $x \kbd{\bs} 2^{n}$.
The library syntax is \fun{GEN}{gshift}{GEN x, long n}.
\subsec{shiftmul$(x,n)$}\kbdsidx{shiftmul}\label{se:shiftmul}
Multiplies $x$ by $2^{n}$. The difference with
\kbd{shift} is that when $n<0$, ordinary division takes place, hence for
example if $x$ is an integer the result may be a fraction, while for shifts
Euclidean division takes place when $n<0$ hence if $x$ is an integer the result
is still an integer.
The library syntax is \fun{GEN}{gmul2n}{GEN x, long n}.
\subsec{sign$(x)$}\kbdsidx{sign}\label{se:sign}
\idx{sign} ($0$, $1$ or $-1$) of $x$, which must be of
type integer, real or fraction; \typ{QUAD} with positive discriminants and
\typ{INFINITY} are also supported.
The library syntax is \fun{int}{gsigne}{GEN x}.
\subsec{vecmax$(x,\{\&v\})$}\kbdsidx{vecmax}\label{se:vecmax}
If $x$ is a list, vector or matrix, returns the largest entry of $x$,
otherwise returns a copy of $x$. Error if $x$ is empty. Here, largest
refers to the ordinary real ordering (\kbd{<=}).
If $v$ is given, set it to the index of a largest entry (indirect maximum),
when $x$ is a vector or list. If $x$ is a matrix, set $v$ to coordinates
$[i,j]$ such that $x[i,j]$ is a largest entry. This argument $v$ is
ignored for other types.
When the vector has equal largest entries, the first occurence is
chosen; in a matrix, the smallest $j$ is chosen first, then the smallest $i$.
vector or matrix.
\bprog
? vecmax([10, 20, -30, 40])
%1 = 40
? vecmax([10, 20, -30, 40], &v); v
%2 = 4
? vecmax([10, 20; -30, 40], &v); v
%3 = [2, 2]
@eprog
The library syntax is \fun{GEN}{vecmax0}{GEN x, GEN *v = NULL}.
When $v$ is not needed, the function \fun{GEN}{vecmax}{GEN x} is
also available.
\subsec{vecmin$(x,\{\&v\})$}\kbdsidx{vecmin}\label{se:vecmin}
If $x$ is a list, vector or matrix, returns the smallest entry of $x$,
otherwise returns a copy of $x$. Error if $x$ is empty. Here, smallest
refers to the ordinary real ordering (\kbd{<=}).
If $v$ is given, set it to the index of a smallest entry (indirect minimum),
when $x$ is a vector or list. If $x$ is a matrix, set $v$ to coordinates
$[i,j]$ such that $x[i,j]$ is a smallest entry. This argument $v$ is
ignored for other types.
When a vector has equal smallest entries, the first occurence is
chosen; in a matrix, the smallest $j$ is chosen first, then the smallest $i$.
\bprog
? vecmin([10, 20, -30, 40])
%1 = -30
? vecmin([10, 20, -30, 40], &v); v
%2 = 3
? vecmin([10, 20; -30, 40], &v); v
%3 = [2, 1]
? vecmin([1,0;0,0], &v); v
%3 = [2, 1]
@eprog
The library syntax is \fun{GEN}{vecmin0}{GEN x, GEN *v = NULL}.
When $v$ is not needed, the function \fun{GEN}{vecmin}{GEN x} is also
available.
\section{Conversions and similar elementary functions or commands}
\label{se:conversion}
\noindent
Many of the conversion functions are rounding or truncating operations. In
this case, if the argument is a rational function, the result is the
Euclidean quotient of the numerator by the denominator, and if the argument
is a vector or a matrix, the operation is done componentwise. This will not
be restated for every function.
\subsec{Col$(x,\{n\})$}\kbdsidx{Col}\label{se:Col}
Transforms the object $x$ into a column vector. The dimension of the
resulting vector can be optionally specified via the extra parameter $n$.
If $n$ is omitted or $0$, the dimension depends on the type of $x$; the
vector has a single component, except when $x$ is
\item a vector or a quadratic form (in which case the resulting vector
is simply the initial object considered as a row vector),
\item a polynomial or a power series. In the case of a polynomial, the
coefficients of the vector start with the leading coefficient of the
polynomial, while for power series only the significant coefficients are
taken into account, but this time by increasing order of degree.
In this last case, \kbd{Vec} is the reciprocal function of \kbd{Pol} and
\kbd{Ser} respectively,
\item a matrix (the column of row vector comprising the matrix is returned),
\item a character string (a vector of individual characters is returned).
In the last two cases (matrix and character string), $n$ is meaningless and
must be omitted or an error is raised. Otherwise, if $n$ is given, $0$
entries are appended at the end of the vector if $n > 0$, and prepended at
the beginning if $n < 0$. The dimension of the resulting vector is $|n|$.
See ??Vec for examples and further details.
The library syntax is \fun{GEN}{gtocol0}{GEN x, long n}.
\fun{GEN}{gtocol}{GEN x} is also available.
\subsec{Colrev$(x,\{n\})$}\kbdsidx{Colrev}\label{se:Colrev}
As $\kbd{Col}(x, -n)$, then reverse the result. In particular,
\kbd{Colrev} is the reciprocal function of \kbd{Polrev}: the
coefficients of the vector start with the constant coefficient of the
polynomial and the others follow by increasing degree.
The library syntax is \fun{GEN}{gtocolrev0}{GEN x, long n}.
\fun{GEN}{gtocolrev}{GEN x} is also available.
\subsec{List$(\{x=[\,]\})$}\kbdsidx{List}\label{se:List}
Transforms a (row or column) vector $x$ into a list, whose components are
the entries of $x$. Similarly for a list, but rather useless in this case.
For other types, creates a list with the single element $x$.
The library syntax is \fun{GEN}{gtolist}{GEN x = NULL}.
The variant \fun{GEN}{mklist}{void} creates an empty list.
\subsec{Map$(\{x\})$}\kbdsidx{Map}\label{se:Map}
A ``Map'' is an associative array, or dictionary: a data
type composed of a collection of (\emph{key}, \emph{value}) pairs, such that
each key appears just once in the collection. This function
converts the matrix $[a_{1},b_{1};a_{2},b_{2};\dots;a_{n},b_{n}]$
to the map $a_{i}\mapsto b_{i}$.
\bprog
? M = Map(factor(13!));
? mapget(M, 3)
%2 = 5
? P = Map(matreduce(primes([1,20])))
%3 = Map([2,1;3,1;5,1;7,1;11,1;13,1;17,1;19,1])
? select(i->mapisdefined(P,i), [1..20])
%4 = [2, 3, 5, 7, 11, 13, 17, 19]
@eprog\noindent If the argument $x$ is omitted, creates an empty map, which
may be filled later via \tet{mapput}.
The library syntax is \fun{GEN}{gtomap}{GEN x = NULL}.
\subsec{Mat$(\{x=[\,]\})$}\kbdsidx{Mat}\label{se:Mat}
Transforms the object $x$ into a matrix.
If $x$ is already a matrix, a copy of $x$ is created.
If $x$ is a row (resp. column) vector, this creates a 1-row (resp.
1-column) matrix, \emph{unless} all elements are column (resp.~row) vectors
of the same length, in which case the vectors are concatenated sideways
and the attached big matrix is returned.
If $x$ is a binary quadratic form, creates the attached $2\times 2$
matrix. Otherwise, this creates a $1\times 1$ matrix containing $x$.
\bprog
? Mat(x + 1)
%1 =
[x + 1]
? Vec( matid(3) )
%2 = [[1, 0, 0]~, [0, 1, 0]~, [0, 0, 1]~]
? Mat(%)
%3 =
[1 0 0]
[0 1 0]
[0 0 1]
? Col( [1,2; 3,4] )
%4 = [[1, 2], [3, 4]]~
? Mat(%)
%5 =
[1 2]
[3 4]
? Mat(Qfb(1,2,3))
%6 =
[1 1]
[1 3]
@eprog
The library syntax is \fun{GEN}{gtomat}{GEN x = NULL}.
\subsec{Mod$(a,b)$}\kbdsidx{Mod}\label{se:Mod}
In its basic form, create an intmod or a polmod $(a \mod b)$; $b$ must
be an integer or a polynomial. We then obtain a \typ{INTMOD} and a
\typ{POLMOD} respectively:
\bprog
? t = Mod(2,17); t^8
%1 = Mod(1, 17)
? t = Mod(x,x^2+1); t^2
%2 = Mod(-1, x^2+1)
@eprog\noindent If $a \% b$ makes sense and yields a result of the
appropriate type (\typ{INT} or scalar/\typ{POL}), the operation succeeds as
well:
\bprog
? Mod(1/2, 5)
%3 = Mod(3, 5)
? Mod(7 + O(3^6), 3)
%4 = Mod(1, 3)
? Mod(Mod(1,12), 9)
%5 = Mod(1, 3)
? Mod(1/x, x^2+1)
%6 = Mod(-x, x^2+1)
? Mod(exp(x), x^4)
%7 = Mod(1/6*x^3 + 1/2*x^2 + x + 1, x^4)
@eprog
If $a$ is a complex object, ``base change'' it to $\Z/b\Z$ or $K[x]/(b)$,
which is equivalent to, but faster than, multiplying it by \kbd{Mod(1,b)}:
\bprog
? Mod([1,2;3,4], 2)
%8 =
[Mod(1, 2) Mod(0, 2)]
[Mod(1, 2) Mod(0, 2)]
? Mod(3*x+5, 2)
%9 = Mod(1, 2)*x + Mod(1, 2)
? Mod(x^2 + y*x + y^3, y^2+1)
%10 = Mod(1, y^2 + 1)*x^2 + Mod(y, y^2 + 1)*x + Mod(-y, y^2 + 1)
@eprog
This function is not the same as $x$ \kbd{\%} $y$, the result of which
has no knowledge of the intended modulus $y$. Compare
\bprog
? x = 4 % 5; x + 1
%11 = 5
? x = Mod(4,5); x + 1
%12 = Mod(0,5)
@eprog Note that such ``modular'' objects can be lifted via \tet{lift} or
\tet{centerlift}. The modulus of a \typ{INTMOD} or \typ{POLMOD} $z$ can
be recovered via \kbd{$z$.mod}.
The library syntax is \fun{GEN}{gmodulo}{GEN a, GEN b}.
\subsec{Pol$(t,\{v=\kbd{'}x\})$}\kbdsidx{Pol}\label{se:Pol}
Transforms the object $t$ into a polynomial with main variable $v$. If $t$
is a scalar, this gives a constant polynomial. If $t$ is a power series with
nonnegative valuation or a rational function, the effect is similar to
\kbd{truncate}, i.e.~we chop off the $O(X^{k})$ or compute the Euclidean
quotient of the numerator by the denominator, then change the main variable
of the result to $v$.
The main use of this function is when $t$ is a vector: it creates the
polynomial whose coefficients are given by $t$, with $t[1]$ being the leading
coefficient (which can be zero). It is much faster to evaluate
\kbd{Pol} on a vector of coefficients in this way, than the corresponding
formal expression $a_{n} X^{n} + \dots + a_{0}$, which is evaluated naively
exactly as written (linear versus quadratic time in $n$). \tet{Polrev} can be
used if one wants $x[1]$ to be the constant coefficient:
\bprog
? Pol([1,2,3])
%1 = x^2 + 2*x + 3
? Polrev([1,2,3])
%2 = 3*x^2 + 2*x + 1
@eprog\noindent
The reciprocal function of \kbd{Pol} (resp.~\kbd{Polrev}) is \kbd{Vec} (resp.~
\kbd{Vecrev}).
\bprog
? Vec(Pol([1,2,3]))
%1 = [1, 2, 3]
? Vecrev( Polrev([1,2,3]) )
%2 = [1, 2, 3]
@eprog\noindent
\misctitle{Warning} This is \emph{not} a substitution function. It will not
transform an object containing variables of higher priority than~$v$.
\bprog
? Pol(x + y, y)
*** at top-level: Pol(x+y,y)
*** ^----------
*** Pol: variable must have higher priority in gtopoly.
@eprog
The library syntax is \fun{GEN}{gtopoly}{GEN t, long v = -1} where \kbd{v} is a variable number.
\subsec{Polrev$(t,\{v=\kbd{'}x\})$}\kbdsidx{Polrev}\label{se:Polrev}
Transform the object $t$ into a polynomial
with main variable $v$. If $t$ is a scalar, this gives a constant polynomial.
If $t$ is a power series, the effect is identical to \kbd{truncate}, i.e.~it
chops off the $O(X^{k})$.
The main use of this function is when $t$ is a vector: it creates the
polynomial whose coefficients are given by $t$, with $t[1]$ being the
constant term. \tet{Pol} can be used if one wants $t[1]$ to be the leading
coefficient:
\bprog
? Polrev([1,2,3])
%1 = 3*x^2 + 2*x + 1
? Pol([1,2,3])
%2 = x^2 + 2*x + 3
@eprog
The reciprocal function of \kbd{Pol} (resp.~\kbd{Polrev}) is \kbd{Vec} (resp.~
\kbd{Vecrev}).
The library syntax is \fun{GEN}{gtopolyrev}{GEN t, long v = -1} where \kbd{v} is a variable number.
\subsec{Qfb$(a,\{b\},\{c\})$}\kbdsidx{Qfb}\label{se:Qfb}
Creates the binary quadratic form\sidx{binary quadratic form}
$ax^{2}+bxy+cy^{2}$. Negative definite forms are not implemented,
use their positive definite counterpart instead.
The syntax \kbd{Qfb(V)} is also allowed with $V$ being either
a \typ{VEC} $[a,b,c]$, a \typ{POL} $ax^{2}+bx+c$ or a \typ{MAT}
$[a,b_{0};b_{1},c]$ with $b_{0}+b_{1}=b$.
The library syntax is \fun{GEN}{Qfb0}{GEN a, GEN b = NULL, GEN c = NULL}.
\subsec{Ser$(s,\{v=\kbd{'}x\},\{d=\var{seriesprecision}\})$}\kbdsidx{Ser}\label{se:Ser}
Transforms the object $s$ into a power series with main variable $v$
($x$ by default) and precision (number of significant terms) equal to
$d \geq 0$ ($d = \kbd{seriesprecision}$ by default). If $s$ is a
scalar, this gives a constant power series in $v$ with precision \kbd{d}.
If $s$ is a polynomial, the polynomial is truncated to $d$ terms if needed
\bprog
? \ps
seriesprecision = 16 significant terms
? Ser(1) \\ 16 terms by default
%1 = 1 + O(x^16)
? Ser(1, 'y, 5)
%2 = 1 + O(y^5)
? Ser(x^2,, 5)
%3 = x^2 + O(x^7)
? T = polcyclo(100)
%4 = x^40 - x^30 + x^20 - x^10 + 1
? Ser(T, 'x, 11)
%5 = 1 - x^10 + O(x^11)
@eprog\noindent The function is more or less equivalent with multiplication by
$1 + O(v^{d})$ in theses cases, only faster.
For the remaining types, vectors and power series, we first explain what
occurs if $d$ is omitted. In this case, the function uses exactly the amount
of information given in the input:
\item If $s$ is already a power series in $v$, we return it verbatim;
\item If $s$ is a vector, the coefficients of the vector are
understood to be the coefficients of the power series starting from the
constant term (as in \tet{Polrev}$(x)$); in other words we convert
\typ{VEC} / \typ{COL} to the power series whose significant terms are exactly
given by the vector entries.
On the other hand, if $d$ is explicitly given, we abide by its value
and return a series, truncated or extended with zeros as needed, with
$d$ significant terms.
\bprog
? v = [1,2,3];
? Ser(v, t) \\ 3 terms: seriesprecision is ignored!
%7 = 1 + 2*t + 3*t^2 + O(t^3)
? Ser(v, t, 7) \\ 7 terms as explicitly requested
%8 = 1 + 2*t + 3*t^2 + O(t^7)
? s = 1+x+O(x^2);
? Ser(s)
%10 = 1 + x + O(x^2) \\ 2 terms: seriesprecision is ignored
? Ser(s, x, 7) \\ extend to 7 terms
%11 = 1 + x + O(x^7)
? Ser(s, x, 1) \\ truncate to 1 term
%12 = 1 + O(x)
@eprog\noindent
The warning given for \kbd{Pol} also applies here: this is not a substitution
function.
The library syntax is \fun{GEN}{Ser0}{GEN s, long v = -1, GEN d = NULL, long precdl} where \kbd{v} is a variable number.
\subsec{Set$(\{x=[\,]\})$}\kbdsidx{Set}\label{se:Set}
Converts $x$ into a set, i.e.~into a row vector, with strictly increasing
entries with respect to the (somewhat arbitrary) universal comparison function
\tet{cmp}. Standard container types \typ{VEC}, \typ{COL}, \typ{LIST} and
\typ{VECSMALL} are converted to the set with corresponding elements. All
others are converted to a set with one element.
\bprog
? Set([1,2,4,2,1,3])
%1 = [1, 2, 3, 4]
? Set(x)
%2 = [x]
? Set(Vecsmall([1,3,2,1,3]))
%3 = [1, 2, 3]
@eprog
The library syntax is \fun{GEN}{gtoset}{GEN x = NULL}.
\subsec{Str$(\{x\}*)$}\kbdsidx{Str}\label{se:Str}
Converts its argument list into a
single character string (type \typ{STR}, the empty string if $x$ is omitted).
To recover an ordinary \kbd{GEN} from a string, apply \kbd{eval} to it. The
arguments of \kbd{Str} are evaluated in string context, see \secref{se:strings}.
\bprog
? x2 = 0; i = 2; Str(x, i)
%1 = "x2"
? eval(%)
%2 = 0
@eprog\noindent
This function is mostly useless in library mode. Use the pair
\tet{strtoGEN}/\tet{GENtostr} to convert between \kbd{GEN} and \kbd{char*}.
The latter returns a malloced string, which should be freed after usage.
The library syntax is \fun{GEN}{Str}{GEN vec_x}.
\subsec{Vec$(x,\{n\})$}\kbdsidx{Vec}\label{se:Vec}
Transforms the object $x$ into a row vector. The dimension of the
resulting vector can be optionally specified via the extra parameter $n$.
If $n$ is omitted or $0$, the dimension depends on the type of $x$; the
vector has a single component, except when $x$ is
\item a vector or a quadratic form: returns the initial object considered as a
row vector,
\item a polynomial or a power series: returns a vector consisting of the
coefficients. In the case of a polynomial, the coefficients of the vector
start with the leading coefficient of the polynomial, while for power series
only the significant coefficients are taken into account, but this time by
increasing order of degree. In particular the valuation is ignored
(which makes the function useful for series of negative valuation):
\bprog
? Vec(3*x^2 + x)
%1 = [3, 1, 0]
? Vec(x^2 + 3*x^3 + O(x^5))
%2 = [1, 3, 0]
? Vec(x^-2 + 3*x^-1 + O(x))
%3 = [1, 3, 0]
@eprog\noindent \kbd{Vec} is the reciprocal function of \kbd{Pol} for a
polynomial and of \kbd{Ser} for power series of valuation $0$.
\item a matrix: returns the vector of columns comprising the matrix,
\bprog
? m = [1,2,3;4,5,6]
%4 =
[1 2 3]
[4 5 6]
? Vec(m)
%5 = [[1, 4]~, [2, 5]~, [3, 6]~]
@eprog
\item a character string: returns the vector of individual characters
(as strings of length $1$),
\bprog
? Vec("PARI")
%6 = ["P", "A", "R", "I"]
@eprog
\item a map: returns the vector of the domain of the map,
\item an error context (\typ{ERROR}): returns the error components, see
\tet{iferr}.
In the last four cases (matrix, character string, map, error), $n$ is
meaningless and must be omitted or an error is raised. Otherwise, if $n$ is
given, $0$ entries are appended at the end of the vector if $n > 0$, and
prepended at the beginning if $n < 0$. The dimension of the resulting vector
is $|n|$. If the original object had fewer than $|n|$ components, it is
truncated from the right if $n > 0$ and from the left if $n < 0$:
\bprog
? v = [1,2,3,4];
? forstep(i=5, 2, -1, print(Vec(v, i)));
[1, 2, 3, 4, 0]
[1, 2, 3, 4]
[1, 2, 3] \\ truncated from the right
[1, 2]
? forstep(i=5, 2, -1, print(Vec(v, -i)));
[0, 1, 2, 3, 4]
[1, 2, 3, 4]
[2, 3, 4] \\ truncated from the left
[3, 4]
@eprog
These rules allow to write a conversion function for series that takes
positive valuations into account:
\bprog
? serVec(s) = Vec(s, -serprec(s,variable(s)));
? serVec(x^2 + 3*x^3 + O(x^5))
%2 = [0, 0, 1, 3, 0]
@eprog\noindent (That function is not intended for series of negative
valuation.)
The library syntax is \fun{GEN}{gtovec0}{GEN x, long n}.
\fun{GEN}{gtovec}{GEN x} is also available.
\subsec{Vecrev$(x,\{n\})$}\kbdsidx{Vecrev}\label{se:Vecrev}
As $\kbd{Vec}(x, -n)$, then reverse the result. In particular,
\kbd{Vecrev} is the reciprocal function of \kbd{Polrev}: the
coefficients of the vector start with the constant coefficient of the
polynomial and the others follow by increasing degree.
The library syntax is \fun{GEN}{gtovecrev0}{GEN x, long n}.
\fun{GEN}{gtovecrev}{GEN x} is also available.
\subsec{Vecsmall$(x,\{n\})$}\kbdsidx{Vecsmall}\label{se:Vecsmall}
Transforms the object $x$ into a row vector of type \typ{VECSMALL}. The
dimension of the resulting vector can be optionally specified via the extra
parameter $n$.
This acts as \kbd{Vec}$(x,n)$, but only on a limited set of objects:
the result must be representable as a vector of small integers.
If $x$ is a character string, a vector of individual characters in ASCII
encoding is returned (\tet{strchr} yields back the character string).
The library syntax is \fun{GEN}{gtovecsmall0}{GEN x, long n}.
\fun{GEN}{gtovecsmall}{GEN x} is also available.
\subsec{binary$(x)$}\kbdsidx{binary}\label{se:binary}
Outputs the vector of the binary digits of $|x|$. Here $x$ can be an
integer, a real number (in which case the result has two components, one for
the integer part, one for the fractional part) or a vector/matrix.
\bprog
? binary(10)
%1 = [1, 0, 1, 0]
? binary(3.14)
%2 = [[1, 1], [0, 0, 1, 0, 0, 0, [...]]
? binary([1,2])
%3 = [[1], [1, 0]]
@eprog\noindent For integer $x\ge1$, the number of bits is
$\kbd{logint}(x,2) + 1$. By convention, $0$ has no digits:
\bprog
? binary(0)
%4 = []
@eprog
The library syntax is \fun{GEN}{binaire}{GEN x}.
\subsec{bitand$(x,y)$}\kbdsidx{bitand}\label{se:bitand}
Bitwise \tet{and}
\sidx{bitwise and}of two integers $x$ and $y$, that is the integer
$$\sum_{i} (x_{i}~\kbd{and}~y_{i}) 2^{i}$$
Negative numbers behave $2$-adically, i.e.~the result is the $2$-adic limit
of \kbd{bitand}$(x_{n},y_{n})$, where $x_{n}$ and $y_{n}$ are nonnegative
integers tending to $x$ and $y$ respectively. (The result is an ordinary
integer, possibly negative.)
\bprog
? bitand(5, 3)
%1 = 1
? bitand(-5, 3)
%2 = 3
? bitand(-5, -3)
%3 = -7
@eprog
The library syntax is \fun{GEN}{gbitand}{GEN x, GEN y}.
Also available is
\fun{GEN}{ibitand}{GEN x, GEN y}, which returns the bitwise \emph{and}
of $|x|$ and $|y|$, two integers.
\subsec{bitneg$(x,\{n=-1\})$}\kbdsidx{bitneg}\label{se:bitneg}
\idx{bitwise negation} of an integer $x$,
truncated to $n$ bits, $n\geq 0$, that is the integer
$$\sum_{i=0}^{n-1} \kbd{not}(x_{i}) 2^{i}.$$
The special case $n=-1$ means no truncation: an infinite sequence of
leading $1$ is then represented as a negative number.
See \secref{se:bitand} for the behavior for negative arguments.
The library syntax is \fun{GEN}{gbitneg}{GEN x, long n}.
\subsec{bitnegimply$(x,y)$}\kbdsidx{bitnegimply}\label{se:bitnegimply}
Bitwise negated imply of two integers $x$ and
$y$ (or \kbd{not} $(x \Rightarrow y)$), that is the integer $$\sum
(x_{i}~\kbd{and not}(y_{i})) 2^{i}$$
See \secref{se:bitand} for the behavior for negative arguments.
The library syntax is \fun{GEN}{gbitnegimply}{GEN x, GEN y}.
Also available is
\fun{GEN}{ibitnegimply}{GEN x, GEN y}, which returns the bitwise negated
imply of $|x|$ and $|y|$, two integers.
\subsec{bitor$(x,y)$}\kbdsidx{bitor}\label{se:bitor}
\sidx{bitwise inclusive or}bitwise (inclusive)
\tet{or} of two integers $x$ and $y$, that is the integer $$\sum
(x_{i}~\kbd{or}~y_{i}) 2^{i}$$
See \secref{se:bitand} for the behavior for negative arguments.
The library syntax is \fun{GEN}{gbitor}{GEN x, GEN y}.
Also available is
\fun{GEN}{ibitor}{GEN x, GEN y}, which returns the bitwise \emph{or}
of $|x|$ and $|y|$, two integers.
\subsec{bitprecision$(x,\{n\})$}\kbdsidx{bitprecision}\label{se:bitprecision}
The function behaves differently according to whether $n$ is
present or not. If $n$ is missing, the function returns
the (floating point) precision in bits of the PARI object $x$.
If $x$ is an exact object, the function returns \kbd{+oo}.
\bprog
? bitprecision(exp(1e-100))
%1 = 512 \\ 512 bits
? bitprecision( [ exp(1e-100), 0.5 ] )
%2 = 128 \\ minimal accuracy among components
? bitprecision(2 + x)
%3 = +oo \\ exact object
@eprog\noindent Use \kbd{getlocalbitprec()} to retrieve the
working bit precision (as modified by possible \kbd{localbitprec}
statements).
If $n$ is present and positive, the function creates a new object equal to $x$
with the new bit-precision roughly $n$. In fact, the smallest multiple of 64
(resp.~32 on a 32-bit machine) larger than or equal to $n$.
For $x$ a vector or a matrix, the operation is
done componentwise; for series and polynomials, the operation is done
coefficientwise. For real $x$, $n$ is the number of desired significant
\emph{bits}. If $n$ is smaller than the precision of $x$, $x$ is truncated,
otherwise $x$ is extended with zeros. For exact or non-floating-point types,
no change.
\bprog
? bitprecision(Pi, 10) \\ actually 64 bits ~ 19 decimal digits
%1 = 3.141592653589793239
? bitprecision(1, 10)
%2 = 1
? bitprecision(1 + O(x), 10)
%3 = 1 + O(x)
? bitprecision(2 + O(3^5), 10)
%4 = 2 + O(3^5)
@eprog\noindent
The library syntax is \fun{GEN}{bitprecision00}{GEN x, GEN n = NULL}.
\subsec{bittest$(x,n)$}\kbdsidx{bittest}\label{se:bittest}
Outputs the $n^{\text{th}}$ bit of $x$ starting
from the right (i.e.~the coefficient of $2^{n}$ in the binary expansion of $x$).
The result is 0 or 1. For $x\ge1$, the highest 1-bit is at $n =
\kbd{logint}(x)$ (and bigger $n$ gives $0$).
\bprog
? bittest(7, 0)
%1 = 1 \\ the bit 0 is 1
? bittest(7, 2)
%2 = 1 \\ the bit 2 is 1
? bittest(7, 3)
%3 = 0 \\ the bit 3 is 0
@eprog\noindent
See \secref{se:bitand} for the behavior at negative arguments.
The library syntax is \fun{GEN}{gbittest}{GEN x, long n}.
For a \typ{INT} $x$, the variant \fun{long}{bittest}{GEN x, long n} is
generally easier to use, and if furthermore $n\ge 0$ the low-level function
\fun{ulong}{int_bit}{GEN x, long n} returns \kbd{bittest(abs(x),n)}.
\subsec{bitxor$(x,y)$}\kbdsidx{bitxor}\label{se:bitxor}
Bitwise (exclusive) \tet{or}
\sidx{bitwise exclusive or}of two integers $x$ and $y$, that is the integer
$$\sum (x_{i}~\kbd{xor}~y_{i}) 2^{i}$$
See \secref{se:bitand} for the behavior for negative arguments.
The library syntax is \fun{GEN}{gbitxor}{GEN x, GEN y}.
Also available is
\fun{GEN}{ibitxor}{GEN x, GEN y}, which returns the bitwise \emph{xor}
of $|x|$ and $|y|$, two integers.
\subsec{ceil$(x)$}\kbdsidx{ceil}\label{se:ceil}
Ceiling of $x$. When $x$ is in $\R$, the result is the
smallest integer greater than or equal to $x$. Applied to a rational
function, $\kbd{ceil}(x)$ returns the Euclidean quotient of the numerator by
the denominator.
The library syntax is \fun{GEN}{gceil}{GEN x}.
\subsec{centerlift$(x,\{v\})$}\kbdsidx{centerlift}\label{se:centerlift}
Same as \tet{lift}, except that \typ{INTMOD} and \typ{PADIC} components
are lifted using centered residues:
\item for a \typ{INTMOD} $x\in \Z/n\Z$, the lift $y$ is such that
$-n/2<y\le n/2$.
\item a \typ{PADIC} $x$ is lifted in the same way as above (modulo
$p^{\kbd{padicprec(x)}}$) if its valuation $v$ is nonnegative; if not, returns
the fraction $p^{v}$ \kbd{centerlift}$(x p^{-v})$; in particular, rational
reconstruction is not attempted. Use \tet{bestappr} for this.
For backward compatibility, \kbd{centerlift(x,'v)} is allowed as an alias
for \kbd{lift(x,'v)}.
\synt{centerlift}{GEN x}.
\subsec{characteristic$(x)$}\kbdsidx{characteristic}\label{se:characteristic}
Returns the characteristic of the base ring over which $x$ is defined (as
defined by \typ{INTMOD} and \typ{FFELT} components). The function raises an
exception if incompatible primes arise from \typ{FFELT} and \typ{PADIC}
components.
\bprog
? characteristic(Mod(1,24)*x + Mod(1,18)*y)
%1 = 6
@eprog
The library syntax is \fun{GEN}{characteristic}{GEN x}.
\subsec{component$(x,n)$}\kbdsidx{component}\label{se:component}
Extracts the $n^{\text{th}}$-component of $x$. This is to be understood
as follows: every PARI type has one or two initial \idx{code words}. The
components are counted, starting at 1, after these code words. In particular
if $x$ is a vector, this is indeed the $n^{\text{th}}$-component of $x$, if
$x$ is a matrix, the $n^{\text{th}}$ column, if $x$ is a polynomial, the
$n^{\text{th}}$ coefficient (i.e.~of degree $n-1$), and for power series,
the $n^{\text{th}}$ significant coefficient.
For polynomials and power series, one should rather use \tet{polcoef}, and
for vectors and matrices, the \kbd{[$\,$]} operator. Namely, if $x$ is a
vector, then \tet{x[n]} represents the $n^{\text{th}}$ component of $x$. If
$x$ is a matrix, \tet{x[m,n]} represents the coefficient of row \kbd{m} and
column \kbd{n} of the matrix, \tet{x[m,]} represents the $m^{\text{th}}$
\emph{row} of $x$, and \tet{x[,n]} represents the $n^{\text{th}}$
\emph{column} of $x$.
Using of this function requires detailed knowledge of the structure of the
different PARI types, and thus it should almost never be used directly.
Some useful exceptions:
\bprog
? x = 3 + O(3^5);
? component(x, 2)
%2 = 81 \\ p^(p-adic accuracy)
? component(x, 1)
%3 = 3 \\ p
? q = Qfb(1,2,3);
? component(q, 1)
%5 = 1
@eprog
The library syntax is \fun{GEN}{compo}{GEN x, long n}.
\subsec{conj$(x)$}\kbdsidx{conj}\label{se:conj}
Conjugate of $x$. The meaning of this
is clear, except that for real quadratic numbers, it means conjugation in the
real quadratic field. This function has no effect on integers, reals,
intmods, fractions or $p$-adics. The only forbidden type is polmod
(see \kbd{conjvec} for this).
The library syntax is \fun{GEN}{gconj}{GEN x}.
\subsec{conjvec$(z)$}\kbdsidx{conjvec}\label{se:conjvec}
Conjugate vector representation of $z$. If $z$ is a
polmod, equal to \kbd{Mod}$(a,T)$, this gives a vector of length
$\text{degree}(T)$ containing:
\item the complex embeddings of $z$ if $T$ has rational coefficients,
i.e.~the $a(r[i])$ where $r = \kbd{polroots}(T)$;
\item the conjugates of $z$ if $T$ has some intmod coefficients;
\noindent if $z$ is a finite field element, the result is the vector of
conjugates $[z,z^{p},z^{p^{2}},\ldots,z^{p^{n-1}}]$ where $n=\text{degree}(T)$.
\noindent If $z$ is an integer or a rational number, the result is~$z$. If
$z$ is a (row or column) vector, the result is a matrix whose columns are
the conjugate vectors of the individual elements of $z$.
The library syntax is \fun{GEN}{conjvec}{GEN z, long prec}.
\subsec{denominator$(f,\{D\})$}\kbdsidx{denominator}\label{se:denominator}
Denominator of $f$. The meaning of this is clear when $f$ is a rational number
or function. If $f$ is an integer or a polynomial, it is treated as a rational
number or function, respectively, and the result is equal to $1$. For
polynomials, you probably want to use
\bprog
denominator( content(f) )
@eprog\noindent instead. As for modular objects, \typ{INTMOD} and \typ{PADIC}
have denominator $1$, and the denominator of a \typ{POLMOD} is the
denominator of its lift.
If $f$ is a recursive structure, for instance a vector or matrix, the lcm
of the denominators of its components (a common denominator) is computed.
This also applies for \typ{COMPLEX}s and \typ{QUAD}s.
\misctitle{Warning} Multivariate objects are created according to variable
priorities, with possibly surprising side effects ($x/y$ is a polynomial, but
$y/x$ is a rational function). See \secref{se:priority}.
The optional argument $D$ allows to control over which ring we compute the
denominator and get a more predictable behaviour:
\item $1$: we only consider the underlying $\Q$-structure and the
denominator is a (positive) rational integer
\item a simple variable, say \kbd{'x}: all entries as rational functions
in $K(x)$ and the denominator is a polynomial in $x$.
\bprog
? f = x + 1/y + 1/2;
? denominator(f) \\ a t_POL in x
%2 = 1
? denominator(f, 1) \\ Q-denominator
%3 = 2
? denominator(f, x) \\ as a t_POL in x, seen above
%4 = 1
? denominator(f, y) \\ as a rational function in y
%5 = 2*y
@eprog
The library syntax is \fun{GEN}{denominator}{GEN f, GEN D = NULL}.
Also available are
\fun{GEN}{denom}{GEN x} which implements the not very useful default
behaviour ($D$ is \kbd{NULL}) and \fun{GEN}{Q_denom}{GEN x} ($D = 1$).
\subsec{digits$(x,\{b\})$}\kbdsidx{digits}\label{se:digits}
Outputs the vector of the digits of $x$ in base $b$, where $x$ and $b$ are
integers ($b = 10$ by default), from most significant down to least
significant, the digits being the the integers $0$, $1$, \dots $|b|-1$.
If $b>0$ and $x<0$, return the digits of $|x|$.
For $x\ge1$ and $b>0$, the number of digits is
$\kbd{logint}(x,b) + 1$. See \kbd{fromdigits} for the reverse operation.
We also allow $x$ an integral $p$-adic in which case $b$ should be omitted
or equal to $p$. Digits are still ordered from most significant to least
significant in the $p$-adic sense (meaning we start from $x$ mod $p$);
trailing zeros are truncated.
\bprog
? digits(1230)
%1 = [1, 2, 3, 0]
? digits(10, 2) \\ base 2
%2 = [1, 0, 1, 0]
@eprog\noindent By convention, $0$ has no digits:
\bprog
? digits(0)
%3 = []
? digits(10,-2) \\ base -2
%4 = [1, 1, 1, 1, 0] \\ 10 = -2 + 4 - 8 + 16
? 1105 + O(5^5)
%5 = 5 + 4*5^2 + 3*5^3 + O(5^5)
? digits(%)
%6 = [0, 1, 4, 3]
@eprog
The library syntax is \fun{GEN}{digits}{GEN x, GEN b = NULL}.
\subsec{exponent$(x)$}\kbdsidx{exponent}\label{se:exponent}
When $x$ is a \typ{REAL}, the result is the binary exponent $e$ of $x$.
For a nonzero $x$, this is the unique integer $e$ such that
$2^{e} \leq |x| < 2^{e+1}$. For a real $0$, this returns the PARI exponent $e$
attached to $x$ (which may represent any floating-point number less than
$2^{e}$ in absolute value).
\bprog
? exponent(Pi)
%1 = 1
? exponent(4.0)
%2 = 2
? exponent(0.0)
%3 = -128
? default(realbitprecision)
%4 = 128
@eprog\noindent This definition extends naturally to nonzero integers,
and the exponent of an exact $0$ is $-\kbd{oo}$ by convention.
For convenience, we \emph{define} the exponent of a \typ{FRAC} $a/b$ as
the difference of \kbd{exponent}$(a)$ and \kbd{exponent}$(b)$; note that,
if $e'$ denotes the exponent of \kbd{$a/b$ * 1.0}, then the exponent $e$
we return is either $e'$ or $e'+1$, thus $2^{e+1}$ is an upper bound for
$|a/b|$.
\bprog
? [ exponent(9), exponent(10), exponent(9/10), exponent(9/10*1.) ]
%5 = [3, 3, 0, -1]
@eprog
For a PARI object of type \typ{COMPLEX}, \typ{POL}, \typ{SER}, \typ{VEC},
\typ{COL}, \typ{MAT} this returns the largest exponent found among the
components of $x$. Hence $2^{e+1}$ is a quick upper bound for the sup norm
of real matrices or polynomials; and $2^{e+(3/2)}$ for complex ones.
\bprog
? exponent(3*x^2 + 15*x - 100)
%5 = 6
? exponent(0)
%6 = -oo
@eprog
The library syntax is \fun{GEN}{gpexponent}{GEN x}.
Also available is \fun{long}{gexpo}{GEN x}.
\subsec{floor$(x)$}\kbdsidx{floor}\label{se:floor}
Floor of $x$. When $x$ is in $\R$, the result is the
largest integer smaller than or equal to $x$. Applied to a rational function,
$\kbd{floor}(x)$ returns the Euclidean quotient of the numerator by the
denominator.
The library syntax is \fun{GEN}{gfloor}{GEN x}.
\subsec{frac$(x)$}\kbdsidx{frac}\label{se:frac}
Fractional part of $x$. Identical to
$x-\text{floor}(x)$. If $x$ is real, the result is in $[0,1[$.
The library syntax is \fun{GEN}{gfrac}{GEN x}.
\subsec{fromdigits$(x,\{b=10\})$}\kbdsidx{fromdigits}\label{se:fromdigits}
Gives the integer formed by the elements of $x$ seen as the digits of a
number in base $b$ ($b = 10$ by default); $b$ must be an integer satisfying
$|b|>1$. This is the reverse of \kbd{digits}:
\bprog
? digits(1234, 5)
%1 = [1,4,4,1,4]
? fromdigits([1,4,4,1,4],5)
%2 = 1234
@eprog\noindent By convention, $0$ has no digits:
\bprog
? fromdigits([])
%3 = 0
@eprog\noindent This function works with $x$ a \typ{VECSMALL}; and
also with $b < 0$ or $x[i]$ not an actual digit in base $b$ (i.e.,
$x[i] < 0$ or $x[i] \geq b$): if $x$ has length $n$, we return
$\sum_{i=1}^{n} x[i] b^{n-i}$.
The library syntax is \fun{GEN}{fromdigits}{GEN x, GEN b = NULL}.
\subsec{imag$(x)$}\kbdsidx{imag}\label{se:imag}
Imaginary part of $x$. When $x$ is a quadratic number, this is the
coefficient of $\omega$ in the ``canonical'' integral basis $(1,\omega)$.
\bprog
? imag(3 + I)
%1 = 1
? x = 3 + quadgen(-23);
? imag(x) \\ as a quadratic number
%3 = 1
? imag(x * 1.) \\ as a complex number
%4 = 2.3979157616563597707987190320813469600
@eprog
The library syntax is \fun{GEN}{gimag}{GEN x}.
\subsec{length$(x)$}\kbdsidx{length}\label{se:length}
Length of $x$; \kbd{\#}$x$ is a shortcut for \kbd{length}$(x)$.
This is mostly useful for
\item vectors: dimension (0 for empty vectors),
\item lists: number of entries (0 for empty lists),
\item maps: number of entries (0 for empty maps),
\item matrices: number of columns,
\item character strings: number of actual characters (without
trailing \kbd{\bs 0}, should you expect it from $C$ \kbd{char*}).
\bprog
? #"a string"
%1 = 8
? #[3,2,1]
%2 = 3
? #[]
%3 = 0
? #matrix(2,5)
%4 = 5
? L = List([1,2,3,4]); #L
%5 = 4
? M = Map([a,b; c,d; e,f]); #M
%6 = 3
@eprog
The routine is in fact defined for arbitrary GP types, but is awkward and
useless in other cases: it returns the number of non-code words in $x$, e.g.
the effective length minus 2 for integers since the \typ{INT} type has two code
words.
The library syntax is \fun{long}{glength}{GEN x}.
Also available is \fun{long}{gtranslength}{GEN x}
which return the length of \kbd{x~}, that is the number of lines of matrices.
\subsec{lift$(x,\{v\})$}\kbdsidx{lift}\label{se:lift}
If $v$ is omitted, lifts intmods from $\Z/n\Z$ in $\Z$,
$p$-adics from $\Q_{p}$ to $\Q$ (as \tet{truncate}), and polmods to
polynomials. Otherwise, lifts only polmods whose modulus has main
variable~$v$. \typ{FFELT} are not lifted, nor are List elements: you may
convert the latter to vectors first, or use \kbd{apply(lift,L)}. More
generally, components for which such lifts are meaningless (e.g. character
strings) are copied verbatim.
\bprog
? lift(Mod(5,3))
%1 = 2
? lift(3 + O(3^9))
%2 = 3
? lift(Mod(x,x^2+1))
%3 = x
? lift(Mod(x,x^2+1))
%4 = x
@eprog
Lifts are performed recursively on an object components, but only
by \emph{one level}: once a \typ{POLMOD} is lifted, the components of
the result are \emph{not} lifted further.
\bprog
? lift(x * Mod(1,3) + Mod(2,3))
%4 = x + 2
? lift(x * Mod(y,y^2+1) + Mod(2,3))
%5 = y*x + Mod(2, 3) \\@com do you understand this one?
? lift(x * Mod(y,y^2+1) + Mod(2,3), 'x)
%6 = Mod(y, y^2 + 1)*x + Mod(Mod(2, 3), y^2 + 1)
? lift(%, y)
%7 = y*x + Mod(2, 3)
@eprog\noindent To recursively lift all components not only by one level,
but as long as possible, use \kbd{liftall}. To lift only \typ{INTMOD}s and
\typ{PADIC}s components, use \tet{liftint}. To lift only \typ{POLMOD}s
components, use \tet{liftpol}. Finally, \tet{centerlift} allows to lift
\typ{INTMOD}s and \typ{PADIC}s using centered residues (lift of smallest
absolute value).
The library syntax is \fun{GEN}{lift0}{GEN x, long v = -1} where \kbd{v} is a variable number.
Also available is \fun{GEN}{lift}{GEN x} corresponding to
\kbd{lift0(x,-1)}.
\subsec{liftall$(x)$}\kbdsidx{liftall}\label{se:liftall}
Recursively lift all components of $x$ from $\Z/n\Z$ to $\Z$,
from $\Q_{p}$ to $\Q$ (as \tet{truncate}), and polmods to
polynomials. \typ{FFELT} are not lifted, nor are List elements: you may
convert the latter to vectors first, or use \kbd{apply(liftall,L)}. More
generally, components for which such lifts are meaningless (e.g. character
strings) are copied verbatim.
\bprog
? liftall(x * (1 + O(3)) + Mod(2,3))
%1 = x + 2
? liftall(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
%2 = y*x + 2*z
@eprog
The library syntax is \fun{GEN}{liftall}{GEN x}.
\subsec{liftint$(x)$}\kbdsidx{liftint}\label{se:liftint}
Recursively lift all components of $x$ from $\Z/n\Z$ to $\Z$ and
from $\Q_{p}$ to $\Q$ (as \tet{truncate}).
\typ{FFELT} are not lifted, nor are List elements: you may
convert the latter to vectors first, or use \kbd{apply(liftint,L)}. More
generally, components for which such lifts are meaningless (e.g. character
strings) are copied verbatim.
\bprog
? liftint(x * (1 + O(3)) + Mod(2,3))
%1 = x + 2
? liftint(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
%2 = Mod(y, y^2 + 1)*x + Mod(Mod(2*z, z^2), y^2 + 1)
@eprog
The library syntax is \fun{GEN}{liftint}{GEN x}.
\subsec{liftpol$(x)$}\kbdsidx{liftpol}\label{se:liftpol}
Recursively lift all components of $x$ which are polmods to
polynomials. \typ{FFELT} are not lifted, nor are List elements: you may
convert the latter to vectors first, or use \kbd{apply(liftpol,L)}. More
generally, components for which such lifts are meaningless (e.g. character
strings) are copied verbatim.
\bprog
? liftpol(x * (1 + O(3)) + Mod(2,3))
%1 = (1 + O(3))*x + Mod(2, 3)
? liftpol(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
%2 = y*x + Mod(2, 3)*z
@eprog
The library syntax is \fun{GEN}{liftpol}{GEN x}.
\subsec{norm$(x)$}\kbdsidx{norm}\label{se:norm}
Algebraic norm of $x$, i.e.~the product of $x$ with
its conjugate (no square roots are taken), or conjugates for polmods. For
vectors and matrices, the norm is taken componentwise and hence is not the
$L^{2}$-norm (see \kbd{norml2}). Note that the norm of an element of
$\R$ is its square, so as to be compatible with the complex norm.
The library syntax is \fun{GEN}{gnorm}{GEN x}.
\subsec{numerator$(f,\{D\})$}\kbdsidx{numerator}\label{se:numerator}
Numerator of $f$. This is defined as \kbd{f * denominator(f,D)}, see
\kbd{denominator} for details. The optional argument $D$ allows to control
over which ring we compute the denominator:
\item $1$: we only consider the underlying $\Q$-structure and the
denominator is a (positive) rational integer
\item a simple variable, say \kbd{'x}: all entries as rational functions
in $K(x)$ and the denominator is a polynomial in $x$.
\bprog
? f = x + 1/y + 1/2;
? numerator(f) \\ a t_POL in x
%2 = x + ((y + 2)/(2*y))
? numerator(f, 1) \\ Q-denominator is 2
%3 = x + ((y + 2)/y)
? numerator(f, y) \\ as a rational function in y
%5 = 2*y*x + (y + 2)
@eprog
The library syntax is \fun{GEN}{numerator}{GEN f, GEN D = NULL}.
Also available are
\fun{GEN}{numer}{GEN x} which implements the not very useful default
behaviour ($D$ is \kbd{NULL}) and
\fun{GEN}{Q_remove_denom}{GEN x, GEN *ptd} ($D = 1$) and also returns the
denominator (coding $1$ as \kbd{NULL}).
\subsec{oo}\kbdsidx{oo}\label{se:oo}
Returns an object meaning $+\infty$, for use in functions such as
\kbd{intnum}. It can be negated (\kbd{-oo} represents $-\infty$), and
compared to real numbers (\typ{INT}, \typ{FRAC}, \typ{REAL}), with the
expected meaning: $+\infty$ is greater than any real number and $-\infty$ is
smaller.
The library syntax is \fun{GEN}{mkoo}{}.
\subsec{padicprec$(x,p)$}\kbdsidx{padicprec}\label{se:padicprec}
Returns the absolute $p$-adic precision of the object $x$; this is the
minimum precision of the components of $x$. The result is \tet{+oo} if $x$
is an exact object (as a $p$-adic):
\bprog
? padicprec((1 + O(2^5)) * x + (2 + O(2^4)), 2)
%1 = 4
? padicprec(x + 2, 2)
%2 = +oo
? padicprec(2 + x + O(x^2), 2)
%3 = +oo
@eprog\noindent The function raises an exception if it encounters
an object incompatible with $p$-adic computations:
\bprog
? padicprec(O(3), 2)
*** at top-level: padicprec(O(3),2)
*** ^-----------------
*** padicprec: inconsistent moduli in padicprec: 3 != 2
? padicprec(1.0, 2)
*** at top-level: padicprec(1.0,2)
*** ^----------------
*** padicprec: incorrect type in padicprec (t_REAL).
@eprog
The library syntax is \fun{GEN}{gppadicprec}{GEN x, GEN p}.
Also available is the function \fun{long}{padicprec}{GEN x, GEN p},
which returns \tet{LONG_MAX} if $x = 0$ and the $p$-adic precision as a
\kbd{long} integer.
\subsec{precision$(x,\{n\})$}\kbdsidx{precision}\label{se:precision}
The function behaves differently according to whether $n$ is
present or not. If $n$ is missing, the function returns
the floating point precision in decimal digits of the PARI object $x$. If $x$
has no floating point component, the function returns \kbd{+oo}.
\bprog
? precision(exp(1e-100))
%1 = 154 \\ 154 significant decimal digits
? precision(2 + x)
%2 = +oo \\ exact object
? precision(0.5 + O(x))
%3 = 38 \\ floating point accuracy, NOT series precision
? precision( [ exp(1e-100), 0.5 ] )
%4 = 38 \\ minimal accuracy among components
@eprog\noindent Using \kbd{getlocalprec()} allows to retrieve
the working precision (as modified by possible \kbd{localprec}
statements).
If $n$ is present, the function creates a new object equal to $x$ with a new
floating point precision $n$: $n$ is the number of desired significant
\emph{decimal} digits. If $n$ is smaller than the precision of a \typ{REAL}
component of $x$, it is truncated, otherwise it is extended with zeros.
For non-floating-point types, no change.
The library syntax is \fun{GEN}{precision00}{GEN x, GEN n = NULL}.
Also available are \fun{GEN}{gprec}{GEN x, long n} and
\fun{long}{precision}{GEN x}. In both, the accuracy is expressed in
\emph{words} (32-bit or 64-bit depending on the architecture).
\subsec{random$(\{N=2^{31}\})$}\kbdsidx{random}\label{se:random}
Returns a random element in various natural sets depending on the
argument $N$.
\item \typ{INT}: let $n = |N|-1$; if $N > 0$ returns an integer uniformly
distributed in $[0, n]$; if $N < 0$ returns an integer uniformly
distributed in $[-n, n]$. Omitting the argument is
equivalent to \kbd{random(2\pow31)}.
\item \typ{REAL}: returns a real number in $[0,1[$ with the same accuracy as
$N$ (whose mantissa has the same number of significant words).
\item \typ{INTMOD}: returns a random intmod for the same modulus.
\item \typ{FFELT}: returns a random element in the same finite field.
\item \typ{VEC} of length $2$, $N = [a,b]$: returns an integer uniformly
distributed between $a$ and $b$.
\item \typ{VEC} generated by \kbd{ellinit} over a finite field $k$
(coefficients are \typ{INTMOD}s modulo a prime or \typ{FFELT}s): returns a
``random'' $k$-rational \emph{affine} point on the curve. More precisely
if the curve has a single point (at infinity!) we return it; otherwise
we return an affine point by drawing an abscissa uniformly at
random until \tet{ellordinate} succeeds. Note that this is definitely not a
uniform distribution over $E(k)$, but it should be good enough for
applications.
\item \typ{POL} return a random polynomial of degree at most the degree of $N$.
The coefficients are drawn by applying \kbd{random} to the leading
coefficient of $N$.
\bprog
? random(10)
%1 = 9
? random(Mod(0,7))
%2 = Mod(1, 7)
? a = ffgen(ffinit(3,7), 'a); random(a)
%3 = a^6 + 2*a^5 + a^4 + a^3 + a^2 + 2*a
? E = ellinit([3,7]*Mod(1,109)); random(E)
%4 = [Mod(103, 109), Mod(10, 109)]
? E = ellinit([1,7]*a^0); random(E)
%5 = [a^6 + a^5 + 2*a^4 + 2*a^2, 2*a^6 + 2*a^4 + 2*a^3 + a^2 + 2*a]
? random(Mod(1,7)*x^4)
%6 = Mod(5, 7)*x^4 + Mod(6, 7)*x^3 + Mod(2, 7)*x^2 + Mod(2, 7)*x + Mod(5, 7)
@eprog
These variants all depend on a single internal generator, and are
independent from your operating system's random number generators.
A random seed may be obtained via \tet{getrand}, and reset
using \tet{setrand}: from a given seed, and given sequence of \kbd{random}s,
the exact same values will be generated. The same seed is used at each
startup, reseed the generator yourself if this is a problem. Note that
internal functions also call the random number generator; adding such a
function call in the middle of your code will change the numbers produced.
\misctitle{Technical note}
Up to
version 2.4 included, the internal generator produced pseudo-random numbers
by means of linear congruences, which were not well distributed in arithmetic
progressions. We now
use Brent's XORGEN algorithm, based on Feedback Shift Registers, see
\url{https://wwwmaths.anu.edu.au/~brent/random.html}. The generator has period
$2^{4096}-1$, passes the Crush battery of statistical tests of L'Ecuyer and
Simard, but is not suitable for cryptographic purposes: one can reconstruct
the state vector from a small sample of consecutive values, thus predicting
the entire sequence.
\misctitle{Parallelism} In multi-threaded programs, each thread has a
separate generator. They all start in the same \kbd{setrand(1)} state, so
will all produce the same sequence of pseudo-random numbers although
the various states are not shared. To avoid this, use \kbd{setrand} to
provide a different starting state to each thread:
\bprog
\\ with 8 threads
? parvector(8, i, random()) \\ all 8 threads return the same number
%1 = [1546275796, 1546275796, ... , 1546275796]
? parvector(8, i, random()) \\ ... and again since they are restarted
%2 = [1546275796, 1546275796, ... , 1546275796]
? s = [1..8]; \\ 8 random seeds; we could use vector(8,i,random())
? parvector(8, i, setrand(s[i]); random())
\\ now we get 8 different numbers
@eprog
The library syntax is \fun{GEN}{genrand}{GEN N = NULL}.
Also available: \fun{GEN}{ellrandom}{GEN E} and \fun{GEN}{ffrandom}{GEN a}.
\subsec{real$(x)$}\kbdsidx{real}\label{se:real}
Real part of $x$. When $x$ is a quadratic number, this is the
coefficient of $1$ in the ``canonical'' integral basis $(1,\omega)$.
\bprog
? real(3 + I)
%1 = 3
? x = 3 + quadgen(-23);
? real(x) \\ as a quadratic number
%3 = 3
? real(x * 1.) \\ as a complex number
%4 = 3.5000000000000000000000000000000000000
@eprog
The library syntax is \fun{GEN}{greal}{GEN x}.
\subsec{round$(x,\{\&e\})$}\kbdsidx{round}\label{se:round}
If $x$ is in $\R$, rounds $x$ to the nearest integer (rounding to
$+\infty$ in case of ties), then sets $e$ to the number of error bits,
that is the binary exponent of the difference between the original and the
rounded value (the ``fractional part''). If the exponent of $x$ is too large
compared to its precision (i.e.~$e>0$), the result is undefined and an error
occurs if $e$ was not given.
\misctitle{Important remark} Contrary to the other truncation functions,
this function operates on every coefficient at every level of a PARI object.
For example
$$\text{truncate}\left(\dfrac{2.4*X^{2}-1.7}{X}\right)=2.4*X,$$
whereas
$$\text{round}\left(\dfrac{2.4*X^{2}-1.7}{X}\right)=\dfrac{2*X^{2}-2}{X}.$$
An important use of \kbd{round} is to get exact results after an approximate
computation, when theory tells you that the coefficients must be integers.
The library syntax is \fun{GEN}{round0}{GEN x, GEN *e = NULL}.
Also available are \fun{GEN}{grndtoi}{GEN x, long *e} and
\fun{GEN}{ground}{GEN x}.
\subsec{serchop$(s,\{n=0\})$}\kbdsidx{serchop}\label{se:serchop}
Remove all terms of degree strictly less than $n$ in series $s$. When
the series contains no terms of degree $< n$, return $O(x^{n})$.
\bprog
? s = 1/x + x + 2*x^2 + O(x^3);
? serchop(s)
%2 = x + 2*x^3 + O(x^3)
? serchop(s, 2)
%3 = 2*x^2 + O(x^3)
? serchop(s, 100)
%4 = O(x^100)
@eprog
The library syntax is \fun{GEN}{serchop}{GEN s, long n}.
\subsec{serprec$(x,v)$}\kbdsidx{serprec}\label{se:serprec}
Returns the absolute precision of $x$ with respect to power series
in the variable $v$; this is the
minimum precision of the components of $x$. The result is \tet{+oo} if $x$
is an exact object (as a series in $v$):
\bprog
? serprec(x + O(y^2), y)
%1 = 2
? serprec(x + 2, x)
%2 = +oo
? serprec(2 + x + O(x^2), y)
%3 = +oo
@eprog
The library syntax is \fun{GEN}{gpserprec}{GEN x, long v} where \kbd{v} is a variable number.
Also available is \fun{long}{serprec}{GEN x, GEN p}, which returns
\tet{LONG_MAX} if $x = 0$, otherwise the series precision as a \kbd{long} integer.
\subsec{simplify$(x)$}\kbdsidx{simplify}\label{se:simplify}
This function simplifies $x$ as much as it can. Specifically, a complex or
quadratic number whose imaginary part is the integer 0 (i.e.~not \kbd{Mod(0,2)}
or \kbd{0.E-28}) is converted to its real part, and a polynomial of degree $0$
is converted to its constant term. Simplifications occur recursively.
This function is especially useful before using arithmetic functions,
which expect integer arguments:
\bprog
? x = 2 + y - y
%1 = 2
? isprime(x)
*** at top-level: isprime(x)
*** ^----------
*** isprime: not an integer argument in an arithmetic function
? type(x)
%2 = "t_POL"
? type(simplify(x))
%3 = "t_INT"
@eprog
Note that GP results are simplified as above before they are stored in the
history. (Unless you disable automatic simplification with \b{y}, that is.)
In particular
\bprog
? type(%1)
%4 = "t_INT"
@eprog
The library syntax is \fun{GEN}{simplify}{GEN x}.
\subsec{sizebyte$(x)$}\kbdsidx{sizebyte}\label{se:sizebyte}
Outputs the total number of bytes occupied by the tree representing the
PARI object $x$.
The library syntax is \fun{long}{gsizebyte}{GEN x}.
Also available is \fun{long}{gsizeword}{GEN x} returning a
number of \emph{words}.
\subsec{sizedigit$(x)$}\kbdsidx{sizedigit}\label{se:sizedigit}
This function is DEPRECATED, essentially meaningless, and provided for
backwards compatibility only. Don't use it!
outputs a quick upper bound for the number of decimal digits of (the
components of) $x$, off by at most $1$. More precisely, for a positive
integer $x$, it computes (approximately) the ceiling of
$$\kbd{floor}(1 + \log_{2} x) \log_{10}2,$$
To count the number of decimal digits of a positive integer $x$, use
\kbd{\#digits(x)}. To estimate (recursively) the size of $x$, use
\kbd{normlp(x)}.
The library syntax is \fun{long}{sizedigit}{GEN x}.
\subsec{truncate$(x,\{\&e\})$}\kbdsidx{truncate}\label{se:truncate}
Truncates $x$ and sets $e$ to the number of
error bits. When $x$ is in $\R$, this means that the part after the decimal
point is chopped away, $e$ is the binary exponent of the difference between
the original and the truncated value (the ``fractional part''). If the
exponent of $x$ is too large compared to its precision (i.e.~$e>0$), the
result is undefined and an error occurs if $e$ was not given. The function
applies componentwise on vector / matrices; $e$ is then the maximal number of
error bits. If $x$ is a rational function, the result is the ``integer part''
(Euclidean quotient of numerator by denominator) and $e$ is not set.
Note a very special use of \kbd{truncate}: when applied to a power series, it
transforms it into a polynomial or a rational function with denominator
a power of $X$, by chopping away the $O(X^{k})$. Similarly, when applied to
a $p$-adic number, it transforms it into an integer or a rational number
by chopping away the $O(p^{k})$.
The library syntax is \fun{GEN}{trunc0}{GEN x, GEN *e = NULL}.
The following functions are also available: \fun{GEN}{gtrunc}{GEN x}
and \fun{GEN}{gcvtoi}{GEN x, long *e}.
\subsec{valuation$(x,\{p\})$}\kbdsidx{valuation}\label{se:valuation}
Computes the highest
exponent of $p$ dividing $x$. If $p$ is of type integer, $x$ must be an
integer, an intmod whose modulus is divisible by $p$, a fraction, a
$q$-adic number with $q=p$, or a polynomial or power series in which case the
valuation is the minimum of the valuation of the coefficients.
If $p$ is of type polynomial, $x$ must be of type polynomial or rational
function, and also a power series if $x$ is a monomial. Finally, the
valuation of a vector, complex or quadratic number is the minimum of the
component valuations.
If $x=0$, the result is \kbd{+oo} if $x$ is an exact object. If $x$ is a
$p$-adic numbers or power series, the result is the exponent of the zero.
Any other type combinations gives an error.
Finally, $p$ can be omitted if $x$ is a \typ{PADIC} (taken to be the
underlying prime), a \typ{SER} or a \typ{POL} (taken to be the main variable).
The library syntax is \fun{GEN}{gpvaluation}{GEN x, GEN p = NULL}.
Also available is
\fun{long}{gvaluation}{GEN x, GEN p}, which returns \tet{LONG_MAX} if $x = 0$
and the valuation as a \kbd{long} integer.
\subsec{varhigher$(\var{name},\{v\})$}\kbdsidx{varhigher}\label{se:varhigher}
Return a variable \emph{name} whose priority is higher
than the priority of $v$ (of all existing variables if $v$ is omitted).
This is a counterpart to \tet{varlower}.
\bprog
? Pol([x,x], t)
*** at top-level: Pol([x,x],t)
*** ^------------
*** Pol: incorrect priority in gtopoly: variable x <= t
? t = varhigher("t", x);
? Pol([x,x], t)
%3 = x*t + x
@eprog\noindent This routine is useful since new GP variables directly
created by the interpreter always have lower priority than existing
GP variables. When some basic objects already exist in a variable
that is incompatible with some function requirement, you can now
create a new variable with a suitable priority instead of changing variables
in existing objects:
\bprog
? K = nfinit(x^2+1);
? rnfequation(K,y^2-2)
*** at top-level: rnfequation(K,y^2-2)
*** ^--------------------
*** rnfequation: incorrect priority in rnfequation: variable y >= x
? y = varhigher("y", x);
? rnfequation(K, y^2-2)
%3 = y^4 - 2*y^2 + 9
@eprog\noindent
\misctitle{Caution 1}
The \emph{name} is an arbitrary character string, only used for display
purposes and need not be related to the GP variable holding the result, nor
to be a valid variable name. In particular the \emph{name} can
not be used to retrieve the variable, it is not even present in the parser's
hash tables.
\bprog
? x = varhigher("#");
? x^2
%2 = #^2
@eprog
\misctitle{Caution 2} There are a limited number of variables and if no
existing variable with the given display name has the requested
priority, the call to \kbd{varhigher} uses up one such slot. Do not create
new variables in this way unless it's absolutely necessary,
reuse existing names instead and choose sensible priority requirements:
if you only need a variable with higher priority than $x$, state so
rather than creating a new variable with highest priority.
\bprog
\\ quickly use up all variables
? n = 0; while(1,varhigher("tmp"); n++)
*** at top-level: n=0;while(1,varhigher("tmp");n++)
*** ^-------------------
*** varhigher: no more variables available.
*** Break loop: type 'break' to go back to GP prompt
break> n
65510
\\ infinite loop: here we reuse the same 'tmp'
? n = 0; while(1,varhigher("tmp", x); n++)
@eprog
The library syntax is \fun{GEN}{varhigher}{const char *name, long v = -1} where \kbd{v} is a variable number.
\subsec{variable$(\{x\})$}\kbdsidx{variable}\label{se:variable}
Gives the main variable of the object $x$ (the variable with the highest
priority used in $x$), and $p$ if $x$ is a $p$-adic number. Return $0$ if
$x$ has no variable attached to it.
\bprog
? variable(x^2 + y)
%1 = x
? variable(1 + O(5^2))
%2 = 5
? variable([x,y,z,t])
%3 = x
? variable(1)
%4 = 0
@eprog\noindent The construction
\bprog
if (!variable(x),...)
@eprog\noindent can be used to test whether a variable is attached to $x$.
If $x$ is omitted, returns the list of user variables known to the
interpreter, by order of decreasing priority. (Highest priority is initially
$x$, which come first until \tet{varhigher} is used.) If \kbd{varhigher}
or \kbd{varlower} are used, it is quite possible to end up with different
variables (with different priorities) printed in the same way: they
will then appear multiple times in the output:
\bprog
? varhigher("y");
? varlower("y");
? variable()
%4 = [y, x, y]
@eprog\noindent Using \kbd{v = variable()} then \kbd{v[1]}, \kbd{v[2]},
etc.~allows to recover and use existing variables.
The library syntax is \fun{GEN}{gpolvar}{GEN x = NULL}.
However, in library mode, this function should not be used for $x$
non-\kbd{NULL}, since \tet{gvar} is more appropriate. Instead, for
$x$ a $p$-adic (type \typ{PADIC}), $p$ is $gel(x,2)$; otherwise, use
\fun{long}{gvar}{GEN x} which returns the variable number of $x$ if
it exists, \kbd{NO\_VARIABLE} otherwise, which satisfies the property
$\kbd{varncmp}(\kbd{NO\_VARIABLE}, v) > 0$ for all valid variable number
$v$, i.e. it has lower priority than any variable.
\subsec{variables$(\{x\})$}\kbdsidx{variables}\label{se:variables}
Returns the list of all variables occurring in object $x$ sorted by
decreasing priority. If $x$ is omitted, return all polynomial variables
known to the interpreter (this will include \kbd{x} and \kbd{y},
which are always defined on startup); user variables which do
not occur in \typ{POL} or \typ{SER} constructions are \emph{not} included.
To see all user variables, use \b{uv}.
\bprog
? variables([x^2 + y*z + O(t), a+x])
%1 = [x, y, z, t, a]
@eprog\noindent The construction
\bprog
if (!variables(x),...)
@eprog\noindent can be used to test whether a variable is attached to $x$.
If \kbd{varhigher} or \kbd{varlower} are used, it is quite possible to end up
with different variables (having different priorities) printed in the same
way. They will then appear multiple times in the output:
\bprog
? y1 = varhigher("y"); y2 = varlower("y");
? variables(y*y1*y2)
%2 = [y, y, y]
@eprog
The library syntax is \fun{GEN}{variables_vec}{GEN x = NULL}.
Also available is \fun{GEN}{variables_vecsmall}{GEN x} which returns
the (sorted) variable numbers instead of the attached monomials of degree 1.
\subsec{varlower$(\var{name},\{v\})$}\kbdsidx{varlower}\label{se:varlower}
Return a variable \emph{name} whose priority is lower
than the priority of $v$ (of all existing variables if $v$ is omitted).
This is a counterpart to \tet{varhigher}.
New GP variables directly created by the interpreter always
have lower priority than existing GP variables, but it is not easy
to check whether an identifier is currently unused, so that the
corresponding variable has the expected priority when it's created!
Thus, depending on the session history, the same command may fail or succeed:
\bprog
? t; z; \\ now t > z
? rnfequation(t^2+1,z^2-t)
*** at top-level: rnfequation(t^2+1,z^
*** ^--------------------
*** rnfequation: incorrect priority in rnfequation: variable t >= t
@eprog\noindent Restart and retry:
\bprog
? z; t; \\ now z > t
? rnfequation(t^2+1,z^2-t)
%2 = z^4 + 1
@eprog\noindent It is quite annoying for package authors, when trying to
define a base ring, to notice that the package may fail for some users
depending on their session history. The safe way to do this is as follows:
\bprog
? z; t; \\ In new session: now z > t
...
? t = varlower("t", 'z);
? rnfequation(t^2+1,z^2-2)
%2 = z^4 - 2*z^2 + 9
? variable()
%3 = [x, y, z, t]
@eprog
\bprog
? t; z; \\ In new session: now t > z
...
? t = varlower("t", 'z); \\ create a new variable, still printed "t"
? rnfequation(t^2+1,z^2-2)
%2 = z^4 - 2*z^2 + 9
? variable()
%3 = [x, y, t, z, t]
@eprog\noindent Now both constructions succeed. Note that in the
first case, \kbd{varlower} is essentially a no-op, the existing variable $t$
has correct priority. While in the second case, two different variables are
displayed as \kbd{t}, one with higher priority than $z$ (created in the first
line) and another one with lower priority (created by \kbd{varlower}).
\misctitle{Caution 1}
The \emph{name} is an arbitrary character string, only used for display
purposes and need not be related to the GP variable holding the result, nor
to be a valid variable name. In particular the \emph{name} can
not be used to retrieve the variable, it is not even present in the parser's
hash tables.
\bprog
? x = varlower("#");
? x^2
%2 = #^2
@eprog
\misctitle{Caution 2} There are a limited number of variables and if no
existing variable with the given display name has the requested
priority, the call to \kbd{varlower} uses up one such slot. Do not create
new variables in this way unless it's absolutely necessary,
reuse existing names instead and choose sensible priority requirements:
if you only need a variable with higher priority than $x$, state so
rather than creating a new variable with highest priority.
\bprog
\\ quickly use up all variables
? n = 0; while(1,varlower("x"); n++)
*** at top-level: n=0;while(1,varlower("x");n++)
*** ^-------------------
*** varlower: no more variables available.
*** Break loop: type 'break' to go back to GP prompt
break> n
65510
\\ infinite loop: here we reuse the same 'tmp'
? n = 0; while(1,varlower("tmp", x); n++)
@eprog
The library syntax is \fun{GEN}{varlower}{const char *name, long v = -1} where \kbd{v} is a variable number.
\section{Combinatorics}\label{se:combinat}
Permutations are represented in gp as \typ{VECSMALL}s and can be input
directly as \kbd{Vecsmall([1,3,2,4])} or obtained from the iterator
\kbd{forperm}:
\bprog
? forperm(3, p, print(p)) \\ iterate through S_3
Vecsmall([1, 2, 3])
Vecsmall([1, 3, 2])
Vecsmall([2, 1, 3])
Vecsmall([2, 3, 1])
Vecsmall([3, 1, 2])
Vecsmall([3, 2, 1])
@eprog
Permutations can be multiplied via \kbd{*}, raised to some power using
\kbd{\pow}, inverted using \kbd{\pow(-1)}, conjugated as
\kbd{p * q * p\pow(-1)}. Their order and signature are available via
\kbd{permorder} and \kbd{permsign}.
\subsec{bernfrac$(n)$}\kbdsidx{bernfrac}\label{se:bernfrac}
Bernoulli number\sidx{Bernoulli numbers} $B_{n}$,
where $B_{0}=1$, $B_{1}=-1/2$, $B_{2}=1/6$,\dots, expressed as a rational
number.
The argument $n$ should be a nonnegative integer. The function \tet{bernvec}
creates a cache of successive Bernoulli numbers which greatly speeds up
later calls to \kbd{bernfrac}:
\bprog
? bernfrac(20000);
time = 107 ms.
? bernvec(10000); \\ cache B_0, B_2, ..., B_20000
time = 35,957 ms.
? bernfrac(20000); \\ now instantaneous
?
@eprog
The library syntax is \fun{GEN}{bernfrac}{long n}.
\subsec{bernpol$(n,\{a=\kbd{'}x\})$}\kbdsidx{bernpol}\label{se:bernpol}
\idx{Bernoulli polynomial} $B_{n}$ evaluated at $a$ (\kbd{'x} by default),
defined by
$$
\sum_{n=0}^{\infty}B_{n}(x)\dfrac{T^{n}}{n!} = \dfrac{Te^{xT}}{e^{T}-1}.
$$
\bprog
? bernpol(1)
%1 = x - 1/2
? bernpol(3)
%2 = x^3 - 3/2*x^2 + 1/2*x
? bernpol(3, 2)
%3 = 3
@eprog\noindent Note that evaluation at $a$ is only provided for convenience
and uniformity of interface: contrary to, e.g., \kbd{polcyclo}, computing
the evaluation is no faster than
\bprog
B = bernpol(k); subst(B, 'x, a)
@eprog\noindent and the latter allows to reuse $B$ to evaluate $B_{k}$
at different values.
The library syntax is \fun{GEN}{bernpol_eval}{long n, GEN a = NULL}.
The variant \fun{GEN}{bernpol}{long k, long v} returns
the $k$-the Bernoulli polynomial in variable $v$.
\subsec{bernreal$(n)$}\kbdsidx{bernreal}\label{se:bernreal}
Bernoulli number\sidx{Bernoulli numbers}
$B_{n}$, as \kbd{bernfrac}, but $B_{n}$ is returned as a real number
(with the current precision). The argument $n$ should be a nonnegative
integer. The function slows down as the precision increases:
\bprog
? \p1000
? bernreal(200000);
time = 5 ms.
? \p10000
? bernreal(200000);
time = 18 ms.
? \p100000
? bernreal(200000);
time = 84 ms.
@eprog
The library syntax is \fun{GEN}{bernreal}{long n, long prec}.
\subsec{bernvec$(n)$}\kbdsidx{bernvec}\label{se:bernvec}
Returns a vector containing, as rational numbers,
the \idx{Bernoulli numbers} $B_{0}$, $B_{2}$,\dots, $B_{2n}$:
\bprog
? bernvec(5) \\ B_0, B_2..., B_10
%1 = [1, 1/6, -1/30, 1/42, -1/30, 5/66]
? bernfrac(10)
%2 = 5/66
@eprog\noindent This routine uses a lot of memory but is much faster than
repeated calls to \kbd{bernfrac}:
\bprog
? forstep(n = 2, 10000, 2, bernfrac(n))
time = 18,245 ms.
? bernvec(5000);
time = 1,338 ms.
@eprog\noindent The computed Bernoulli numbers are stored in an incremental
cache which makes later calls to \kbd{bernfrac} and \kbd{bernreal}
instantaneous in the cache range: re-running the same previous \kbd{bernfrac}s
after the \kbd{bernvec} call gives:
\bprog
? forstep(n = 2, 10000, 2, bernfrac(n))
time = 1 ms.
@eprog\noindent The time and space complexity of this function are
$\tilde{O}(n^{2})$; in the feasible range $n \leq 10^{5}$ (requires about two
hours), the practical time complexity is closer to $\tilde{O}(n^{\log_{2} 6})$.
The library syntax is \fun{GEN}{bernvec}{long n}.
\subsec{binomial$(n,\{k\})$}\kbdsidx{binomial}\label{se:binomial}
\idx{binomial coefficient} $\binom{n}{k}$.
Here $k$ must be an integer, but $n$ can be any PARI object. For nonnegative
$k$, $\binom{n}{k} = (n)_{k} / k!$ is polynomial in $n$, where $(n)_{k} =
n(n-1)\dots(n-k+1)$ is the Pochhammer symbol used by combinatorists (which is
different from the one used by analysts).
\bprog
? binomial(4,2)
%1 = 6
? n = 4; vector(n+1, k, binomial(n,k-1))
%2 = [1, 4, 6, 4, 1]
? binomial('x, 2)
%3 = 1/2*x^2 - 1/2*x
@eprog\noindent When $n$ is a negative integer and $k$ is negative,
we use Daniel Loeb's extension,
$$ \lim_{t\to 1} \Gamma(n+t) / \Gamma(k+t) / \Gamma(n-k+t). $$
(Sets with a negative number of elements, \emph{Adv. Math.} {\bf 91} (1992),
no. 1, 64--74. See also~\kbd{https://arxiv.org/abs/1105.3689}.)
This way the symmetry relation $\binom{n}{k} = \binom{n}{n - k}$
becomes valid for all integers $n$ and $k$, and
the binomial theorem
holds for all complex numbers $a$, $b$, $n$ with $|b| < |a|$:
$$ (a + b)^{n} = \sum_{k\geq 0} \binom{n}{k} a^{n-k} b^{k}\,. $$
Beware that this extension is incompatible with another traditional
extension ($\binom{n}{k} := 0$ if $k < 0$); to enforce the latter, use
\bprog
BINOMIAL(n, k) = if (k >= 0, binomial(n, k));
@eprog
The argument $k$ may be omitted if $n$ is a
nonnegative integer; in this case, return the vector with $n+1$
components whose $k+1$-th entry is \kbd{binomial}$(n,k)$
\bprog
? binomial(4)
%4 = [1, 4, 6, 4, 1]
@eprog
The library syntax is \fun{GEN}{binomial0}{GEN n, GEN k = NULL}.
\subsec{eulerfrac$(n)$}\kbdsidx{eulerfrac}\label{se:eulerfrac}
Euler number\sidx{Euler numbers} $E_{n}$,
where $E_{0}=1$, $E_{1}=0$, $E_{2}=-1$, \dots, are integers such that
$$ \dfrac{1}{\cosh t} = \sum_{n\geq 0} \dfrac{E_{n}}{n!} t^{n}. $$
The argument $n$ should be a nonnegative integer.
\bprog
? vector(10,i,eulerfrac(i))
%1 = [0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521]
? eulerfrac(20000);
? sizedigit(%))
%3 = 73416
@eprog
The library syntax is \fun{GEN}{eulerfrac}{long n}.
\subsec{eulerianpol$(n,\{v=\kbd{'}x\})$}\kbdsidx{eulerianpol}\label{se:eulerianpol}
\idx{Eulerian polynomial} $A_{n}$ in variable $v$ defined by
$$
\sum_{n=0}^{\infty} A_{n}(x) \dfrac{T^{n}}{n!} = \dfrac{x-1}{x-e^{(x-1)T}}.
$$
\bprog
? eulerianpol(2)
%1 = x + 1
? eulerianpol(5, 't)
%2 = t^4 + 26*t^3 + 66*t^2 + 26*t + 1
@eprog
The library syntax is \fun{GEN}{eulerianpol}{long n, long v = -1} where \kbd{v} is a variable number.
\subsec{eulerpol$(n,\{v=\kbd{'}x\})$}\kbdsidx{eulerpol}\label{se:eulerpol}
\idx{Euler polynomial} $E_{n}$ in variable $v$ defined by
$$
\sum_{n=0}^{\infty} E_{n}(x)\dfrac{T^{n}}{n!} = \dfrac{2e^{xT}}{e^{T}+1}.
$$
\bprog
? eulerpol(1)
%1 = x - 1/2
? eulerpol(3)
%2 = x^3 - 3/2*x^2 + 1/4
@eprog
The library syntax is \fun{GEN}{eulerpol}{long n, long v = -1} where \kbd{v} is a variable number.
\subsec{eulerreal$(n)$}\kbdsidx{eulerreal}\label{se:eulerreal}
Euler number\sidx{Euler numbers} $E_{n}$,
where $E_{0}=1$, $E_{1}=0$, $E_{2}=-1$, \dots, are integers such that
$$ \dfrac{1}{\cosh t} = \sum_{n\geq 0} \dfrac{E_{n}}{n!} t^{n}. $$
The argument $n$ should be a nonnegative integer. Return $E_{n}$
as a real number (with the current precision).
\bprog
? sizedigit(eulerfrac(20000))
%1 = 73416
? eulerreal(20000);
%2 = 9.2736664576330851823546169139003297830 E73414
@eprog
The library syntax is \fun{GEN}{eulerreal}{long n, long prec}.
\subsec{eulervec$(n)$}\kbdsidx{eulervec}\label{se:eulervec}
Returns a vector containing the nonzero \idx{Euler numbers} $E_{0}$,
$E_{2}$,\dots, $E_{2n}$:
\bprog
? eulervec(5) \\ E_0, E_2..., E_10
%1 = [1, -1, 5, -61, 1385, -50521]
? eulerfrac(10)
%2 = -50521
@eprog\noindent This routine uses more memory but is faster than
repeated calls to \kbd{eulerfrac}:
\bprog
? forstep(n = 2, 8000, 2, eulerfrac(n))
time = 27,3801ms.
? eulervec(4000);
time = 8,430 ms.
@eprog
The computed Euler numbers are stored in an incremental
cache which makes later calls to \kbd{eulerfrac} and \kbd{eulerreal}
instantaneous in the cache range: re-running the same previous \kbd{eulerfrac}s
after the \kbd{eulervec} call gives:
\bprog
? forstep(n = 2, 10000, 2, eulerfrac(n))
time = 0 ms.
@eprog
The library syntax is \fun{GEN}{eulervec}{long n}.
\subsec{fibonacci$(x)$}\kbdsidx{fibonacci}\label{se:fibonacci}
$x^{\text{th}}$ Fibonacci number.
The library syntax is \fun{GEN}{fibo}{long x}.
\subsec{hammingweight$(x)$}\kbdsidx{hammingweight}\label{se:hammingweight}
If $x$ is a \typ{INT}, return the binary Hamming weight of $|x|$. Otherwise
$x$ must be of type \typ{POL}, \typ{VEC}, \typ{COL}, \typ{VECSMALL}, or
\typ{MAT} and the function returns the number of nonzero coefficients of
$x$.
\bprog
? hammingweight(15)
%1 = 4
? hammingweight(x^100 + 2*x + 1)
%2 = 3
? hammingweight([Mod(1,2), 2, Mod(0,3)])
%3 = 2
? hammingweight(matid(100))
%4 = 100
@eprog
The library syntax is \fun{long}{hammingweight}{GEN x}.
\subsec{harmonic$(n,\{r=1\})$}\kbdsidx{harmonic}\label{se:harmonic}
Generalized harmonic number of index $n \geq 0$ in power $r$, as a rational
number. If $r = 1$ (or omitted), this is the harmonic number
$$ H_{n} = \sum_{i = 1}^{n} \dfrac{1}{i}.$$
In general, this is
$$ H_{n,r} = \sum_{i = 1}^{n} \dfrac{1}{i^{r}}.$$
The function runs in time $\tilde{O}(r n)$, essentially linear in the
size of the output.
\bprog
? harmonic(0)
%1 = 0
? harmonic(1)
%2 = 1
? harmonic(10)
%3 = 7381/2520
? harmonic(10, 2)
%4 = 1968329/1270080
? harmonic(10, -2)
%5 = 385
@eprog\noindent Note that the numerator and denominator are of order
$\exp((r+o(1))n)$ and this will overflow for large $n$. To obtain $H_{n}$ as a
floating point number, use $H_{n} = \kbd{psi}(n+1) + \kbd{Euler}$, or for
$r>=1$,
\bprog
H(n,r) = (-1)^(r+1)*(psi(n+1,r-1)/(r-1)!)+if(r==1,Euler,zeta(r))
@eprog
The library syntax is \fun{GEN}{harmonic0}{ulong n, GEN r = NULL}.
Also available is \fun{GEN}{harmonic}{ulong n} for $r = 1$.
\subsec{numbpart$(n)$}\kbdsidx{numbpart}\label{se:numbpart}
Gives the number of unrestricted partitions of
$n$, usually called $p(n)$ in the literature; in other words the number of
nonnegative integer solutions to $a+2b+3c+\cdots=n$. $n$ must be of type
integer and $n<10^{15}$ (with trivial values $p(n) = 0$ for $n < 0$ and
$p(0) = 1$). The algorithm uses the Hardy-Ramanujan-Rademacher formula.
To explicitly enumerate them, see \tet{partitions}.
The library syntax is \fun{GEN}{numbpart}{GEN n}.
\subsec{numtoperm$(n,k)$}\kbdsidx{numtoperm}\label{se:numtoperm}
Generates the $k$-th permutation (as a row vector of length $n$) of the
numbers $1$ to $n$. The number $k$ is taken modulo $n!\,$, i.e.~inverse
function of \tet{permtonum}. The numbering used is the standard lexicographic
ordering, starting at $0$.
The library syntax is \fun{GEN}{numtoperm}{long n, GEN k}.
\subsec{partitions$(k,\{a=k\},\{n=k\})$}\kbdsidx{partitions}\label{se:partitions}
Returns the vector of partitions of the integer $k$ as a sum of positive
integers (parts); for $k < 0$, it returns the empty set \kbd{[]}, and for $k
= 0$ the trivial partition (no parts). A partition is given by a
\typ{VECSMALL}, where parts are sorted in nondecreasing order:
\bprog
? partitions(3)
%1 = [Vecsmall([3]), Vecsmall([1, 2]), Vecsmall([1, 1, 1])]
@eprog\noindent correspond to $3$, $1+2$ and $1+1+1$. The number
of (unrestricted) partitions of $k$ is given
by \tet{numbpart}:
\bprog
? #partitions(50)
%1 = 204226
? numbpart(50)
%2 = 204226
@eprog
\noindent Optional parameters $n$ and $a$ are as follows:
\item $n=\var{nmax}$ (resp. $n=[\var{nmin},\var{nmax}]$) restricts
partitions to length less than $\var{nmax}$ (resp. length between
$\var{nmin}$ and $nmax$), where the \emph{length} is the number of nonzero
entries.
\item $a=\var{amax}$ (resp. $a=[\var{amin},\var{amax}]$) restricts the parts
to integers less than $\var{amax}$ (resp. between $\var{amin}$ and
$\var{amax}$).
\bprog
? partitions(4, 2) \\ parts bounded by 2
%1 = [Vecsmall([2, 2]), Vecsmall([1, 1, 2]), Vecsmall([1, 1, 1, 1])]
? partitions(4,, 2) \\ at most 2 parts
%2 = [Vecsmall([4]), Vecsmall([1, 3]), Vecsmall([2, 2])]
? partitions(4,[0,3], 2) \\ at most 2 parts
%3 = [Vecsmall([1,3]), Vecsmall([2,2])]
@eprog\noindent
By default, parts are positive and we remove zero entries unless
$amin\leq0$, in which case $nmin$ is ignored and we fix $\#X = \var{nmax}$:
\bprog
? partitions(4, [0,3]) \\ parts between 0 and 3
%1 = [Vecsmall([0, 0, 1, 3]), Vecsmall([0, 0, 2, 2]),\
Vecsmall([0, 1, 1, 2]), Vecsmall([1, 1, 1, 1])]
? partitions(1, [0,3], [2,4]) \\ no partition with 2 to 4 nonzero parts
%2 = []
@eprog
The library syntax is \fun{GEN}{partitions}{long k, GEN a = NULL, GEN n = NULL}.
\subsec{permcycles$(x)$}\kbdsidx{permcycles}\label{se:permcycles}
Given a permutation $x$ on $n$ elements, return the orbits of
$\{1,\ldots,n\}$ under the action of $x$ as cycles.
\bprog
? permcycles(Vecsmall([1,2,3]))
%1 = [Vecsmall([1]),Vecsmall([2]),Vecsmall([3])]
? permcycles(Vecsmall([2,3,1]))
%2 = [Vecsmall([1,2,3])]
? permcycles(Vecsmall([2,1,3]))
%3 = [Vecsmall([1,2]),Vecsmall([3])]
@eprog
The library syntax is \fun{GEN}{permcycles}{GEN x}.
\subsec{permorder$(x)$}\kbdsidx{permorder}\label{se:permorder}
Given a permutation $x$ on $n$ elements, return its order.
\bprog
? p = Vecsmall([3,1,4,2,5]);
? p^2
%2 = Vecsmall([4,3,2,1,5])
? p^4
%3 = Vecsmall([1,2,3,4,5])
? permorder(p)
%4 = 4
@eprog
The library syntax is \fun{GEN}{permorder}{GEN x}.
\subsec{permsign$(x)$}\kbdsidx{permsign}\label{se:permsign}
Given a permutation $x$ on $n$ elements, return its signature.
\bprog
? p = Vecsmall([3,1,4,2,5]);
? permsign(p)
%2 = -1
? permsign(p^2)
%3 = 1
@eprog
The library syntax is \fun{long}{permsign}{GEN x}.
\subsec{permtonum$(x)$}\kbdsidx{permtonum}\label{se:permtonum}
Given a permutation $x$ on $n$ elements, gives the number $k$ such that
$x=\kbd{numtoperm(n,k)}$, i.e.~inverse function of \tet{numtoperm}.
The numbering used is the standard lexicographic ordering, starting at $0$.
The library syntax is \fun{GEN}{permtonum}{GEN x}.
\subsec{stirling$(n,k,\{\fl=1\})$}\kbdsidx{stirling}\label{se:stirling}
\idx{Stirling number} of the first kind $s(n,k)$ ($\fl=1$, default) or
of the second kind $S(n,k)$ ($\fl=2$), where $n$, $k$ are nonnegative
integers. The former is $(-1)^{n-k}$ times the
number of permutations of $n$ symbols with exactly $k$ cycles; the latter is
the number of ways of partitioning a set of $n$ elements into $k$ nonempty
subsets. Note that if all $s(n,k)$ are needed, it is much faster to compute
$$\sum_{k} s(n,k) x^{k} = x(x-1)\dots(x-n+1).$$
Similarly, if a large number of $S(n,k)$ are needed for the same $k$,
one should use
$$\sum_{n} S(n,k) x^{n} = \dfrac{x^{k}}{(1-x)\dots(1-kx)}.$$
(Should be implemented using a divide and conquer product.) Here are
simple variants for $n$ fixed:
\bprog
/* list of s(n,k), k = 1..n */
vecstirling(n) = Vec( factorback(vector(n-1,i,1-i*'x)) )
/* list of S(n,k), k = 1..n */
vecstirling2(n) =
{ my(Q = x^(n-1), t);
vector(n, i, t = divrem(Q, x-i); Q=t[1]; simplify(t[2]));
}
/* Bell numbers, B_n = B[n+1] = sum(k = 0, n, S(n,k)), n = 0..N */
vecbell(N)=
{ my (B = vector(N+1));
B[1] = B[2] = 1;
for (n = 2, N,
my (C = binomial(n-1));
B[n+1] = sum(k = 1, n, C[k]*B[k]);
); B;
}
@eprog
The library syntax is \fun{GEN}{stirling}{long n, long k, long flag}.
Also available are \fun{GEN}{stirling1}{ulong n, ulong k}
($\fl=1$) and \fun{GEN}{stirling2}{ulong n, ulong k} ($\fl=2$).
\section{Arithmetic functions}\label{se:arithmetic}
These functions are by definition functions whose natural domain of
definition is either $\Z$ (or $\Z_{>0}$). The way these functions are used is
completely different from transcendental functions in that there are no
automatic type conversions: in general only integers are accepted as
arguments. An integer argument $N$ can be given in the following alternate
formats:
\item \typ{MAT}: its factorization \kbd{fa = factor($N$)},
\item \typ{VEC}: a pair \kbd{[$N$, fa]} giving both the integer and
its factorization.
This allows to compute different arithmetic functions at a given $N$
while factoring the latter only once.
\bprog
? N = 10!; faN = factor(N);
? eulerphi(N)
%2 = 829440
? eulerphi(faN)
%3 = 829440
? eulerphi(S = [N, faN])
%4 = 829440
? sigma(S)
%5 = 15334088
@eprog
\subsec{Arithmetic functions and the factoring engine}
All arithmetic functions in the narrow sense of the word~--- Euler's
totient\sidx{Euler totient function} function, the \idx{Moebius} function,
the sums over divisors or powers of divisors etc.--- call, after trial
division by small primes, the same versatile factoring machinery described
under \kbd{factorint}. It includes \idx{Shanks SQUFOF}, \idx{Pollard Rho},
\idx{ECM} and \idx{MPQS} stages, and has an early exit option for the
functions \teb{moebius} and (the integer function underlying)
\teb{issquarefree}. This machinery relies on a fairly strong
probabilistic primality test, see \kbd{ispseudoprime}, but you may also set
\bprog
default(factor_proven, 1)
@eprog\noindent to ensure that all tentative factorizations are fully proven.
This should not slow down PARI too much, unless prime numbers with
hundreds of decimal digits occur frequently in your application.
\subsec{Orders in finite groups and Discrete Logarithm functions}
\label{se:DLfun}
The following functions compute the order of an element in a finite group:
\kbd{ellorder} (the rational points on an elliptic curve defined over a
finite field), \kbd{fforder} (the multiplicative group of a finite field),
\kbd{znorder} (the invertible elements in $\Z/n\Z$). The following functions
compute discrete logarithms in the same groups (whenever this is meaningful)
\kbd{elllog}, \kbd{fflog}, \kbd{znlog}.
All such functions allow an optional argument specifying an integer
$N$, representing the order of the group. (The \emph{order} functions also
allows any nonzero multiple of the order, with a minor loss of efficiency.)
That optional argument follows the same format as given above:
\item \typ{INT}: the integer $N$,
\item \typ{MAT}: the factorization \kbd{fa = factor($N$)},
\item \typ{VEC}: this is the preferred format and provides both the
integer $N$ and its factorization in a two-component vector
\kbd{[$N$, fa]}.
When the group is fixed and many orders or discrete logarithms will be
computed, it is much more efficient to initialize this data once
and pass it to the relevant functions, as in
\bprog
? p = nextprime(10^30);
? v = [p-1, factor(p-1)]; \\ data for discrete log & order computations
? znorder(Mod(2,p), v)
%3 = 500000000000000000000000000028
? g = znprimroot(p);
? znlog(2, g, v)
%5 = 543038070904014908801878611374
@eprog
\subsec{Dirichlet characters}\label{se:dirichletchar}
The finite abelian group $G = (\Z/N\Z)^{*}$ can be written $G = \oplus_{i\leq
n} (\Z/d_{i}\Z) g_{i}$, with $d_{n} \mid \dots \mid d_{2} \mid d_{1}$
(SNF condition), all $d_{i} > 0$, and $\prod_{i} d_{i} = \phi(N)$.
The positivity and SNF condition make the $d_{i}$ unique, but the generators
$g_{i}$, of respective order $d_{i}$, are definitely not unique. The
$\oplus$ notation means that all elements of $G$ can be written uniquely as
$\prod_{i} g_{i}^{n_{i}}$ where $n_{i} \in \Z/d_{i}\Z$. The $g_{i}$ are the
so-called \tev{SNF generators} of $G$.
\item a \tev{character} on the abelian group $\oplus_{j} (\Z/d_{j}\Z) g_{j}$
is given by a row vector $\chi = [a_{1},\ldots,a_{n}]$ of integers
$0\leq a_{i} < d_{i}$ such that $\chi(g_{j}) = e(a_{j} / d_{j})$ for all $j$,
with the standard notation $e(x) := \exp(2i\pi x)$.
In other words,
$\chi(\prod_{j} g_{j}^{n_{j}}) = e(\sum_{j} a_{j} n_{j} / d_{j})$.
This will be generalized to more general abelian groups in later sections
(Hecke characters), but in the present case of $(\Z/N\Z)^{*}$, there is a
useful
alternate convention : namely, it is not necessary to impose the SNF
condition and we can use Chinese remainders instead. If $N = \prod p^{e_{p}}$
is
the factorization of $N$ into primes, the so-called \tev{Conrey generators}
of $G$ are the generators of the $(\Z/p^{e_{p}}\Z)^{*}$ lifted to
$(\Z/N\Z)^{*}$ by
requesting that they be congruent to $1$ modulo $N/p^{e_{p}}$ (for $p$ odd we
take the smallest positive primitive root mod $p^{2}$, and for $p = 2$
we take $-1$ if
$e_{2} > 1$ and additionally $5$ if $e_{2} > 2$). We can again write $G =
\oplus_{i\leq n} (\Z/D_{i}\Z) G_{i}$, where again $\prod_{i} D_{i} = \phi(N)$.
These generators don't satisfy the SNF condition in general since their orders
are
now $(p-1)p^{e_{p}-1}$ for $p$ odd; for $p = 2$, the generator $-1$ has order
$2$ and $5$ has order $2^{e_{2}-2}$ $(e_{2} > 2)$. Nevertheless, any $m\in
(\Z/N\Z)^{*}$ can be uniquely decomposed as $m = \prod_{j} G_{i}^{m_{i}}$
for some $m_{i}$ modulo $D_{i}$ and we can define a character by $\chi(G_{j})
= e(m_{j} / D_{j})$ for all $j$.
\item The \emph{column vector} of the $m_{j}$, $0 \leq m_{j} < D_{j}$ is
called the \tev{Conrey logarithm} of $m$ (discrete logarithm in terms of the
Conrey generators). Note that discrete logarithms in PARI/GP are always
expressed as \typ{COL}s.
\item The attached character is called the \tev{Conrey character}
attached to $m$.
To sum up a Dirichlet character can be defined by a \typ{INTMOD}
\kbd{Mod}$(m, N)$, a \typ{INT} lift (the Conrey label $m$),
a \typ{COL} (the Conrey logarithm of $m$, in terms of the Conrey
generators) or a \typ{VEC} (in terms of the SNF generators). The \typ{COL}
format, i.e. Conrey logarithms, is the preferred (fastest) representation.
Concretely, this works as follows:
\kbd{G = znstar(N, 1)} initializes $(\Z/N\Z)^{*}$, which must be given as
first arguments to all functions handling Dirichlet characters.
\kbd{znconreychar} transforms \typ{INT}, \typ{INTMOD} and \typ{COL} to a SNF
character.
\kbd{znconreylog} transforms \typ{INT}, \typ{INTMOD} and \typ{VEC}
to a Conrey logarithm.
\kbd{znconreyexp} transforms \typ{VEC} and \typ{COL} to a Conrey label.
Also available are \kbd{charconj}, \kbd{chardiv}, \kbd{charmul},
\kbd{charker}, \kbd{chareval}, \kbd{charorder}, \kbd{zncharinduce},
\kbd{znconreyconductor} (also computes the primitive character attached to
the input character). The prefix \kbd{char} indicates that the function
applies to all characters, the prefix \kbd{znchar} that it is specific to
Dirichlet characters (on $(\Z/N\Z)^{*}$) and the prefix \kbd{znconrey} that it
is specific to Conrey representation.
\subsec{addprimes$(\{x=[\,]\})$}\kbdsidx{addprimes}\label{se:addprimes}
Adds the integers contained in the
vector $x$ (or the single integer $x$) to a special table of
``user-defined primes'', and returns that table. Whenever \kbd{factor} is
subsequently called, it will trial divide by the elements in this table.
If $x$ is empty or omitted, just returns the current list of extra
primes.
\bprog
? addprimes(37975227936943673922808872755445627854565536638199)
? factor(15226050279225333605356183781326374297180681149613806\
88657908494580122963258952897654000350692006139)
%2 =
[37975227936943673922808872755445627854565536638199 1]
[40094690950920881030683735292761468389214899724061 1]
? ##
*** last result computed in 0 ms.
@eprog
The entries in $x$ must be primes: there is no internal check, even if
the \tet{factor_proven} default is set. To remove primes from the list use
\kbd{removeprimes}.
The library syntax is \fun{GEN}{addprimes}{GEN x = NULL}.
\subsec{bestappr$(x,\{B\})$}\kbdsidx{bestappr}\label{se:bestappr}
Using variants of the extended Euclidean algorithm, returns a rational
approximation $a/b$ to $x$, whose denominator is limited
by $B$, if present. If $B$ is omitted, returns the best approximation
affordable given the input accuracy; if you are looking for true rational
numbers, presumably approximated to sufficient accuracy, you should first
try that option. Otherwise, $B$ must be a positive real scalar (impose
$0 < b \leq B$).
\item If $x$ is a \typ{REAL} or a \typ{FRAC}, this function uses continued
fractions.
\bprog
? bestappr(Pi, 100)
%1 = 22/7
? bestappr(0.1428571428571428571428571429)
%2 = 1/7
? bestappr([Pi, sqrt(2) + 'x], 10^3)
%3 = [355/113, x + 1393/985]
@eprog
By definition, $a/b$ is the best rational approximation to $x$ if
$|b x - a| < |v x - u|$ for all integers $(u,v)$ with $0 < v \leq B$.
(Which implies that $n/d$ is a convergent of the continued fraction of $x$.)
\item If $x$ is a \typ{INTMOD} modulo $N$ or a \typ{PADIC} of precision $N =
p^{k}$, this function performs rational modular reconstruction modulo $N$. The
routine then returns the unique rational number $a/b$ in coprime integers
$|a| < N/2B$ and $b\leq B$ which is congruent to $x$ modulo $N$. Omitting
$B$ amounts to choosing it of the order of $\sqrt{N/2}$. If rational
reconstruction is not possible (no suitable $a/b$ exists), returns $[]$.
\bprog
? bestappr(Mod(18526731858, 11^10))
%1 = 1/7
? bestappr(Mod(18526731858, 11^20))
%2 = []
? bestappr(3 + 5 + 3*5^2 + 5^3 + 3*5^4 + 5^5 + 3*5^6 + O(5^7))
%2 = -1/3
@eprog\noindent In most concrete uses, $B$ is a prime power and we performed
Hensel lifting to obtain $x$.
The function applies recursively to components of complex objects
(polynomials, vectors, \dots). If rational reconstruction fails for even a
single entry, returns $[]$.
The library syntax is \fun{GEN}{bestappr}{GEN x, GEN B = NULL}.
\subsec{bestapprPade$(x,\{B\},\{Q\})$}\kbdsidx{bestapprPade}\label{se:bestapprPade}
Using variants of the extended Euclidean algorithm (Pad\'{e}
approximants), returns a rational
function approximation $a/b$ to $x$, whose denominator is limited
by $B$, if present. If $B$ is omitted, return the best approximation
affordable given the input accuracy; if you are looking for true rational
functions, presumably approximated to sufficient accuracy, you should first
try that option. Otherwise, $B$ must be a nonnegative real
(impose $0 \leq \text{degree}(b) \leq B$).
\item If $x$ is a \typ{POLMOD} modulo $N$ this function performs rational
modular reconstruction modulo $N$. The routine then returns the unique
rational function $a/b$ in coprime polynomials, with $\text{degree}(b)\leq B$
and $\text{degree}(a)$ minimal, which is congruent to $x$ modulo $N$.
Omitting $B$ amounts to choosing it equal to the floor of
$\text{degree}(N) / 2$. If rational reconstruction is not possible (no
suitable $a/b$ exists), returns $[]$.
\bprog
? T = Mod(x^3 + x^2 + x + 3, x^4 - 2);
? bestapprPade(T)
%2 = (2*x - 1)/(x - 1)
? U = Mod(1 + x + x^2 + x^3 + x^5, x^9);
? bestapprPade(U) \\ internally chooses B = 4
%3 = []
? bestapprPade(U, 5) \\ with B = 5, a solution exists
%4 = (2*x^4 + x^3 - x - 1)/(-x^5 + x^3 + x^2 - 1)
@eprog
\item If $x$ is a \typ{SER}, we implicitly
convert the input to a \typ{POLMOD} modulo $N = t^{k}$ where $k$ is the
series absolute precision.
\bprog
? T = 1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + O(t^7); \\ mod t^7
? bestapprPade(T)
%1 = 1/(-t + 1)
@eprog
\item If $x$ is a \typ{SER} and both $B$ and $Q$ are nonnegative,
returns a rational function approximation $a/b$
to $x$, with $a$ of degree at most $B$ and $b$ of degree at most $Q$, with
$x-a/b=O(t^{B+Q+1+v})$ if $t$ is the variable, where $v$ is the valuation
of $x$, the empty vector if not possible.
\item If $x$ is a \typ{RFRAC}, we implicitly convert the input to a
\typ{POLMOD} modulo $N = t^{k}$ where $k = 2B + 1$. If $B$ was omitted,
we return $x$:
\bprog
? T = (4*t^2 + 2*t + 3)/(t+1)^10;
? bestapprPade(T,1)
%2 = [] \\ impossible
? bestapprPade(T,2)
%3 = 27/(337*t^2 + 84*t + 9)
? bestapprPade(T,3)
%4 = (4253*t - 3345)/(-39007*t^3 - 28519*t^2 - 8989*t - 1115)
@eprog\noindent
The function applies recursively to components of complex objects
(polynomials, vectors, \dots). If rational reconstruction fails for even a
single entry, return $[]$.
The library syntax is \fun{GEN}{bestapprPade0}{GEN x, long B, long Q}.
\fun{GEN}{bestapprPade}{GEN x, long B} as \kbd{bestapprPade0} when Q is ommited.
\subsec{bezout$(x,y)$}\kbdsidx{bezout}\label{se:bezout}
Deprecated alias for \kbd{gcdext}
The library syntax is \fun{GEN}{gcdext0}{GEN x, GEN y}.
\subsec{bigomega$(x)$}\kbdsidx{bigomega}\label{se:bigomega}
Number of prime divisors of the integer $|x|$ counted with
multiplicity:
\bprog
? factor(392)
%1 =
[2 3]
[7 2]
? bigomega(392)
%2 = 5; \\ = 3+2
? omega(392)
%3 = 2; \\ without multiplicity
@eprog
The library syntax is \fun{long}{bigomega}{GEN x}.
\subsec{charconj$(\var{cyc},\var{chi})$}\kbdsidx{charconj}\label{se:charconj}
Let \var{cyc} represent a finite abelian group by its elementary
divisors, i.e. $(d_{j})$ represents $\sum_{j \leq k} \Z/d_{j}\Z$ with $d_{k}
\mid \dots \mid d_{1}$; any object which has a \kbd{.cyc} method is also
allowed, e.g.~the output of \kbd{znstar} or \kbd{bnrinit}. A character
on this group is given by a row vector $\chi = [a_{1},\ldots,a_{n}]$ such that
$\chi(\prod g_{j}^{n_{j}}) = \exp(2\pi i\sum_{j} a_{j} n_{j} / d_{j})$, where
$g_{j}$ denotes the generator (of order $d_{j}$) of the $j$-th cyclic
component. This function returns the conjugate character.
\bprog
? cyc = [15,5]; chi = [1,1];
? charconj(cyc, chi)
%2 = [14, 4]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charconj(bnf, [1])
%5 = [2]
@eprog\noindent For Dirichlet characters (when \kbd{cyc} is
\kbd{znstar(q,1)}), characters in Conrey representation are available,
see \secref{se:dirichletchar} or \kbd{??character}:
\bprog
? G = znstar(16, 1); \\ (Z/16Z)^*
? charconj(G, 3) \\ Conrey label
%2 = [1, 1]~
? znconreyexp(G, %)
%3 = 11 \\ attached Conrey label; indeed 11 = 3^(-1) mod 16
? chi = znconreylog(G, 3);
? charconj(G, chi) \\ Conrey logarithm
%5 = [1, 1]~
@eprog
The library syntax is \fun{GEN}{charconj0}{GEN cyc, GEN chi}.
Also available is
\fun{GEN}{charconj}{GEN cyc, GEN chi}, when \kbd{cyc} is known to
be a vector of elementary divisors and \kbd{chi} a compatible character
(no checks).
\subsec{chardiv$(\var{cyc},a,b)$}\kbdsidx{chardiv}\label{se:chardiv}
Let \var{cyc} represent a finite abelian group by its elementary
divisors, i.e. $(d_{j})$ represents $\sum_{j \leq k} \Z/d_{j}\Z$ with $d_{k}.
\mid \dots \mid d_{1}$; any object which has a \kbd{.cyc} method is also
allowed, e.g.~the output of \kbd{znstar} or \kbd{bnrinit}. A character
on this group is given by a row vector $a = [a_{1},\ldots,a_{n}]$ such that
$\chi(\prod g_{j}^{n_{j}}) = \exp(2\pi i\sum_{j} a_{j} n_{j} / d_{j})$,
where $g_{j}$ denotes the generator (of order $d_{j}$) of the $j$-th cyclic
component.
Given two characters $a$ and $b$, return the character
$a / b = a \overline{b}$.
\bprog
? cyc = [15,5]; a = [1,1]; b = [2,4];
? chardiv(cyc, a,b)
%2 = [14, 2]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? chardiv(bnf, [1], [2])
%5 = [2]
@eprog\noindent For Dirichlet characters on $(\Z/N\Z)^{*}$, additional
representations are available (Conrey labels, Conrey logarithm),
see \secref{se:dirichletchar} or \kbd{??character}.
If the two characters are in the same format, the
result is given in the same format, otherwise a Conrey logarithm is used.
\bprog
? G = znstar(100, 1);
? G.cyc
%2 = [20, 2]
? a = [10, 1]; \\ usual representation for characters
? b = 7; \\ Conrey label;
? c = znconreylog(G, 11); \\ Conrey log
? chardiv(G, b,b)
%6 = 1 \\ Conrey label
? chardiv(G, a,b)
%7 = [0, 5]~ \\ Conrey log
? chardiv(G, a,c)
%7 = [0, 14]~ \\ Conrey log
@eprog
The library syntax is \fun{GEN}{chardiv0}{GEN cyc, GEN a, GEN b}.
Also available is
\fun{GEN}{chardiv}{GEN cyc, GEN a, GEN b}, when \kbd{cyc} is known to
be a vector of elementary divisors and $a, b$ are compatible characters
(no checks).
\subsec{chareval$(G,\var{chi},x,\{z\})$}\kbdsidx{chareval}\label{se:chareval}
Let $G$ be an abelian group structure affording a discrete logarithm
method, e.g $G = \kbd{znstar}(N, 1)$ for $(\Z/N\Z)^{*}$ or a \kbd{bnr}
structure, let $x$ be an element of $G$ and let \var{chi} be a character of
$G$ (see the note below for details). This function returns the value of
\var{chi} at~$x$.
\misctitle{Note on characters}
Let $K$ be some field. If $G$ is an abelian group,
let $\chi: G \to K^{*}$ be a character of finite order and let $o$ be a
multiple of the character order such that $\chi(n) = \zeta^{c(n)}$ for some
fixed $\zeta\in K^{*}$ of multiplicative order $o$ and a unique morphism $c: G
\to (\Z/o\Z,+)$. Our usual convention is to write
$$G = (\Z/o_{1}\Z) g_{1} \oplus \cdots \oplus (\Z/o_{d}\Z) g_{d}$$
for some generators $(g_{i})$ of respective order $d_{i}$, where the group
has exponent $o := \text{lcm}_{i} o_{i}$. Since $\zeta^{o} = 1$, the vector
$(c_{i})$ in
$\prod_{i} (\Z/o_{i}\Z)$ defines a character $\chi$ on $G$ via $\chi(g_{i}) =
\zeta^{c_{i} (o/o_{i})}$ for all $i$. Classical Dirichlet characters have values
in $K = \C$ and we can take $\zeta = \exp(2i\pi/o)$.
\misctitle{Note on Dirichlet characters}
In the special case where \var{bid} is attached to $G = (\Z/q\Z)^{*}$
(as per \kbd{G = znstar(q,1)}), the Dirichlet
character \var{chi} can be written in one of the usual 3 formats: a \typ{VEC}
in terms of \kbd{bid.gen} as above, a \typ{COL} in terms of the Conrey
generators, or a \typ{INT} (Conrey label);
see \secref{se:dirichletchar} or \kbd{??character}.
The character value is encoded as follows, depending on the optional
argument $z$:
\item If $z$ is omitted: return the rational number $c(x)/o$ for $x$ coprime
to $q$, where we normalize $0\leq c(x) < o$. If $x$ can not be mapped to the
group (e.g. $x$ is not coprime to the conductor of a Dirichlet or Hecke
character) we return the sentinel value $-1$.
\item If $z$ is an integer $o$, then we assume that $o$ is a multiple of the
character order and we return the integer $c(x)$ when $x$ belongs
to the group, and the sentinel value $-1$ otherwise.
\item $z$ can be of the form $[\var{zeta}, o]$, where \var{zeta}
is an $o$-th root of $1$ and $o$ is a multiple of the character order.
We return $\zeta^{c(x)}$ if $x$ belongs to the group, and the sentinel
value $0$ otherwise. (Note that this coincides with the usual extension
of Dirichlet characters to $\Z$, or of Hecke characters to general ideals.)
\item Finally, $z$ can be of the form $[\var{vzeta}, o]$, where
\var{vzeta} is a vector of powers $\zeta^{0}, \dots, \zeta^{o-1}$
of some $o$-th root of $1$ and $o$ is a multiple of the character order.
As above, we return $\zeta^{c(x)}$ after a table lookup. Or the sentinel
value $0$.
The library syntax is \fun{GEN}{chareval}{GEN G, GEN chi, GEN x, GEN z = NULL}.
\subsec{chargalois$(\var{cyc},\{\var{ORD}\})$}\kbdsidx{chargalois}\label{se:chargalois}
Let \var{cyc} represent a finite abelian group by its elementary divisors
(any object which has a \kbd{.cyc} method is also allowed, i.e. the output of
\kbd{znstar} or \kbd{bnrinit}). Return a list of representatives for the
Galois orbits of complex characters of $G$.
If \kbd{ORD} is present, select characters depending on their orders:
\item if \kbd{ORD} is a \typ{INT}, restrict to orders less than this
bound;
\item if \kbd{ORD} is a \typ{VEC} or \typ{VECSMALL}, restrict to orders in
the list.
\bprog
? G = znstar(96);
? #chargalois(G) \\ 16 orbits of characters mod 96
%2 = 16
? #chargalois(G,4) \\ order less than 4
%3 = 12
? chargalois(G,[1,4]) \\ order 1 or 4; 5 orbits
%4 = [[0, 0, 0], [2, 0, 0], [2, 1, 0], [2, 0, 1], [2, 1, 1]]
@eprog\noindent
Given a character $\chi$, of order $n$ (\kbd{charorder(G,chi)}), the
elements in its orbit are the $\phi(n)$ characters $\chi^{i}$, $(i,n)=1$.
The library syntax is \fun{GEN}{chargalois}{GEN cyc, GEN ORD = NULL}.
\subsec{charker$(\var{cyc},\var{chi})$}\kbdsidx{charker}\label{se:charker}
Let \var{cyc} represent a finite abelian group by its elementary
divisors, i.e. $(d_{j})$ represents $\sum_{j \leq k} \Z/d_{j}\Z$ with $d_{k}
\mid \dots \mid d_{1}$; any object which has a \kbd{.cyc} method is also
allowed, e.g.~the output of \kbd{znstar} or \kbd{bnrinit}. A character
on this group is given by a row vector $\chi = [a_{1},\ldots,a_{n}]$ such that
$\chi(\prod g_{j}^{n_{j}}) = \exp(2\pi i\sum_{j} a_{j} n_{j} / d_{j})$,
where $g_{j}$ denotes
the generator (of order $d_{j}$) of the $j$-th cyclic component.
This function returns the kernel of $\chi$, as a matrix $K$ in HNF which is a
left-divisor of \kbd{matdiagonal(d)}. Its columns express in terms of
the $g_{j}$ the generators of the subgroup. The determinant of $K$ is the
kernel index.
\bprog
? cyc = [15,5]; chi = [1,1];
? charker(cyc, chi)
%2 =
[15 12]
[ 0 1]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charker(bnf, [1])
%5 =
[3]
@eprog\noindent Note that for Dirichlet characters (when \kbd{cyc} is
\kbd{znstar(q, 1)}), characters in Conrey representation are available,
see \secref{se:dirichletchar} or \kbd{??character}.
\bprog
? G = znstar(8, 1); \\ (Z/8Z)^*
? charker(G, 1) \\ Conrey label for trivial character
%2 =
[1 0]
[0 1]
@eprog
The library syntax is \fun{GEN}{charker0}{GEN cyc, GEN chi}.
Also available is
\fun{GEN}{charker}{GEN cyc, GEN chi}, when \kbd{cyc} is known to
be a vector of elementary divisors and \kbd{chi} a compatible character
(no checks).
\subsec{charmul$(\var{cyc},a,b)$}\kbdsidx{charmul}\label{se:charmul}
Let \var{cyc} represent a finite abelian group by its elementary
divisors, i.e. $(d_{j})$ represents $\sum_{j \leq k} \Z/d_{j}\Z$ with $d_{k}
\mid \dots \mid d_{1}$; any object which has a \kbd{.cyc} method is also
allowed, e.g.~the output of \kbd{znstar} or \kbd{bnrinit}. A character
on this group is given by a row vector $\chi = [a_{1},\ldots,a_{n}]$ such that
$\chi(\prod g_{j}^{n_{j}}) = \exp(2\pi i\sum_{j} a_{j} n_{j} / d_{j})$,
where $g_{j}$ denotes
the generator (of order $d_{j}$) of the $j$-th cyclic component.
Given two characters $a$ and $b$, return the product character $ab$.
\bprog
? cyc = [15,5]; a = [1,1]; b = [2,4];
? charmul(cyc, a,b)
%2 = [3, 0]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charmul(bnf, [1], [2])
%5 = [0]
@eprog\noindent For Dirichlet characters on $(\Z/N\Z)^{*}$, additional
representations are available (Conrey labels, Conrey logarithm), see
\secref{se:dirichletchar} or \kbd{??character}. If the two characters are in
the same format, their
product is given in the same format, otherwise a Conrey logarithm is used.
\bprog
? G = znstar(100, 1);
? G.cyc
%2 = [20, 2]
? a = [10, 1]; \\ usual representation for characters
? b = 7; \\ Conrey label;
? c = znconreylog(G, 11); \\ Conrey log
? charmul(G, b,b)
%6 = 49 \\ Conrey label
? charmul(G, a,b)
%7 = [0, 15]~ \\ Conrey log
? charmul(G, a,c)
%7 = [0, 6]~ \\ Conrey log
@eprog
The library syntax is \fun{GEN}{charmul0}{GEN cyc, GEN a, GEN b}.
Also available is
\fun{GEN}{charmul}{GEN cyc, GEN a, GEN b}, when \kbd{cyc} is known to
be a vector of elementary divisors and $a, b$ are compatible characters
(no checks).
\subsec{charorder$(\var{cyc},\var{chi})$}\kbdsidx{charorder}\label{se:charorder}
Let \var{cyc} represent a finite abelian group by its elementary
divisors, i.e. $(d_{j})$ represents $\sum_{j \leq k} \Z/d_{j}\Z$ with $d_{k}
\mid \dots \mid d_{1}$; any object which has a \kbd{.cyc} method is also
allowed, e.g.~the output of \kbd{znstar} or \kbd{bnrinit}. A character
on this group is given by a row vector $\chi = [a_{1},\ldots,a_{n}]$ such that
$\chi(\prod g_{j}^{n_{j}}) = \exp(2\pi i\sum_{j} a_{j} n_{j} / d_{j})$,
where $g_{j}$ denotes
the generator (of order $d_{j}$) of the $j$-th cyclic component.
This function returns the order of the character \kbd{chi}.
\bprog
? cyc = [15,5]; chi = [1,1];
? charorder(cyc, chi)
%2 = 15
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charorder(bnf, [1])
%5 = 3
@eprog\noindent For Dirichlet characters (when \kbd{cyc} is
\kbd{znstar(q, 1)}), characters in Conrey representation are available,
see \secref{se:dirichletchar} or \kbd{??character}:
\bprog
? G = znstar(100, 1); \\ (Z/100Z)^*
? charorder(G, 7) \\ Conrey label
%2 = 4
@eprog
The library syntax is \fun{GEN}{charorder0}{GEN cyc, GEN chi}.
Also available is
\fun{GEN}{charorder}{GEN cyc, GEN chi}, when \kbd{cyc} is known to
be a vector of elementary divisors and \kbd{chi} a compatible character
(no checks).
\subsec{charpow$(\var{cyc},a,n)$}\kbdsidx{charpow}\label{se:charpow}
Let \var{cyc} represent a finite abelian group by its elementary
divisors, i.e. $(d_{j})$ represents $\sum_{j \leq k} \Z/d_{j}\Z$ with $d_{k}
\mid \dots \mid d_{1}$; any object which has a \kbd{.cyc} method is also
allowed, e.g.~the output of \kbd{znstar} or \kbd{bnrinit}. A character
on this group is given by a row vector $\chi = [a_{1},\ldots,a_{n}]$ such that
$\chi(\prod g_{j}^{n_{j}}) = \exp(2\pi i\sum_{j} a_{j} n_{j} / d_{j})$,
where $g_{j}$ denotes
the generator (of order $d_{j}$) of the $j$-th cyclic component.
Given $n\in \Z$ and a character $a$, return the character $a^{n}$.
\bprog
? cyc = [15,5]; a = [1,1];
? charpow(cyc, a, 3)
%2 = [3, 3]
? charpow(cyc, a, 5)
%2 = [5, 0]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charpow(bnf, [1], 3)
%5 = [0]
@eprog\noindent For Dirichlet characters on $(\Z/N\Z)^{*}$, additional
representations are available (Conrey labels, Conrey logarithm), see
\secref{se:dirichletchar} or \kbd{??character} and the output uses the
same format as the input.
\bprog
? G = znstar(100, 1);
? G.cyc
%2 = [20, 2]
? a = [10, 1]; \\ standard representation for characters
? b = 7; \\ Conrey label;
? c = znconreylog(G, 11); \\ Conrey log
? charpow(G, a,3)
%6 = [10, 1] \\ standard representation
? charpow(G, b,3)
%7 = 43 \\ Conrey label
? charpow(G, c,3)
%8 = [1, 8]~ \\ Conrey log
@eprog
The library syntax is \fun{GEN}{charpow0}{GEN cyc, GEN a, GEN n}.
Also available is
\fun{GEN}{charpow}{GEN cyc, GEN a, GEN n}, when \kbd{cyc} is known to
be a vector of elementary divisors (no check).
\subsec{chinese$(x,\{y\})$}\kbdsidx{chinese}\label{se:chinese}
If $x$ and $y$ are both intmods or both polmods, creates (with the same
type) a $z$ in the same residue class as $x$ and in the same residue class as
$y$, if it is possible.
\bprog
? chinese(Mod(1,2), Mod(2,3))
%1 = Mod(5, 6)
? chinese(Mod(x,x^2-1), Mod(x+1,x^2+1))
%2 = Mod(-1/2*x^2 + x + 1/2, x^4 - 1)
@eprog\noindent
This function also allows vector and matrix arguments, in which case the
operation is recursively applied to each component of the vector or matrix.
\bprog
? chinese([Mod(1,2),Mod(1,3)], [Mod(1,5),Mod(2,7)])
%3 = [Mod(1, 10), Mod(16, 21)]
@eprog\noindent
For polynomial arguments in the same variable, the function is applied to each
coefficient; if the polynomials have different degrees, the high degree terms
are copied verbatim in the result, as if the missing high degree terms in the
polynomial of lowest degree had been \kbd{Mod(0,1)}. Since the latter
behavior is usually \emph{not} the desired one, we propose to convert the
polynomials to vectors of the same length first:
\bprog
? P = x+1; Q = x^2+2*x+1;
? chinese(P*Mod(1,2), Q*Mod(1,3))
%4 = Mod(1, 3)*x^2 + Mod(5, 6)*x + Mod(3, 6)
? chinese(Vec(P,3)*Mod(1,2), Vec(Q,3)*Mod(1,3))
%5 = [Mod(1, 6), Mod(5, 6), Mod(4, 6)]
? Pol(%)
%6 = Mod(1, 6)*x^2 + Mod(5, 6)*x + Mod(4, 6)
@eprog
If $y$ is omitted, and $x$ is a vector, \kbd{chinese} is applied recursively
to the components of $x$, yielding a residue belonging to the same class as all
components of $x$.
Finally $\kbd{chinese}(x,x) = x$ regardless of the type of $x$; this allows
vector arguments to contain other data, so long as they are identical in both
vectors.
The library syntax is \fun{GEN}{chinese}{GEN x, GEN y = NULL}.
\fun{GEN}{chinese1}{GEN x} is also available.
\subsec{content$(x,\{D\})$}\kbdsidx{content}\label{se:content}
Computes the gcd of all the coefficients of $x$,
when this gcd makes sense. This is the natural definition
if $x$ is a polynomial (and by extension a power series) or a
vector/matrix. This is in general a weaker notion than the \emph{ideal}
generated by the coefficients:
\bprog
? content(2*x+y)
%1 = 1 \\ = gcd(2,y) over Q[y]
@eprog
If $x$ is a scalar, this simply returns the absolute value of $x$ if $x$ is
rational (\typ{INT} or \typ{FRAC}), and either $1$ (inexact input) or $x$
(exact input) otherwise; the result should be identical to \kbd{gcd(x, 0)}.
The content of a rational function is the ratio of the contents of the
numerator and the denominator. In recursive structures, if a
matrix or vector \emph{coefficient} $x$ appears, the gcd is taken
not with $x$, but with its content:
\bprog
? content([ [2], 4*matid(3) ])
%1 = 2
@eprog\noindent The content of a \typ{VECSMALL} is computed assuming the
entries are signed integers.
The optional argument $D$ allows to control over which ring we compute
and get a more predictable behaviour:
\item $1$: we only consider the underlying $\Q$-structure and the
denominator is a (positive) rational number
\item a simple variable, say \kbd{'x}: all entries are considered as
rational functions in $K(x)$ for some field $K$ and the content is an
element of $K$.
\bprog
? f = x + 1/y + 1/2;
? content(f) \\ as a t_POL in x
%2 = 1/(2*y)
? content(f, 1) \\ Q-content
%3 = 1/2
? content(f, y) \\ as a rational function in y
%4 = 1/2
? g = x^2*y + y^2*x;
? content(g, x)
%6 = y
? content(g, y)
%7 = x
@eprog
The library syntax is \fun{GEN}{content0}{GEN x, GEN D = NULL}.
\subsec{contfrac$(x,\{b\},\{\var{nmax}\})$}\kbdsidx{contfrac}\label{se:contfrac}
Returns the row vector whose components are the partial quotients of the
\idx{continued fraction} expansion of $x$. In other words, a result
$[a_{0},\dots,a_{n}]$ means that $x \approx a_{0}+1/(a_{1}+\dots+1/a_{n})$. The
output is normalized so that $a_{n} \neq 1$ (unless we also have $n = 0$).
The number of partial quotients $n+1$ is limited by \kbd{nmax}. If
\kbd{nmax} is omitted, the expansion stops at the last significant partial
quotient.
\bprog
? \p19
realprecision = 19 significant digits
? contfrac(Pi)
%1 = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2]
? contfrac(Pi,, 3) \\ n = 2
%2 = [3, 7, 15]
@eprog\noindent
$x$ can also be a rational function or a power series.
If a vector $b$ is supplied, the numerators are equal to the coefficients
of $b$, instead of all equal to $1$ as above; more precisely, $x \approx
(1/b_{0})(a_{0}+b_{1}/(a_{1}+\dots+b_{n}/a_{n}))$; for a numerical continued
fraction ($x$ real), the $a_{i}$ are integers, as large as possible;
if $x$ is a
rational function, they are polynomials with $\deg a_{i} = \deg b_{i} + 1$.
The length of the result is then equal to the length of $b$, unless the next
partial quotient cannot be reliably computed, in which case the expansion
stops. This happens when a partial remainder is equal to zero (or too small
compared to the available significant digits for $x$ a \typ{REAL}).
A direct implementation of the numerical continued fraction
\kbd{contfrac(x,b)} described above would be
\bprog
\\ "greedy" generalized continued fraction
cf(x, b) =
{ my( a= vector(#b), t );
x *= b[1];
for (i = 1, #b,
a[i] = floor(x);
t = x - a[i]; if (!t || i == #b, break);
x = b[i+1] / t;
); a;
}
@eprog\noindent There is some degree of freedom when choosing the $a_{i}$; the
program above can easily be modified to derive variants of the standard
algorithm. In the same vein, although no builtin
function implements the related \idx{Engel expansion} (a special kind of
\idx{Egyptian fraction} decomposition: $x = 1/a_{1} + 1/(a_{1}a_{2}) + \dots$),
it can be obtained as follows:
\bprog
\\ n terms of the Engel expansion of x
engel(x, n = 10) =
{ my( u = x, a = vector(n) );
for (k = 1, n,
a[k] = ceil(1/u);
u = u*a[k] - 1;
if (!u, break);
); a
}
@eprog
\misctitle{Obsolete hack} (don't use this): if $b$ is an integer, \var{nmax}
is ignored and the command is understood as \kbd{contfrac($x,, b$)}.
The library syntax is \fun{GEN}{contfrac0}{GEN x, GEN b = NULL, long nmax}.
Also available are \fun{GEN}{gboundcf}{GEN x, long nmax},
\fun{GEN}{gcf}{GEN x} and \fun{GEN}{gcf2}{GEN b, GEN x}.
\subsec{contfracpnqn$(x,\{n=-1\})$}\kbdsidx{contfracpnqn}\label{se:contfracpnqn}
When $x$ is a vector or a one-row matrix, $x$
is considered as the list of partial quotients $[a_{0},a_{1},\dots,a_{n}]$ of a
rational number, and the result is the 2 by 2 matrix
$[p_{n},p_{n-1};q_{n},q_{n-1}]$ in the standard notation of continued fractions,
so $p_{n}/q_{n}=a_{0}+1/(a_{1}+\dots+1/a_{n})$. If $x$ is a matrix with two rows
$[b_{0},b_{1},\dots,b_{n}]$ and $[a_{0},a_{1},\dots,a_{n}]$, this is then considered as a
generalized continued fraction and we have similarly
$p_{n}/q_{n}=(1/b_{0})(a_{0}+b_{1}/(a_{1}+\dots+b_{n}/a_{n}))$. Note that in this case one
usually has $b_{0}=1$.
If $n \geq 0$ is present, returns all convergents from $p_{0}/q_{0}$ up to
$p_{n}/q_{n}$. (All convergents if $x$ is too small to compute the $n+1$
requested convergents.)
\bprog
? a = contfrac(Pi,10)
%1 = [3, 7, 15, 1, 292, 1, 1, 1, 3]
? allpnqn(x) = contfracpnqn(x,#x) \\ all convergents
? allpnqn(a)
%3 =
[3 22 333 355 103993 104348 208341 312689 1146408]
[1 7 106 113 33102 33215 66317 99532 364913]
? contfracpnqn(a) \\ last two convergents
%4 =
[1146408 312689]
[ 364913 99532]
? contfracpnqn(a,3) \\ first three convergents
%5 =
[3 22 333 355]
[1 7 106 113]
@eprog
The library syntax is \fun{GEN}{contfracpnqn}{GEN x, long n}.
also available is \fun{GEN}{pnqn}{GEN x} for $n = -1$.
\subsec{core$(n,\{\fl=0\})$}\kbdsidx{core}\label{se:core}
If $n$ is an integer written as
$n=df^{2}$ with $d$ squarefree, returns $d$. If $\fl$ is nonzero,
returns the two-element row vector $[d,f]$. By convention, we write $0 = 0
\times 1^{2}$, so \kbd{core(0, 1)} returns $[0,1]$.
The library syntax is \fun{GEN}{core0}{GEN n, long flag}.
Also available are \fun{GEN}{core}{GEN n} ($\fl = 0$) and
\fun{GEN}{core2}{GEN n} ($\fl = 1$)
\subsec{coredisc$(n,\{\fl=0\})$}\kbdsidx{coredisc}\label{se:coredisc}
A \emph{fundamental discriminant} is an integer of the form $t\equiv 1
\mod 4$ or $4t \equiv 8,12 \mod 16$, with $t$ squarefree (i.e.~$1$ or the
discriminant of a quadratic number field). Given a nonzero integer
$n$, this routine returns the (unique) fundamental discriminant $d$
such that $n=df^{2}$, $f$ a positive rational number. If $\fl$ is nonzero,
returns the two-element row vector $[d,f]$. If $n$ is congruent to
0 or 1 modulo 4, $f$ is an integer, and a half-integer otherwise.
By convention, \kbd{coredisc(0, 1))} returns $[0,1]$.
Note that \tet{quaddisc}$(n)$ returns the same value as \kbd{coredisc}$(n)$,
and also works with rational inputs $n\in\Q^{*}$.
The library syntax is \fun{GEN}{coredisc0}{GEN n, long flag}.
Also available are \fun{GEN}{coredisc}{GEN n} ($\fl = 0$) and
\fun{GEN}{coredisc2}{GEN n} ($\fl = 1$)
\subsec{dirdiv$(x,y)$}\kbdsidx{dirdiv}\label{se:dirdiv}
$x$ and $y$ being vectors of perhaps different
lengths but with $y[1]\neq 0$ considered as \idx{Dirichlet series}, computes
the quotient of $x$ by $y$, again as a vector.
The library syntax is \fun{GEN}{dirdiv}{GEN x, GEN y}.
\subsec{direuler$(p=a,b,\var{expr},\{c\})$}\kbdsidx{direuler}\label{se:direuler}
Computes the \idx{Dirichlet series} attached to the
\idx{Euler product} of expression \var{expr} as $p$ ranges through the primes
from $a$
to $b$. \var{expr} must be a polynomial or rational function in another
variable than $p$ (say $X$) and $\var{expr}(X)$ is understood as the local
factor $\var{expr}(p^{-s})$.
The series is output as a vector of coefficients. If $c$ is omitted, output
the first $b$ coefficients of the series; otherwise, output the first $c$
coefficients. The following command computes the \teb{sigma} function,
attached to $\zeta(s)\zeta(s-1)$:
\bprog
? direuler(p=2, 10, 1/((1-X)*(1-p*X)))
%1 = [1, 3, 4, 7, 6, 12, 8, 15, 13, 18]
? direuler(p=2, 10, 1/((1-X)*(1-p*X)), 5) \\ fewer terms
%2 = [1, 3, 4, 7, 6]
@eprog\noindent Setting $c < b$ is useless (the same effect would be
achieved by setting $b = c)$. If $c > b$, the computed coefficients are
``missing'' Euler factors:
\bprog
? direuler(p=2, 10, 1/((1-X)*(1-p*X)), 15) \\ more terms, no longer = sigma !
%3 = [1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 0, 28, 0, 24, 24]
@eprog
\synt{direuler}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b}
\subsec{dirmul$(x,y)$}\kbdsidx{dirmul}\label{se:dirmul}
$x$ and $y$ being vectors of perhaps different lengths representing
the \idx{Dirichlet series} $\sum_{n} x_{n} n^{-s}$ and $\sum_{n} y_{n} n^{-s}$,
computes the product of $x$ by $y$, again as a vector.
\bprog
? dirmul(vector(10,n,1), vector(10,n,moebius(n)))
%1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
@eprog\noindent
The product
length is the minimum of $\kbd{\#}x\kbd{*}v(y)$ and $\kbd{\#}y\kbd{*}v(x)$,
where $v(x)$ is the index of the first nonzero coefficient.
\bprog
? dirmul([0,1], [0,1]);
%2 = [0, 0, 0, 1]
@eprog
The library syntax is \fun{GEN}{dirmul}{GEN x, GEN y}.
\subsec{dirpowerssum$(N,x,\{f\},\{\var{both}=0\})$}\kbdsidx{dirpowerssum}\label{se:dirpowerssum}
For positive integer $N$ and complex number $x$, return the sum
$f(1)1^{x} + f(2)2^{x} + \dots + f(N)N^{x}$, where $f$ is a completely
multiplicative function. If $f$ is omitted, return
$1^{x} + \dots + N^{x}$. When $N \le 0$, the function returns $0$.
If \kbd{both} is set, return the pair for arguments $(x,f)$ and
$(-1-x,\overline{f})$. If \kbd{both=2}, assume in addition that $f$ is
real-valued (which is true when $f$ is omitted, i.e. represents the constant
function $f(n) = 1$).
\misctitle{Caveat} when {\tt both} is set, the present implementation
assumes that $|f(n)|$ is either $0$ or $1$, which is the case for
Dirichlet characters.
A vector-valued multiplicative function $f$ is allowed, in which case the
above conditions must be met componentwise and the vector length must
be constant.
Unlike variants using \kbd{dirpowers(N,x)}, this function uses $O(\sqrt{N})$
memory instead of $O(N)$. And it is faster for large $N$. The return value
is usually a floating point number, but it will be exact if the result
is an integer. On the other hand, rational numbers are converted to
floating point approximations, since they are likely to blow up for large $N$.
\bprog
? dirpowers(5, 2)
%1 = [1, 4, 9, 16, 25]
? vecsum(%)
%2 = 55
? dirpowerssum(5, 2)
%3 = 55
? dirpowerssum(5, -2)
%4 = 1.4636111111111111111111111111111111111
? \p200
? s = 1/2 + I * sqrt(3); N = 10^7;
? dirpowerssum(N, s);
time = 11,425 ms.
? vecsum(dirpowers(N, s))
time = 19,365 ms.
? dirpowerssum(N, s, n->kronecker(-23,n))
time = 10,981 ms.
@eprog\noindent The \kbd{dirpowerssum} commands work with default stack size,
the \kbd{dirpowers} one requires a stacksize of at least 5GB.
\synt{dirpowerssumfun}{ulong N, GEN x, void *E, GEN (*f)(void*, ulong, long), long prec}. When $f = \kbd{NULL}$, one may use
\fun{GEN}{dirpowerssum}{ulong N, GEN x, long prec}.
\subsec{divisors$(x,\{\fl=0\})$}\kbdsidx{divisors}\label{se:divisors}
Creates a row vector whose components are the
divisors of $x$. The factorization of $x$ (as output by \tet{factor}) can
be used instead. If $\fl = 1$, return pairs $[d, \kbd{factor}(d)]$.
By definition, these divisors are the products of the irreducible
factors of $n$, as produced by \kbd{factor(n)}, raised to appropriate
powers (no negative exponent may occur in the factorization). If $n$ is
an integer, they are the positive divisors, in increasing order.
\bprog
? divisors(12)
%1 = [1, 2, 3, 4, 6, 12]
? divisors(12, 1) \\ include their factorization
%2 = [[1, matrix(0,2)], [2, Mat([2, 1])], [3, Mat([3, 1])],
[4, Mat([2, 2])], [6, [2, 1; 3, 1]], [12, [2, 2; 3, 1]]]
? divisors(x^4 + 2*x^3 + x^2) \\ also works for polynomials
%3 = [1, x, x^2, x + 1, x^2 + x, x^3 + x^2, x^2 + 2*x + 1,
x^3 + 2*x^2 + x, x^4 + 2*x^3 + x^2]
@eprog
This function requires a lot of memory if $x$ has many divisors. The
following idiom runs through all divisors using very little memory, in no
particular order this time:
\bprog
F = factor(x); P = F[,1]; E = F[,2];
forvec(e = vectorv(#E,i,[0,E[i]]), d = factorback(P,e); ...)
@eprog If the factorization of $d$ is also desired, then $[P,e]$ almost
provides it but not quite: $e$ may contain $0$ exponents, which are not
allowed in factorizations. These must be sieved out as in:
\bprog
? tofact(P,E) = matreduce(Mat([P,E]));
? tofact([2,3,5,7]~, [4,0,2,0]~)
%4 =
[2 4]
[5 2]
@eprog We can then run the above loop with \kbd{tofact(P,e)} instead of,
or together with, \kbd{factorback}.
The library syntax is \fun{GEN}{divisors0}{GEN x, long flag}.
The functions \fun{GEN}{divisors}{GEN N} ($\fl = 0$) and
\fun{GEN}{divisors_factored}{GEN N} ($\fl = 1$) are also available.
\subsec{divisorslenstra$(N,r,s)$}\kbdsidx{divisorslenstra}\label{se:divisorslenstra}
Given three integers $N > s > r \geq 0$ such that $(r,s) = 1$
and $s^{3} > N$, find all divisors $d$ of $N$ such that $d \equiv r \pmod{s}$.
There are at most $11$ such divisors (Lenstra).
\bprog
? N = 245784; r = 19; s = 65 ;
? divisorslenstra(N, r, s)
%2 = [19, 84, 539, 1254, 3724, 245784]
? [ d | d <- divisors(N), d % s == r]
%3 = [19, 84, 539, 1254, 3724, 245784]
@eprog\noindent When the preconditions are not met, the result is undefined:
\bprog
? N = 4484075232; r = 7; s = 1303; s^3 > N
%4 = 0
? divisorslenstra(N, r, s)
? [ d | d <- divisors(N), d % s == r ]
%6 = [7, 2613, 9128, 19552, 264516, 3407352, 344928864]
@eprog\noindent (Divisors were missing but $s^{3} < N$.)
The library syntax is \fun{GEN}{divisorslenstra}{GEN N, GEN r, GEN s}.
\subsec{eulerphi$(x)$}\kbdsidx{eulerphi}\label{se:eulerphi}
Euler's $\phi$ (totient)\sidx{Euler totient function} function of the
integer $|x|$, in other words $|(\Z/x\Z)^{*}|$.
\bprog
? eulerphi(40)
%1 = 16
@eprog\noindent
According to this definition we let $\phi(0) := 2$, since $\Z^{*} = \{-1,1\}$;
this is consistent with \kbd{znstar(0)}: we have
\kbd{znstar$(n)$.no = eulerphi(n)} for all $n\in\Z$.
The library syntax is \fun{GEN}{eulerphi}{GEN x}.
\subsec{factor$(x,\{D\})$}\kbdsidx{factor}\label{se:factor}
Factor $x$ over domain $D$; if $D$ is omitted, it is determined from $x$.
For instance, if $x$ is an integer, it is factored in $\Z$, if it is a
polynomial with rational coefficients, it is factored in $\Q[x]$, etc., see
below for details. The result is a two-column matrix: the first contains the
irreducibles dividing $x$ (rational or Gaussian primes, irreducible
polynomials), and the second the exponents. By convention, $0$ is factored
as $0^{1}$.
\misctitle{$x \in \Q$}
See \tet{factorint} for the algorithms used. The factorization includes the
unit $-1$ when $x < 0$ and all other factors are positive; a denominator is
factored with negative exponents. The factors are sorted in increasing order.
\bprog
? factor(-7/106)
%1 =
[-1 1]
[ 2 -1]
[ 7 1]
[53 -1]
@eprog\noindent By convention, $1$ is factored as \kbd{matrix(0,2)}
(the empty factorization, printed as \kbd{[;]}).
Large rational ``primes'' $ > 2^{64}$ in the factorization are in fact
\var{pseudoprimes} (see \kbd{ispseudoprime}), a priori not rigorously proven
primes. Use \kbd{isprime} to prove primality of these factors, as in
\bprog
? fa = factor(2^2^7 + 1)
%2 =
[59649589127497217 1]
[5704689200685129054721 1]
? isprime( fa[,1] )
%3 = [1, 1]~ \\ both entries are proven primes
@eprog\noindent
Another possibility is to globally set the default \tet{factor_proven}, which
will perform a rigorous primality proof for each pseudoprime factor but will
slow down PARI.
A \typ{INT} argument $D$ can be added, meaning that we only trial divide
by all primes $p < D$ and the \kbd{addprimes} entries, then skip all
expensive factorization methods. The limit $D$ must be nonnegative.
In this case, one entry in the factorization may be a composite number: all
factors less than $D^{2}$ and primes from the \kbd{addprimes} table
are actual primes. But (at most) one entry may not verify this criterion,
and it may be prime or composite: it is only known to be coprime to all
other entries and not a pure power.
\bprog
? factor(2^2^7 +1, 10^5)
%4 =
[340282366920938463463374607431768211457 1]
@eprog\noindent
\misctitle{Deprecated feature} Setting $D=0$ is the same
as setting it to $\kbd{factorlimit} + 1$.
\smallskip
This routine uses trial division and perfect power tests, and should not be
used for huge values of $D$ (at most $10^{9}$, say):
\kbd{factorint(, 1 + 8)} will in general be faster. The latter does not
guarantee that all small prime factors are found, but it also finds larger
factors and in a more efficient way.
\bprog
? F = (2^2^7 + 1) * 1009 * (10^5+3); factor(F, 10^5) \\ fast, incomplete
time = 0 ms.
%5 =
[1009 1]
[34029257539194609161727850866999116450334371 1]
? factor(F, 10^9) \\ slow
time = 3,260 ms.
%6 =
[1009 1]
[100003 1]
[340282366920938463463374607431768211457 1]
? factorint(F, 1+8) \\ much faster and all small primes were found
time = 8 ms.
%7 =
[1009 1]
[100003 1]
[340282366920938463463374607431768211457 1]
? factor(F) \\ complete factorization
time = 60 ms.
%8 =
[1009 1]
[100003 1]
[59649589127497217 1]
[5704689200685129054721 1]
@eprog
\misctitle{$x \in \Q(i)$} The factorization is performed with Gaussian
primes in $\Z[i]$ and includes Gaussian units in $\{\pm1, \pm i\}$;
factors are sorted by increasing norm. Except for a possible leading unit,
the Gaussian factors are normalized: rational factors are positive and
irrational factors have positive imaginary part.
Unless \tet{factor_proven} is set, large factors are actually pseudoprimes,
not proven primes; a rational factor is prime if less than $2^{64}$ and an
irrational one if its norm is less than $2^{64}$.
\bprog
? factor(5*I)
%9 =
[ 2 + I 1]
[1 + 2*I 1]
@eprog\noindent One can force the factorization of a rational number
by setting the domain $D = I$:
\bprog
? factor(-5, I)
%10 =
[ I 1]
[ 2 + I 1]
[1 + 2*I 1]
? factorback(%)
%11 = -5
@eprog
\misctitle{Univariate polynomials and rational functions}
PARI can factor univariate polynomials in $K[t]$. The following base fields
$K$ are currently supported: $\Q$, $\R$, $\C$, $\Q_{p}$, finite fields and
number fields. See \tet{factormod} and \tet{factorff} for the algorithms used
over finite fields and \tet{nffactor} for the algorithms over number fields.
The irreducible factors are sorted by increasing degree and normalized: they
are monic except when $K = \Q$ where they are primitive in $\Z[t]$.
The content is \emph{not} included in the factorization, in particular
\kbd{factorback} will in general recover the original $x$ only up to
multiplication by an element of $K^{*}$: when $K\neq\Q$, this scalar is
\kbd{pollead}$(x)$ (since irreducible factors are monic); and when $K = \Q$
you can either ask for the $\Q$-content explicitly of use factorback:
\bprog
? P = t^2 + 5*t/2 + 1; F = factor(P)
%12 =
[t + 2 1]
[2*t + 1 1]
? content(P, 1) \\ Q-content
%13 = 1/2
? pollead(factorback(F)) / pollead(P)
%14 = 2
@eprog
You can specify $K$ using the optional ``domain'' argument $D$ as follows
\item $K = \Q$ : $D$ a rational number (\typ{INT} or \typ{FRAC}),
\item $K = \Z/p\Z$ with $p$ prime : $D$ a \typ{INTMOD} modulo $p$;
factoring modulo a composite number is not supported.
\item $K = \F_{q}$ : $D$ a \typ{FFELT} encoding the finite field; you can also
use a \typ{POLMOD} of \typ{INTMOD} modulo a prime $p$ but this is usualy
less convenient;
\item $K = \Q[X]/(T)$ a number field : $D$ a \typ{POLMOD} modulo $T$,
\item $K = \Q(i)$ (alternate syntax for special case): $D = I$,
\item $K = \Q(w)$ a quadratic number field (alternate syntax for special
case): $D$ a \typ{QUAD},
\item $K = \R$ : $D$ a real number (\typ{REAL}); truncate the factorization
at accuracy \kbd{precision}$(D)$. If $x$ is inexact and \kbd{precision}$(x)$
is less than \kbd{precision}$(D)$, then the precision of $x$ is used instead.
\item $K = \C$ : $D$ a complex number with a \typ{REAL} component, e.g.
\kbd{I * 1.}; truncate the factorization as for $K = \R$,
\item $K = \Q_{p}$ : $D$ a \typ{PADIC}; truncate the factorization at
$p$-adic accuracy \kbd{padicprec}$(D)$, possibly less if $x$ is inexact
with insufficient $p$-adic accuracy;
\bprog
? T = x^2+1;
? factor(T, 1); \\ over Q
? factor(T, Mod(1,3)) \\ over F_3
? factor(T, ffgen(ffinit(3,2,'t))^0) \\ over F_{3^2}
? factor(T, Mod(Mod(1,3), t^2+t+2)) \\ over F_{3^2}, again
? factor(T, O(3^6)) \\ over Q_3, precision 6
? factor(T, 1.) \\ over R, current precision
? factor(T, I*1.) \\ over C
? factor(T, Mod(1, y^3-2)) \\ over Q(2^{1/3})
@eprog\noindent In most cases, it is possible and simpler to call a
specialized variant rather than use the above scheme:
\bprog
? factormod(T, 3) \\ over F_3
? factormod(T, [t^2+t+2, 3]) \\ over F_{3^2}
? factormod(T, ffgen([3,2], 't)) \\ over F_{3^2}
? factorpadic(T, 3,6) \\ over Q_3, precision 6
? nffactor(y^3-2, T) \\ over Q(2^{1/3})
? polroots(T) \\ over C
? polrootsreal(T) \\ over R (real polynomial)
@eprog
It is also possible to let the routine use the smallest field containing all
coefficients, taking into account quotient structures induced by
\typ{INTMOD}s and \typ{POLMOD}s (e.g.~if a coefficient in $\Z/n\Z$ is known,
all rational numbers encountered are first mapped to $\Z/n\Z$; different
moduli will produce an error):
\bprog
? T = x^2+1;
? factor(T); \\ over Q
? factor(T*Mod(1,3)) \\ over F_3
? factor(T*ffgen(ffinit(3,2,'t))^0) \\ over F_{3^2}
? factor(T*Mod(Mod(1,3), t^2+t+2)) \\ over F_{3^2}, again
? factor(T*(1 + O(3^6)) \\ over Q_3, precision 6
? factor(T*1.) \\ over R, current precision
? factor(T*(1.+0.*I)) \\ over C
? factor(T*Mod(1, y^3-2)) \\ over Q(2^{1/3})
@eprog\noindent Multiplying by a suitable field element equal to $1 \in K$
in this way is error-prone and is not recommanded. Factoring existing
polynomials with obvious fields of coefficients is fine, the domain
argument $D$ should be used instead ad hoc conversions.
\misctitle{Note on inexact polynomials}
Polynomials with inexact coefficients
(e.g. floating point or $p$-adic numbers)
are first rounded to an exact representation, then factored to (potentially)
infinite accuracy and we return a truncated approximation of that
virtual factorization. To avoid pitfalls, we advise to only factor
\emph{exact} polynomials:
\bprog
? factor(x^2-1+O(2^2)) \\ rounded to x^2 + 3, irreducible in Q_2
%1 =
[(1 + O(2^2))*x^2 + O(2^2)*x + (1 + 2 + O(2^2)) 1]
? factor(x^2-1+O(2^3)) \\ rounded to x^2 + 7, reducible !
%2 =
[ (1 + O(2^3))*x + (1 + 2 + O(2^3)) 1]
[(1 + O(2^3))*x + (1 + 2^2 + O(2^3)) 1]
? factor(x^2-1, O(2^2)) \\ no ambiguity now
%3 =
[ (1 + O(2^2))*x + (1 + O(2^2)) 1]
[(1 + O(2^2))*x + (1 + 2 + O(2^2)) 1]
@eprog
\misctitle{Note about inseparable polynomials} Polynomials with inexact
coefficients are considered to be squarefree: indeed, there exist a
squarefree polynomial arbitrarily close to the input, and they cannot be
distinguished at the input accuracy. This means that irreducible factors are
repeated according to their apparent multiplicity. On the contrary, using a
specialized function such as \kbd{factorpadic} with an \emph{exact} rational
input yields the correct multiplicity when the (now exact) input is not
separable. Compare:
\bprog
? factor(z^2 + O(5^2)))
%1 =
[(1 + O(5^2))*z + O(5^2) 1]
[(1 + O(5^2))*z + O(5^2) 1]
? factor(z^2, O(5^2))
%2 =
[1 + O(5^2))*z + O(5^2) 2]
@eprog
\misctitle{Multivariate polynomials and rational functions}
PARI recursively factors \emph{multivariate} polynomials in
$K[t_{1},\dots, t_{d}]$ for the same fields $K$ as above and the argument $D$
is used in the same way to specify $K$. The irreducible factors are sorted
by their main variable (least priority first) then by increasing degree.
\bprog
? factor(x^2 + y^2, Mod(1,5))
%1 =
[ x + Mod(2, 5)*y 1]
[Mod(1, 5)*x + Mod(3, 5)*y 1]
? factor(x^2 + y^2, O(5^2))
%2 =
[ (1 + O(5^2))*x + (O(5^2)*y^2 + (2 + 5 + O(5^2))*y + O(5^2)) 1]
[(1 + O(5^2))*x + (O(5^2)*y^2 + (3 + 3*5 + O(5^2))*y + O(5^2)) 1]
? lift(%)
%3 =
[ x + 7*y 1]
[x + 18*y 1]
@eprog\noindent Note that the implementation does not really support inexact
real fields ($\R$ or $\C$) and usually misses factors even if the input
is exact:
\bprog
? factor(x^2 + y^2, I) \\ over Q(i)
%4 =
[x - I*y 1]
[x + I*y 1]
? factor(x^2 + y^2, I*1.) \\ over C
%5 =
[x^2 + y^2 1]
@eprog
The library syntax is \fun{GEN}{factor0}{GEN x, GEN D = NULL}.
\fun{GEN}{factor}{GEN x}
\fun{GEN}{boundfact}{GEN x, ulong lim}.
\subsec{factorback$(f,\{e\})$}\kbdsidx{factorback}\label{se:factorback}
Gives back the factored object corresponding to a factorization. The
integer $1$ corresponds to the empty factorization.
If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
integral), and the corresponding factorization is the product of the
$f[i]^{e[i]}$.
If not, and $f$ is vector, it is understood as in the preceding case with $e$
a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a
regular factorization, as produced with any \kbd{factor} command. A few
examples:
\bprog
? factor(12)
%1 =
[2 2]
[3 1]
? factorback(%)
%2 = 12
? factorback([2,3], [2,1]) \\ 2^2 * 3^1
%3 = 12
? factorback([5,2,3])
%4 = 30
@eprog
The library syntax is \fun{GEN}{factorback2}{GEN f, GEN e = NULL}.
Also available is \fun{GEN}{factorback}{GEN f} (case $e = \kbd{NULL}$).
\subsec{factorcantor$(x,p)$}\kbdsidx{factorcantor}\label{se:factorcantor}
This function is obsolete, use factormod.
The library syntax is \fun{GEN}{factmod}{GEN x, GEN p}.
\subsec{factorff$(x,\{p\},\{a\})$}\kbdsidx{factorff}\label{se:factorff}
Obsolete, kept for backward compatibility: use factormod.
The library syntax is \fun{GEN}{factorff}{GEN x, GEN p = NULL, GEN a = NULL}.
\subsec{factorial$(x)$}\kbdsidx{factorial}\label{se:factorial}
Factorial of $x$. The expression $x!$ gives a result which is an integer,
while $\kbd{factorial}(x)$ gives a real number.
The library syntax is \fun{GEN}{mpfactr}{long x, long prec}.
\fun{GEN}{mpfact}{long x} returns $x!$ as a \typ{INT}.
\subsec{factorint$(x,\{\fl=0\})$}\kbdsidx{factorint}\label{se:factorint}
Factors the integer $n$ into a product of
pseudoprimes (see \kbd{ispseudoprime}), using a combination of the
\idx{Shanks SQUFOF} and \idx{Pollard Rho} method (with modifications due to
Brent), \idx{Lenstra}'s \idx{ECM} (with modifications by Montgomery), and
\idx{MPQS} (the latter adapted from the \idx{LiDIA} code with the kind
permission of the LiDIA maintainers), as well as a search for pure powers.
The output is a two-column matrix as for \kbd{factor}: the first column
contains the ``prime'' divisors of $n$, the second one contains the
(positive) exponents.
By convention $0$ is factored as $0^{1}$, and $1$ as the empty factorization;
also the divisors are by default not proven primes if they are larger than
$2^{64}$, they only failed the BPSW compositeness test (see
\tet{ispseudoprime}). Use \kbd{isprime} on the result if you want to
guarantee primality or set the \tet{factor_proven} default to $1$.
Entries of the private prime tables (see \tet{addprimes}) are also included
as is.
This gives direct access to the integer factoring engine called by most
arithmetical functions. \fl\ is optional; its binary digits mean 1: avoid
MPQS, 2: skip first stage ECM (we may still fall back to it later), 4: avoid
Rho and SQUFOF, 8: don't run final ECM (as a result, a huge composite may be
declared to be prime). Note that a (strong) probabilistic primality test is
used; thus composites might not be detected, although no example is known.
You are invited to play with the flag settings and watch the internals at
work by using \kbd{gp}'s \tet{debug} default parameter (level 3 shows
just the outline, 4 turns on time keeping, 5 and above show an increasing
amount of internal details).
The library syntax is \fun{GEN}{factorint}{GEN x, long flag}.
\subsec{factormod$(f,\{D\},\{\fl=0\})$}\kbdsidx{factormod}\label{se:factormod}
Factors the polynomial $f$ over the finite field defined by the domain
$D$ as follows:
\item $D = p$ a prime: factor over $\F_{p}$;
\item $D = [T,p]$ for a prime $p$ and $T(y)$ an irreducible polynomial over
$\F_{p}$: factor over $\F_{p}[y]/(T)$ (as usual the main variable of $T$ must have
lower priority than the main variable of $f$);
\item $D$ a \typ{FFELT}: factor over the attached field;
\item $D$ omitted: factor over the field of definition of $f$, which
must be a finite field.
The coefficients of $f$ must be operation-compatible with the corresponding
finite field. The result is a two-column matrix, the first column being the
irreducible polynomials dividing $f$, and the second the exponents.
By convention, the $0$ polynomial factors as $0^{1}$; a nonzero constant
polynomial has empty factorization, a $0\times 2$ matrix. The irreducible
factors are ordered by increasing degree and the result is canonical: it will
not change across multiple calls or sessions.
\bprog
? factormod(x^2 + 1, 3) \\ over F_3
%1 =
[Mod(1, 3)*x^2 + Mod(1, 3) 1]
? liftall( factormod(x^2 + 1, [t^2+1, 3]) ) \\ over F_9
%2 =
[ x + t 1]
[x + 2*t 1]
\\ same, now letting GP choose a model
? T = ffinit(3,2,'t)
%3 = Mod(1, 3)*t^2 + Mod(1, 3)*t + Mod(2, 3)
? liftall( factormod(x^2 + 1, [T, 3]) )
%4 = \\ t is a root of T !
[ x + (t + 2) 1]
[x + (2*t + 1) 1]
? t = ffgen(t^2+Mod(1,3)); factormod(x^2 + t^0) \\ same using t_FFELT
%5 =
[ x + t 1]
[x + 2*t 1]
? factormod(x^2+Mod(1,3))
%6 =
[Mod(1, 3)*x^2 + Mod(1, 3) 1]
? liftall( factormod(x^2 + Mod(Mod(1,3), y^2+1)) )
%7 =
[ x + y 1]
[x + 2*y 1]
@eprog
If $\fl$ is nonzero, outputs only the \emph{degrees} of the irreducible
polynomials (for example to compute an $L$-function). By convention, a
constant polynomial (including the $0$ polynomial) has empty factorization.
The degrees appear in increasing order but need not correspond to the
ordering with $\fl =0$ when multiplicities are present.
\bprog
? f = x^3 + 2*x^2 + x + 2;
? factormod(f, 5) \\ (x+2)^2 * (x+3)
%1 =
[Mod(1, 5)*x + Mod(2, 5) 2]
[Mod(1, 5)*x + Mod(3, 5) 1]
? factormod(f, 5, 1) \\ (deg 1) * (deg 1)^2
%2 =
[1 1]
[1 2]
@eprog
The library syntax is \fun{GEN}{factormod0}{GEN f, GEN D = NULL, long flag}.
\subsec{factormodDDF$(f,\{D\})$}\kbdsidx{factormodDDF}\label{se:factormodDDF}
Distinct-degree factorization of the squarefree polynomial $f$ over the
finite field defined by the domain $D$ as follows:
\item $D = p$ a prime: factor over $\F_{p}$;
\item $D = [T,p]$ for a prime $p$ and $T$ an irreducible polynomial over
$\F_{p}$: factor over $\F_{p}[x]/(T)$;
\item $D$ a \typ{FFELT}: factor over the attached field;
\item $D$ omitted: factor over the field of definition of $f$, which
must be a finite field.
If $f$ is not squarefree, the result is undefined.
The coefficients of $f$ must be operation-compatible with the corresponding
finite field. The result is a two-column matrix:
\item the first column contains monic (squarefree, pairwise coprime)
polynomials dividing $f$, all of whose irreducible factors have
the same degree $d$;
\item the second column contains the degrees of the irreducible factors.
The factorization is ordered by increasing degree $d$ of irreducible factors,
and the result is obviously canonical.
This function is somewhat faster than full factorization.
\bprog
? f = (x^2 + 1) * (x^2-1);
? factormodSQF(f,3) \\ squarefree over F_3
%2 =
[Mod(1, 3)*x^4 + Mod(2, 3) 1]
? factormodDDF(f, 3)
%3 =
[Mod(1, 3)*x^2 + Mod(2, 3) 1] \\ two degree 1 factors
[Mod(1, 3)*x^2 + Mod(1, 3) 2] \\ irred of degree 2
? for(i=1,10^5,factormodDDF(f,3))
time = 424 ms.
? for(i=1,10^5,factormod(f,3)) \\ full factorization is a little slower
time = 464 ms.
? liftall( factormodDDF(x^2 + 1, [3, t^2+1]) ) \\ over F_9
%6 =
[x^2 + 1 1] \\ product of two degree 1 factors
? t = ffgen(t^2+Mod(1,3)); factormodDDF(x^2 + t^0) \\ same using t_FFELT
%7 =
[x^2 + 1 1]
? factormodDDF(x^2-Mod(1,3))
%8 =
[Mod(1, 3)*x^2 + Mod(2, 3) 1]
@eprog
The library syntax is \fun{GEN}{factormodDDF}{GEN f, GEN D = NULL}.
\subsec{factormodSQF$(f,\{D\})$}\kbdsidx{factormodSQF}\label{se:factormodSQF}
Squarefree factorization of the polynomial $f$ over the finite field
defined by the domain $D$ as follows:
\item $D = p$ a prime: factor over $\F_{p}$;
\item $D = [T,p]$ for a prime $p$ and $T$ an irreducible polynomial over
$\F_{p}$: factor over $\F_{p}[x]/(T)$;
\item $D$ a \typ{FFELT}: factor over the attached field;
\item $D$ omitted: factor over the field of definition of $f$, which
must be a finite field.
The coefficients of $f$ must be operation-compatible with the corresponding
finite field. The result is a two-column matrix:
\item the first column contains monic squarefree pairwise coprime polynomials
dividing $f$;
\item the second column contains the power to which the polynomial in column
$1$ divides $f$;
This is somewhat faster than full factorization. The factors are ordered by
increasing exponent and the result is obviously canonical.
\bprog
? f = (x^2 + 1)^3 * (x^2-1)^2;
? factormodSQF(f, 3) \\ over F_3
%1 =
[Mod(1, 3)*x^2 + Mod(2, 3) 2]
[Mod(1, 3)*x^2 + Mod(1, 3) 3]
? for(i=1,10^5,factormodSQF(f,3))
time = 192 ms.
? for(i=1,10^5,factormod(f,3)) \\ full factorization is slower
time = 409 ms.
? liftall( factormodSQF((x^2 + 1)^3, [3, t^2+1]) ) \\ over F_9
%4 =
[x^2 + 1 3]
? t = ffgen(t^2+Mod(1,3)); factormodSQF((x^2 + t^0)^3) \\ same using t_FFELT
%5 =
[x^2 + 1 3]
? factormodSQF(x^8 + x^7 + x^6 + x^2 + x + Mod(1,2))
%6 =
[ Mod(1, 2)*x + Mod(1, 2) 2]
[Mod(1, 2)*x^2 + Mod(1, 2)*x + Mod(1, 2) 3]
@eprog
The library syntax is \fun{GEN}{factormodSQF}{GEN f, GEN D = NULL}.
\subsec{factormodcyclo$(n,p,\{\var{single}=0\},\{v=\kbd{'}x\})$}\kbdsidx{factormodcyclo}\label{se:factormodcyclo}
Factors $n$-th cyclotomic polynomial $\Phi_{n}(x)$ mod $p$,
where $p$ is a prime number not dividing $n$.
Much faster than \kbd{factormod(polcyclo(n), p)}; the irreducible
factors should be identical and given in the same order.
If \var{single} is set, return a single irreducible factor; else (default)
return all the irreducible factors. Note that repeated calls of this
function with the \var{single} flag set may return different results because
the algorithm is probabilistic. Algorithms used are as follows.
Let $F=\Q(\zeta_{n})$. Let $K$ be the splitting field of $p$ in $F$ and $e$ the
conductor of $K$. Then $\Phi_{n}(x)$ and $\Phi_{e}(x)$ have the same
number of irreducible factors mod $p$ and there is a simple algorithm
constructing irreducible factors of $\Phi_{n}(x)$ from irreducible
factors of $\Phi_{e}(x)$. So we may assume $n$ is equal to the
conductor of $K$.
Let $d$ be the order of $p$ in $(\Z/n\Z)^{\times}$ and $\varphi(n)=df$.
Then $\Phi_{n}(x)$ has $f$ irreducible factors $g_{i}(x)\;(1\leq i\leq f)$
of degree $d$ over $\F_{p}$ or $\Z_{p}$.
\item If $d$ is small, then we factor $g_{i}(x)$ into
$d$ linear factors $g_{ij}(x)$, $1\leq j\leq d$ in $\F_{q}[x]\;(q=p^{d})$ and
construct $G_{i}(x)=\prod_{j=1}^{d} g_{ij}(x)\in \F_{q}[x]$.
Then $G_{i}(x)\in\F_{p}[x]$ and $g_{i}(x)=G_{i}(x)$.
\item If $f$ is small, then we work in $K$, which is a Galois extension of
degree $f$ over $\Q$. The Gaussian period
$\theta_{k}=\text{Tr}_{F/K}(\zeta_{n}^{k})$ is a sum of $k$-th power of roots
of $g_{i}(x)$ and $K=\Q(\theta_{1})$.
Now, for each $k$, there is a polynomial $T_{k}(x)\in\Q[x]$ satisfying
$\theta_{k}=T_{k}(\theta_{1})$ because all $\theta_{k}$ are in $K$. Let
$T(x)\in\Z[x]$ be the minimal polynomial of $\theta_{1}$ over $\Q$. We get
$\theta_{1}$ mod $p$ from $T(x)$ and construct $\theta_{1},\cdots,\theta_{d}$
mod $p$ using $T_{k}(x)$. Finally we recover $g_{i}(x)$ from
$\theta_{1},\cdots,\theta_{d}$ by Newton's formula.
\bprog
? lift(factormodcyclo(15, 11))
%1 = [x^2 + 9*x + 4, x^2 + 4*x + 5, x^2 + 3*x + 9, x^2 + 5*x + 3]
? factormodcyclo(15, 11, 1) \\ single
%2 = Mod(1, 11)*x^2 + Mod(5, 11)*x + Mod(3, 11)
? z1 = lift(factormod(polcyclo(12345),11311)[,1]);
time = 32,498 ms.
? z2 = factormodcyclo(12345,11311);
time = 47 ms.
? z1 == z2
%4 = 1
@eprog
The library syntax is \fun{GEN}{factormodcyclo}{long n, GEN p, long single, long v = -1} where \kbd{v} is a variable number.
\subsec{ffcompomap$(f,g)$}\kbdsidx{ffcompomap}\label{se:ffcompomap}
Let $k$, $l$, $m$ be three finite fields and $f$ a (partial) map from $l$
to $m$ and $g$ a (partial) map from $k$ to $l$, return the (partial) map $f
\circ g$ from $k$ to $m$.
\bprog
a = ffgen([3,5],'a); b = ffgen([3,10],'b); c = ffgen([3,20],'c);
m = ffembed(a, b); n = ffembed(b, c);
rm = ffinvmap(m); rn = ffinvmap(n);
nm = ffcompomap(n,m);
ffmap(n,ffmap(m,a)) == ffmap(nm, a)
%5 = 1
ffcompomap(rm, rn) == ffinvmap(nm)
%6 = 1
@eprog
The library syntax is \fun{GEN}{ffcompomap}{GEN f, GEN g}.
\subsec{ffembed$(a,b)$}\kbdsidx{ffembed}\label{se:ffembed}
Given two finite fields elements $a$ and $b$, return a \var{map}
embedding the definition field of $a$ to the definition field of $b$.
Assume that the latter contains the former.
\bprog
? a = ffgen([3,5],'a);
? b = ffgen([3,10],'b);
? m = ffembed(a, b);
? A = ffmap(m, a);
? minpoly(A) == minpoly(a)
%5 = 1
@eprog
The library syntax is \fun{GEN}{ffembed}{GEN a, GEN b}.
\subsec{ffextend$(a,P,\{v\})$}\kbdsidx{ffextend}\label{se:ffextend}
Extend the field $K$ of definition of $a$ by a root of the polynomial
$P\in K[X]$ assumed to be irreducible over $K$. Return $[r, m]$ where $r$
is a root of $P$ in the extension field $L$ and $m$ is a map from $K$ to $L$,
see \kbd{ffmap}.
If $v$ is given, the variable name is used to display the generator of $L$,
else the name of the variable of $P$ is used.
A generator of $L$ can be recovered using $b=ffgen(r)$.
The image of $P$ in $L[X]$ can be recovered using $PL=ffmap(m,P)$.
\bprog
? a = ffgen([3,5],'a);
? P = x^2-a; polisirreducible(P)
%2 = 1
? [r,m] = ffextend(a, P, 'b);
? r
%3 = b^9+2*b^8+b^7+2*b^6+b^4+1
? subst(ffmap(m, P), x, r)
%4 = 0
? ffgen(r)
%5 = b
@eprog
The library syntax is \fun{GEN}{ffextend}{GEN a, GEN P, long v = -1} where \kbd{v} is a variable number.
\subsec{fffrobenius$(m,\{n=1\})$}\kbdsidx{fffrobenius}\label{se:fffrobenius}
Return the $n$-th power of the Frobenius map over the field of definition
of $m$.
\bprog
? a = ffgen([3,5],'a);
? f = fffrobenius(a);
? ffmap(f,a) == a^3
%3 = 1
? g = fffrobenius(a, 5);
? ffmap(g,a) == a
%5 = 1
? h = fffrobenius(a, 2);
? h == ffcompomap(f,f)
%7 = 1
@eprog
The library syntax is \fun{GEN}{fffrobenius}{GEN m, long n}.
\subsec{ffgen$(k,\{v = \kbd{'}x\})$}\kbdsidx{ffgen}\label{se:ffgen}
Return a generator for the finite field $k$ as a \typ{FFELT}.
The field $k$ can be given by
\item its order $q$
\item the pair $[p,f]$ where $q=p^{f}$
\item a monic irreducible polynomial with \typ{INTMOD} coefficients modulo a
prime.
\item a \typ{FFELT} belonging to $k$.
If \kbd{v} is given, the variable name is used to display $g$, else the
variable of the polynomial or the \typ{FFELT} is used, else $x$ is used.
For efficiency, the characteristic is not checked to be prime; similarly
if a polynomial is given, we do not check whether it is irreducible.
When only the order is specified, the function uses the polynomial generated
by \kbd{ffinit} and is deterministic: two calls to the function with the
same parameters will always give the same generator.
To obtain a multiplicative generator, call \kbd{ffprimroot} on the result
(which is randomized). Its minimal polynomial then gives a \emph{primitive}
polynomial, which can be used to redefine the finite field so that all
subsequent computations use the new primitive polynomial:
\bprog
? g = ffgen(16, 't);
? g.mod \\ recover the underlying polynomial.
%2 = t^4 + t^3 + t^2 + t + 1
? g.pol \\ lift g as a t_POL
%3 = t
? g.p \\ recover the characteristic
%4 = 2
? fforder(g) \\ g is not a multiplicative generator
%5 = 5
? a = ffprimroot(g) \\ recover a multiplicative generator
%6 = t^3 + t^2 + t
? fforder(a)
%7 = 15
? T = minpoly(a) \\ primitive polynomial
%8 = Mod(1, 2)*x^4 + Mod(1, 2)*x^3 + Mod(1, 2)
? G = ffgen(T); \\ is now a multiplicative generator
? fforder(G)
%10 = 15
@eprog
The library syntax is \fun{GEN}{ffgen}{GEN k, long v = -1} where \kbd{v} is a variable number.
To create a generator for a prime finite field, the function
\fun{GEN}{p_to_GEN}{GEN p, long v} returns \kbd{ffgen(p,v)\^{}0}.
\subsec{ffinit$(p,n,\{v=\kbd{'}x\})$}\kbdsidx{ffinit}\label{se:ffinit}
Computes a monic polynomial of degree $n$ which is irreducible over
$\F_{p}$, where $p$ is assumed to be prime. This function uses a fast variant
of Adleman and Lenstra's algorithm.
It is useful in conjunction with \tet{ffgen}; for instance if
\kbd{P = ffinit(3,2)}, you can represent elements in $\F_{3^{2}}$ in term of
\kbd{g = ffgen(P,'t)}. This can be abbreviated as
\kbd{g = ffgen(3\pow2, 't)}, where the defining polynomial $P$ can be later
recovered as \kbd{g.mod}.
The library syntax is \fun{GEN}{ffinit}{GEN p, long n, long v = -1} where \kbd{v} is a variable number.
\subsec{ffinvmap$(m)$}\kbdsidx{ffinvmap}\label{se:ffinvmap}
$m$ being a map from $K$ to $L$ two finite fields, return the partial map
$p$ from $L$ to $K$ such that for all $k\in K$, $p(m(k))=k$.
\bprog
? a = ffgen([3,5],'a);
? b = ffgen([3,10],'b);
? m = ffembed(a, b);
? p = ffinvmap(m);
? u = random(a);
? v = ffmap(m, u);
? ffmap(p, v^2+v+2) == u^2+u+2
%7 = 1
? ffmap(p, b)
%8 = []
@eprog
The library syntax is \fun{GEN}{ffinvmap}{GEN m}.
\subsec{fflog$(x,g,\{o\})$}\kbdsidx{fflog}\label{se:fflog}
Discrete logarithm of the finite field element $x$ in base $g$,
i.e.~an $e$ in $\Z$ such that $g^{e} = o$. If
present, $o$ represents the multiplicative order of $g$, see
\secref{se:DLfun}; the preferred format for
this parameter is \kbd{[ord, factor(ord)]}, where \kbd{ord} is the
order of $g$. It may be set as a side effect of calling \tet{ffprimroot}.
The result is undefined if $e$ does not exist. This function uses
\item a combination of generic discrete log algorithms (see \tet{znlog})
\item a cubic sieve index calculus algorithm for large fields of degree at
least $5$.
\item Coppersmith's algorithm for fields of characteristic at most $5$.
\bprog
? t = ffgen(ffinit(7,5));
? o = fforder(t)
%2 = 5602 \\@com \emph{not} a primitive root.
? fflog(t^10,t)
%3 = 10
? fflog(t^10,t, o)
%4 = 10
? g = ffprimroot(t, &o);
? o \\ order is 16806, bundled with its factorization matrix
%6 = [16806, [2, 1; 3, 1; 2801, 1]]
? fforder(g, o)
%7 = 16806
? fflog(g^10000, g, o)
%8 = 10000
@eprog
The library syntax is \fun{GEN}{fflog}{GEN x, GEN g, GEN o = NULL}.
\subsec{ffmap$(m,x)$}\kbdsidx{ffmap}\label{se:ffmap}
Given a (partial) map $m$ between two finite fields, return the image of
$x$ by $m$. The function is applied recursively to the component of vectors,
matrices and polynomials. If $m$ is a partial map that is not defined at $x$,
return $[]$.
\bprog
? a = ffgen([3,5],'a);
? b = ffgen([3,10],'b);
? m = ffembed(a, b);
? P = x^2+a*x+1;
? Q = ffmap(m,P);
? ffmap(m,poldisc(P)) == poldisc(Q)
%6 = 1
@eprog
The library syntax is \fun{GEN}{ffmap}{GEN m, GEN x}.
\subsec{ffmaprel$(m,x)$}\kbdsidx{ffmaprel}\label{se:ffmaprel}
Given a (partial) map $m$ between two finite fields, express $x$ as an
algebraic element over the codomain of $m$ in a way which is compatible
with $m$.
The function is applied recursively to the component of vectors,
matrices and polynomials.
\bprog
? a = ffgen([3,5],'a);
? b = ffgen([3,10],'b);
? m = ffembed(a, b);
? mi= ffinvmap(m);
? R = ffmaprel(mi,b)
%5 = Mod(b,b^2+(a+1)*b+(a^2+2*a+2))
@eprog
In particular, this function can be used to compute the relative minimal
polynomial, norm and trace:
\bprog
? minpoly(R)
%6 = x^2+(a+1)*x+(a^2+2*a+2)
? trace(R)
%7 = 2*a+2
? norm(R)
%8 = a^2+2*a+2
@eprog
The library syntax is \fun{GEN}{ffmaprel}{GEN m, GEN x}.
\subsec{ffnbirred$(q,n,\{\fl=0\})$}\kbdsidx{ffnbirred}\label{se:ffnbirred}
Computes the number of monic irreducible polynomials over $\F_{q}$
of degree exactly $n$ ($\fl=0$ or omitted) or at most $n$ ($\fl=1$).
The library syntax is \fun{GEN}{ffnbirred0}{GEN q, long n, long flag}.
Also available are
\fun{GEN}{ffnbirred}{GEN q, long n} (for $\fl=0$)
and \fun{GEN}{ffsumnbirred}{GEN q, long n} (for $\fl=1$).
\subsec{fforder$(x,\{o\})$}\kbdsidx{fforder}\label{se:fforder}
Multiplicative order of the finite field element $x$. If $o$ is
present, it represents a multiple of the order of the element,
see \secref{se:DLfun}; the preferred format for
this parameter is \kbd{[N, factor(N)]}, where \kbd{N} is the cardinality
of the multiplicative group of the underlying finite field.
\bprog
? t = ffgen(ffinit(nextprime(10^8), 5));
? g = ffprimroot(t, &o); \\@com o will be useful!
? fforder(g^1000000, o)
time = 0 ms.
%5 = 5000001750000245000017150000600250008403
? fforder(g^1000000)
time = 16 ms. \\@com noticeably slower, same result of course
%6 = 5000001750000245000017150000600250008403
@eprog
The library syntax is \fun{GEN}{fforder}{GEN x, GEN o = NULL}.
\subsec{ffprimroot$(x,\{\&o\})$}\kbdsidx{ffprimroot}\label{se:ffprimroot}
Return a primitive root of the multiplicative
group of the definition field of the finite field element $x$ (not necessarily
the same as the field generated by $x$). If present, $o$ is set to
a vector \kbd{[ord, fa]}, where \kbd{ord} is the order of the group
and \kbd{fa} its factorization \kbd{factor(ord)}. This last parameter is
useful in \tet{fflog} and \tet{fforder}, see \secref{se:DLfun}.
\bprog
? t = ffgen(ffinit(nextprime(10^7), 5));
? g = ffprimroot(t, &o);
? o[1]
%3 = 100000950003610006859006516052476098
? o[2]
%4 =
[2 1]
[7 2]
[31 1]
[41 1]
[67 1]
[1523 1]
[10498781 1]
[15992881 1]
[46858913131 1]
? fflog(g^1000000, g, o)
time = 1,312 ms.
%5 = 1000000
@eprog
The library syntax is \fun{GEN}{ffprimroot}{GEN x, GEN *o = NULL}.
\subsec{gcd$(x,\{y\})$}\kbdsidx{gcd}\label{se:gcd}
Creates the greatest common divisor of $x$ and $y$.
If you also need the $u$ and $v$ such that $x*u + y*v = \gcd(x,y)$,
use the \tet{gcdext} function. $x$ and $y$ can have rather quite general
types, for instance both rational numbers. If $y$ is omitted and $x$ is a
vector, returns the $\text{gcd}$ of all components of $x$, i.e.~this is
equivalent to \kbd{content(x)}.
When $x$ and $y$ are both given and one of them is a vector/matrix type,
the GCD is again taken recursively on each component, but in a different way.
If $y$ is a vector, resp.~matrix, then the result has the same type as $y$,
and components equal to \kbd{gcd(x, y[i])}, resp.~\kbd{gcd(x, y[,i])}. Else
if $x$ is a vector/matrix the result has the same type as $x$ and an
analogous definition. Note that for these types, \kbd{gcd} is not
commutative.
The algorithm used is a naive \idx{Euclid} except for the following inputs:
\item integers: use modified right-shift binary (``plus-minus''
variant).
\item univariate polynomials with coefficients in the same number
field (in particular rational): use modular gcd algorithm.
\item general polynomials: use the \idx{subresultant algorithm} if
coefficient explosion is likely (non modular coefficients).
If $u$ and $v$ are polynomials in the same variable with \emph{inexact}
coefficients, their gcd is defined to be scalar, so that
\bprog
? a = x + 0.0; gcd(a,a)
%1 = 1
? b = y*x + O(y); gcd(b,b)
%2 = y
? c = 4*x + O(2^3); gcd(c,c)
%3 = 4
@eprog\noindent A good quantitative check to decide whether such a
gcd ``should be'' nontrivial, is to use \tet{polresultant}: a value
close to $0$ means that a small deformation of the inputs has nontrivial gcd.
You may also use \tet{gcdext}, which does try to compute an approximate gcd
$d$ and provides $u$, $v$ to check whether $u x + v y$ is close to $d$.
The library syntax is \fun{GEN}{ggcd0}{GEN x, GEN y = NULL}.
Also available are \fun{GEN}{ggcd}{GEN x, GEN y}, if \kbd{y} is not
\kbd{NULL}, and \fun{GEN}{content}{GEN x}, if $\kbd{y} = \kbd{NULL}$.
\subsec{gcdext$(x,y)$}\kbdsidx{gcdext}\label{se:gcdext}
Returns $[u,v,d]$ such that $d$ is the gcd of $x,y$,
$x*u+y*v=\gcd(x,y)$, and $u$ and $v$ minimal in a natural sense.
The arguments must be integers or polynomials. \sidx{extended gcd}
\sidx{Bezout relation}
\bprog
? [u, v, d] = gcdext(32,102)
%1 = [16, -5, 2]
? d
%2 = 2
? gcdext(x^2-x, x^2+x-2)
%3 = [-1/2, 1/2, x - 1]
@eprog
If $x,y$ are polynomials in the same variable and \emph{inexact}
coefficients, then compute $u,v,d$ such that $x*u+y*v = d$, where $d$
approximately divides both and $x$ and $y$; in particular, we do not obtain
\kbd{gcd(x,y)} which is \emph{defined} to be a scalar in this case:
\bprog
? a = x + 0.0; gcd(a,a)
%1 = 1
? gcdext(a,a)
%2 = [0, 1, x + 0.E-28]
? gcdext(x-Pi, 6*x^2-zeta(2))
%3 = [-6*x - 18.8495559, 1, 57.5726923]
@eprog\noindent For inexact inputs, the output is thus not well defined
mathematically, but you obtain explicit polynomials to check whether the
approximation is close enough for your needs.
The library syntax is \fun{GEN}{gcdext0}{GEN x, GEN y}.
\subsec{halfgcd$(x,y)$}\kbdsidx{halfgcd}\label{se:halfgcd}
Let inputs $x$ and $y$ be both integers, or both polynomials in the same
variable. Return a vector \kbd{[M, [a,b]\til]}, where $M$ is an invertible
$2\times 2$ matrix such that \kbd{M*[x,y]\til = [a,b]\til}, where $b$ is
small. More precisely,
\item polynomial case: $\det M$ has degree $0$ and we
have $$\deg a \geq \ceil{\max(\deg x,\deg y))/2} > \deg b.$$
\item integer case: $\det M = \pm 1$ and we have
$$a \geq \ceil{\sqrt{\max(|x|,|y|)}} > b.$$
Assuming $x$ and $y$ are nonnegative, then $M^{-1}$ has nonnegative
coefficients, and $\det M$ is equal to the sign of both main diagonal terms
$M[1,1]$ and $M[2,2]$.
The library syntax is \fun{GEN}{ghalfgcd}{GEN x, GEN y}.
\subsec{hilbert$(x,y,\{p\})$}\kbdsidx{hilbert}\label{se:hilbert}
\idx{Hilbert symbol} of $x$ and $y$ modulo the prime $p$, $p=0$ meaning
the place at infinity (the result is undefined if $p\neq 0$ is not prime).
It is possible to omit $p$, in which case we take $p = 0$ if both $x$
and $y$ are rational, or one of them is a real number. And take $p = q$
if one of $x$, $y$ is a \typ{INTMOD} modulo $q$ or a $q$-adic. (Incompatible
types will raise an error.)
The library syntax is \fun{long}{hilbert}{GEN x, GEN y, GEN p = NULL}.
\subsec{isfundamental$(D)$}\kbdsidx{isfundamental}\label{se:isfundamental}
True (1) if $D$ is equal to 1 or to the discriminant of a quadratic
field, false (0) otherwise. $D$ can be input in factored form as for
arithmetic functions:
\bprog
? isfundamental(factor(-8))
%1 = 1
\\ count fundamental discriminants up to 10^8
? c = 0; forfactored(d = 1, 10^8, if (isfundamental(d), c++)); c
time = 40,840 ms.
%2 = 30396325
? c = 0; for(d = 1, 10^8, if (isfundamental(d), c++)); c
time = 1min, 33,593 ms. \\ slower !
%3 = 30396325
@eprog
The library syntax is \fun{long}{isfundamental}{GEN D}.
\subsec{ispolygonal$(x,s,\{\&N\})$}\kbdsidx{ispolygonal}\label{se:ispolygonal}
True (1) if the integer $x$ is an s-gonal number, false (0) if not.
The parameter $s > 2$ must be a \typ{INT}. If $N$ is given, set it to $n$
if $x$ is the $n$-th $s$-gonal number.
\bprog
? ispolygonal(36, 3, &N)
%1 = 1
? N
@eprog
The library syntax is \fun{long}{ispolygonal}{GEN x, GEN s, GEN *N = NULL}.
\subsec{ispower$(x,\{k\},\{\&n\})$}\kbdsidx{ispower}\label{se:ispower}
If $k$ is given, returns true (1) if $x$ is a $k$-th power, false
(0) if not. What it means to be a $k$-th power depends on the type of
$x$; see \tet{issquare} for details.
If $k$ is omitted, only integers and fractions are allowed for $x$ and the
function returns the maximal $k \geq 2$ such that $x = n^{k}$ is a perfect
power, or 0 if no such $k$ exist; in particular \kbd{ispower(-1)},
\kbd{ispower(0)}, and \kbd{ispower(1)} all return $0$.
If a third argument $\&n$ is given and $x$ is indeed a $k$-th power, sets
$n$ to a $k$-th root of $x$.
\noindent For a \typ{FFELT} \kbd{x}, instead of omitting \kbd{k} (which is
not allowed for this type), it may be natural to set
\bprog
k = (x.p ^ x.f - 1) / fforder(x)
@eprog
The library syntax is \fun{long}{ispower}{GEN x, GEN k = NULL, GEN *n = NULL}.
Also available is
\fun{long}{gisanypower}{GEN x, GEN *pty} ($k$ omitted).
\subsec{ispowerful$(x)$}\kbdsidx{ispowerful}\label{se:ispowerful}
True (1) if $x$ is a powerful integer, false (0) if not;
an integer is powerful if and only if its valuation at all primes dividing
$x$ is greater than 1.
\bprog
? ispowerful(50)
%1 = 0
? ispowerful(100)
%2 = 1
? ispowerful(5^3*(10^1000+1)^2)
%3 = 1
@eprog
The library syntax is \fun{long}{ispowerful}{GEN x}.
\subsec{isprime$(x,\{\fl=0\})$}\kbdsidx{isprime}\label{se:isprime}
True (1) if $x$ is a prime
number, false (0) otherwise. A prime number is a positive integer having
exactly two distinct divisors among the natural numbers, namely 1 and
itself.
This routine proves or disproves rigorously that a number is prime, which can
be very slow when $x$ is indeed a large prime integer. For instance
a $1000$ digits prime should require 15 to 30 minutes with default algorithms.
Use \tet{ispseudoprime} to quickly check for compositeness. Use
\tet{primecert} in order to obtain a primality proof instead of a yes/no
answer; see also \kbd{factor}.
The function accepts vector/matrices arguments, and is then
applied componentwise.
If $\fl=0$, use a combination of
\item Baillie-Pomerance-Selfridge-Wagstaff compositeness test
(see \tet{ispseudoprime}),
\item Selfridge ``$p-1$'' test if $x-1$ is smooth enough,
\item Adleman-Pomerance-Rumely-Cohen-Lenstra (APRCL) for general
medium-sized $x$ (less than 1500 bits),
\item Atkin-Morain's Elliptic Curve Primality Prover (ECPP) for general
large $x$.
If $\fl=1$, use Selfridge-Pocklington-Lehmer ``$p-1$'' test; this requires
partially factoring various auxilliary integers and is likely to be very slow.
If $\fl=2$, use APRCL only.
If $\fl=3$, use ECPP only.
The library syntax is \fun{GEN}{gisprime}{GEN x, long flag}.
\subsec{isprimepower$(x,\{\&n\})$}\kbdsidx{isprimepower}\label{se:isprimepower}
If $x = p^{k}$ is a prime power ($p$ prime, $k > 0$), return $k$, else
return 0. If a second argument $\&n$ is given and $x$ is indeed
the $k$-th power of a prime $p$, sets $n$ to $p$.
The library syntax is \fun{long}{isprimepower}{GEN x, GEN *n = NULL}.
\subsec{ispseudoprime$(x,\{\fl\})$}\kbdsidx{ispseudoprime}\label{se:ispseudoprime}
True (1) if $x$ is a strong pseudo
prime (see below), false (0) otherwise. If this function returns false, $x$
is not prime; if, on the other hand it returns true, it is only highly likely
that $x$ is a prime number. Use \tet{isprime} (which is of course much
slower) to prove that $x$ is indeed prime.
The function accepts vector/matrices arguments, and is then applied
componentwise.
If $\fl = 0$, checks whether $x$ has no small prime divisors (up to $101$
included) and is a Baillie-Pomerance-Selfridge-Wagstaff pseudo prime.
Such a pseudo prime passes a Rabin-Miller test for base $2$,
followed by a Lucas test for the sequence $(P,1)$, where $P \geq 3$
is the smallest odd integer such that $P^{2} - 4$ is not a square mod $x$.
(Technically, we are using an ``almost extra strong Lucas test'' that
checks whether $V_{n}$ is $\pm 2$, without computing $U_{n}$.)
There are no known composite numbers passing the above test, although it is
expected that infinitely many such numbers exist. In particular, all
composites $\leq 2^{64}$ are correctly detected (checked using
\url{https://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html}).
If $\fl > 0$, checks whether $x$ is a strong Miller-Rabin pseudo prime for
$\fl$ randomly chosen bases (with end-matching to catch square roots of $-1$).
The library syntax is \fun{GEN}{gispseudoprime}{GEN x, long flag}.
\subsec{ispseudoprimepower$(x,\{\&n\})$}\kbdsidx{ispseudoprimepower}\label{se:ispseudoprimepower}
If $x = p^{k}$ is a pseudo-prime power ($p$ pseudo-prime as per
\tet{ispseudoprime}, $k > 0$), return $k$, else
return 0. If a second argument $\&n$ is given and $x$ is indeed
the $k$-th power of a prime $p$, sets $n$ to $p$.
More precisely, $k$ is always the largest integer such that $x = n^{k}$ for
some integer $n$ and, when $n \leq 2^{64}$ the function returns $k > 0$ if and
only if $n$ is indeed prime. When $n > 2^{64}$ is larger than the threshold,
the function may return $1$ even though $n$ is composite: it only passed
an \kbd{ispseudoprime(n)} test.
The library syntax is \fun{long}{ispseudoprimepower}{GEN x, GEN *n = NULL}.
\subsec{issquare$(x,\{\&n\})$}\kbdsidx{issquare}\label{se:issquare}
True (1) if $x$ is a square, false (0)
if not. What ``being a square'' means depends on the type of $x$: all
\typ{COMPLEX} are squares, as well as all nonnegative \typ{REAL}; for
exact types such as \typ{INT}, \typ{FRAC} and \typ{INTMOD}, squares are
numbers of the form $s^{2}$ with $s$ in $\Z$, $\Q$ and $\Z/N\Z$ respectively.
\bprog
? issquare(3) \\ as an integer
%1 = 0
? issquare(3.) \\ as a real number
%2 = 1
? issquare(Mod(7, 8)) \\ in Z/8Z
%3 = 0
? issquare( 5 + O(13^4) ) \\ in Q_13
%4 = 0
@eprog
If $n$ is given, a square root of $x$ is put into $n$.
\bprog
? issquare(4, &n)
%1 = 1
? n
%2 = 2
@eprog
For polynomials, either we detect that the characteristic is 2 (and check
directly odd and even-power monomials) or we assume that $2$ is invertible
and check whether squaring the truncated power series for the square root
yields the original input.
For \typ{POLMOD} $x$, we only support \typ{POLMOD}s of \typ{INTMOD}s
encoding finite fields, assuming without checking that the intmod modulus
$p$ is prime and that the polmod modulus is irreducible modulo $p$.
\bprog
? issquare(Mod(Mod(2,3), x^2+1), &n)
%1 = 1
? n
%2 = Mod(Mod(2, 3)*x, Mod(1, 3)*x^2 + Mod(1, 3))
@eprog
The library syntax is \fun{long}{issquareall}{GEN x, GEN *n = NULL}.
Also available is \fun{long}{issquare}{GEN x}. Deprecated
GP-specific functions \fun{GEN}{gissquare}{GEN x} and
\fun{GEN}{gissquareall}{GEN x, GEN *pt} return \kbd{gen\_0} and \kbd{gen\_1}
instead of a boolean value.
\subsec{issquarefree$(x)$}\kbdsidx{issquarefree}\label{se:issquarefree}
True (1) if $x$ is squarefree, false (0) if not. Here $x$ can be an
integer or a polynomial with coefficients in an integral domain.
\bprog
? issquarefree(12)
%1 = 0
? issquarefree(6)
%2 = 1
? issquarefree(x^3+x^2)
%3 = 0
? issquarefree(Mod(1,4)*(x^2+x+1)) \\ Z/4Z is not a domain !
*** at top-level: issquarefree(Mod(1,4)*(x^2+x+1))
*** ^--------------------------------
*** issquarefree: impossible inverse in Fp_inv: Mod(2, 4).
@eprog\noindent A polynomial is declared squarefree if \kbd{gcd}$(x,x')$ is
$1$. In particular a nonzero polynomial with inexact coefficients is
considered to be squarefree. Note that this may be inconsistent with
\kbd{factor}, which first rounds the input to some exact approximation before
factoring in the apropriate domain; this is correct when the input is not
close to an inseparable polynomial (the resultant of $x$ and $x'$ is not
close to $0$).
An integer can be input in factored form as in arithmetic functions.
\bprog
? issquarefree(factor(6))
%1 = 1
\\ count squarefree integers up to 10^8
? c = 0; for(d = 1, 10^8, if (issquarefree(d), c++)); c
time = 3min, 2,590 ms.
%2 = 60792694
? c = 0; forfactored(d = 1, 10^8, if (issquarefree(d), c++)); c
time = 45,348 ms. \\ faster !
%3 = 60792694
@eprog
The library syntax is \fun{long}{issquarefree}{GEN x}.
\subsec{istotient$(x,\{\&N\})$}\kbdsidx{istotient}\label{se:istotient}
True (1) if $x = \phi(n)$ for some integer $n$, false (0)
if not.
\bprog
? istotient(14)
%1 = 0
? istotient(100)
%2 = 0
@eprog
If $N$ is given, set $N = n$ as well.
\bprog
? istotient(4, &n)
%1 = 1
? n
%2 = 10
@eprog
The library syntax is \fun{long}{istotient}{GEN x, GEN *N = NULL}.
\subsec{kronecker$(x,y)$}\kbdsidx{kronecker}\label{se:kronecker}
\idx{Kronecker symbol} $(x|y)$, where $x$ and $y$ must be of type integer. By
definition, this is the extension of \idx{Legendre symbol} to $\Z \times \Z$
by total multiplicativity in both arguments with the following special rules
for $y = 0, -1$ or $2$:
\item $(x|0) = 1$ if $|x| = 1$ and $0$ otherwise.
\item $(x|-1) = 1$ if $x \geq 0$ and $-1$ otherwise.
\item $(x|2) = 0$ if $x$ is even and $1$ if $x = 1,-1 \mod 8$ and $-1$
if $x=3,-3 \mod 8$.
The library syntax is \fun{long}{kronecker}{GEN x, GEN y}.
\subsec{lcm$(x,\{y\})$}\kbdsidx{lcm}\label{se:lcm}
Least common multiple of $x$ and $y$, i.e.~such
that $\lcm(x,y)*\gcd(x,y) = x*y$, up to units. If $y$ is omitted and $x$
is a vector, returns the $\text{lcm}$ of all components of $x$.
For integer arguments, return the nonnegative \text{lcm}.
When $x$ and $y$ are both given and one of them is a vector/matrix type,
the LCM is again taken recursively on each component, but in a different way.
If $y$ is a vector, resp.~matrix, then the result has the same type as $y$,
and components equal to \kbd{lcm(x, y[i])}, resp.~\kbd{lcm(x, y[,i])}. Else
if $x$ is a vector/matrix the result has the same type as $x$ and an
analogous definition. Note that for these types, \kbd{lcm} is not
commutative.
Note that \kbd{lcm(v)} is quite different from
\bprog
l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))
@eprog\noindent
Indeed, \kbd{lcm(v)} is a scalar, but \kbd{l} may not be (if one of
the \kbd{v[i]} is a vector/matrix). The computation uses a divide-conquer tree
and should be much more efficient, especially when using the GMP
multiprecision kernel (and more subquadratic algorithms become available):
\bprog
? v = vector(10^5, i, random);
? lcm(v);
time = 546 ms.
? l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))
time = 4,561 ms.
@eprog
The library syntax is \fun{GEN}{glcm0}{GEN x, GEN y = NULL}.
\subsec{logint$(x,b,\{\&z\})$}\kbdsidx{logint}\label{se:logint}
Return the largest non-negative integer $e$ so that $b^{e} \leq x$, where
$b > 1$ is an integer and $x \geq 1$ is a real number. If the parameter $z$
is present, set it to $b^{e}$.
\bprog
? logint(1000, 2)
%1 = 9
? 2^9
%2 = 512
? logint(1000, 2, &z)
%3 = 9
? z
%4 = 512
? logint(Pi^2, 2, &z)
%5 = 3
? z
%6 = 8
@eprog\noindent The number of digits used to write $x$ in base $b$ is
\kbd{1 + logint(x,b)}:
\bprog
? #digits(1000!, 10)
%5 = 2568
? logint(1000!, 10)
%6 = 2567
@eprog\noindent This function may conveniently replace
\bprog
floor( log(x) / log(b) )
@eprog\noindent which may not give the correct answer since PARI
does not guarantee exact rounding.
The library syntax is \fun{long}{logint0}{GEN x, GEN b, GEN *z = NULL}.
\subsec{moebius$(x)$}\kbdsidx{moebius}\label{se:moebius}
\idx{Moebius} $\mu$-function of $|x|$; $x$ must be a nonzero integer.
The library syntax is \fun{long}{moebius}{GEN x}.
\subsec{nextprime$(x)$}\kbdsidx{nextprime}\label{se:nextprime}
Finds the smallest pseudoprime (see
\tet{ispseudoprime}) greater than or equal to $x$. $x$ can be of any real
type. Note that if $x$ is a pseudoprime, this function returns $x$ and not
the smallest pseudoprime strictly larger than $x$. To rigorously prove that
the result is prime, use \kbd{isprime}.
\bprog
? nextprime(2)
%1 = 2
? nextprime(Pi)
%2 = 5
? nextprime(-10)
%3 = 2 \\ primes are positive
@eprog\noindent
Despite the name, please note that the function is not guaranteed to return
a prime number, although no counter-example is known at present. The return
value \emph{is} a guaranteed prime if $x \leq 2^{64}$. To rigorously prove
that the result is prime in all cases, use \kbd{isprime}.
The library syntax is \fun{GEN}{nextprime}{GEN x}.
\subsec{numdiv$(x)$}\kbdsidx{numdiv}\label{se:numdiv}
Number of divisors of $|x|$. $x$ must be of type integer.
The library syntax is \fun{GEN}{numdiv}{GEN x}.
\subsec{omega$(x)$}\kbdsidx{omega}\label{se:omega}
Number of distinct prime divisors of $|x|$. $x$ must be of type integer.
\bprog
? factor(392)
%1 =
[2 3]
[7 2]
? omega(392)
%2 = 2; \\ without multiplicity
? bigomega(392)
%3 = 5; \\ = 3+2, with multiplicity
@eprog
The library syntax is \fun{long}{omega}{GEN x}.
\subsec{precprime$(x)$}\kbdsidx{precprime}\label{se:precprime}
Finds the largest pseudoprime (see \tet{ispseudoprime}) less than or equal
to $x$; the input $x$ can be of any real type.
Returns 0 if $x\le1$. Note that if $x$ is a prime, this function returns $x$
and not the largest prime strictly smaller than $x$.
\bprog
? precprime(2)
%1 = 2
? precprime(Pi)
%2 = 3
? precprime(-10)
%3 = 0 \\ primes are positive
@eprog\noindent The function name comes from \emph{prec}eding \emph{prime}.
Despite the name, please note that the function is not guaranteed to return
a prime number (although no counter-example is known at present); the return
value \emph{is} a guaranteed prime if $x \leq 2^{64}$. To rigorously prove
that the result is prime in all cases, use \kbd{isprime}.
The library syntax is \fun{GEN}{precprime}{GEN x}.
\subsec{prime$(n)$}\kbdsidx{prime}\label{se:prime}
The $n^{\text{th}}$ prime number
\bprog
? prime(10^9)
%1 = 22801763489
@eprog\noindent Uses checkpointing and a naive $O(n)$ algorithm. Will need
about 30 minutes for $n$ up to $10^{11}$; make sure to start gp with
\kbd{primelimit} at least $\sqrt{p_{n}}$, e.g. the value
$\sqrt{n\log (n\log n)}$ is guaranteed to be sufficient.
The library syntax is \fun{GEN}{prime}{long n}.
\subsec{primecert$(N,\{\fl=0\},\{\var{partial}=0\})$}\kbdsidx{primecert}\label{se:primecert}
If N is a prime, return a PARI Primality Certificate for the prime $N$,
as described below. Otherwise, return 0. A Primality Certificate
$c$ can be checked using \tet{primecertisvalid}$(c)$.
If $\fl = 0$ (default), return an ECPP certificate (Atkin-Morain)
If $\fl = 0$ and $\var{partial}>0$, return a (potentially) partial
ECPP certificate.
A PARI ECPP Primality Certificate for the prime $N$ is either a prime
integer $N < 2^{64}$ or a vector \kbd{C} of length $\ell$ whose $i$th
component \kbd{C[i]} is a vector $[N_{i}, t_{i}, s_{i}, a_{i}, P_{i}]$
of length $5$
where $N_{1} = N$. It is said to be \emph{valid} if for each
$i = 1, \ldots, \ell$, all of the following conditions are satisfied
\item $N_{i}$ is a positive integer
\item $t_{i}$ is an integer such that $t_{i}^{2} < 4N_{i}$
\item $s_{i}$ is a positive integer which divides $m_{i}$ where
$m_{i} = N_{i} + 1 - t_{i}$
\item If we set $q_{i} = \dfrac{m_{i}}{s_{i}}$, then
\quad\item $q_{i} > (N_{i}^{1/4}+1)^{2}$
\quad\item $q_{i} = N_{i+1}$ if $1 \leq i < l$
\quad\item $q_{\ell} \leq 2^{64}$ is prime
\item $a_{i}$ is an integer
\quad\item \kbd{P[i]} is a vector of length $2$ representing the affine
point $P_{i} = (x_{i}, y_{i})$ on the elliptic curve
$E: y^{2} = x^{3} + a_{i}x + b_{i}$ modulo $N_{i}$ where
$b_{i} = y_{i}^{2} - x_{i}^{3} - a_{i}x_{i}$ satisfying the following:
\quad\item $m_{i} P_{i} = \infty$
\quad\item $s_{i} P_{i} \neq \infty$
Using the following theorem, the data in the vector \kbd{C} allows to
recursively certify the primality of $N$ (and all the $q_{i}$) under the single
assumption that $q_{\ell}$ be prime.
\misctitle{Theorem} If $N$ is an integer and there exist positive integers
$m, q$ and a point $P$ on the elliptic curve $E: y^{2} = x^{3} + ax + b$
defined modulo $N$ such that $q > (N^{1/4} + 1)^{2}$, $q$ is a prime divisor
of $m$, $mP = \infty$ and $\dfrac{m}{q}P \neq \infty$, then $N$ is prime.
A partial certificate is identical except that the condition $q_{\ell} \leq
2^{64}$ is replaced by $q_{\ell} \leq 2^{partial}$.
Such partial certificate $C$ can be extended to a full certificate by calling
$C=primecert(C)$, or to a longer partial certificate by calling
$C=primecert(C,,b)$ with $b<partial$.
\bprog
? primecert(10^35 + 69)
%1 = [[100000000000000000000000000000000069, 5468679110354
52074, 2963504668391148, 0, [60737979324046450274283740674
208692, 24368673584839493121227731392450025]], [3374383076
4501150277, -11610830419, 734208843, 0, [26740412374402652
72 4, 6367191119818901665]], [45959444779, 299597, 2331, 0
, [18022351516, 9326882 51]]]
? primecert(nextprime(2^64))
%2 = [[18446744073709551629, -8423788454, 160388, 1, [1059
8342506117936052, 2225259013356795550]]]
? primecert(6)
%3 = 0
? primecert(41)
%4 = 41
? N = 2^2000+841;
? Cp1 = primecert(N,,1500); \\ partial certificate
time = 16,018 ms.
? Cp2 = primecert(Cp1,,1000); \\ (longer) partial certificate
time = 5,890 ms.
? C = primecert(Cp2); \\ full certificate for N
time = 1,777 ms.
? primecertisvalid(C)
%9 = 1
? primecert(N);
time = 23,625 ms.
@eprog\noindent As the last command shows, attempting a succession of
partial certificates should be about as fast as a direct computation.
\smallskip
If $\fl = 1$ (very slow), return an $N-1$ certificate (Pocklington Lehmer)
A PARI $N-1$ Primality Certificate for the prime $N$ is either a prime
integer $N < 2^{64}$ or a pair $[N, C]$, where $C$ is a vector with $\ell$
elements which are either a single integer $p_{i} < 2^{64}$ or a
triple $[p_{i},a_{i},C_{i}]$ with $p_{i} > 2^{64}$ satisfying the following
properties:
\item $p_{i}$ is a prime divisor of $N - 1$;
\item $a_{i}$ is an integer such that $a_{i}^{N-1} \equiv 1 \pmod{N}$ and
$a_{i}^{(N-1)/p_{i}} - 1$ is coprime with $N$;
\item $C_{i}$ is an $N-1$ Primality Certificate for $p_{i}$
\item The product $F$ of the $p_{i}^{v_{p_{i}}(N-1)}$ is strictly larger than
$N^{1/3}$. Provided that all $p_{i}$ are indeed primes, this implies that any
divisor of $N$ is congruent to $1$ modulo $F$.
\item The Brillhart--Lehmer--Selfridge criterion is satisfied: when we write
$N = 1 + c_{1} F + c_{2} F^{2}$ in base $F$ the polynomial
$1 + c_{1} X + c_{2} X^{2}$
is irreducible over $\Z$, i.e. $c_{1}^{2} - 4c_{2}$ is not a square. This
implies that $N$ is prime.
This algorithm requires factoring partially $p-1$ for various prime integers
$p$ with an unfactored parted $\leq p^{2/3}$ and this may be exceedingly
slow compared to the default.
The algorithm fails if one of the pseudo-prime factors is not prime, which is
exceedingly unlikely and well worth a bug report. Note that if you monitor
the algorithm at a high enough debug level, you may see warnings about
untested integers being declared primes. This is normal: we ask for partial
factorizations (sufficient to prove primality if the unfactored part is not
too large), and \kbd{factor} warns us that the cofactor hasn't been tested.
It may or may not be tested later, and may or may not be prime. This does
not affect the validity of the whole Primality Certificate.
The library syntax is \fun{GEN}{primecert0}{GEN N, long flag, long partial}.
Also available is
\fun{GEN}{ecpp0}{GEN N, long partial} ($\fl = 0$).
\subsec{primecertexport$(\var{cert},\{\var{format}=0\})$}\kbdsidx{primecertexport}\label{se:primecertexport}
Returns a string suitable for print/write to display a primality certificate
from \tet{primecert}, the format of which depends on the value of \kbd{format}:
\item 0 (default): Human-readable format. See \kbd{??primecert} for the
meaning of the successive $N, t, s, a, m, q, E, P$. The integer $D$ is the
negative fundamental discriminant \kbd{coredisc}$(t^{2} - 4N)$.
\item 1: Primo format 4.
\item 2: MAGMA format.
Currently, only ECPP Primality Certificates are supported.
\bprog
? cert = primecert(10^35+69);
? s = primecertexport(cert); \\ Human-readable
? print(s)
[1]
N = 100000000000000000000000000000000069
t = 546867911035452074
s = 2963504668391148
a = 0
D = -3
m = 99999999999999999453132088964547996
q = 33743830764501150277
E = [0, 1]
P = [21567861682493263464353543707814204,
49167839501923147849639425291163552]
[2]
N = 33743830764501150277
t = -11610830419
s = 734208843
a = 0
D = -3
m = 33743830776111980697
q = 45959444779
E = [0, 25895956964997806805]
P = [29257172487394218479, 3678591960085668324]
\\ Primo format
? s = primecertexport(cert,1); write("cert.out", s);
\\ Magma format, write to file
? s = primecertexport(cert,2); write("cert.m", s);
? cert = primecert(10^35+69, 1); \\ N-1 certificate
? primecertexport(cert)
*** at top-level: primecertexport(cert)
*** ^---------------------
*** primecertexport: sorry, N-1 certificate is not yet implemented.
@eprog
The library syntax is \fun{GEN}{primecertexport}{GEN cert, long format}.
\subsec{primecertisvalid$(\var{cert})$}\kbdsidx{primecertisvalid}\label{se:primecertisvalid}
Verifies if cert is a valid PARI ECPP Primality certificate, as described
in \kbd{??primecert}.
\bprog
? cert = primecert(10^35 + 69)
%1 = [[100000000000000000000000000000000069, 5468679110354
52074, 2963504668391148, 0, [60737979324046450274283740674
208692, 24368673584839493121227731392450025]], [3374383076
4501150277, -11610830419, 734208843, 0, [26740412374402652
72 4, 6367191119818901665]], [45959444779, 299597, 2331, 0
, [18022351516, 9326882 51]]]
? primecertisvalid(cert)
%2 = 1
? cert[1][1]++; \\ random perturbation
? primecertisvalid(cert)
%4 = 0 \\ no longer valid
? primecertisvalid(primecert(6))
%5 = 0
@eprog
The library syntax is \fun{long}{primecertisvalid}{GEN cert}.
\subsec{primepi$(x)$}\kbdsidx{primepi}\label{se:primepi}
The prime counting function. Returns the number of
primes $p$, $p \leq x$.
\bprog
? primepi(10)
%1 = 4;
? primes(5)
%2 = [2, 3, 5, 7, 11]
? primepi(10^11)
%3 = 4118054813
@eprog\noindent Uses checkpointing and a naive $O(x)$ algorithm;
make sure to start gp with \kbd{primelimit} at least $\sqrt{x}$.
The library syntax is \fun{GEN}{primepi}{GEN x}.
\subsec{primes$(n)$}\kbdsidx{primes}\label{se:primes}
Creates a row vector whose components are the first $n$ prime numbers.
(Returns the empty vector for $n \leq 0$.) A \typ{VEC} $n = [a,b]$ is also
allowed, in which case the primes in $[a,b]$ are returned
\bprog
? primes(10) \\ the first 10 primes
%1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
? primes([0,29]) \\ the primes up to 29
%2 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
? primes([15,30])
%3 = [17, 19, 23, 29]
@eprog
The library syntax is \fun{GEN}{primes0}{GEN n}.
\subsec{qfbclassno$(D,\{\fl=0\})$}\kbdsidx{qfbclassno}\label{se:qfbclassno}
Ordinary class number of the quadratic order of discriminant $D$, for
``small'' values of $D$.
\item if $D > 0$ or $\fl = 1$, use a $O(|D|^{1/2})$
algorithm (compute $L(1,\chi_{D})$ with the approximate functional equation).
This is slower than \tet{quadclassunit} as soon as $|D| \approx 10^{2}$ or
so and is not meant to be used for large $D$.
\item if $D < 0$ and $\fl = 0$ (or omitted), use a $O(|D|^{1/4})$
algorithm (Shanks's baby-step/giant-step method). It should
be faster than \tet{quadclassunit} for small values of $D$, say
$|D| < 10^{18}$.
\misctitle{Important warning} In the latter case, this function only
implements part of \idx{Shanks}'s method (which allows to speed it up
considerably). It gives unconditionnally correct results for
$|D| < 2\cdot 10^{10}$, but may give incorrect results for larger values
if the class
group has many cyclic factors. We thus recommend to double-check results
using the function \kbd{quadclassunit}, which is about 2 to 3 times slower in
the range $|D| \in [10^{10}, 10^{18}]$, assuming GRH. We currently have no
counter-examples but they should exist: we would appreciate a bug report if
you find one.
\misctitle{Warning} Contrary to what its name implies, this routine does not
compute the number of classes of binary primitive forms of discriminant $D$,
which is equal to the \emph{narrow} class number. The two notions are the same
when $D < 0$ or the fundamental unit $\varepsilon$ has negative norm; when $D
> 0$ and $N\varepsilon > 0$, the number of classes of forms is twice the
ordinary class number. This is a problem which we cannot fix for backward
compatibility reasons. Use the following routine if you are only interested
in the number of classes of forms:
\bprog
? QFBclassno(D) = qfbclassno(D) * if (D > 0 && quadunitnorm(D) > 0, 2, 1)
? QFBclassno(136)
%1 = 4
? qfbclassno(136)
%2 = 2
? quadunitnorm(136)
%3 = 1
? bnfnarrow(bnfinit(x^2 - 136)).cyc
%4 = [4] \\ narrow class group is cyclic ~ Z/4Z
@eprog\noindent Note that the use of \kbd{bnfnarrow} above is only valid
because $136$ is a fundamental discriminant: that function is asymptotically
faster (and returns the group structure, not only its order) but only supports
\emph{maximal} orders.
Here are a few more examples:
\bprog
? qfbclassno(400000028) \\ D > 0: slow
time = 3,140 ms.
%1 = 1
? quadclassunit(400000028).no
time = 20 ms. \\@com{ much faster, assume GRH}
%2 = 1
? qfbclassno(-400000028) \\ D < 0: fast enough
time = 0 ms.
%3 = 7253
? quadclassunit(-400000028).no
time = 0 ms.
%4 = 7253
@eprog\noindent See also \kbd{qfbhclassno}.
The library syntax is \fun{GEN}{qfbclassno0}{GEN D, long flag}.
\subsec{qfbcomp$(x,y)$}\kbdsidx{qfbcomp}\label{se:qfbcomp}
\idx{composition} of the binary quadratic forms $x$ and $y$, with
\idx{reduction} of the result.
\bprog
? x=Qfb(2,3,-10);y=Qfb(5,3,-4);
? qfbcomp(x,y)
%2 = Qfb(-2, 9, 1)
? qfbcomp(x,y)==qfbred(qfbcompraw(x,y))
%3 = 1
@eprog
The library syntax is \fun{GEN}{qfbcomp}{GEN x, GEN y}.
\subsec{qfbcompraw$(x,y)$}\kbdsidx{qfbcompraw}\label{se:qfbcompraw}
\idx{composition} of the binary quadratic forms $x$ and $y$, without
\idx{reduction} of the result. This is useful e.g.~to compute a generating
element of an ideal. The result is undefined if $x$ and $y$ do not have the
same discriminant.
\bprog
? x=Qfb(2,3,-10);y=Qfb(5,3,-4);
? qfbcompraw(x,y)
%2 = Qfb(10, 3, -2)
? x=Qfb(2,3,-10);y=Qfb(1,-1,1);
? qfbcompraw(x,y)
*** at top-level: qfbcompraw(x,y)
*** ^---------------
*** qfbcompraw: inconsistent qfbcompraw t_QFB , t_QFB.
@eprog
The library syntax is \fun{GEN}{qfbcompraw}{GEN x, GEN y}.
\subsec{qfbcornacchia$(d,n)$}\kbdsidx{qfbcornacchia}\label{se:qfbcornacchia}
Solves the equation $x^{2} + dy^{2} = n$ in integers $x$ and $y$, where
$d > 0$ and $n$ is prime. Returns the empty vector \kbd{[]} when no solution
exists. It is also allowed to try $n = 4$ times a prime but the answer is
then guaranteed only if $d$ is $3$ mod $4$; more precisely if $d \neq 3$ mod
$4$, the algorithm may fail to find a non-primitive solution.
This function is a special case of \kbd{qfbsolve} applied to the principal
form in the imaginary quadratic order of discriminant $-4d$ (returning the
solution with non-negative $x$ and $y$). As its name implies,
\kbd{qfbcornacchia} uses Cornacchia's algorithm and runs in time quasi-linear
in $\log n$ (using \kbd{halfgcd}); in practical ranges, \kbd{qfbcornacchia}
should be about twice faster than \kbd{qfbsolve} unless we indicate to the
latter that its second argument is prime (see below).
\bprog
? qfbcornacchia(1, 113)
%1 = [8, 7]
? qfbsolve(Qfb(1,0,1), 113)
%2 = [8, 7]
? qfbcornacchia(1, 4*113) \\ misses the non-primitive solution 2*[8,7]
%3 = []
? qfbcornacchia(1, 4*109) \\ finds a non-primitive solution
%4 = [20, 6]
? p = 122838793181521; isprime(p)
%5 = 1
? qfbcornacchia(24, p)
%6 = [10547339, 694995]
? Q = Qfb(1,0,24); qfbsolve(Q,p)
%7 = [10547339, 694995]
? for (i=1, 10^5, qfbsolve(Q, p))
time = 345 ms.
? for (i=1, 10^5, qfbcornacchia(24,p)) \\ faster
time = 251 ms.
? for (i=1, 10^5, qfbsolve(Q, Mat([p,1]))) \\ just as fast
time = 251 ms.
@eprog\noindent We used \kbd{Mat([p,1])} to indicate that $p^{1}$
was the integer factorization of $p$, i.e., that $p$ is prime. Without it,
\kbd{qfbsolve} attempts to factor $p$ and wastes a little time.
The library syntax is \fun{GEN}{qfbcornacchia}{GEN d, GEN n}.
\subsec{qfbhclassno$(x)$}\kbdsidx{qfbhclassno}\label{se:qfbhclassno}
\idx{Hurwitz class number} of $x$, when
$x$ is nonnegative and congruent to 0 or 3 modulo 4, and $0$ for other
values. For $x > 5\cdot 10^{5}$, we assume the GRH, and use \kbd{quadclassunit}
with default parameters.
\bprog
? qfbhclassno(1) \\ not 0 or 3 mod 4
%1 = 0
? qfbhclassno(3)
%2 = 1/3
? qfbhclassno(4)
%3 = 1/2
? qfbhclassno(23)
%4 = 3
@eprog
The library syntax is \fun{GEN}{hclassno}{GEN x}.
\subsec{qfbnucomp$(x,y,L)$}\kbdsidx{qfbnucomp}\label{se:qfbnucomp}
\idx{composition} of the primitive positive
definite binary quadratic forms $x$ and $y$ (type \typ{QFB}) using the NUCOMP
and NUDUPL algorithms of \idx{Shanks}, \`a la Atkin. $L$ is any positive
constant, but for optimal speed, one should take $L=|D/4|^{1/4}$, i.e.
\kbd{sqrtnint(abs(D)>>2,4)}, where $D$ is the common discriminant of $x$ and
$y$. When $x$ and $y$ do not have the same discriminant, the result is
undefined.
The current implementation is slower than the generic routine for small $D$,
and becomes faster when $D$ has about $45$ bits.
The library syntax is \fun{GEN}{nucomp}{GEN x, GEN y, GEN L}.
Also available is \fun{GEN}{nudupl}{GEN x, GEN L} when $x=y$.
\subsec{qfbnupow$(x,n,\{L\})$}\kbdsidx{qfbnupow}\label{se:qfbnupow}
$n$-th power of the primitive positive definite
binary quadratic form $x$ using \idx{Shanks}'s NUCOMP and NUDUPL algorithms;
if set, $L$ should be equal to \kbd{sqrtnint(abs(D)>>2,4)}, where $D < 0$ is
the discriminant of $x$.
The current implementation is slower than the generic routine for small
discriminant $D$, and becomes faster for $D \approx 2^{45}$.
The library syntax is \fun{GEN}{nupow}{GEN x, GEN n, GEN L = NULL}.
\subsec{qfbpow$(x,n)$}\kbdsidx{qfbpow}\label{se:qfbpow}
$n$-th power of the binary quadratic form
$x$, computed with \idx{reduction} (i.e.~using \kbd{qfbcomp}).
The library syntax is \fun{GEN}{qfbpow}{GEN x, GEN n}.
\subsec{qfbpowraw$(x,n)$}\kbdsidx{qfbpowraw}\label{se:qfbpowraw}
$n$-th power of the binary quadratic form
$x$, computed without doing any \idx{reduction} (i.e.~using \kbd{qfbcompraw}).
Here $n$ must be nonnegative and $n<2^{31}$.
The library syntax is \fun{GEN}{qfbpowraw}{GEN x, long n}.
\subsec{qfbprimeform$(x,p)$}\kbdsidx{qfbprimeform}\label{se:qfbprimeform}
Prime binary quadratic form of discriminant
$x$ whose first coefficient is $p$, where $|p|$ is a prime number.
By abuse of notation,
$p = \pm 1$ is also valid and returns the unit form. Returns an
error if $x$ is not a quadratic residue mod $p$, or if $x < 0$ and $p < 0$.
(Negative definite \typ{QFB} are not implemented.)
The library syntax is \fun{GEN}{primeform}{GEN x, GEN p}.
\subsec{qfbred$(x,\{\fl=0\},\{\var{isd}\},\{\var{sd}\})$}\kbdsidx{qfbred}\label{se:qfbred}
Reduces the binary quadratic form $x$ (updating Shanks's distance
function $d$ if $x = [q,d]$ is an extended \emph{indefinite} form).
If $\fl$ is $1$, the function performs a single \idx{reduction} step, and
a complete reduction otherwise.
The arguments \var{isd}, \var{sd}, if present, supply the values of
$\floor{\sqrt{D}}$, and $\sqrt{D}$ respectively, where $D$
is the discriminant (this is not checked).
If $d < 0$ these values are useless.
The library syntax is \fun{GEN}{qfbred0}{GEN x, long flag, GEN isd = NULL, GEN sd = NULL}.
Also available is \fun{GEN}{qfbred}{GEN x} (\fl is 0, \kbd{isd}
and \kbd{sd} are \kbd{NULL})
\subsec{qfbredsl2$(x,\{\var{isD}\})$}\kbdsidx{qfbredsl2}\label{se:qfbredsl2}
Reduction of the (real or imaginary) binary quadratic form $x$, returns
$[y,g]$ where $y$ is reduced and $g$ in $\text{SL}(2,\Z)$ is such that
$g \cdot x = y$; \var{isD}, if
present, must be equal to $\kbd{sqrtint}(D)$, where $D > 0$ is the
discriminant of $x$.
The action of $g$ on $x$ can be computed using \kbd{qfeval(x,g)}
\bprog
? q1 = Qfb(33947,-39899,11650);
? [q2,U] = qfbredsl2(q1)
%2 = [Qfb(749,2207,-1712),[-1,3;-2,5]]
? qfeval(q1,U)
%3 = Qfb(749,2207,-1712)
@eprog
The library syntax is \fun{GEN}{qfbredsl2}{GEN x, GEN isD = NULL}.
\subsec{qfbsolve$(Q,n,\{\fl=0\})$}\kbdsidx{qfbsolve}\label{se:qfbsolve}
Solve the equation $Q(x,y)=n$ in coprime integers $x$ and $y$ (primitive
solutions), where
$Q$ is a binary quadratic form and $n$ an integer, up to the action of the
special orthogonal group $G=SO(Q,\Z)$, which is isomorphic to the group of
units of positive norm of the quadratic order of discriminant $D = \disc Q$.
If $D>0$, $G$ is infinite. If $D<-4$, $G$ is of order $2$, if $D=-3$, $G$ is
of order $6$ and if $D=-4$, $G$ is of order $4$.
Binary digits of $\fl$ mean:
1: return all solutions if set, else a single solution; return $[]$ if
a single solution is wanted (bit unset) but none exist.
2: also include imprimitive solutions.
When $\fl = 2$ (return a single solution, possibly imprimitive), the
algorithm returns a solution with minimal content; in particular, a
primitive solution exists if and only if one is returned.
The integer $n$ can also be given by its factorization matrix
\kbd{\var{fa} = factor(n)} or by the pair $[n, \var{fa}]$.
\bprog
? qfbsolve(Qfb(1,0,2), 603) \\ a single primitive solution
%1 = [5, 17]
? qfbsolve(Qfb(1,0,2), 603, 1) \\ all primitive solutions
%2 = [[5, 17], [-19, -11], [19, -11], [5, -17]]
? qfbsolve(Qfb(1,0,2), 603, 2) \\ a single, possibly imprimitive solution
%3 = [5, 17] \\ actually primitive
? qfbsolve(Qfb(1,0,2), 603, 3) \\ all solutions
%4 = [[5, 17], [-19, -11], [19, -11], [5, -17], [-21, 9], [-21, -9]]
? N = 2^128+1; F = factor(N);
? qfbsolve(Qfb(1,0,1),[N,F],1)
%3 = [[-16382350221535464479,8479443857936402504],
[18446744073709551616,-1],[-18446744073709551616,-1],
[16382350221535464479,8479443857936402504]]
@eprog
For fixed $Q$, assuming the factorisation of $n$ is given, the algorithm
runs in probabilistic polynomial time in $\log p$, where $p$ is the largest
prime divisor of $n$, through the computation of square roots of $D$ modulo
$4\*p$). The dependency on $Q$ is more complicated: polynomial time in $\log
|D|$ if $Q$ is imaginary, but exponential time if $Q$ is real (through the
computation of a full cycle of reduced forms). In the latter case, note that
\tet{bnfisprincipal} provides a solution in heuristic subexponential time
assuming the GRH.
The library syntax is \fun{GEN}{qfbsolve}{GEN Q, GEN n, long flag}.
\subsec{quadclassunit$(D,\{\fl=0\},\{\var{tech}=[\,]\})$}\kbdsidx{quadclassunit}\label{se:quadclassunit}
\idx{Buchmann-McCurley}'s sub-exponential algorithm for computing the
class group of a quadratic order of discriminant $D$. By default, the
results are conditional on the GRH.
This function should be used instead of \tet{qfbclassno} or
\tet{quadregulator}
when $D<-10^{25}$, $D>10^{10}$, or when the \emph{structure} is wanted. It
is a special case of \tet{bnfinit}, which is slower, but more robust.
The result is a vector $v$ whose components should be accessed using
member functions:
\item \kbd{$v$.no}: the class number
\item \kbd{$v$.cyc}: a vector giving the structure of the class group as a
product of cyclic groups;
\item \kbd{$v$.gen}: a vector giving generators of those cyclic groups (as
binary quadratic forms).
\item \kbd{$v$.reg}: the regulator, computed to an accuracy which is the
maximum of an internal accuracy determined by the program and the current
default (note that once the regulator is known to a small accuracy it is
trivial to compute it to very high accuracy, see the tutorial).
\item \kbd{$v$.normfu} (for positive $D$ only) return the norm of the
fundamental unit, either $1$ or $-1$. Note that a result of $-1$ is
unconditional and no longer depends on the GRH.
The $\fl$ is obsolete and should be left alone. In older versions,
it supposedly computed the narrow class group when $D>0$, but this did not
work at all; use the general function \tet{bnfnarrow}.
Optional parameter \var{tech} is a row vector of the form $[c_{1}, c_{2}]$,
where $c_{1} \leq c_{2}$ are nonnegative real numbers which control the execution
time and the stack size, see \ref{se:GRHbnf}. The parameter is used as a
threshold to balance the relation finding phase against the final linear
algebra. Increasing the default $c_{1}$ means that relations are easier
to find, but more relations are needed and the linear algebra will be
harder. The default value for $c_{1}$ is $0$ and means that it is taken equal
to $c_{2}$. The parameter $c_{2}$ is mostly obsolete and should not be changed,
but we still document it for completeness: we compute a tentative class
group by generators and relations using a factorbase of prime ideals
$\leq c_{1} (\log |D|)^{2}$, then prove that ideals of norm
$\leq c_{2} (\log |D|)^{2}$ do
not generate a larger group. By default an optimal $c_{2}$ is chosen, so that
the result is provably correct under the GRH --- a result of Greni\'e
and Molteni states that $c_{2} = 23/6 \approx 3.83$ is fine (and even
$c_{2} = 15/4 \approx 3.75$ for large $|D| > 2.41 E8$). But it is possible
to improve on this algorithmically. You may provide a smaller $c_{2}$, it will
be ignored (we use the provably correct one); you may provide a larger $c_{2}$
than the default value, which results in longer computing times for equally
correct outputs (under GRH).
The library syntax is \fun{GEN}{quadclassunit0}{GEN D, long flag, GEN tech = NULL, long prec}.
If you really need to experiment with the \var{tech} parameter,
it will be more convenient to use
\fun{GEN}{Buchquad}{GEN D, double c1, double c2, long prec}.
\subsec{quaddisc$(x)$}\kbdsidx{quaddisc}\label{se:quaddisc}
Discriminant of the \'etale algebra $\Q(\sqrt{x})$, where $x\in\Q^{*}$.
This is the same as \kbd{coredisc}$(d)$ where $d$ is the integer
squarefree part of $x$, so $x=d f^{2}$ with $f\in \Q^{*}$ and $d\in\Z$.
This returns $0$ for $x = 0$, $1$ for $x$ square and the discriminant of
the quadratic field $\Q(\sqrt{x})$ otherwise.
\bprog
? quaddisc(7)
%1 = 28
? quaddisc(-7)
%2 = -7
@eprog
The library syntax is \fun{GEN}{quaddisc}{GEN x}.
\subsec{quadgen$(D,\{v = \kbd{'}w\})$}\kbdsidx{quadgen}\label{se:quadgen}
Creates the quadratic number\sidx{omega} $\omega=(a+\sqrt{D})/2$ where
$a=0$ if $D\equiv0\mod4$,
$a=1$ if $D\equiv1\mod4$, so that $(1,\omega)$ is an integral basis for the
quadratic order of discriminant $D$. $D$ must be an integer congruent to 0 or
1 modulo 4, which is not a square.
If \var{v} is given, the variable name is used to display $g$ else 'w' is used.
\bprog
? w = quadgen(5, 'w); w^2 - w - 1
%1 = 0
? w = quadgen(0, 'w)
*** at top-level: w=quadgen(0)
*** ^----------
*** quadgen: domain error in quadpoly: issquare(disc) = 1
@eprog
The library syntax is \fun{GEN}{quadgen0}{GEN D, long v = -1} where \kbd{v} is a variable number.
When \var{v} does not matter, the function
\fun{GEN}{quadgen}{GEN D} is also available.
\subsec{quadhilbert$(D)$}\kbdsidx{quadhilbert}\label{se:quadhilbert}
Relative equation defining the
\idx{Hilbert class field} of the quadratic field of discriminant $D$.
If $D < 0$, uses complex multiplication (\idx{Schertz}'s variant).
If $D > 0$ \idx{Stark units} are used and (in rare cases) a
vector of extensions may be returned whose compositum is the requested class
field. See \kbd{bnrstark} for details.
The library syntax is \fun{GEN}{quadhilbert}{GEN D, long prec}.
\subsec{quadpoly$(D,\{v=\kbd{'}x\})$}\kbdsidx{quadpoly}\label{se:quadpoly}
Creates the ``canonical'' quadratic
polynomial (in the variable $v$) corresponding to the discriminant $D$,
i.e.~the minimal polynomial of $\kbd{quadgen}(D)$. $D$ must be an integer
congruent to 0 or 1 modulo 4, which is not a square.
\bprog
? quadpoly(5,'y)
%1 = y^2 - y - 1
? quadpoly(0,'y)
*** at top-level: quadpoly(0,'y)
*** ^--------------
*** quadpoly: domain error in quadpoly: issquare(disc) = 1
@eprog
The library syntax is \fun{GEN}{quadpoly0}{GEN D, long v = -1} where \kbd{v} is a variable number.
\subsec{quadray$(D,f)$}\kbdsidx{quadray}\label{se:quadray}
Relative equation for the ray
class field of conductor $f$ for the quadratic field of discriminant $D$
using analytic methods. A \kbd{bnf} for $x^{2} - D$ is also accepted in place
of $D$.
For $D < 0$, uses the $\sigma$ function and Schertz's method.
For $D>0$, uses Stark's conjecture, and a vector of relative equations may be
returned. See \tet{bnrstark} for more details.
The library syntax is \fun{GEN}{quadray}{GEN D, GEN f, long prec}.
\subsec{quadregulator$(D)$}\kbdsidx{quadregulator}\label{se:quadregulator}
Regulator of the quadratic order of positive discriminant $D$ in time
$\tilde{O}(D^{1/2})$ using the continued fraction algorithm. Raise
an error if $D$ is not a discriminant (fundamental or not) or if $D$ is a
square. The function \kbd{quadclassunit} is asymptotically faster (and also
in practice for $D > 10^{10}$ or so) but depends on the GRH.
The library syntax is \fun{GEN}{quadregulator}{GEN D, long prec}.
\subsec{quadunit$(D,\{v = \kbd{'}w\})$}\kbdsidx{quadunit}\label{se:quadunit}
A fundamental unit\sidx{fundamental units} $u$ of the real quadratic order
of discriminant $D$. The integer $D$ must be congruent to 0 or 1 modulo 4
and not a square; the result is a quadratic number (see \secref{se:quadgen}).
If $D$ is not a fundamental discriminant, the algorithm is wasteful: if $D =
df^{2}$ with $d$ fundamental, it will be faster to compute \kbd{quadunit}$(d)$
then raise it to the power \kbd{quadunitindex}$(d,f)$; or keep it in
factored form.
If \var{v} is given, the variable name is used to display $u$
else 'w' is used. The algorithm computes the continued fraction
of $(1 + \sqrt{D}) / 2$ or $\sqrt{D}/2$ (see GTM 138, algorithm 5.7.2).
Although the continued fraction length is only $O(\sqrt{D})$,
the function still runs in time $\tilde{O}(D)$, in part because the
output size is not polynomially bounded in terms of $\log D$.
See \kbd{bnfinit} and \kbd{bnfunits} for a better alternative for large
$D$, running in time subexponential in $\log D$ and returning the
fundamental units in compact form (as a short list of $S$-units of size
$O(\log D)^{3}$ raised to possibly large exponents).
The library syntax is \fun{GEN}{quadunit0}{GEN D, long v = -1} where \kbd{v} is a variable number.
When \var{v} does not matter, the function
\fun{GEN}{quadunit}{GEN D} is also available.
\subsec{quadunitindex$(D,f)$}\kbdsidx{quadunitindex}\label{se:quadunitindex}
Given a fundamental discriminant $D$, returns the index of the unit group
of the order of conductor $f$ in the units of $\Q(\sqrt{D})$. This function
uses the continued fraction algorithm and has $O(D^{1/2 + \varepsilon}
f^{\varepsilon})$ complexity; \kbd{quadclassunit} is asymptotically faster but
depends on the GRH.
\bprog
? quadunitindex(-3, 2)
%1 = 3
? quadunitindex(5, 2^32) \\ instantaneous
%2 = 3221225472
? quadregulator(5 * 2^64) / quadregulator(5)
time = 3min, 1,488 ms.
%3 = 3221225472.0000000000000000000000000000
@eprog\noindent The conductor $f$ can be given in factored form or as
$[f, \kbd{factor}(f)]$:
\bprog
? quadunitindex(5, [100, [2,2;5,2]])
%4 = 150
? quadunitindex(5, 100)
%5 = 150
? quadunitindex(5, [2,2;5,2])
%6 = 150
@eprog
If $D$ is not fundamental, the result is undefined; you may use the
following script instead:
\bprog
index(d, f) =
{ my([D,F] = coredisc(d, 1));
quadunitindex(D, f * F) / quadunitindex(D, F)
}
? index(5 * 10^2, 10)
%7 = 10
@eprog
The library syntax is \fun{GEN}{quadunitindex}{GEN D, GEN f}.
\subsec{quadunitnorm$(D)$}\kbdsidx{quadunitnorm}\label{se:quadunitnorm}
Returns the norm ($1$ or $-1$) of the fundamental unit of the quadratic
order of discriminant $D$. The integer $D$ must be congruent to $0$ or $1$
modulo $4$ and not a square. This is of course equal to \kbd{norm(quadunit(D))}
but faster.
\bprog
? quadunitnorm(-3) \\ the result is always 1 in the imaginary case
%1 = 1
? quadunitnorm(5)
%2 = -1
? quadunitnorm(17345)
%3 = -1
? u = quadunit(17345)
%4 = 299685042291 + 4585831442*w
? norm(u)
%5 = -1
@eprog\noindent This function computes the parity of the continued fraction
expansion and runs in time $\tilde{O}(D^{1/2})$. If $D$ is fundamental,
the function \kbd{bnfinit} is asymptotically faster but depends of the GRH.
If $D = df^{2}$ is not fundamental, it will usually be faster to first compute
\kbd{quadunitindex}$(d, f)$. If it is even, the result is $1$, else the result
is \kbd{quadunitnorm}$(d)$. The narrow class number of the order of
discriminant $D$ is equal to the class number if the unit norm is $1$ and to
twice the class number otherwise.
\misctitle{Important remark} Assuming GRH, using \kbd{bnfinit} is \emph{much}
faster, running in time subexponential in $\log D$ (instead of exponential
for \kbd{quadunitnorm}). We give examples for the maximal order:
\bprog
? GRHunitnorm(bnf) = vecprod(bnfsignunit(bnf)[,1])
? bnf = bnfinit(x^2 - 17345, 1); GRHunitnorm(bnf)
%2 = -1
? bnf = bnfinit(x^2 - nextprime(2^60), 1); GRHunitnorm(bnf)
time = 119 ms.
%3 = -1
? quadunitnorm(nextprime(2^60))
time = 24,086 ms.
%4 = -1
@eprog\noindent Note that if the result is $-1$, it is unconditional because
(if GRH is false) it could happen that our tentative fundamental unit in
\var{bnf} is actually a power $u^{k}$ of the true fundamental unit, but we
would still have $\text{Norm}(u) = -1$ (and $k$ odd). We can also remove the
GRH assumption when the result is $1$ with a little more work:
\bprog
? v = bnfunits(bnf)[1][1] \\ a unit in factored form
? v[,2] %= 2;
? nfeltissquare(bnf, nffactorback(bnf, v))
%7 = 0
@eprog\noindent Under GRH, we know that $v$ is the fundamental unit, but as
above it can be a power $u^{k}$ of the true fundamental unit $u$. But the
final two lines prove that $v$ is not a square, hence $k$ is odd and
$\text{Norm}(u)$ must also be $1$. We modified the factorization matrix
giving $v$ by reducing all exponents modulo $2$: this allows to computed
\kbd{nffactorback} even when the factorization involves huge exponents.
And of course the new $v$ is a square if and only if the original one was.
The library syntax is \fun{long}{quadunitnorm}{GEN D}.
\subsec{ramanujantau$(n,\{\var{ell}=12\})$}\kbdsidx{ramanujantau}\label{se:ramanujantau}
Compute the value of Ramanujan's tau function at an individual $n$,
assuming the truth of the GRH (to compute quickly class numbers of imaginary
quadratic fields using \tet{quadclassunit}). If \kbd{ell} is 16, 18, 20, 22,
or 26, same for the newform of level 1 and corresponding weight. Otherwise,
compute the coefficient of the trace form at $n$.
The complexity is in $\tilde{O}(n^{1/2})$ using $O(\log n)$ space.
If all values up to $N$ are required, then
$$\sum \tau(n)q^{n} = q \prod_{n\geq 1} (1-q^{n})^{24}$$
and more generally, setting $u = \ell - 13$ and $C = 2/\zeta(-u)$ for $\ell
> 12$,
$$\sum\tau_{\ell}(n)q^{n} = q \prod_{n\geq 1}
(1-q^{n})^{24} \Big( 1 + C\sum_{n\ge1}n^{u} q^{n} / (1-q^{n})\Big)$$
produces them in time $\tilde{O}(N)$, against $\tilde{O}(N^{3/2})$ for
individual calls to \kbd{ramanujantau}; of course the space complexity then
becomes $\tilde{O}(N)$. For other values of $\ell$,
\kbd{mfcoefs(mftraceform([1,ell]),N)} is much faster.
\bprog
? tauvec(N) = Vec(q*eta(q + O(q^N))^24);
? N = 10^4; v = tauvec(N);
time = 26 ms.
? ramanujantau(N)
%3 = -482606811957501440000
? w = vector(N, n, ramanujantau(n)); \\ much slower !
time = 13,190 ms.
? v == w
%4 = 1
@eprog
The library syntax is \fun{GEN}{ramanujantau}{GEN n, long ell}.
\subsec{randomprime$(\{N=2^{31}\},\{q\})$}\kbdsidx{randomprime}\label{se:randomprime}
Returns a strong pseudo prime (see \tet{ispseudoprime}) in $[2,N-1]$.
A \typ{VEC} $N = [a,b]$ is also allowed, with $a \leq b$ in which case a
pseudo prime $a \leq p \leq b$ is returned; if no prime exists in the
interval, the function will run into an infinite loop. If the upper bound
is less than $2^{64}$ the pseudo prime returned is a proven prime.
\bprog
? randomprime(100)
%1 = 71
? randomprime([3,100])
%2 = 61
? randomprime([1,1])
*** at top-level: randomprime([1,1])
*** ^------------------
*** randomprime: domain error in randomprime:
*** floor(b) - max(ceil(a),2) < 0
? randomprime([24,28]) \\ infinite loop
@eprog
If the optional parameter $q$ is an integer, return a prime congruent to $1
\mod q$; if $q$ is an intmod, return a prime in the given congruence class.
If the class contains no prime in the given interval, the function will raise
an exception if the class is not invertible, else run into an infinite loop
\bprog
? randomprime(100, 4) \\ 1 mod 4
%1 = 71
? randomprime(100, 4)
%2 = 13
? randomprime([10,100], Mod(2,5))
%3 = 47
? randomprime(100, Mod(0,2)) \\ silly but works
%4 = 2
? randomprime([3,100], Mod(0,2)) \\ not invertible
*** at top-level: randomprime([3,100],Mod(0,2))
*** ^-----------------------------
*** randomprime: elements not coprime in randomprime:
0
2
? randomprime(100, 97) \\ infinite loop
@eprog
The library syntax is \fun{GEN}{randomprime0}{GEN N = NULL, GEN q = NULL}.
Also available is \fun{GEN}{randomprime}{GEN N = NULL}.
\subsec{removeprimes$(\{x=[\,]\})$}\kbdsidx{removeprimes}\label{se:removeprimes}
Removes the primes listed in $x$ from
the prime number table. In particular \kbd{removeprimes(addprimes())} empties
the extra prime table. $x$ can also be a single integer. List the current
extra primes if $x$ is omitted.
The library syntax is \fun{GEN}{removeprimes}{GEN x = NULL}.
\subsec{sigma$(x,\{k=1\})$}\kbdsidx{sigma}\label{se:sigma}
Sum of the $k^{\text{th}}$ powers of the positive divisors of $|x|$. $x$
and $k$ must be of type integer.
The library syntax is \fun{GEN}{sumdivk}{GEN x, long k}.
Also available is \fun{GEN}{sumdiv}{GEN n}, for $k = 1$.
\subsec{sqrtint$(x,\{\&r\})$}\kbdsidx{sqrtint}\label{se:sqrtint}
Returns the integer square root of $x$, i.e. the largest integer $y$
such that $y^{2} \leq x$, where $x$ a nonnegative real number. If $r$ is
present,
set it to the remainder $r = x - y^{2}$, which satisfies $0\leq r < 2y + 1$.
Further, when $x$ is an integer, $r$ is an integer satisfying
$0 \leq r \leq 2y$.
\bprog
? x = 120938191237; sqrtint(x)
%1 = 347761
? sqrt(x)
%2 = 347761.68741970412747602130964414095216
? y = sqrtint(x, &r); r
%3 = 478116
? x - y^2
%4 = 478116
? sqrtint(9/4, &r) \\ not 3/2 !
%5 = 1
? r
%6 = 5/4
@eprog
The library syntax is \fun{GEN}{sqrtint0}{GEN x, GEN *r = NULL}.
Also available is \fun{GEN}{sqrtint}{GEN a}.
\subsec{sqrtnint$(x,n)$}\kbdsidx{sqrtnint}\label{se:sqrtnint}
Returns the integer $n$-th root of $x$, i.e. the largest integer $y$ such
that $y^{n} \leq x$, where $x$ is a nonnegative real number.
\bprog
? N = 120938191237; sqrtnint(N, 5)
%1 = 164
? N^(1/5)
%2 = 164.63140849829660842958614676939677391
? sqrtnint(Pi^2, 3)
%3 = 2
@eprog\noindent The special case $n = 2$ is \tet{sqrtint}
The library syntax is \fun{GEN}{sqrtnint}{GEN x, long n}.
\subsec{sumdedekind$(h,k)$}\kbdsidx{sumdedekind}\label{se:sumdedekind}
Returns the \idx{Dedekind sum} attached to the integers $h$ and $k$,
corresponding to a fast implementation of
\bprog
s(h,k) = sum(n = 1, k-1, (n/k)*(frac(h*n/k) - 1/2))
@eprog
The library syntax is \fun{GEN}{sumdedekind}{GEN h, GEN k}.
\subsec{sumdigits$(n,\{B=10\})$}\kbdsidx{sumdigits}\label{se:sumdigits}
Sum of digits in the integer $n$, when written in base $B$.
\bprog
? sumdigits(123456789)
%1 = 45
? sumdigits(123456789, 2)
%2 = 16
? sumdigits(123456789, -2)
%3 = 15
@eprog\noindent Note that the sum of bits in $n$ is also returned by
\tet{hammingweight}. This function is much faster than
\kbd{vecsum(digits(n,B))} when $B$ is $10$ or a power of $2$, and only
slightly faster in other cases.
The library syntax is \fun{GEN}{sumdigits0}{GEN n, GEN B = NULL}.
Also available is \fun{GEN}{sumdigits}{GEN n}, for $B = 10$.
\subsec{znchar$(D)$}\kbdsidx{znchar}\label{se:znchar}
Given a datum $D$ describing a group $(\Z/N\Z)^{*}$ and a Dirichlet
character $\chi$, return the pair \kbd{[G, chi]}, where \kbd{G} is
\kbd{znstar(N, 1)}) and \kbd{chi} is a GP character.
The following possibilities for $D$ are supported
\item a nonzero \typ{INT} congruent to $0,1$ modulo $4$, return the real
character modulo $D$ given by the Kronecker symbol $(D/.)$;
\item a \typ{INTMOD} \kbd{Mod(m, N)}, return the Conrey character
modulo $N$ of index $m$ (see \kbd{znconreylog}).
\item a modular form space as per \kbd{mfinit}$([N,k,\chi])$ or a modular
form for such a space, return the underlying Dirichlet character $\chi$
(which may be defined modulo a divisor of $N$ but need not be primitive).
In the remaining cases, \kbd{G} is initialized by \kbd{znstar(N, 1)}.
\item a pair \kbd{[G, chi]}, where \kbd{chi} is a standard GP Dirichlet
character $c = (c_{j})$ on \kbd{G} (generic character \typ{VEC} or
Conrey characters \typ{COL} or \typ{INT}); given
generators $G = \oplus (\Z/d_{j}\Z) g_{j}$, $\chi(g_{j}) = e(c_{j}/d_{j})$.
\item a pair \kbd{[G, chin]}, where \kbd{chin} is a \emph{normalized}
representation $[n, \tilde{c}]$ of the Dirichlet character $c$; $\chi(g_{j})
= e(\tilde{c}_{j} / n)$ where $n$ is minimal (order of $\chi$).
\bprog
? [G,chi] = znchar(-3);
? G.cyc
%2 = [2]
? chareval(G, chi, 2)
%3 = 1/2
? kronecker(-3,2)
%4 = -1
? znchartokronecker(G,chi)
%5 = -3
? mf = mfinit([28, 5/2, Mod(2,7)]); [f] = mfbasis(mf);
? [G,chi] = znchar(mf); [G.mod, chi]
%7 = [7, [2]~]
? [G,chi] = znchar(f); chi
%8 = [28, [0, 2]~]
@eprog
The library syntax is \fun{GEN}{znchar}{GEN D}.
\subsec{zncharconductor$(G,\var{chi})$}\kbdsidx{zncharconductor}\label{se:zncharconductor}
Let \var{G} be attached to $(\Z/q\Z)^{*}$ (as per
\kbd{G = znstar(q, 1)}) and \kbd{chi} be a Dirichlet character on
$(\Z/q\Z)^{*}$ (see \secref{se:dirichletchar} or \kbd{??character}).
Return the conductor of \kbd{chi}:
\bprog
? G = znstar(126000, 1);
? zncharconductor(G,11) \\ primitive
%2 = 126000
? zncharconductor(G,1) \\ trivial character, not primitive!
%3 = 1
? zncharconductor(G,1009) \\ character mod 5^3
%4 = 125
@eprog
The library syntax is \fun{GEN}{zncharconductor}{GEN G, GEN chi}.
\subsec{znchardecompose$(G,\var{chi},Q)$}\kbdsidx{znchardecompose}\label{se:znchardecompose}
Let $N = \prod_{p} p^{e_{p}}$ and a Dirichlet character $\chi$,
we have a decomposition $\chi = \prod_{p} \chi_{p}$ into character modulo $N$
where the conductor of $\chi_{p}$ divides $p^{e_{p}}$; it equals $p^{e_{p}}$
for all $p$ if and only if $\chi$ is primitive.
Given a \var{znstar} G describing a group $(\Z/N\Z)^{*}$, a Dirichlet
character \kbd{chi} and an integer $Q$, return $\prod_{p \mid (Q,N)} \chi_{p}$.
For instance, if $Q = p$ is a prime divisor of $N$, the function returns
$\chi_{p}$ (as a character modulo $N$), given as a Conrey
character (\typ{COL}).
\bprog
? G = znstar(40, 1);
? G.cyc
%2 = [4, 2, 2]
? chi = [2, 1, 1];
? chi2 = znchardecompose(G, chi, 2)
%4 = [1, 1, 0]~
? chi5 = znchardecompose(G, chi, 5)
%5 = [0, 0, 2]~
? znchardecompose(G, chi, 3)
%6 = [0, 0, 0]~
? c = charmul(G, chi2, chi5)
%7 = [1, 1, 2]~ \\ t_COL: in terms of Conrey generators !
? znconreychar(G,c)
%8 = [2, 1, 1] \\ t_VEC: in terms of SNF generators
@eprog
The library syntax is \fun{GEN}{znchardecompose}{GEN G, GEN chi, GEN Q}.
\subsec{znchargauss$(G,\var{chi},\{a=1\})$}\kbdsidx{znchargauss}\label{se:znchargauss}
Given a Dirichlet character $\chi$ on $G = (\Z/N\Z)^{*}$ (see
\kbd{znchar}), return the complex Gauss sum
$$g(\chi,a) = \sum_{n = 1}^{N} \chi(n) e(a n/N)$$
\bprog
? [G,chi] = znchar(-3); \\ quadratic Gauss sum: I*sqrt(3)
? znchargauss(G,chi)
%2 = 1.7320508075688772935274463415058723670*I
? [G,chi] = znchar(5);
? znchargauss(G,chi) \\ sqrt(5)
%2 = 2.2360679774997896964091736687312762354
? G = znstar(300,1); chi = [1,1,12]~;
? znchargauss(G,chi) / sqrt(300) - exp(2*I*Pi*11/25) \\ = 0
%4 = 2.350988701644575016 E-38 + 1.4693679385278593850 E-39*I
? lfuntheta([G,chi], 1) \\ = 0
%5 = -5.79[...] E-39 - 2.71[...] E-40*I
@eprog
The library syntax is \fun{GEN}{znchargauss}{GEN G, GEN chi, GEN a = NULL, long bitprec}.
\subsec{zncharinduce$(G,\var{chi},N)$}\kbdsidx{zncharinduce}\label{se:zncharinduce}
Let $G$ be attached to $(\Z/q\Z)^{*}$ (as per \kbd{G = znstar(q,1)})
and let \kbd{chi} be a Dirichlet character on $(\Z/q\Z)^{*}$, given by
\item a \typ{VEC}: a standard character on \kbd{bid.gen},
\item a \typ{INT} or a \typ{COL}: a Conrey index in $(\Z/q\Z)^{*}$ or its
Conrey logarithm;
see \secref{se:dirichletchar} or \kbd{??character}.
Let $N$ be a multiple of $q$, return the character modulo $N$ extending
\kbd{chi}. As usual for arithmetic functions, the new modulus $N$ can be
given as a \typ{INT}, via a factorization matrix or a pair
\kbd{[N, factor(N)]}, or by \kbd{znstar(N,1)}.
\bprog
? G = znstar(4, 1);
? chi = znconreylog(G,1); \\ trivial character mod 4
? zncharinduce(G, chi, 80) \\ now mod 80
%3 = [0, 0, 0]~
? zncharinduce(G, 1, 80) \\ same using directly Conrey label
%4 = [0, 0, 0]~
? G2 = znstar(80, 1);
? zncharinduce(G, 1, G2) \\ same
%4 = [0, 0, 0]~
? chi = zncharinduce(G, 3, G2) \\ extend the nontrivial character mod 4
%5 = [1, 0, 0]~
? [G0,chi0] = znchartoprimitive(G2, chi);
? G0.mod
%7 = 4
? chi0
%8 = [1]~
@eprog\noindent Here is a larger example:
\bprog
? G = znstar(126000, 1);
? label = 1009;
? chi = znconreylog(G, label)
%3 = [0, 0, 0, 14, 0]~
? [G0,chi0] = znchartoprimitive(G, label); \\ works also with 'chi'
? G0.mod
%5 = 125
? chi0 \\ primitive character mod 5^3 attached to chi
%6 = [14]~
? G0 = znstar(N0, 1);
? zncharinduce(G0, chi0, G) \\ induce back
%8 = [0, 0, 0, 14, 0]~
? znconreyexp(G, %)
%9 = 1009
@eprog
The library syntax is \fun{GEN}{zncharinduce}{GEN G, GEN chi, GEN N}.
\subsec{zncharisodd$(G,\var{chi})$}\kbdsidx{zncharisodd}\label{se:zncharisodd}
Let $G$ be attached to $(\Z/N\Z)^{*}$ (as per \kbd{G = znstar(N,1)})
and let \kbd{chi} be a Dirichlet character on $(\Z/N\Z)^{*}$, given by
\item a \typ{VEC}: a standard character on \kbd{G.gen},
\item a \typ{INT} or a \typ{COL}: a Conrey index in $(\Z/q\Z)^{*}$ or its
Conrey logarithm;
see \secref{se:dirichletchar} or \kbd{??character}.
Return $1$ if and only if \kbd{chi}$(-1) = -1$ and $0$ otherwise.
\bprog
? G = znstar(8, 1);
? zncharisodd(G, 1) \\ trivial character
%2 = 0
? zncharisodd(G, 3)
%3 = 1
? chareval(G, 3, -1)
%4 = 1/2
@eprog
The library syntax is \fun{long}{zncharisodd}{GEN G, GEN chi}.
\subsec{znchartokronecker$(G,\var{chi},\{\fl=0\})$}\kbdsidx{znchartokronecker}\label{se:znchartokronecker}
Let $G$ be attached to $(\Z/N\Z)^{*}$ (as per \kbd{G = znstar(N,1)})
and let \kbd{chi} be a Dirichlet character on $(\Z/N\Z)^{*}$, given by
\item a \typ{VEC}: a standard character on \kbd{bid.gen},
\item a \typ{INT} or a \typ{COL}: a Conrey index in $(\Z/q\Z)^{*}$ or its
Conrey logarithm;
see \secref{se:dirichletchar} or \kbd{??character}.
If $\fl = 0$, return the discriminant $D$ if \kbd{chi} is real equal to the
Kronecker symbol $(D/.)$ and $0$ otherwise. The discriminant $D$ is
fundamental if and only if \kbd{chi} is primitive.
If $\fl = 1$, return the fundamental discriminant attached to the
corresponding primitive character.
\bprog
? G = znstar(8,1); CHARS = [1,3,5,7]; \\ Conrey labels
? apply(t->znchartokronecker(G,t), CHARS)
%2 = [4, -8, 8, -4]
? apply(t->znchartokronecker(G,t,1), CHARS)
%3 = [1, -8, 8, -4]
@eprog
The library syntax is \fun{GEN}{znchartokronecker}{GEN G, GEN chi, long flag}.
\subsec{znchartoprimitive$(G,\var{chi})$}\kbdsidx{znchartoprimitive}\label{se:znchartoprimitive}
Let \var{G} be attached to $(\Z/q\Z)^{*}$ (as per
\kbd{G = znstar(q, 1)}) and \kbd{chi} be a Dirichlet character on
$(\Z/q\Z)^{*}$, of conductor $q_{0} \mid q$. Return \kbd{[G0, chi0]}, where
\kbd{chi0} is the primitive character attached to \kbd{chi} and \kbd{G0} is
\kbd{znstar(q0,1)}; the character \kbd{chi0} is returned as a Conrey
logarithm unless \kbd{chi} is primitive, in which case \kbd{chi0} is
identical to \kbd{chi}.
\bprog
? G = znstar(126000, 1);
? [G0,chi0] = znchartoprimitive(G,11)
? G0.mod
%3 = 126000
? chi0
%4 = 11
? [G0,chi0] = znchartoprimitive(G,1);\\ trivial character, not primitive!
? G0.mod
%6 = 1
? chi0
%7 = []~
? [G0,chi0] = znchartoprimitive(G,1009)
? G0.mod
%4 = 125
? chi0
%5 = [14]~
@eprog\noindent Note that \kbd{znconreyconductor} is more efficient since
it can return $\chi_{0}$ and its conductor $q_{0}$ without needing to
initialize $G_{0}$. The price to pay is a more cryptic format and the need to
initalize $G_{0}$ later, but that needs to be done only once for all
characters with conductor $q_{0}$.
The library syntax is \fun{GEN}{znchartoprimitive}{GEN G, GEN chi}.
\subsec{znconreychar$(G,m)$}\kbdsidx{znconreychar}\label{se:znconreychar}
Given a \var{znstar} $G$ attached to $(\Z/q\Z)^{*}$ (as per
\kbd{G = znstar(q,1)}), this function returns the Dirichlet character
attached to $m \in (\Z/q\Z)^{*}$ via Conrey's logarithm, which
establishes a ``canonical'' bijection between $(\Z/q\Z)^{*}$ and its dual.
Let $q = \prod_{p} p^{e_{p}}$ be the factorization of $q$ into distinct primes.
For all odd $p$ with $e_{p} > 0$, let $g_{p}$ be the element in $(\Z/q\Z)^{*}$
which is
\item congruent to $1$ mod $q/p^{e_{p}}$,
\item congruent mod $p^{e_{p}}$ to the smallest positive integer that generates
$(\Z/p^{2}\Z)^{*}$.
For $p = 2$, we let $g_{4}$ (if $2^{e_{2}} \geq 4$) and $g_{8}$ (if furthermore
($2^{e_{2}} \geq 8$) be the elements in $(\Z/q\Z)^{*}$ which are
\item congruent to $1$ mod $q/2^{e_{2}}$,
\item $g_{4} = -1 \mod 2^{e_{2}}$,
\item $g_{8} = 5 \mod 2^{e_{2}}$.
Then the $g_{p}$ (and the extra $g_{4}$ and $g_{8}$ if $2^{e_{2}}\geq 2$) are
independent generators of $(\Z/q\Z)^{*}$, i.e. every $m$ in $(\Z/q\Z)^{*}$
can be written uniquely as $\prod_{p} g_{p}^{m_{p}}$, where $m_{p}$ is defined
modulo the
order $o_{p}$ of $g_{p}$ and $p \in S_{q}$, the set of prime divisors of $q$
together with $4$ if $4 \mid q$ and $8$ if $8 \mid q$. Note that the $g_{p}$
are in general \emph{not} SNF generators as produced by \kbd{znstar} whenever
$\omega(q) \geq 2$, although their number is the same. They however allow
to handle the finite abelian group $(\Z/q\Z)^{*}$ in a fast and elegant way.
(Which unfortunately does not generalize to ray class groups or Hecke
characters.)
The Conrey logarithm of $m$ is the vector $(m_{p})_{p\in S_{q}}$, obtained
via \tet{znconreylog}. The Conrey character $\chi_{q}(m,\cdot)$ attached to
$m$ mod $q$ maps
each $g_{p}$, $p\in S_{q}$ to $e(m_{p} / o_{p})$, where $e(x) = \exp(2i\pi x)$.
This function returns the Conrey character expressed in the standard PARI
way in terms of the SNF generators \kbd{G.gen}.
\bprog
? G = znstar(8,1);
? G.cyc
%2 = [2, 2] \\ Z/2 x Z/2
? G.gen
%3 = [7, 3]
? znconreychar(G,1) \\ 1 is always the trivial character
%4 = [0, 0]
? znconreychar(G,2) \\ 2 is not coprime to 8 !!!
*** at top-level: znconreychar(G,2)
*** ^-----------------
*** znconreychar: elements not coprime in Zideallog:
2
8
*** Break loop: type 'break' to go back to GP prompt
break>
? znconreychar(G,3)
%5 = [0, 1]
? znconreychar(G,5)
%6 = [1, 1]
? znconreychar(G,7)
%7 = [1, 0]
@eprog\noindent We indeed get all 4 characters of $(\Z/8\Z)^{*}$.
For convenience, we allow to input the \emph{Conrey logarithm} of $m$
instead of $m$:
\bprog
? G = znstar(55, 1);
? znconreychar(G,7)
%2 = [7, 0]
? znconreychar(G, znconreylog(G,7))
%3 = [7, 0]
@eprog
The library syntax is \fun{GEN}{znconreychar}{GEN G, GEN m}.
\subsec{znconreyconductor$(G,\var{chi},\{\&\var{chi0}\})$}\kbdsidx{znconreyconductor}\label{se:znconreyconductor}
Let \var{G} be attached to $(\Z/q\Z)^{*}$ (as per
\kbd{G = znstar(q, 1)}) and \kbd{chi} be a Dirichlet character on
$(\Z/q\Z)^{*}$, given by
\item a \typ{VEC}: a standard character on \kbd{bid.gen},
\item a \typ{INT} or a \typ{COL}: a Conrey index in $(\Z/q\Z)^{*}$ or its
Conrey logarithm;
see \secref{se:dirichletchar} or \kbd{??character}.
Return the conductor of \kbd{chi}, as the \typ{INT} \kbd{bid.mod}
if \kbd{chi} is primitive, and as a pair \kbd{[N, faN]} (with \kbd{faN} the
factorization of $N$) otherwise.
If \kbd{chi0} is present, set it to the Conrey logarithm of the attached
primitive character.
\bprog
? G = znstar(126000, 1);
? znconreyconductor(G,11) \\ primitive
%2 = 126000
? znconreyconductor(G,1) \\ trivial character, not primitive!
%3 = [1, matrix(0,2)]
? N0 = znconreyconductor(G,1009, &chi0) \\ character mod 5^3
%4 = [125, Mat([5, 3])]
? chi0
%5 = [14]~
? G0 = znstar(N0, 1); \\ format [N,factor(N)] accepted
? znconreyexp(G0, chi0)
%7 = 9
? znconreyconductor(G0, chi0) \\ now primitive, as expected
%8 = 125
@eprog\noindent The group \kbd{G0} is not computed as part of
\kbd{znconreyconductor} because it needs to be computed only once per
conductor, not once per character.
The library syntax is \fun{GEN}{znconreyconductor}{GEN G, GEN chi, GEN *chi0 = NULL}.
\subsec{znconreyexp$(G,\var{chi})$}\kbdsidx{znconreyexp}\label{se:znconreyexp}
Given a \var{znstar} $G$ attached to $(\Z/q\Z)^{*}$ (as per
\kbd{G = znstar(q, 1)}), this function returns the Conrey exponential of
the character \var{chi}: it returns the integer
$m \in (\Z/q\Z)^{*}$ such that \kbd{znconreylog(G, $m$)} is \var{chi}.
The character \var{chi} is given either as a
\item \typ{VEC}: in terms of the generators \kbd{G.gen};
\item \typ{COL}: a Conrey logarithm.
\bprog
? G = znstar(126000, 1)
? znconreylog(G,1)
%2 = [0, 0, 0, 0, 0]~
? znconreyexp(G,%)
%3 = 1
? G.cyc \\ SNF generators
%4 = [300, 12, 2, 2, 2]
? chi = [100, 1, 0, 1, 0]; \\ some random character on SNF generators
? znconreylog(G, chi) \\ in terms of Conrey generators
%6 = [0, 3, 3, 0, 2]~
? znconreyexp(G, %) \\ apply to a Conrey log
%7 = 18251
? znconreyexp(G, chi) \\ ... or a char on SNF generators
%8 = 18251
? znconreychar(G,%)
%9 = [100, 1, 0, 1, 0]
@eprog
The library syntax is \fun{GEN}{znconreyexp}{GEN G, GEN chi}.
\subsec{znconreylog$(G,m)$}\kbdsidx{znconreylog}\label{se:znconreylog}
Given a \var{znstar} attached to $(\Z/q\Z)^{*}$ (as per
\kbd{G = znstar(q,1)}), this function returns the Conrey logarithm of
$m \in (\Z/q\Z)^{*}$.
Let $q = \prod_{p} p^{e_{p}}$ be the factorization of $q$ into distinct primes,
where we assume $e_{2} = 0$ or $e_{2} \geq 2$. (If $e_{2} = 1$, we can ignore
$2$ from the factorization, as if we replaced $q$ by $q/2$, since
$(\Z/q\Z)^{*} \sim (\Z/(q/2)\Z)^{*}$.)
For all odd $p$ with $e_{p} > 0$, let $g_{p}$ be the element in $(\Z/q\Z)^{*}$
which is
\item congruent to $1$ mod $q/p^{e_{p}}$,
\item congruent mod $p^{e_{p}}$ to the smallest positive integer that generates
$(\Z/p^{2}\Z)^{*}$.
For $p = 2$, we let $g_{4}$ (if $2^{e_{2}} \geq 4$) and $g_{8}$ (if furthermore
($2^{e_{2}} \geq 8$) be the elements in $(\Z/q\Z)^{*}$ which are
\item congruent to $1$ mod $q/2^{e_{2}}$,
\item $g_{4} = -1 \mod 2^{e_{2}}$,
\item $g_{8} = 5 \mod 2^{e_{2}}$.
Then the $g_{p}$ (and the extra $g_{4}$ and $g_{8}$ if $2^{e_{2}}\geq 2$) are
independent generators of $\Z/q\Z^{*}$, i.e. every $m$ in $(\Z/q\Z)^{*}$ can be
written uniquely as $\prod_{p} g_{p}^{m_{p}}$, where $m_{p}$ is defined modulo
the order $o_{p}$ of $g_{p}$ and $p \in S_{q}$, the set of prime divisors of
$q$ together with $4$ if $4 \mid q$ and $8$ if $8 \mid q$. Note that the
$g_{p}$
are in general \emph{not} SNF generators as produced by \kbd{znstar} whenever
$\omega(q) \geq 2$, although their number is the same. They however allow
to handle the finite abelian group $(\Z/q\Z)^{*}$ in a fast and elegant way.
(Which unfortunately does not generalize to ray class groups or Hecke
characters.)
The Conrey logarithm of $m$ is the vector $(m_{p})_{p\in S_{q}}$. The inverse
function \tet{znconreyexp} recovers the Conrey label $m$ from a character.
\bprog
? G = znstar(126000, 1);
? znconreylog(G,1)
%2 = [0, 0, 0, 0, 0]~
? znconreyexp(G, %)
%3 = 1
? znconreylog(G,2) \\ 2 is not coprime to modulus !!!
*** at top-level: znconreylog(G,2)
*** ^-----------------
*** znconreylog: elements not coprime in Zideallog:
2
126000
*** Break loop: type 'break' to go back to GP prompt
break>
? znconreylog(G,11) \\ wrt. Conrey generators
%4 = [0, 3, 1, 76, 4]~
? log11 = ideallog(,11,G) \\ wrt. SNF generators
%5 = [178, 3, -75, 1, 0]~
@eprog\noindent
For convenience, we allow to input the ordinary discrete log of $m$,
$\kbd{ideallog(,m,bid)}$, which allows to convert discrete logs
from \kbd{bid.gen} generators to Conrey generators.
\bprog
? znconreylog(G, log11)
%7 = [0, 3, 1, 76, 4]~
@eprog\noindent We also allow a character (\typ{VEC}) on \kbd{bid.gen} and
return its representation on the Conrey generators.
\bprog
? G.cyc
%8 = [300, 12, 2, 2, 2]
? chi = [10,1,0,1,1];
? znconreylog(G, chi)
%10 = [1, 3, 3, 10, 2]~
? n = znconreyexp(G, chi)
%11 = 84149
? znconreychar(G, n)
%12 = [10, 1, 0, 1, 1]
@eprog
The library syntax is \fun{GEN}{znconreylog}{GEN G, GEN m}.
\subsec{zncoppersmith$(P,N,X,\{B=N\})$}\kbdsidx{zncoppersmith}\label{se:zncoppersmith}
\idx{Coppersmith}'s algorithm. $N$ being an integer and $P\in \Z[t]$,
finds in polynomial time in $\log(N)$ and $d = \text{deg}(P)$ all integers $x$
with $|x| \leq X$ such that
$$\gcd(N, P(x)) \geq B.$$
This is a famous application of the \idx{LLL} algorithm meant to help in the
factorization of $N$. Notice that $P$ may be reduced modulo $N\Z[t]$ without
affecting the situation. The parameter $X$ must not be too large: assume for
now that the leading coefficient of $P$ is coprime to $N$, then we must have
$$d \log X \log N < \log^{2} B,$$ i.e., $X < N^{1/d}$ when $B = N$. Let now
$P_{0}$ be the gcd of the leading coefficient of $P$ and $N$. In applications
to factorization, we should have $P_{0} = 1$; otherwise, either $P_{0} = N$ and
we can reduce the degree of $P$, or $P_{0}$ is a non trivial factor of $N$. For
completeness, we nevertheless document the exact conditions that $X$ must
satisfy in this case: let $p := \log_{N} P_{0}$, $b := \log_{N} B$,
$x := \log_{N} X$, then
\item either $p \geq d / (2d-1)$ is large and we must have $x d < 2b - 1$;
\item or $p < d / (2d-1)$ and we must have both $p < b < 1 - p + p/d$
and $x(d + p(1-2d)) < (b - p)^{2}$. Note that this reduces to
$x d < b^{2}$ when $p = 0$, i.e., the condition described above.
Some $x$ larger than $X$ may be returned if you are
very lucky. The routine runs in polynomial time in $\log N$ and $d$
but the smaller $B$, or the larger $X$, the slower.
The strength of Coppersmith method is the ability to find roots modulo a
general \emph{composite} $N$: if $N$ is a prime or a prime power,
\tet{polrootsmod} or \tet{polrootspadic} will be much faster.
We shall now present two simple applications. The first one is
finding nontrivial factors of $N$, given some partial information on the
factors; in that case $B$ must obviously be smaller than the largest
nontrivial divisor of $N$.
\bprog
setrand(1); \\ to make the example reproducible
[a,b] = [10^30, 10^31]; D = 20;
p = randomprime([a,b]);
q = randomprime([a,b]); N = p*q;
\\ assume we know 0) p | N; 1) p in [a,b]; 2) the last D digits of p
p0 = p % 10^D;
? L = zncoppersmith(10^D*x + p0, N, b \ 10^D, a)
time = 1ms.
%6 = [738281386540]
? gcd(L[1] * 10^D + p0, N) == p
%7 = 1
@eprog\noindent and we recovered $p$, faster than by trying all
possibilities $ x < 10^{11}$.
The second application is an attack on RSA with low exponent, when the
message $x$ is short and the padding $P$ is known to the attacker. We use
the same RSA modulus $N$ as in the first example:
\bprog
setrand(1);
P = random(N); \\ known padding
e = 3; \\ small public encryption exponent
X = floor(N^0.3); \\ N^(1/e - epsilon)
x0 = random(X); \\ unknown short message
C = lift( (Mod(x0,N) + P)^e ); \\ known ciphertext, with padding P
zncoppersmith((P + x)^3 - C, N, X)
\\ result in 244ms.
%14 = [2679982004001230401]
? %[1] == x0
%15 = 1
@eprog\noindent
We guessed an integer of the order of $10^{18}$, almost instantly.
The library syntax is \fun{GEN}{zncoppersmith}{GEN P, GEN N, GEN X, GEN B = NULL}.
\subsec{znlog$(x,g,\{o\})$}\kbdsidx{znlog}\label{se:znlog}
This functions allows two distinct modes of operation depending
on $g$:
\item if $g$ is the output of \tet{znstar} (with initialization),
we compute the discrete logarithm of $x$ with respect to the generators
contained in the structure. See \tet{ideallog} for details.
\item else $g$ is an explicit element in $(\Z/N\Z)^{*}$, we compute the
discrete logarithm of $x$ in $(\Z/N\Z)^{*}$ in base $g$. The rest of this
entry describes the latter possibility.
The result is $[]$ when $x$ is not a power of $g$, though the function may
also enter an infinite loop in this case.
If present, $o$ represents the multiplicative order of $g$, see
\secref{se:DLfun}; the preferred format for this parameter is
\kbd{[ord, factor(ord)]}, where \kbd{ord} is the order of $g$.
This provides a definite speedup when the discrete log problem is simple:
\bprog
? p = nextprime(10^4); g = znprimroot(p); o = [p-1, factor(p-1)];
? for(i=1,10^4, znlog(i, g, o))
time = 163 ms.
? for(i=1,10^4, znlog(i, g))
time = 200 ms. \\ a little slower
@eprog
The result is undefined if $g$ is not invertible mod $N$ or if the supplied
order is incorrect.
This function uses
\item a combination of generic discrete log algorithms (see below).
\item in $(\Z/N\Z)^{*}$ when $N$ is prime: a quadratic sieve index calculus
method, suitable for $N < 10^{60}$, say, is used for large prime divisors of
the order.
The generic discrete log algorithms are:
\item Pohlig-Hellman algorithm, to reduce to groups of prime order $q$,
where $q | p-1$ and $p$ is an odd prime divisor of $N$,
\item Shanks baby-step/giant-step ($q < 2^{32}$ is small),
\item Pollard rho method ($q > 2^{32}$).
The latter two algorithms require $O(\sqrt{q})$ operations in the group on
average, hence will not be able to treat cases where $q > 10^{30}$, say.
In addition, Pollard rho is not able to handle the case where there are no
solutions: it will enter an infinite loop.
\bprog
? g = znprimroot(101)
%1 = Mod(2,101)
? znlog(5, g)
%2 = 24
? g^24
%3 = Mod(5, 101)
? G = znprimroot(2 * 101^10)
%4 = Mod(110462212541120451003, 220924425082240902002)
? znlog(5, G)
%5 = 76210072736547066624
? G^% == 5
%6 = 1
? N = 2^4*3^2*5^3*7^4*11; g = Mod(13, N); znlog(g^110, g)
%7 = 110
? znlog(6, Mod(2,3)) \\ no solution
%8 = []
@eprog\noindent For convenience, $g$ is also allowed to be a $p$-adic number:
\bprog
? g = 3+O(5^10); znlog(2, g)
%1 = 1015243
? g^%
%2 = 2 + O(5^10)
@eprog
The library syntax is \fun{GEN}{znlog0}{GEN x, GEN g, GEN o = NULL}.
The function
\fun{GEN}{znlog}{GEN x, GEN g, GEN o} is also available
\subsec{znorder$(x,\{o\})$}\kbdsidx{znorder}\label{se:znorder}
$x$ must be an integer mod $n$, and the
result is the order of $x$ in the multiplicative group $(\Z/n\Z)^{*}$. Returns
an error if $x$ is not invertible.
The parameter o, if present, represents a nonzero
multiple of the order of $x$, see \secref{se:DLfun}; the preferred format for
this parameter is \kbd{[ord, factor(ord)]}, where \kbd{ord = eulerphi(n)}
is the cardinality of the group.
The library syntax is \fun{GEN}{znorder}{GEN x, GEN o = NULL}.
\subsec{znprimroot$(n)$}\kbdsidx{znprimroot}\label{se:znprimroot}
Returns a primitive root (generator) of $(\Z/n\Z)^{*}$, whenever this
latter group is cyclic ($n = 4$ or $n = 2p^{k}$ or $n = p^{k}$, where $p$ is an
odd prime and $k \geq 0$). If the group is not cyclic, the function will raise an
exception. If $n$ is a prime power, then the smallest positive primitive
root is returned. This may not be true for $n = 2p^{k}$, $p$ odd.
Note that this function requires factoring $p-1$ for $p$ as above,
in order to determine the exact order of elements in
$(\Z/n\Z)^{*}$: this is likely to be costly if $p$ is large.
The library syntax is \fun{GEN}{znprimroot}{GEN n}.
\subsec{znstar$(n,\{\fl=0\})$}\kbdsidx{znstar}\label{se:znstar}
Gives the structure of the multiplicative group $(\Z/n\Z)^{*}$.
The output $G$ depends on the value of \fl:
\item $\fl = 0$ (default), an abelian group structure $[h,d,g]$,
where $h = \phi(n)$ is the order (\kbd{G.no}), $d$ (\kbd{G.cyc})
is a $k$-component row-vector $d$ of integers $d_{i}$ such that $d_{i}>1$,
$d_{i} \mid d_{i-1}$ for $i \ge 2$ and
$$ (\Z/n\Z)^{*} \simeq \prod_{i=1}^{k} (\Z/d_{i}\Z), $$
and $g$ (\kbd{G.gen}) is a $k$-component row vector giving generators of
the image of the cyclic groups $\Z/d_{i}\Z$.
\item $\fl = 1$ the result is a \kbd{bid} structure;
this allows computing discrete logarithms using \tet{znlog} (also in the
noncyclic case!).
\bprog
? G = znstar(40)
%1 = [16, [4, 2, 2], [Mod(17, 40), Mod(21, 40), Mod(11, 40)]]
? G.no \\ eulerphi(40)
%2 = 16
? G.cyc \\ cycle structure
%3 = [4, 2, 2]
? G.gen \\ generators for the cyclic components
%4 = [Mod(17, 40), Mod(21, 40), Mod(11, 40)]
? apply(znorder, G.gen)
%5 = [4, 2, 2]
@eprog\noindent For user convenience, we define \kbd{znstar(0)} as
\kbd{[2, [2], [-1]]}, corresponding to $\Z^{*}$, but $\fl = 1$ is not
implemented in this trivial case.
The library syntax is \fun{GEN}{znstar0}{GEN n, long flag}.
\subsec{znsubgroupgenerators$(H,\{\fl=0\})$}\kbdsidx{znsubgroupgenerators}\label{se:znsubgroupgenerators}
Finds a minimal set of generators for the subgroup of $(\Z/f\Z)^{*}$
given by a vector (or vectorsmall) $H$ of length $f$:
for $1\leq a\leq f$, \kbd{H[a]} is 1 or 0 according as $a\in H_{F}$
or $a\not\in H_{F}$. In most PARI functions, subgroups of an abelian group
are given as HNF left-divisors of a diagonal matrix, representing the
discrete logarithms of the subgroup generators in terms of a fixed
generators for the group cyclic components. The present function
allows to convert an enumeration of the subgroup elements to this
representation as follows:
\bprog
? G = znstar(f, 1);
? v = znsubgroupgenerators(H);
? subHNF(G, v) = mathnfmodid(Mat([znlog(h, G) | h<-v]), G.cyc);
@eprog\noindent The function \kbd{subHNF} can be applied to any
elements of $(\Z/f\Z)^{*}$, yielding the subgroup they generate, but using
\kbd{znsubgroupgenerators} first allows to reduce the number of discrete
logarithms to be computed.
For example, if $H=\{\,1,4,11,14\,\}\subset(\Z/15\Z)^{\times}$,
then we have
\bprog
? f = 15; H = vector(f); H[1]=H[4]=H[11]=H[14] = 1;
? v = znsubgroupgenerators(H)
%2 = [4, 11]
? G = znstar(f, 1); G.cyc
%3 = [4, 2]
? subHNF(G, v)
%4 =
[2 0]
[0 1]
? subHNF(G, [1,4,11,14])
%5 =
[2 0]
[0 1]
@eprog\noindent This function is mostly useful when $f$ is large
and $H$ has small index: if $H$ has few elements, one may just use
\kbd{subHNF} directly on the elements of $H$. For instance, let
$K = \Q(\zeta_{p}, \sqrt{m}) \subset L = \Q(\zeta_{f})$, where $p$ is
a prime, $\sqrt{m}$ is a quadratic number and $f$ is the conductor of the
abelian extension $K/\Q$. The following GP script creates $H$ as the Galois
group of $L/K$, as a subgroub of $(\Z/fZ)^{*}$:
\bprog
HK(m, p, flag = 0)=
{ my(d = quaddisc(m), f = lcm(d, p), H);
H = vectorsmall(f, a, a % p == 1 && kronecker(d,a) > 0);
[f, znsubgroupgenerators(H,flag)];
}
? [f, v] = HK(36322, 5)
time = 193 ms.
%1 = [726440, [41, 61, 111, 131]]
? G = znstar(f,1); G.cyc
%2 = [1260, 12, 2, 2, 2, 2]
? A = subHNF(G, v)
%3 =
[2 0 1 1 0 1]
[0 4 0 0 0 2]
[0 0 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[0 0 0 0 0 1]
\\ Double check
? p = 5; d = quaddisc(36322);
? w = select(a->a % p == 1 && kronecker(d,a) > 0, [1..f]); #w
time = 133 ms.
%5 = 30240 \\ w enumerates the elements of H
? subHNF(G, w) == A \\ same result, about twice slower
time = 242 ms.
%6 = 1
@eprog\noindent
This shows that $K=\Q(\sqrt{36322},\zeta_{5})$ is contained in
$\Q(\zeta_{726440})$ and $H=\langle 41, 61, 111, 131 \rangle$.
Note that $H=\langle 41\rangle\langle 61\rangle\langle 111 \rangle
\langle 131\rangle$ is not a direct product. If $\fl=1$, then the function
finds generators which decompose $H$ to direct factors:
\bprog
? HK(36322, 5, 1)
%3 = [726440, [41, 31261, 324611, 506221]]
@eprog\noindent This time
$H=\langle 41\rangle\times \langle 31261\rangle \times
\langle 324611 \rangle \times \langle 506221 \rangle$.
The library syntax is \fun{GEN}{znsubgroupgenerators}{GEN H, long flag}.
\section{Polynomials and power series}
We group here all functions which are specific to polynomials or power
series. Many other functions which can be applied on these objects are
described in the other sections. Also, some of the functions described here
can be applied to other types.
\subsec{O$(p\hbox{\kbd{\pow}}e)$}\kbdsidx{O}\label{se:O}
If $p$ is an integer
greater than $2$, returns a $p$-adic $0$ of precision $e$. In all other
cases, returns a power series zero with precision given by $e v$, where $v$
is the $X$-adic valuation of $p$ with respect to its main variable.
The library syntax is \fun{GEN}{ggrando}{}.
\fun{GEN}{zeropadic}{GEN p, long e} for a $p$-adic and
\fun{GEN}{zeroser}{long v, long e} for a power series zero in variable $v$.
\subsec{bezoutres$(A,B,\{v\})$}\kbdsidx{bezoutres}\label{se:bezoutres}
Deprecated alias for \kbd{polresultantext}
The library syntax is \fun{GEN}{polresultantext0}{GEN A, GEN B, long v = -1} where \kbd{v} is a variable number.
\subsec{deriv$(x,\{v\})$}\kbdsidx{deriv}\label{se:deriv}
Derivative of $x$ with respect to the main
variable if $v$ is omitted, and with respect to $v$ otherwise. The derivative
of a scalar type is zero, and the derivative of a vector or matrix is done
componentwise. One can use $x'$ as a shortcut if the derivative is with
respect to the main variable of $x$; and also use $x''$, etc., for multiple
derivatives altough \kbd{derivn} is often preferrable.
By definition, the main variable of a \typ{POLMOD} is the main variable among
the coefficients from its two polynomial components (representative and
modulus); in other words, assuming a polmod represents an element of
$R[X]/(T(X))$, the variable $X$ is a mute variable and the derivative is
taken with respect to the main variable used in the base ring $R$.
\bprog
? f = (x/y)^5;
? deriv(f)
%2 = 5/y^5*x^4
? f'
%3 = 5/y^5*x^4
? deriv(f, 'x) \\ same since 'x is the main variable
%4 = 5/y^5*x^4
? deriv(f, 'y)
%5 = -5/y^6*x^5
@eprog
This function also operates on closures, in which case the variable
must be omitted. It returns a closure performing a numerical
differentiation as per \kbd{derivnum}:
\bprog
? f(x) = x^2;
? g = deriv(f)
? g(1)
%3 = 2.0000000000000000000000000000000000000
? f(x) = sin(exp(x));
? deriv(f)(0)
%5 = 0.54030230586813971740093660744297660373
? cos(1)
%6 = 0.54030230586813971740093660744297660373
@eprog
The library syntax is \fun{GEN}{deriv}{GEN x, long v = -1} where \kbd{v} is a variable number.
\subsec{derivn$(x,n,\{v\})$}\kbdsidx{derivn}\label{se:derivn}
$n$-th derivative of $x$ with respect to the main
variable if $v$ is omitted, and with respect to $v$ otherwise; the integer
$n$ must be nonnegative. The derivative
of a scalar type is zero, and the derivative of a vector or matrix is done
componentwise. One can use $x'$, $x''$, etc., as a shortcut if the
derivative is with respect to the main variable of $x$.
By definition, the main variable of a \typ{POLMOD} is the main variable among
the coefficients from its two polynomial components (representative and
modulus); in other words, assuming a polmod represents an element of
$R[X]/(T(X))$, the variable $X$ is a mute variable and the derivative is
taken with respect to the main variable used in the base ring $R$.
\bprog
? f = (x/y)^5;
? derivn(f, 2)
%2 = 20/y^5*x^3
? f''
%3 = 20/y^5*x^3
? derivn(f, 2, 'x) \\ same since 'x is the main variable
%4 = 20/y^5*x^3
? derivn(f, 2, 'y)
%5 = 30/y^7*x^5
@eprog
This function also operates on closures, in which case the variable
must be omitted. It returns a closure performing a numerical
differentiation as per \kbd{derivnum}:
\bprog
? f(x) = x^10;
? g = derivn(f, 5)
? g(1)
%3 = 30240.000000000000000000000000000000000
? derivn(zeta, 2)(0)
%4 = -2.0063564559085848512101000267299604382
? zeta''(0)
%5 = -2.0063564559085848512101000267299604382
@eprog
The library syntax is \fun{GEN}{derivn}{GEN x, long n, long v = -1} where \kbd{v} is a variable number.
\subsec{diffop$(x,v,d,\{n=1\})$}\kbdsidx{diffop}\label{se:diffop}
Let $v$ be a vector of variables, and $d$ a vector of the same length,
return the image of $x$ by the $n$-power ($1$ if n is not given) of the
differential operator $D$ that assumes the value \kbd{d[i]} on the variable
\kbd{v[i]}. The value of $D$ on a scalar type is zero, and $D$ applies
componentwise to a vector or matrix. When applied to a \typ{POLMOD}, if no
value is provided for the variable of the modulus, such value is derived
using the implicit function theorem.
\misctitle{Examples}
This function can be used to differentiate formal expressions:
if $E=\exp(X^{2})$ then we have $E'=2*X*E$. We derivate $X*exp(X^{2})$
as follows:
\bprog
? diffop(E*X,[X,E],[1,2*X*E])
%1 = (2*X^2 + 1)*E
@eprog
Let \kbd{Sin} and \kbd{Cos} be two function such that
$\kbd{Sin}^{2}+\kbd{Cos}^{2}=1$ and $\kbd{Cos}'=-\kbd{Sin}$.
We can differentiate $\kbd{Sin}/\kbd{Cos}$ as follows,
PARI inferring the value of $\kbd{Sin}'$ from the equation:
\bprog
? diffop(Mod('Sin/'Cos,'Sin^2+'Cos^2-1),['Cos],[-'Sin])
%1 = Mod(1/Cos^2, Sin^2 + (Cos^2 - 1))
@eprog
Compute the Bell polynomials (both complete and partial) via the Faa di Bruno
formula:
\bprog
Bell(k,n=-1)=
{ my(x, v, dv, var = i->eval(Str("X",i)));
v = vector(k, i, if (i==1, 'E, var(i-1)));
dv = vector(k, i, if (i==1, 'X*var(1)*'E, var(i)));
x = diffop('E,v,dv,k) / 'E;
if (n < 0, subst(x,'X,1), polcoef(x,n,'X));
}
@eprog
The library syntax is \fun{GEN}{diffop0}{GEN x, GEN v, GEN d, long n}.
For $n=1$, the function \fun{GEN}{diffop}{GEN x, GEN v, GEN d} is also
available.
\subsec{eval$(x)$}\kbdsidx{eval}\label{se:eval}
Replaces in $x$ the formal variables by the values that
have been assigned to them after the creation of $x$. This is mainly useful
in GP, and not in library mode. Do not confuse this with substitution (see
\kbd{subst}).
If $x$ is a character string, \kbd{eval($x$)} executes $x$ as a GP
command, as if directly input from the keyboard, and returns its
output.
\bprog
? x1 = "one"; x2 = "two";
? n = 1; eval(Str("x", n))
%2 = "one"
? f = "exp"; v = 1;
? eval(Str(f, "(", v, ")"))
%4 = 2.7182818284590452353602874713526624978
@eprog\noindent Note that the first construct could be implemented in a
simpler way by using a vector \kbd{x = ["one","two"]; x[n]}, and the second
by using a closure \kbd{f = exp; f(v)}. The final example is more interesting:
\bprog
? genmat(u,v) = matrix(u,v,i,j, eval( Str("x",i,j) ));
? genmat(2,3) \\ generic 2 x 3 matrix
%2 =
[x11 x12 x13]
[x21 x22 x23]
@eprog
A syntax error in the evaluation expression raises an \kbd{e\_SYNTAX}
exception, which can be trapped as usual:
\bprog
? 1a
*** syntax error, unexpected variable name, expecting $end or ';': 1a
*** ^-
? E(expr) =
{
iferr(eval(expr),
e, print("syntax error"),
errname(e) == "e_SYNTAX");
}
? E("1+1")
%1 = 2
? E("1a")
syntax error
@eprog
\synt{geval}{GEN x}.
\subsec{factorpadic$(\var{pol},p,r)$}\kbdsidx{factorpadic}\label{se:factorpadic}
$p$-adic factorization
of the polynomial \var{pol} to precision $r$, the result being a
two-column matrix as in \kbd{factor}. Note that this is not the same
as a factorization over $\Z/p^{r}\Z$ (polynomials over that ring do not form a
unique factorization domain, anyway), but approximations in $\Q/p^{r}\Z$ of
the true factorization in $\Q_{p}[X]$.
\bprog
? factorpadic(x^2 + 9, 3,5)
%1 =
[(1 + O(3^5))*x^2 + O(3^5)*x + (3^2 + O(3^5)) 1]
? factorpadic(x^2 + 1, 5,3)
%2 =
[ (1 + O(5^3))*x + (2 + 5 + 2*5^2 + O(5^3)) 1]
[(1 + O(5^3))*x + (3 + 3*5 + 2*5^2 + O(5^3)) 1]
@eprog\noindent
The factors are normalized so that their leading coefficient is a power of
$p$. The method used is a modified version of the \idx{round 4} algorithm of
\idx{Zassenhaus}.
If \var{pol} has inexact \typ{PADIC} coefficients, this is not always
well-defined; in this case, the polynomial is first made integral by dividing
out the $p$-adic content, then lifted to $\Z$ using \tet{truncate}
coefficientwise.
Hence we actually factor exactly a polynomial which is only $p$-adically
close to the input. To avoid pitfalls, we advise to only factor polynomials
with exact rational coefficients.
\synt{factorpadic}{GEN f,GEN p, long r} . The function \kbd{factorpadic0} is
deprecated, provided for backward compatibility.
\subsec{fft$(w,P)$}\kbdsidx{fft}\label{se:fft}
Let $w=[1,z,\ldots,z^{N-1}]$ from some primitive $N$-roots of unity $z$
where $N$ is a power of $2$, and $P$ be a polynomial $< N$,
return the unnormalized discrete Fourier transform of $P$,
$\{ P(w[i]), 1 \leq i \leq N\}$. Also allow $P$ to be a vector
$[p_{0},\dots,p_{n}]$ representing the polynomial $\sum_{i} p_{i} X^{i}$.
Composing \kbd{fft} and \kbd{fftinv} returns $N$ times the original input
coefficients.
\bprog
? w = rootsof1(4); fft(w, x^3+x+1)
%1 = [3, 1, -1, 1]
? fftinv(w, %)
%2 = [4, 4, 0, 4]
? Polrev(%) / 4
%3 = x^3 + x + 1
? w = powers(znprimroot(5),3); fft(w, x^3+x+1)
%4 = [Mod(3,5),Mod(1,5),Mod(4,5),Mod(1,5)]
? fftinv(w, %)
%5 = [Mod(4,5),Mod(4,5),Mod(0,5),Mod(4,5)]
@eprog
The library syntax is \fun{GEN}{FFT}{GEN w, GEN P}.
\subsec{fftinv$(w,P)$}\kbdsidx{fftinv}\label{se:fftinv}
Let $w=[1,z,\ldots,z^{N-1}]$ from some primitive $N$-roots of unity $z$
where $N$ is a power of $2$, and $P$ be a polynomial $< N$,
return the unnormalized discrete Fourier transform of $P$,
$\{ P(1 / w[i]), 1 \leq i \leq N\}$. Also allow $P$ to be a vector
$[p_{0},\dots,p_{n}]$ representing the polynomial $\sum_{i} p_{i} X^{i}$.
Composing
\kbd{fft} and \kbd{fftinv} returns $N$ times the original input coefficients.
\bprog
? w = rootsof1(4); fft(w, x^3+x+1)
%1 = [3, 1, -1, 1]
? fftinv(w, %)
%2 = [4, 4, 0, 4]
? Polrev(%) / 4
%3 = x^3 + x + 1
? N = 512; w = rootsof1(N); T = random(1000 * x^(N-1));
? U = fft(w, T);
time = 3 ms.
? V = vector(N, i, subst(T, 'x, w[i]));
time = 65 ms.
? exponent(V - U)
%7 = -97
? round(Polrev(fftinv(w,U) / N)) == T
%8 = 1
@eprog
The library syntax is \fun{GEN}{FFTinv}{GEN w, GEN P}.
\subsec{intformal$(x,\{v\})$}\kbdsidx{intformal}\label{se:intformal}
\idx{formal integration} of $x$ with respect to the variable $v$ (wrt.
the main variable if $v$ is omitted). Since PARI cannot represent
logarithmic or arctangent terms, any such term in the result will yield an
error:
\bprog
? intformal(x^2)
%1 = 1/3*x^3
? intformal(x^2, y)
%2 = y*x^2
? intformal(1/x)
*** at top-level: intformal(1/x)
*** ^--------------
*** intformal: domain error in intformal: residue(series, pole) != 0
@eprog
The argument $x$ can be of any type. When $x$ is a rational function, we
assume that the base ring is an integral domain of characteristic zero.
By definition, the main variable of a \typ{POLMOD} is the main variable
among the coefficients from its two polynomial components
(representative and modulus); in other words, assuming a polmod represents an
element of $R[X]/(T(X))$, the variable $X$ is a mute variable and the
integral is taken with respect to the main variable used in the base ring $R$.
In particular, it is meaningless to integrate with respect to the main
variable of \kbd{x.mod}:
\bprog
? intformal(Mod(1,x^2+1), 'x)
*** intformal: incorrect priority in intformal: variable x = x
@eprog
The library syntax is \fun{GEN}{integ}{GEN x, long v = -1} where \kbd{v} is a variable number.
\subsec{padicappr$(\var{pol},a)$}\kbdsidx{padicappr}\label{se:padicappr}
Vector of $p$-adic roots of the polynomial \var{pol} congruent to the
$p$-adic number $a$ modulo $p$, and with the same $p$-adic precision as $a$.
The number $a$ can be an ordinary $p$-adic number (type \typ{PADIC}, i.e.~an
element of $\Z_{p}$) or can be an integral element of a finite
\emph{unramified} extension $\Q_{p}[X]/(T)$ of $\Q_{p}$, given as a
\typ{POLMOD}
\kbd{Mod}$(A,T)$ at least one of whose coefficients is a \typ{PADIC} and $T$
irreducible modulo $p$. In this case, the result is the vector of roots
belonging to the same extension of $\Q_{p}$ as $a$. The polynomial \var{pol}
should have exact coefficients; if not, its coefficients are first rounded
to $\Q$ or $\Q[X]/(T)$ and this is the polynomial whose roots we consider.
The library syntax is \fun{GEN}{padicappr}{GEN pol, GEN a}.
Also available is \fun{GEN}{Zp_appr}{GEN f, GEN a} when $a$ is a
\typ{PADIC}.
\subsec{padicfields$(p,N,\{\fl=0\})$}\kbdsidx{padicfields}\label{se:padicfields}
Returns a vector of polynomials generating all the extensions of degree
$N$ of the field $\Q_{p}$ of $p$-adic rational numbers; $N$ is
allowed to be a 2-component vector $[n,d]$, in which case we return the
extensions of degree $n$ and discriminant $p^{d}$.
The list is minimal in the sense that two different polynomials generate
nonisomorphic extensions; in particular, the number of polynomials is the
number of classes of nonisomorphic extensions. If $P$ is a polynomial in this
list, $\alpha$ is any root of $P$ and $K = \Q_{p}(\alpha)$, then $\alpha$
is the sum of a uniformizer and a (lift of a) generator of the residue field
of $K$; in particular, the powers of $\alpha$ generate the ring of $p$-adic
integers of $K$.
If $\fl = 1$, replace each polynomial $P$ by a vector $[P, e, f, d, c]$
where $e$ is the ramification index, $f$ the residual degree, $d$ the
valuation of the discriminant, and $c$ the number of conjugate fields.
If $\fl = 2$, only return the \emph{number} of extensions in a fixed
algebraic closure (Krasner's formula), which is much faster.
The library syntax is \fun{GEN}{padicfields0}{GEN p, GEN N, long flag}.
Also available is
\fun{GEN}{padicfields}{GEN p, long n, long d, long flag}, which computes
extensions of $\Q_{p}$ of degree $n$ and discriminant $p^{d}$.
\subsec{polchebyshev$(n,\{\fl=1\},\{a=\kbd{'}x\})$}\kbdsidx{polchebyshev}\label{se:polchebyshev}
Returns the $n^{\text{th}}$
\idx{Chebyshev} polynomial of the first kind $T_{n}$ ($\fl=1$) or the second
kind $U_{n}$ ($\fl=2$), evaluated at $a$ (\kbd{'x} by default). Both series of
polynomials satisfy the 3-term relation
$$ P_{n+1} = 2xP_{n} - P_{n-1}, $$
and are determined by the initial conditions $U_{0} = T_{0} = 1$, $T_{1} = x$,
$U_{1} = 2x$. In fact $T_{n}' = n U_{n-1}$ and, for all complex numbers $z$, we
have $T_{n}(\cos z) = \cos (nz)$ and $U_{n-1}(\cos z) = \sin(nz)/\sin z$.
If $n \geq 0$, then these polynomials have degree $n$. For $n < 0$,
$T_{n}$ is equal to $T_{-n}$ and $U_{n}$ is equal to $-U_{-2-n}$.
In particular, $U_{-1} = 0$.
The library syntax is \fun{GEN}{polchebyshev_eval}{long n, long flag, GEN a = NULL}.
Also available are
\fun{GEN}{polchebyshev}{long n, long flag, long v},
\fun{GEN}{polchebyshev1}{long n, long v} and
\fun{GEN}{polchebyshev2}{long n, long v} for $T_{n}$ and $U_{n}$ respectively.
\subsec{polclass$(D,\{\var{inv}=0\},\{x=\kbd{'}x\})$}\kbdsidx{polclass}\label{se:polclass}
Return a polynomial in $\Z[x]$ generating the Hilbert class field for the
imaginary quadratic discriminant $D$. If $inv$ is 0 (the default),
use the modular $j$-function and return the classical Hilbert polynomial,
otherwise use a class invariant. The following invariants correspond to
the different values of $inv$, where $f$ denotes Weber's function
\kbd{weber}, and $w_{p,q}$ the double eta quotient given by
$w_{p,q} = \dfrac{ \eta(x/p)\*\eta(x/q) }{ \eta(x)\*\eta(x/{pq}) }$
The invariants $w_{p,q}$ are not allowed unless they satisfy the following
technical conditions ensuring they do generate the Hilbert class
field and not a strict subfield:
\item if $p\neq q$, we need them both noninert, prime to the conductor of
$\Z[\sqrt{D}]$. Let $P, Q$ be prime ideals above $p$ and $q$; if both are
unramified, we further require that $P^{\pm 1} Q^{\pm 1}$ be all distinct in
the class group of $\Z[\sqrt{D}]$; if both are ramified, we require that $PQ
\neq 1$ in the class group.
\item if $p = q$, we want it split and prime to the conductor and
the prime ideal above it must have order $\neq 1, 2, 4$ in the class group.
\noindent Invariants are allowed under the additional conditions on $D$
listed below.
\item 0 : $j$
\item 1 : $f$, $D = 1 \mod 8$ and $D = 1,2 \mod 3$;
\item 2 : $f^{2}$, $D = 1 \mod 8$ and $D = 1,2 \mod 3$;
\item 3 : $f^{3}$, $D = 1 \mod 8$;
\item 4 : $f^{4}$, $D = 1 \mod 8$ and $D = 1,2 \mod 3$;
\item 5 : $\gamma_{2}= j^{1/3}$, $D = 1,2 \mod 3$;
\item 6 : $w_{2,3}$, $D = 1 \mod 8$ and $D = 1,2 \mod 3$;
\item 8 : $f^{8}$, $D = 1 \mod 8$ and $D = 1,2 \mod 3$;
\item 9 : $w_{3,3}$, $D = 1 \mod 2$ and $D = 1,2 \mod 3$;
\item 10: $w_{2,5}$, $D \neq 60 \mod 80$ and $D = 1,2 \mod 3$;
\item 14: $w_{2,7}$, $D = 1 \mod 8$;
\item 15: $w_{3,5}$, $D = 1,2 \mod 3$;
\item 21: $w_{3,7}$, $D = 1 \mod 2$ and $21$ does not divide $D$
\item 23: $w_{2,3}^{2}$, $D = 1,2 \mod 3$;
\item 24: $w_{2,5}^{2}$, $D = 1,2 \mod 3$;
\item 26: $w_{2,13}$, $D \neq 156 \mod 208$;
\item 27: $w_{2,7}^{2}$, $D\neq 28 \mod 112$;
\item 28: $w_{3,3}^{2}$, $D = 1,2 \mod 3$;
\item 35: $w_{5,7}$, $D = 1,2 \mod 3$;
\item 39: $w_{3,13}$, $D = 1 \mod 2$ and $D = 1,2 \mod 3$;
The algorithm for computing the polynomial does not use the floating point
approach, which would evaluate a precise modular function in a precise
complex argument. Instead, it relies on a faster Chinese remainder based
approach modulo small primes, in which the class invariant is only defined
algebraically by the modular polynomial relating the modular function to $j$.
So in fact, any of the several roots of the modular polynomial may actually
be the class invariant, and more precise assertions cannot be made.
For instance, while \kbd{polclass(D)} returns the minimal polynomial of
$j(\tau)$ with $\tau$ (any) quadratic integer for the discriminant $D$,
the polynomial returned by \kbd{polclass(D, 5)} can be the minimal polynomial
of any of $\gamma_{2} (\tau)$, $\zeta_{3} \gamma_{2} (\tau)$ or
$\zeta_{3}^{2} \gamma_{2} (\tau)$, the three roots of the modular polynomial
$j = \gamma_{2}^{3}$, in which $j$ has been specialised to $j (\tau)$.
The modular polynomial is given by
$j = {(f^{24}-16)^{3} \over f^{24}}$ for Weber's function $f$.
For the double eta quotients of level $N = p q$, all functions are covered
such that the modular curve $X_{0}^{+} (N)$, the function field of which is
generated by the functions invariant under $\Gamma^{0} (N)$ and the
Fricke--Atkin--Lehner involution, is of genus $0$ with function field
generated by (a power of) the double eta quotient $w$.
This ensures that the full Hilbert class field (and not a proper subfield)
is generated by class invariants from these double eta quotients.
Then the modular polynomial is of degree $2$ in $j$, and
of degree $\psi (N) = (p+1)(q+1)$ in $w$.
\bprog
? polclass(-163)
%1 = x + 262537412640768000
? polclass(-51, , 'z)
%2 = z^2 + 5541101568*z + 6262062317568
? polclass(-151,1)
x^7 - x^6 + x^5 + 3*x^3 - x^2 + 3*x + 1
@eprog
The library syntax is \fun{GEN}{polclass}{GEN D, long inv, long x = -1} where \kbd{x} is a variable number.
\subsec{polcoef$(x,n,\{v\})$}\kbdsidx{polcoef}\label{se:polcoef}
Coefficient of degree $n$ of the polynomial $x$, with respect to the
main variable if $v$ is omitted, with respect to $v$ otherwise. If $n$
is greater than the degree, the result is zero.
Naturally applies to scalars (polynomial of degree $0$), as well as to
rational functions whose denominator is a monomial. It also applies to power
series: if $n$ is less than the valuation, the result is zero. If it is
greater than the largest significant degree, then an error message is issued.
The library syntax is \fun{GEN}{polcoef}{GEN x, long n, long v = -1} where \kbd{v} is a variable number.
\subsec{polcoeff$(x,n,\{v\})$}\kbdsidx{polcoeff}\label{se:polcoeff}
Deprecated alias for polcoef.
The library syntax is \fun{GEN}{polcoef}{GEN x, long n, long v = -1} where \kbd{v} is a variable number.
\subsec{polcyclo$(n,\{a = \kbd{'}x\})$}\kbdsidx{polcyclo}\label{se:polcyclo}
$n$-th cyclotomic polynomial, evaluated at $a$ (\kbd{'x} by default). The
integer $n$ must be positive.
Algorithm used: reduce to the case where $n$ is squarefree; to compute the
cyclotomic polynomial, use $\Phi_{np}(x)=\Phi_{n}(x^{p})/\Phi(x)$; to compute
it evaluated, use $\Phi_{n}(x) = \prod_{d\mid n} (x^{d}-1)^{\mu(n/d)}$. In the
evaluated case, the algorithm assumes that $a^{d} - 1$ is either $0$ or
invertible, for all $d\mid n$. If this is not the case (the base ring has
zero divisors), use \kbd{subst(polcyclo(n),x,a)}.
The library syntax is \fun{GEN}{polcyclo_eval}{long n, GEN a = NULL}.
The variant \fun{GEN}{polcyclo}{long n, long v} returns the $n$-th
cyclotomic polynomial in variable $v$.
\subsec{polcyclofactors$(f)$}\kbdsidx{polcyclofactors}\label{se:polcyclofactors}
Returns a vector of polynomials, whose product is the product of
distinct cyclotomic polynomials dividing $f$.
\bprog
? f = x^10+5*x^8-x^7+8*x^6-4*x^5+8*x^4-3*x^3+7*x^2+3;
? v = polcyclofactors(f)
%2 = [x^2 + 1, x^2 + x + 1, x^4 - x^3 + x^2 - x + 1]
? apply(poliscycloprod, v)
%3 = [1, 1, 1]
? apply(poliscyclo, v)
%4 = [4, 3, 10]
@eprog\noindent In general, the polynomials are products of cyclotomic
polynomials and not themselves irreducible:
\bprog
? g = x^8+2*x^7+6*x^6+9*x^5+12*x^4+11*x^3+10*x^2+6*x+3;
? polcyclofactors(g)
%2 = [x^6 + 2*x^5 + 3*x^4 + 3*x^3 + 3*x^2 + 2*x + 1]
? factor(%[1])
%3 =
[ x^2 + x + 1 1]
[x^4 + x^3 + x^2 + x + 1 1]
@eprog
The library syntax is \fun{GEN}{polcyclofactors}{GEN f}.
\subsec{poldegree$(x,\{v\})$}\kbdsidx{poldegree}\label{se:poldegree}
Degree of the polynomial $x$ in the main variable if $v$ is omitted, in
the variable $v$ otherwise.
The degree of $0$ is \kbd{-oo}. The degree of a nonzero scalar is $0$.
Finally, when $x$ is a nonzero polynomial or rational function, returns the
ordinary degree of $x$. Raise an error otherwise.
The library syntax is \fun{GEN}{gppoldegree}{GEN x, long v = -1} where \kbd{v} is a variable number.
Also available is
\fun{long}{poldegree}{GEN x, long v}, which returns \tet{-LONG_MAX} if $x = 0$
and the degree as a \kbd{long} integer.
\subsec{poldisc$(\var{pol},\{v\})$}\kbdsidx{poldisc}\label{se:poldisc}
Discriminant of the polynomial
\var{pol} in the main variable if $v$ is omitted, in $v$ otherwise. Uses a
modular algorithm over $\Z$ or $\Q$, and the \idx{subresultant algorithm}
otherwise.
\bprog
? T = x^4 + 2*x+1;
? poldisc(T)
%2 = -176
? poldisc(T^2)
%3 = 0
@eprog
For convenience, the function also applies to types \typ{QUAD} and
\typ{QFB}:
\bprog
? z = 3*quadgen(8) + 4;
? poldisc(z)
%2 = 8
? q = Qfb(1,2,3);
? poldisc(q)
%4 = -8
@eprog
The library syntax is \fun{GEN}{poldisc0}{GEN pol, long v = -1} where \kbd{v} is a variable number.
\subsec{poldiscfactors$(T,\{\fl=0\})$}\kbdsidx{poldiscfactors}\label{se:poldiscfactors}
Given a polynomial $T$ with integer coefficients, return
$[D, \var{faD}]$ where $D$ is the discriminant of $T$ and
\var{faD} is a cheap partial factorization of $|D|$: entries in its first
column are coprime and not perfect powers but need not be primes.
The factors are obtained by a combination of trial division, testing for
perfect powers, factorizations in coprimes, and computing Euclidean
remainder sequences for $(T,T')$ modulo composite factors $d$ of $D$
(which is likely to produce $0$-divisors in $\Z/d\Z$).
If \fl\ is $1$, finish the factorization using \kbd{factorint}.
\bprog
? T = x^3 - 6021021*x^2 + 12072210077769*x - 8092423140177664432;
? [D,faD] = poldiscfactors(T); print(faD); D
[3, 3; 7, 2; 373, 2; 500009, 2; 24639061, 2]
%2 = -27937108625866859018515540967767467
? T = x^3 + 9*x^2 + 27*x - 125014250689643346789780229390526092263790263725;
? [D,faD] = poldiscfactors(T); print(faD)
[2, 6; 3, 3; 125007125141751093502187, 4]
? [D,faD] = poldiscfactors(T, 1); print(faD)
[2, 6; 3, 3; 500009, 12; 1000003, 4]
@eprog
The library syntax is \fun{GEN}{poldiscfactors}{GEN T, long flag}.
\subsec{poldiscreduced$(f)$}\kbdsidx{poldiscreduced}\label{se:poldiscreduced}
Reduced discriminant vector of the
(integral, monic) polynomial $f$. This is the vector of elementary divisors
of $\Z[\alpha]/f'(\alpha)\Z[\alpha]$, where $\alpha$ is a root of the
polynomial $f$. The components of the result are all positive, and their
product is equal to the absolute value of the discriminant of~$f$.
The library syntax is \fun{GEN}{reduceddiscsmith}{GEN f}.
\subsec{polfromroots$(a,\{v=x\})$}\kbdsidx{polfromroots}\label{se:polfromroots}
Returns the monic polynomial in variable \kbd{v} whose roots are the
components of the vector $a$ with multiplicities, that is
$\prod_{i} (x - a_{i})$.
\bprog
? polfromroots([1,2,3])
%1 = x^3 - 6*x^2 + 11*x - 6
? polfromroots([z, -z], 'y)
%2 = y^2 - z^2
@eprog
The library syntax is \fun{GEN}{polfromroots}{GEN a, long v = -1} where \kbd{v} is a variable number.
\subsec{polgraeffe$(f)$}\kbdsidx{polgraeffe}\label{se:polgraeffe}
Returns the \idx{Graeffe} transform $g$ of $f$, such that $g(x^{2}) = f(x)
f(-x)$.
The library syntax is \fun{GEN}{polgraeffe}{GEN f}.
\subsec{polhensellift$(A,B,p,e)$}\kbdsidx{polhensellift}\label{se:polhensellift}
Given a prime $p$, an integral polynomial $A$ whose leading coefficient
is a $p$-unit, a vector $B$ of integral polynomials that are monic and
pairwise relatively prime modulo $p$, and whose product is congruent to
$A/\text{lc}(A)$ modulo $p$, lift the elements of $B$ to polynomials whose
product is congruent to $A$ modulo $p^{e}$.
More generally, if $T$ is an integral polynomial irreducible mod $p$, and
$B$ is a factorization of $A$ over the finite field $\F_{p}[t]/(T)$, you can
lift it to $\Z_{p}[t]/(T, p^{e})$ by replacing the $p$ argument with $[p,T]$:
\bprog
? { T = t^3 - 2; p = 7; A = x^2 + t + 1;
B = [x + (3*t^2 + t + 1), x + (4*t^2 + 6*t + 6)];
r = polhensellift(A, B, [p, T], 6) }
%1 = [x + (20191*t^2 + 50604*t + 75783), x + (97458*t^2 + 67045*t + 41866)]
? liftall( r[1] * r[2] * Mod(Mod(1,p^6),T) )
%2 = x^2 + (t + 1)
@eprog
The library syntax is \fun{GEN}{polhensellift}{GEN A, GEN B, GEN p, long e}.
\subsec{polhermite$(n,\{a=\kbd{'}x\},\{\fl=0\})$}\kbdsidx{polhermite}\label{se:polhermite}
$n^{\text{th}}$ \idx{Hermite} polynomial $H_{n}$ evaluated at $a$
(\kbd{'x} by default), i.e.
$$ H_{n}(x) = (-1)^{n}\*e^{x^{2}} \dfrac{d^{n}}{dx^{n}}e^{-x^{2}}.$$
If \fl\ is nonzero and $n > 0$, return $[H_{n-1}(a), H_{n}(a)]$.
\bprog
? polhermite(5)
%1 = 32*x^5 - 160*x^3 + 120*x
? polhermite(5, -2) \\ H_5(-2)
%2 = 16
? polhermite(5,,1)
%3 = [16*x^4 - 48*x^2 + 12, 32*x^5 - 160*x^3 + 120*x]
? polhermite(5,-2,1)
%4 = [76, 16]
@eprog
The library syntax is \fun{GEN}{polhermite_eval0}{long n, GEN a = NULL, long flag}.
The variant \fun{GEN}{polhermite}{long n, long v} returns the $n$-th
Hermite polynomial in variable $v$. To obtain $H_{n}(a)$,
use \fun{GEN}{polhermite_eval}{long n, GEN a}.
\subsec{polinterpolate$(X,\{Y\},\{t = \kbd{'}x\},\{\&e\})$}\kbdsidx{polinterpolate}\label{se:polinterpolate}
Given the data vectors $X$ and $Y$ of the same length $n$
($X$ containing the $x$-coordinates, and $Y$ the corresponding
$y$-coordinates), this function finds the \idx{interpolating polynomial}
$P$ of minimal degree passing through these points and evaluates it at~$t$.
If $Y$ is omitted, the polynomial $P$ interpolates the $(i,X[i])$.
\bprog
? v = [1, 2, 4, 8, 11, 13];
? P = polinterpolate(v) \\ formal interpolation
%1 = 7/120*x^5 - 25/24*x^4 + 163/24*x^3 - 467/24*x^2 + 513/20*x - 11
? [ subst(P,'x,a) | a <- [1..6] ]
%2 = [1, 2, 4, 8, 11, 13]
? polinterpolate(v,, 10) \\ evaluate at 10
%3 = 508
? subst(P, x, 10)
%4 = 508
? P = polinterpolate([1,2,4], [9,8,7])
%5 = 1/6*x^2 - 3/2*x + 31/3
? [subst(P, 'x, a) | a <- [1,2,4]]
%6 = [9, 8, 7]
? P = polinterpolate([1,2,4], [9,8,7], 0)
%7 = 31/3
@eprog\noindent If the goal is to extrapolate a function at a unique point,
it is more efficient to use the $t$ argument rather than interpolate formally
then evaluate:
\bprog
? x0 = 1.5;
? v = vector(20, i,random([-10,10]));
? for(i=1,10^3, subst(polinterpolate(v),'x, x0))
time = 352 ms.
? for(i=1,10^3, polinterpolate(v,,x0))
time = 111 ms.
? v = vector(40, i,random([-10,10]));
? for(i=1,10^3, subst(polinterpolate(v), 'x, x0))
time = 3,035 ms.
? for(i=1,10^3, polinterpolate(v,, x0))
time = 436 ms.
@eprog\noindent The threshold depends on the base field. Over small prime
finite fields, interpolating formally first is more efficient
\bprog
? bench(p, N, T = 10^3) =
{ my (v = vector(N, i, random(Mod(0,p))));
my (x0 = Mod(3, p), t1, t2);
gettime();
for(i=1, T, subst(polinterpolate(v), 'x, x0));
t1 = gettime();
for(i=1, T, polinterpolate(v,, x0));
t2 = gettime(); [t1, t2];
}
? p = 101;
? bench(p, 4, 10^4) \\ both methods are equivalent
%3 = [39, 40]
? bench(p, 40) \\ with 40 points formal is much faster
%4 = [45, 355]
@eprog\noindent As the cardinality increases, formal interpolation requires
more points to become interesting:
\bprog
? p = nextprime(2^128);
? bench(p, 4) \\ formal is slower
%3 = [16, 9]
? bench(p, 10) \\ formal has become faster
%4 = [61, 70]
? bench(p, 100) \\ formal is much faster
%5 = [1682, 9081]
? p = nextprime(10^500);
? bench(p, 4) \\ formal is slower
%7 = [72, 354]
? bench(p, 20) \\ formal is still slower
%8 = [1287, 962]
? bench(p, 40) \\ formal has become faster
%9 = [3717, 4227]
? bench(p, 100) \\ faster but relatively less impressive
%10 = [16237, 32335]
@eprog
If $t$ is a complex numeric value and $e$ is present, $e$ will contain an
error estimate on the returned value. More precisely, let $P$ be the
interpolation polynomial on the given $n$ points; there exist a subset
of $n-1$ points and $Q$ the attached interpolation polynomial
such that $e = \kbd{exponent}(P(t) - Q(t))$ (Neville's algorithm).
\bprog
? f(x) = 1 / (1 + 25*x^2);
? x0 = 975/1000;
? test(X) =
{ my (P, e);
P = polinterpolate(X, [f(x) | x <- X], x0, &e);
[ exponent(P - f(x0)), e ];
}
\\ equidistant nodes vs. Chebyshev nodes
? test( [-10..10] / 10 )
%4 = [6, 5]
? test( polrootsreal(polchebyshev(21)) )
%5 = [-15, -10]
? test( [-100..100] / 100 )
%7 = [93, 97] \\ P(x0) is way different from f(x0)
? test( polrootsreal(polchebyshev(201)) )
%8 = [-60, -55]
@eprog\noindent This is an example of Runge's phenomenon: increasing the
number of equidistant nodes makes extrapolation much worse. Note that the
error estimate is not a guaranteed upper bound (cf \%4), but is reasonably
tight in practice.
\misctitle{Numerical stability} The interpolation is performed in
a numerically stable way using $\prod_{j\neq i} (X[i] - X[j])$ instead of
$Q'(X[i])$ with $Q = \prod_{i} (x - X[i])$. Centering the interpolation
points $X[i]$ around $0$, thereby reconstructing $P(x - m)$, for a suitable
$m$ will further reduce the numerical error.
The library syntax is \fun{GEN}{polint}{GEN X, GEN Y = NULL, GEN t = NULL, GEN *e = NULL}.
\subsec{polisclass$(P)$}\kbdsidx{polisclass}\label{se:polisclass}
$P$ being a monic irreducible polynomial with integer coefficients,
return $0$ if $P$ is not a class polynomial for the $j$-invariant,
otherwise return the discriminant $D<0$ such that \kbd{P=polclass(D)}.
\bprog
? polisclass(polclass(-47))
%1 = -47
? polisclass(x^5+x+1)
%2 = 0
? apply(polisclass,factor(poldisc(polmodular(5)))[,1])
%3 = [-16,-4,-3,-11,-19,-64,-36,-24,-51,-91,-99,-96,-84]~
@eprog
The library syntax is \fun{long}{polisclass}{GEN P}.
\subsec{poliscyclo$(f)$}\kbdsidx{poliscyclo}\label{se:poliscyclo}
Returns 0 if $f$ is not a cyclotomic polynomial, and $n > 0$ if $f =
\Phi_{n}$, the $n$-th cyclotomic polynomial.
\bprog
? poliscyclo(x^4-x^2+1)
%1 = 12
? polcyclo(12)
%2 = x^4 - x^2 + 1
? poliscyclo(x^4-x^2-1)
%3 = 0
@eprog
The library syntax is \fun{long}{poliscyclo}{GEN f}.
\subsec{poliscycloprod$(f)$}\kbdsidx{poliscycloprod}\label{se:poliscycloprod}
Returns 1 if $f$ is a product of cyclotomic polynomial, and $0$
otherwise.
\bprog
? f = x^6+x^5-x^3+x+1;
? poliscycloprod(f)
%2 = 1
? factor(f)
%3 =
[ x^2 + x + 1 1]
[x^4 - x^2 + 1 1]
? [ poliscyclo(T) | T <- %[,1] ]
%4 = [3, 12]
? polcyclo(3) * polcyclo(12)
%5 = x^6 + x^5 - x^3 + x + 1
@eprog
The library syntax is \fun{long}{poliscycloprod}{GEN f}.
\subsec{polisirreducible$(\var{pol})$}\kbdsidx{polisirreducible}\label{se:polisirreducible}
\var{pol} being a polynomial (univariate in the present version \vers),
returns 1 if \var{pol} is nonconstant and irreducible, 0 otherwise.
Irreducibility is checked over the smallest base field over which \var{pol}
seems to be defined.
The library syntax is \fun{long}{polisirreducible}{GEN pol}.
\subsec{pollaguerre$(n,\{a=0\},\{b=\kbd{'}x\},\{\fl=0\})$}\kbdsidx{pollaguerre}\label{se:pollaguerre}
$n^{\text{th}}$ \idx{Laguerre polynomial} $L^{(a)}_{n}$ of degree $n$ and
parameter $a$ evaluated at $b$ (\kbd{'x} by default), i.e.
$$ L_{n}^{(a)}(x) =
\dfrac{x^{-a}e^{x}}{n!} \dfrac{d^{n}}{dx^{n}}\big(e^{-x}x^{n+a}\big).$$
If \fl\ is $1$, return $[L^{(a)}_{n-1}(b), L_{n}^{(a)}(b)]$.
The library syntax is \fun{GEN}{pollaguerre_eval0}{long n, GEN a = NULL, GEN b = NULL, long flag}.
To obtain the $n$-th Laguerre polynomial in variable $v$,
use \fun{GEN}{pollaguerre}{long n, GEN a, GEN b, long v}. To obtain
$L^{(a)}_{n}(b)$, use \fun{GEN}{pollaguerre_eval}{long n, GEN a, GEN b}.
\subsec{pollead$(x,\{v\})$}\kbdsidx{pollead}\label{se:pollead}
Leading coefficient of the polynomial or power series $x$. This is
computed with respect to the main variable of $x$ if $v$ is omitted, with
respect to the variable $v$ otherwise.
The library syntax is \fun{GEN}{pollead}{GEN x, long v = -1} where \kbd{v} is a variable number.
\subsec{pollegendre$(n,\{a=\kbd{'}x\},\{\fl=0\})$}\kbdsidx{pollegendre}\label{se:pollegendre}
$n^{\text{th}}$ \idx{Legendre polynomial} $P_{n}$ evaluated at $a$
(\kbd{'x} by default), where
$$P_{n}(x) = \dfrac{1}{2^{n} n!} \dfrac{d^{n}}{dx^{n}}(x^{2}-1)^{n}\;.$$
If \fl\ is 1, return $[P_{n-1}(a), P_{n}(a)]$.
The library syntax is \fun{GEN}{pollegendre_eval0}{long n, GEN a = NULL, long flag}.
To obtain the $n$-th Legendre polynomial $P_{n}$ in variable $v$,
use \fun{GEN}{pollegendre}{long n, long v}. To obtain $P_{n}(a)$,
use \fun{GEN}{pollegendre_eval}{long n, GEN a}.
\subsec{polmodular$(L,\{\var{inv}=0\},\{x=\kbd{'}x\},\{y=\kbd{'}y\},\{\var{derivs}=0\})$}\kbdsidx{polmodular}\label{se:polmodular}
Return the modular polynomial of prime level $L$ in variables $x$ and $y$
for the modular function specified by \kbd{inv}. If \kbd{inv} is 0 (the
default), use the modular $j$ function, if \kbd{inv} is 1 use the
Weber-$f$ function, and if \kbd{inv} is 5 use $\gamma_{2} =
\sqrt[3]{j}$.
See \kbd{polclass} for the full list of invariants.
If $x$ is given as \kbd{Mod(j, p)} or an element $j$ of
a finite field (as a \typ{FFELT}), then return the modular polynomial of
level $L$ evaluated at $j$. If $j$ is from a finite field and
\kbd{derivs} is nonzero, then return a triple where the
last two elements are the first and second derivatives of the modular
polynomial evaluated at $j$.
\bprog
? polmodular(3)
%1 = x^4 + (-y^3 + 2232*y^2 - 1069956*y + 36864000)*x^3 + ...
? polmodular(7, 1, , 'J)
%2 = x^8 - J^7*x^7 + 7*J^4*x^4 - 8*J*x + J^8
? polmodular(7, 5, 7*ffgen(19)^0, 'j)
%3 = j^8 + 4*j^7 + 4*j^6 + 8*j^5 + j^4 + 12*j^2 + 18*j + 18
? polmodular(7, 5, Mod(7,19), 'j)
%4 = Mod(1, 19)*j^8 + Mod(4, 19)*j^7 + Mod(4, 19)*j^6 + ...
? u = ffgen(5)^0; T = polmodular(3,0,,'j)*u;
? polmodular(3, 0, u,'j,1)
%6 = [j^4 + 3*j^2 + 4*j + 1, 3*j^2 + 2*j + 4, 3*j^3 + 4*j^2 + 4*j + 2]
? subst(T,x,u)
%7 = j^4 + 3*j^2 + 4*j + 1
? subst(T',x,u)
%8 = 3*j^2 + 2*j + 4
? subst(T'',x,u)
%9 = 3*j^3 + 4*j^2 + 4*j + 2
@eprog
The library syntax is \fun{GEN}{polmodular}{long L, long inv, GEN x = NULL, long y = -1, long derivs} where \kbd{y} is a variable number.
\subsec{polrecip$(\var{pol})$}\kbdsidx{polrecip}\label{se:polrecip}
Reciprocal polynomial of \var{pol} with respect to its main variable,
i.e.~the coefficients of the result are in reverse order; \var{pol} must be
a polynomial.
\bprog
? polrecip(x^2 + 2*x + 3)
%1 = 3*x^2 + 2*x + 1
? polrecip(2*x + y)
%2 = y*x + 2
@eprog
The library syntax is \fun{GEN}{polrecip}{GEN pol}.
\subsec{polresultant$(x,y,\{v\},\{\fl=0\})$}\kbdsidx{polresultant}\label{se:polresultant}
Resultant of the two
polynomials $x$ and $y$ with exact entries, with respect to the main
variables of $x$ and $y$ if $v$ is omitted, with respect to the variable $v$
otherwise. The algorithm assumes the base ring is a domain. If you also need
the $u$ and $v$ such that $x*u + y*v = \text{Res}(x,y)$, use the
\tet{polresultantext} function.
If $\fl=0$ (default), uses the algorithm best suited to the inputs,
either the \idx{subresultant algorithm} (Lazard/Ducos variant, generic case),
a modular algorithm (inputs in $\Q[X]$) or Sylvester's matrix (inexact
inputs).
If $\fl=1$, uses the determinant of Sylvester's matrix instead; this should
always be slower than the default.
If $x$ or $y$ are multivariate with a huge \emph{polynomial} content, it
is advisable to remove it before calling this function. Compare:
\bprog
? a = polcyclo(7) * ((t+1)/(t+2))^100;
? b = polcyclo(11)* ((t+2)/(t+3))^100);
? polresultant(a,b);
time = 3,833 ms.
? ca = content(a); cb = content(b); \
polresultant(a/ca,b/cb)*ca^poldegree(b)*cb*poldegree(a); \\ instantaneous
@eprog\noindent The function only removes rational denominators and does
not compute automatically the content because it is generically small and
potentially \emph{very} expensive (e.g. in multivariate contexts).
The choice is yours, depending on your application.
The library syntax is \fun{GEN}{polresultant0}{GEN x, GEN y, long v = -1, long flag} where \kbd{v} is a variable number.
\subsec{polresultantext$(A,B,\{v\})$}\kbdsidx{polresultantext}\label{se:polresultantext}
Finds polynomials $U$ and $V$ such that $A*U + B*V = R$, where $R$ is
the resultant of $U$ and $V$ with respect to the main variables of $A$ and
$B$ if $v$ is omitted, and with respect to $v$ otherwise. Returns the row
vector $[U,V,R]$. The algorithm used (subresultant) assumes that the base
ring is a domain.
\bprog
? A = x*y; B = (x+y)^2;
? [U,V,R] = polresultantext(A, B)
%2 = [-y*x - 2*y^2, y^2, y^4]
? A*U + B*V
%3 = y^4
? [U,V,R] = polresultantext(A, B, y)
%4 = [-2*x^2 - y*x, x^2, x^4]
? A*U+B*V
%5 = x^4
@eprog
The library syntax is \fun{GEN}{polresultantext0}{GEN A, GEN B, long v = -1} where \kbd{v} is a variable number.
Also available is
\fun{GEN}{polresultantext}{GEN x, GEN y}.
\subsec{polroots$(T)$}\kbdsidx{polroots}\label{se:polroots}
Complex roots of the polynomial $T$, given as a column vector where each
root is repeated according to its multiplicity and given as floating point
complex numbers at the current \kbd{realprecision}:
\bprog
? polroots(x^2)
%1 = [0.E-38 + 0.E-38*I, 0.E-38 + 0.E-38*I]~
? polroots(x^3+1)
%2 = [-1.00... + 0.E-38*I, 0.50... - 0.866...*I, 0.50... + 0.866...*I]~
@eprog
The algorithm used is a modification of Sch\"onhage\sidx{Sch\"onage}'s
root-finding algorithm, due to and originally implemented by Gourdon.
It runs in polynomial time in $\text{deg}(T)$ and the precision.
If furthermore $T$ has rational coefficients, roots are guaranteed to the
required relative accuracy. If the input polynomial $T$ is exact, then
the ordering of the roots does not depend on the precision: they are ordered
by increasing $|\Im z|$, then by increasing $\Re z$; in case of tie
(conjugates), the root with negative imaginary part comes first.
The library syntax is \fun{GEN}{roots}{GEN T, long prec}.
\subsec{polrootsbound$(T,\{\var{tau}=0.01\})$}\kbdsidx{polrootsbound}\label{se:polrootsbound}
Return a sharp upper bound $B$ for the modulus of
the largest complex root of the polynomial $T$ with complex coefficients
with relative error $\tau$. More precisely, we have $|z| \leq B$ for all roots
and there exist one root such that $|z_{0}| \geq B \exp(-2\tau)$. Much faster
than either polroots or polrootsreal.
\bprog
? T=poltchebi(500);
? vecmax(abs(polroots(T)))
time = 5,706 ms.
%2 = 0.99999506520185816611184481744870013191
? vecmax(abs(polrootsreal(T)))
time = 1,972 ms.
%3 = 0.99999506520185816611184481744870013191
? polrootsbound(T)
time = 217 ms.
%4 = 1.0098792554165905155
? polrootsbound(T, log(2)/2) \\ allow a factor 2, much faster
time = 51 ms.
%5 = 1.4065759938190154354
? polrootsbound(T, 1e-4)
time = 504 ms.
%6 = 1.0000920717983847741
? polrootsbound(T, 1e-6)
time = 810 ms.
%7 = 0.9999960628901692905
? polrootsbound(T, 1e-10)
time = 1,351 ms.
%8 = 0.9999950652993869760
@eprog
The library syntax is \fun{GEN}{polrootsbound}{GEN T, GEN tau = NULL}.
\subsec{polrootsff$(x,\{p\},\{a\})$}\kbdsidx{polrootsff}\label{se:polrootsff}
Obsolete, kept for backward compatibility: use polrootsmod.
The library syntax is \fun{GEN}{polrootsff}{GEN x, GEN p = NULL, GEN a = NULL}.
\subsec{polrootsmod$(f,\{D\})$}\kbdsidx{polrootsmod}\label{se:polrootsmod}
Vector of roots of the polynomial $f$ over the finite field defined
by the domain $D$ as follows:
\item $D = p$ a prime: factor over $\F_{p}$;
\item $D = [T,p]$ for a prime $p$ and $T(y)$ an irreducible polynomial over
$\F_{p}$: factor over $\F_{p}[y]/(T)$ (as usual the main variable of $T$
must have lower priority than the main variable of $f$);
\item $D$ a \typ{FFELT}: factor over the attached field;
\item $D$ omitted: factor over the field of definition of $f$, which
must be a finite field.
\noindent Multiple roots are \emph{not} repeated.
\bprog
? polrootsmod(x^2-1,2)
%1 = [Mod(1, 2)]~
? polrootsmod(x^2+1,3)
%2 = []~
? polrootsmod(x^2+1, [y^2+1,3])
%3 = [Mod(Mod(1, 3)*y, Mod(1, 3)*y^2 + Mod(1, 3)),
Mod(Mod(2, 3)*y, Mod(1, 3)*y^2 + Mod(1, 3))]~
? polrootsmod(x^2 + Mod(1,3))
%4 = []~
? liftall( polrootsmod(x^2 + Mod(Mod(1,3),y^2+1)) )
%5 = [y, 2*y]~
? t = ffgen(y^2+Mod(1,3)); polrootsmod(x^2 + t^0)
%6 = [y, 2*y]~
@eprog
The library syntax is \fun{GEN}{polrootsmod}{GEN f, GEN D = NULL}.
\subsec{polrootspadic$(f,p,r)$}\kbdsidx{polrootspadic}\label{se:polrootspadic}
Vector of $p$-adic roots of the polynomial \var{pol}, given to
$p$-adic precision $r$; the integer $p$ is assumed to be a prime.
Multiple roots are
\emph{not} repeated. Note that this is not the same as the roots in
$\Z/p^{r}\Z$, rather it gives approximations in $\Z/p^{r}\Z$ of the true roots
living in $\Q_{p}$:
\bprog
? polrootspadic(x^3 - x^2 + 64, 2, 4)
%1 = [2^3 + O(2^4), 2^3 + O(2^4), 1 + O(2^4)]~
? polrootspadic(x^3 - x^2 + 64, 2, 5)
%2 = [2^3 + O(2^5), 2^3 + 2^4 + O(2^5), 1 + O(2^5)]~
@eprog\noindent As the second commands show, the first two roots \emph{are}
distinct in $\Q_{p}$, even though they are equal modulo $2^{4}$.
More generally, if $T$ is an integral polynomial irreducible
mod $p$ and $f$ has coefficients in $\Q[t]/(T)$, the argument $p$
may be replaced by the vector $[T,p]$; we then return the roots of $f$ in
the unramified extension $\Q_{p}[t]/(T)$.
\bprog
? polrootspadic(x^3 - x^2 + 64*y, [y^2+y+1,2], 5)
%3 = [Mod((2^3 + O(2^5))*y + (2^3 + O(2^5)), y^2 + y + 1),
Mod((2^3 + 2^4 + O(2^5))*y + (2^3 + 2^4 + O(2^5)), y^2 + y + 1),
Mod(1 + O(2^5), y^2 + y + 1)]~
@eprog
If \var{pol} has inexact \typ{PADIC} coefficients, this need not
well-defined; in this case, the polynomial is first made integral by
dividing out the $p$-adic content, then lifted to $\Z$ using \tet{truncate}
coefficientwise. Hence the roots given are approximations of the roots of an
exact polynomial which is $p$-adically close to the input. To avoid pitfalls,
we advise to only factor polynomials with exact rational coefficients.
The library syntax is \fun{GEN}{polrootspadic}{GEN f, GEN p, long r}.
\subsec{polrootsreal$(T,\{\var{ab}\})$}\kbdsidx{polrootsreal}\label{se:polrootsreal}
Real roots of the polynomial $T$ with real coefficients, multiple
roots being included according to their multiplicity. If the polynomial
does not have rational coefficients, it is first rescaled and rounded.
The roots are given to a relative accuracy of \kbd{realprecision}.
If argument \var{ab} is
present, it must be a vector $[a,b]$ with two components (of type
\typ{INT}, \typ{FRAC} or \typ{INFINITY}) and we restrict to roots belonging
to that closed interval.
\bprog
? \p9
? polrootsreal(x^2-2)
%1 = [-1.41421356, 1.41421356]~
? polrootsreal(x^2-2, [1,+oo])
%2 = [1.41421356]~
? polrootsreal(x^2-2, [2,3])
%3 = []~
? polrootsreal((x-1)*(x-2), [2,3])
%4 = [2.00000000]~
@eprog\noindent
The algorithm used is a modification of Uspensky's method (relying on
Descartes's rule of sign), following Rouillier and Zimmerman's article
``Efficient isolation of a polynomial real roots''
(\url{https://hal.inria.fr/inria-00072518/}). Barring bugs, it is guaranteed
to converge and to give the roots to the required accuracy.
\misctitle{Remark} If the polynomial $T$ is of the
form $Q(x^{h})$ for some $h\geq 2$ and \var{ab} is omitted, the routine will
apply the algorithm to $Q$ (restricting to nonnegative roots when $h$ is
even), then take $h$-th roots. On the other hand, if you want to specify
\var{ab}, you should apply the routine to $Q$ yourself and a suitable
interval $[a',b']$ using approximate $h$-th roots adapted to your problem:
the function will not perform this change of variables if \var{ab} is present.
The library syntax is \fun{GEN}{realroots}{GEN T, GEN ab = NULL, long prec}.
\subsec{polsturm$(T,\{\var{ab}\})$}\kbdsidx{polsturm}\label{se:polsturm}
Number of distinct real roots of the real polynomial \var{T}. If
the argument \var{ab} is present, it must be a vector $[a,b]$ with
two real components (of type \typ{INT}, \typ{REAL}, \typ{FRAC}
or \typ{INFINITY}) and we count roots belonging to that closed interval.
If possible, you should stick to exact inputs, that is avoid \typ{REAL}s in
$T$ and the bounds $a,b$: the result is then guaranteed and we use a fast
algorithm (Uspensky's method, relying on Descartes's rule of sign, see
\tet{polrootsreal}). Otherwise, the polynomial is rescaled and rounded first
and the result may be wrong due to that initial error. If only $a$ or $b$ is
inexact, on the other hand, the interval is first thickened using rational
endpoints and the result remains guaranteed unless there exist a root
\emph{very} close to a nonrational endpoint (which may be missed or unduly
included).
\bprog
? T = (x-1)*(x-2)*(x-3);
? polsturm(T)
%2 = 3
? polsturm(T, [-oo,2])
%3 = 2
? polsturm(T, [1/2,+oo])
%4 = 3
? polsturm(T, [1, Pi]) \\ Pi inexact: not recommended !
%5 = 3
? polsturm(T*1., [0, 4]) \\ T*1. inexact: not recommended !
%6 = 3
? polsturm(T^2, [0, 4]) \\ not squarefree: roots are not repeated!
%7 = 3
@eprog
%\syn{NO}
The library syntax is \fun{long}{RgX_sturmpart}{GEN T, GEN ab} or
\fun{long}{sturm}{GEN T} (for the case \kbd{ab = NULL}). The function
\fun{long}{sturmpart}{GEN T, GEN a, GEN b} is obsolete and deprecated.
\subsec{polsubcyclo$(n,d,\{v=\kbd{'}x\})$}\kbdsidx{polsubcyclo}\label{se:polsubcyclo}
Gives polynomials (in variable $v$) defining the (Abelian) subextensions
of degree $d$ of the cyclotomic field $\Q(\zeta_{n})$, where $d\mid \phi(n)$.
If there is exactly one such extension the output is a polynomial, else it is
a vector of polynomials, possibly empty. To get a vector in all cases,
use \kbd{concat([], polsubcyclo(n,d))}.
Each such polynomial is the minimal polynomial for a Gaussian period
$\text{Tr}_{\Q(\zeta_{f})/L} (\zeta_{f})$, where $L$ is the degree $d$
subextension of $\Q(\zeta_{n})$ and $f | n$ is its conductor. In
Galois-theoretic terms, $L = \Q(\zeta_{n})^{H}$, where $H$ runs through all
index $d$ subgroups of $(\Z/n\Z)^{*}$.
The function \tet{galoissubcyclo} allows to specify exactly which
sub-Abelian extension should be computed by giving $H$.
\misctitle{Complexity} Ignoring logarithmic factors, \kbd{polsubcyclo} runs
in time $O(n)$. The function \kbd{polsubcyclofast} returns different, less
canonical, polynomials but runs in time $O(d^{4})$, again ignoring logarithmic
factors; thus it can handle much larger values of $n$.
The library syntax is \fun{GEN}{polsubcyclo}{long n, long d, long v = -1} where \kbd{v} is a variable number.
\subsec{polsubcyclofast$(n,d,\{s=0\},\{\var{exact}=0\})$}\kbdsidx{polsubcyclofast}\label{se:polsubcyclofast}
If $1 \leq d\leq 6$ or a prime, finds an equation for the subfields of
$\Q(\zeta_{n})$ with Galois group $C_{d}$; the special value $d = -4$ provides
the subfields with group $V_{4}=C_{2}\times C_{2}$. Contrary to
\kbd{polsubcyclo}, the
output is always a (possibly empty) vector of polynomials. If $s = 0$ (default)
all signatures, otherwise $s = 1$ (resp., $-1$) for totally real
(resp., totally complex). Set \kbd{exact = 1} for subfields of conductor $n$.
The argument $n$ can be given as in arithmetic functions: as an integer, as a
factorization matrix, or (preferred) as a pair $[N, \kbd{factor}(N)]$.
\misctitle{Comparison with \kbd{polsubcyclo}} First \kbd{polsubcyclofast}
does not usually return Gaussian periods, but ad hoc polynomials which do
generate the same field. Roughly speaking (ignoring
logarithmic factors), the complexity of \kbd{polsubcyclo} is independent of
$d$ and the complexity of \kbd{polsubcyclofast} is independent of $n$.
Ignoring logarithmic factors, \kbd{polsubcylo} runs in time $O(n)$ and
\kbd{polsubcyclofast} in time $O(d^{4})$.
So the latter is \emph{much} faster than \kbd{polsubcyclo} if $n$ is large,
but gets slower as $d$ increases and becomes unusable for $d \geq 40$ or so.
\bprog
? polsubcyclo(10^7+19,7);
time = 1,852 ms.
? polsubcyclofast(10^7+19,7);
time = 15 ms.
? polsubcyclo(10^17+21,5); \\ won't finish
*** polsubcyclo: user interrupt after 2h
? polsubcyclofast(10^17+21,5);
time = 3 ms.
? polsubcyclofast(10^17+3,7);
time = 26 ms.
? polsubcyclo(10^6+117,13);
time = 193 ms.
? polsubcyclofast(10^6+117,13);
time = 50 ms.
? polsubcyclofast(10^6+199,19);
time = 202 ms.
? polsubcyclo(10^6+199,19); \\ about as fast
time = 3191ms.
? polsubcyclo(10^7+271,19);
time = 2,067 ms.
? polsubcyclofast(10^7+271,19);
time = 201 ms.
@eprog
The library syntax is \fun{GEN}{polsubcyclofast}{GEN n, long d, long s, long exact}.
\subsec{polsylvestermatrix$(x,y)$}\kbdsidx{polsylvestermatrix}\label{se:polsylvestermatrix}
Forms the Sylvester matrix
corresponding to the two polynomials $x$ and $y$, where the coefficients of
the polynomials are put in the columns of the matrix (which is the natural
direction for solving equations afterwards). The use of this matrix can be
essential when dealing with polynomials with inexact entries, since
polynomial Euclidean division doesn't make much sense in this case.
The library syntax is \fun{GEN}{sylvestermatrix}{GEN x, GEN y}.
\subsec{polsym$(x,n)$}\kbdsidx{polsym}\label{se:polsym}
Creates the column vector of the \idx{symmetric powers} of the roots of the
polynomial $x$ up to power $n$, using Newton's formula.
The library syntax is \fun{GEN}{polsym}{GEN x, long n}.
\subsec{poltchebi$(n,\{v=\kbd{'}x\})$}\kbdsidx{poltchebi}\label{se:poltchebi}
Deprecated alias for \kbd{polchebyshev}
The library syntax is \fun{GEN}{polchebyshev1}{long n, long v = -1} where \kbd{v} is a variable number.
\subsec{polteichmuller$(T,p,r)$}\kbdsidx{polteichmuller}\label{se:polteichmuller}
Given $T \in \F_{p}[X]$ return the polynomial $P\in \Z_{p}[X]$ whose roots
(resp.~leading coefficient) are the Teichmuller lifts of the roots
(resp.~leading coefficient) of $T$, to $p$-adic precision $r$. If $T$ is
monic, $P$ is the reduction modulo $p^{r}$ of the unique monic polynomial
congruent to $T$ modulo $p$ such that $P(X^{p}) = 0 \pmod{P(X),p^{r}}$.
\bprog
? T = ffinit(3, 3, 't)
%1 = Mod(1,3)*t^3 + Mod(1,3)*t^2 + Mod(1,3)*t + Mod(2,3)
? P = polteichmuller(T,3,5)
%2 = t^3 + 166*t^2 + 52*t + 242
? subst(P, t, t^3) % (P*Mod(1,3^5))
%3 = Mod(0, 243)
? [algdep(a+O(3^5),2) | a <- Vec(P)]
%4 = [x - 1, 5*x^2 + 1, x^2 + 4*x + 4, x + 1]
@eprog\noindent When $T$ is monic and irreducible mod $p$, this provides
a model $\Q_{p}[X]/(P)$ of the unramified extension $\Q_{p}[X] / (T)$ where
the Frobenius has the simple form $X \mod P \mapsto X^{p} \mod P$.
The library syntax is \fun{GEN}{polteichmuller}{GEN T, ulong p, long r}.
\subsec{poltomonic$(T,\{\&L\})$}\kbdsidx{poltomonic}\label{se:poltomonic}
Let $T \in \Q[x]$ be a nonzero polynomial; returns $U$ monic in $\Z[x]$
such that $U(x) = C T(x/L)$ for some $C,L\in \Q$. If the pointer argument
\kbd{\&L} is present, set \kbd{L} to $L$.
\bprog
? poltomonic(9*x^2 - 1/2)
%1 = x^2 - 2
? U = poltomonic(9*x^2 - 1/2, &L)
%2 = x^2 - 2
? L
%3 = 6
? U / subst(9*x^2 - 1/2, x, x/L)
%4 = 4
@eprog
This function does not compute discriminants or maximal orders and runs
with complexity almost linear in the input size. If $T$ is already monic with
integer coefficient, \kbd{poltomonic} may still transform it if $\Z[x]/(T)$
is contained in a trivial subring of the maximal order, generated by $L x$:
\bprog
? poltomonic(x^2 + 4, &L)
%5 = x^2 + 1
? L
%6 = 1/2
@eprog\noindent If $T$ is irreducible, the functions \kbd{polredabs}
(exponential time) and \kbd{polredbest} (polynomial time) also find a monic
integral generating polynomial for the number field $\Q[x]/(T)$, with
explicit guarantees on its size, but are orders of magnitude slower.
The library syntax is \fun{GEN}{poltomonic}{GEN T, GEN *L = NULL}.
\subsec{polzagier$(n,m)$}\kbdsidx{polzagier}\label{se:polzagier}
Creates Zagier's polynomial $P_{n}^{(m)}$ used in
the functions \kbd{sumalt} and \kbd{sumpos} (with $\fl=1$), see
``Convergence acceleration of alternating series'', Cohen et al.,
\emph{Experiment.~Math.}, vol.~9, 2000, pp.~3--12.
If $m < 0$ or $m \ge n$, $P_{n}^{(m)} = 0$.
We have
$P_{n} := P_{n}^{(0)}$ is $T_{n}(2x-1)$, where $T_{n}$ is the Legendre
polynomial of the second kind. For $n > m > 0$, $P_{n}^{(m)}$ is the $m$-th
difference with step $2$ of the sequence $n^{m+1}P_{n}$; in this case, it
satisfies
$$2 P_{n}^{(m)}(sin^{2} t)
= \dfrac{d^{m+1}}{dt^{m+1}} (\sin(2t)^{m} \sin(2(n-m)t)).$$
%@article {MR2001m:11222,
% AUTHOR = {Cohen, Henri and Rodriguez Villegas, Fernando and Zagier, Don},
% TITLE = {Convergence acceleration of alternating series},
% JOURNAL = {Experiment. Math.},
% VOLUME = {9},
% YEAR = {2000},
% NUMBER = {1},
% PAGES = {3--12},
%}
The library syntax is \fun{GEN}{polzag}{long n, long m}.
\subsec{seralgdep$(s,p,r)$}\kbdsidx{seralgdep}\label{se:seralgdep}
\sidx{algebraic dependence} finds a linear relation between powers $(1,s,
\dots, s^{p})$ of the series $s$, with polynomial coefficients of degree
$\leq r$. In case no relation is found, return $0$.
\bprog
? s = 1 + 10*y - 46*y^2 + 460*y^3 - 5658*y^4 + 77740*y^5 + O(y^6);
? seralgdep(s, 2, 2)
%2 = -x^2 + (8*y^2 + 20*y + 1)
? subst(%, x, s)
%3 = O(y^6)
? seralgdep(s, 1, 3)
%4 = (-77*y^2 - 20*y - 1)*x + (310*y^3 + 231*y^2 + 30*y + 1)
? seralgdep(s, 1, 2)
%5 = 0
@eprog\noindent The series main variable must not be $x$, so as to be able
to express the result as a polynomial in $x$.
The library syntax is \fun{GEN}{seralgdep}{GEN s, long p, long r}.
\subsec{serconvol$(x,y)$}\kbdsidx{serconvol}\label{se:serconvol}
Convolution (or \idx{Hadamard product}) of the
two power series $x$ and $y$; in other words if $x=\sum a_{k}*X^{k}$
and $y=\sum b_{k}*X^{k}$ then $\kbd{serconvol}(x,y)=\sum a_{k}*b_{k}*X^{k}$.
The library syntax is \fun{GEN}{convol}{GEN x, GEN y}.
\subsec{serdiffdep$(s,p,r)$}\kbdsidx{serdiffdep}\label{se:serdiffdep}
Find a linear relation between the derivatives $(s, s', \dots, s^{p})$ of
the series $s$ and $1$, with polynomial coefficients of degree $\leq r$. In
case no relation is found, return $0$, otherwise return $[E,P]$ such that
$E(d)(S)=P$ where $d$ is the standard derivation.
\bprog
? S = sum(i=0, 50, binomial(3*i,i)*T^i) + O(T^51);
? serdiffdep(S, 3, 3)
%2 = [(27*T^2 - 4*T)*x^2 + (54*T - 2)*x + 6, 0]
? (27*T^2 - 4*T)*S'' + (54*T - 2)*S' + 6*S
%3 = O(T^50)
? S = exp(T^2) + T^2;
? serdiffdep(S, 3, 3)
%5 = [x-2*T, -2*T^3+2*T]
? S'-2*T*S
%6 = 2*T-2*T^3+O(T^17)
@eprog \noindent The series main variable must not be $x$, so as to be able
to express the result as a polynomial in $x$.
The library syntax is \fun{GEN}{serdiffdep}{GEN s, long p, long r}.
\subsec{serlaplace$(x)$}\kbdsidx{serlaplace}\label{se:serlaplace}
$x$ must be a power series with nonnegative
exponents or a polynomial. If $x=\sum (a_{k}/k!)*X^{k}$ then the result isi
$\sum a_{k}*X^{k}$.
The library syntax is \fun{GEN}{laplace}{GEN x}.
\subsec{serreverse$(s)$}\kbdsidx{serreverse}\label{se:serreverse}
Reverse power series of $s$, i.e. the series $t$ such that $t(s) = x$;
$s$ must be a power series whose valuation is exactly equal to one.
\bprog
? \ps 8
? t = serreverse(tan(x))
%2 = x - 1/3*x^3 + 1/5*x^5 - 1/7*x^7 + O(x^8)
? tan(t)
%3 = x + O(x^8)
@eprog
The library syntax is \fun{GEN}{serreverse}{GEN s}.
\subsec{subst$(x,y,z)$}\kbdsidx{subst}\label{se:subst}
Replace the simple variable $y$ by the argument $z$ in the ``polynomial''
expression $x$. If $z$ is a vector, return the vector of the evaluated
expressions \kbd{subst(x, y, z[i])}.
Every type is allowed for $x$, but if it is not a genuine
polynomial (or power series, or rational function), the substitution will be
done as if the scalar components were polynomials of degree zero. In
particular, beware that:
\bprog
? subst(1, x, [1,2; 3,4])
%1 =
[1 0]
[0 1]
? subst(1, x, Mat([0,1]))
*** at top-level: subst(1,x,Mat([0,1])
*** ^--------------------
*** subst: forbidden substitution by a non square matrix.
@eprog\noindent
If $x$ is a power series, $z$ must be either a polynomial, a power
series, or a rational function. If $x$ is a vector,
matrix or list, the substitution is applied to each individual entry.
Use the function \kbd{substvec} to replace several variables at once,
or the function \kbd{substpol} to replace a polynomial expression.
The library syntax is \fun{GEN}{gsubst}{GEN x, long y, GEN z} where \kbd{y} is a variable number.
\subsec{substpol$(x,y,z)$}\kbdsidx{substpol}\label{se:substpol}
Replace the ``variable'' $y$ by the argument $z$ in the ``polynomial''
expression $x$. Every type is allowed for $x$, but the same behavior
as \kbd{subst} above apply.
The difference with \kbd{subst} is that $y$ is allowed to be any polynomial
here. The substitution is done moding out all components of $x$
(recursively) by $y - t$, where $t$ is a new free variable of lowest
priority. Then substituting $t$ by $z$ in the resulting expression. For
instance
\bprog
? substpol(x^4 + x^2 + 1, x^2, y)
%1 = y^2 + y + 1
? substpol(x^4 + x^2 + 1, x^3, y)
%2 = x^2 + y*x + 1
? substpol(x^4 + x^2 + 1, (x+1)^2, y)
%3 = (-4*y - 6)*x + (y^2 + 3*y - 3)
@eprog
The library syntax is \fun{GEN}{gsubstpol}{GEN x, GEN y, GEN z}.
Further, \fun{GEN}{gdeflate}{GEN T, long v, long d} attempts to
write $T(x)$ in the form $t(x^{d})$, where $x=$\kbd{pol\_x}$(v)$, and returns
\kbd{NULL} if the substitution fails (for instance in the example \kbd{\%2}
above).
\subsec{substvec$(x,v,w)$}\kbdsidx{substvec}\label{se:substvec}
$v$ being a vector of monomials of degree 1 (variables),
$w$ a vector of expressions of the same length, replace in the expression
$x$ all occurrences of $v_{i}$ by $w_{i}$. The substitutions are done
simultaneously; more precisely, the $v_{i}$ are first replaced by new
variables in $x$, then these are replaced by the $w_{i}$:
\bprog
? substvec([x,y], [x,y], [y,x])
%1 = [y, x]
? substvec([x,y], [x,y], [y,x+y])
%2 = [y, x + y] \\ not [y, 2*y]
@eprog\noindent As in \kbd{subst}, variables may be replaced
by a vector of values, in which case the cartesian product is returned:
\bprog
? substvec([x,y], [x,y], [[1,2], 3])
%3 = [[1, 3], [2, 3]]
? substvec([x,y], [x,y], [[1,2], [3,4]])
%4 = [[1, 3], [2, 3], [1, 4], [2, 4]]
@eprog
The library syntax is \fun{GEN}{gsubstvec}{GEN x, GEN v, GEN w}.
\subsec{sumformal$(f,\{v\})$}\kbdsidx{sumformal}\label{se:sumformal}
\idx{formal sum} of the polynomial expression $f$ with respect to the
main variable if $v$ is omitted, with respect to the variable $v$ otherwise;
it is assumed that the base ring has characteristic zero. In other words,
considering $f$ as a polynomial function in the variable $v$,
returns $F$, a polynomial in $v$ vanishing at $0$, such that $F(b) - F(a)
= sum_{v = a+1}^{b} f(v)$:
\bprog
? sumformal(n) \\ 1 + ... + n
%1 = 1/2*n^2 + 1/2*n
? f(n) = n^3+n^2+1;
? F = sumformal(f(n)) \\ f(1) + ... + f(n)
%3 = 1/4*n^4 + 5/6*n^3 + 3/4*n^2 + 7/6*n
? sum(n = 1, 2000, f(n)) == subst(F, n, 2000)
%4 = 1
? sum(n = 1001, 2000, f(n)) == subst(F, n, 2000) - subst(F, n, 1000)
%5 = 1
? sumformal(x^2 + x*y + y^2, y)
%6 = y*x^2 + (1/2*y^2 + 1/2*y)*x + (1/3*y^3 + 1/2*y^2 + 1/6*y)
? x^2 * y + x * sumformal(y) + sumformal(y^2) == %
%7 = 1
@eprog
The library syntax is \fun{GEN}{sumformal}{GEN f, long v = -1} where \kbd{v} is a variable number.
\subsec{taylor$(x,t,\{d=\var{seriesprecision}\})$}\kbdsidx{taylor}\label{se:taylor}
Taylor expansion around $0$ of $x$ with respect to
the simple variable $t$. $x$ can be of any reasonable type, for example a
rational function. Contrary to \tet{Ser}, which takes the valuation into
account, this function adds $O(t^{d})$ to all components of $x$.
\bprog
? taylor(x/(1+y), y, 5)
%1 = (y^4 - y^3 + y^2 - y + 1)*x + O(y^5)
? Ser(x/(1+y), y, 5)
*** at top-level: Ser(x/(1+y),y,5)
*** ^----------------
*** Ser: main variable must have higher priority in gtoser.
@eprog
The library syntax is \fun{GEN}{tayl}{GEN x, long t, long precdl} where \kbd{t} is a variable number.
\subsec{thue$(\var{tnf},a,\{\var{sol}\})$}\kbdsidx{thue}\label{se:thue}
Returns all solutions of the equation
$P(x,y)=a$ in integers $x$ and $y$, where \var{tnf} was created with
$\kbd{thueinit}(P)$. If present, \var{sol} must contain the solutions of
$\Norm(x)=a$ modulo units of positive norm in the number field
defined by $P$ (as computed by \kbd{bnfisintnorm}). If there are infinitely
many solutions, an error is issued.
It is allowed to input directly the polynomial $P$ instead of a \var{tnf},
in which case, the function first performs \kbd{thueinit(P,0)}. This is
very wasteful if more than one value of $a$ is required.
If \var{tnf} was computed without assuming GRH (flag $1$ in \tet{thueinit}),
then the result is unconditional. Otherwise, it depends in principle of the
truth of the GRH, but may still be unconditionally correct in some
favorable cases. The result is conditional on the GRH if
$a\neq \pm 1$ and $P$ has a single irreducible rational factor, whose
attached tentative class number $h$ and regulator $R$ (as computed
assuming the GRH) satisfy
\item $h > 1$,
\item $R/0.2 > 1.5$.
Here's how to solve the Thue equation $x^{13} - 5y^{13} = - 4$:
\bprog
? tnf = thueinit(x^13 - 5);
? thue(tnf, -4)
%1 = [[1, 1]]
@eprog\noindent In this case, one checks that \kbd{bnfinit(x\pow13 -5).no}
is $1$. Hence, the only solution is $(x,y) = (1,1)$ and the result is
unconditional. On the other hand:
\bprog
? P = x^3-2*x^2+3*x-17; tnf = thueinit(P);
? thue(tnf, -15)
%2 = [[1, 1]] \\ a priori conditional on the GRH.
? K = bnfinit(P); K.no
%3 = 3
? K.reg
%4 = 2.8682185139262873674706034475498755834
@eprog
This time the result is conditional. All results computed using this
particular \var{tnf} are likewise conditional, \emph{except} for a right-hand
side of $\pm 1$.
The above result is in fact correct, so we did not just disprove the GRH:
\bprog
? tnf = thueinit(x^3-2*x^2+3*x-17, 1 /*unconditional*/);
? thue(tnf, -15)
%4 = [[1, 1]]
@eprog
Note that reducible or nonmonic polynomials are allowed:
\bprog
? tnf = thueinit((2*x+1)^5 * (4*x^3-2*x^2+3*x-17), 1);
? thue(tnf, 128)
%2 = [[-1, 0], [1, 0]]
@eprog\noindent Reducible polynomials are in fact much easier to handle.
\misctitle{Note} When $P$ is irreducible without a real root, the default
strategy is to use brute force enumeration in time $|a|^{1/\deg P}$ and
avoid computing a tough \var{bnf} attached to $P$, see \kbd{thueinit}.
Besides reusing a quantity you might need for other purposes, the
default argument \emph{sol} can also be used to use a different strategy
and prove that there are no solutions; of course you need to compute a
\var{bnf} on you own to obtain \emph{sol}. If there \emph{are} solutions
this won't help unless $P$ is quadratic, since the enumeration will be
performed in any case.
The library syntax is \fun{GEN}{thue}{GEN tnf, GEN a, GEN sol = NULL}.
\subsec{thueinit$(P,\{\fl=0\})$}\kbdsidx{thueinit}\label{se:thueinit}
Initializes the \var{tnf} corresponding to $P$, a nonconstant
univariate polynomial with integer coefficients.
The result is meant to be used in conjunction with \tet{thue} to solve Thue
equations $P(X / Y)Y^{\deg P} = a$, where $a$ is an integer. Accordingly,
$P$ must either have at least two distinct irreducible factors over $\Q$,
or have one irreducible factor $T$ with degree $>2$ or two conjugate
complex roots: under these (necessary and sufficient) conditions, the
equation has finitely many integer solutions.
\bprog
? S = thueinit(t^2+1);
? thue(S, 5)
%2 = [[-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1]]
? S = thueinit(t+1);
*** at top-level: thueinit(t+1)
*** ^-------------
*** thueinit: domain error in thueinit: P = t + 1
@eprog\noindent The hardest case is when $\deg P > 2$ and $P$ is irreducible
with at least one real root. The routine then uses Bilu-Hanrot's algorithm.
If $\fl$ is nonzero, certify results unconditionally. Otherwise, assume
\idx{GRH}, this being much faster of course. In the latter case, the result
may still be unconditionally correct, see \tet{thue}. For instance in most
cases where $P$ is reducible (not a pure power of an irreducible), \emph{or}
conditional computed class groups are trivial \emph{or} the right hand side
is $\pm1$, then results are unconditional.
\misctitle{Note} The general philosophy is to disprove the existence of large
solutions then to enumerate bounded solutions naively. The implementation
will overflow when there exist huge solutions and the equation has degree
$> 2$ (the quadratic imaginary case is special, since we can stick to
\kbd{bnfisintnorm}, there are no fundamental units):
\bprog
? thue(t^3+2, 10^30)
*** at top-level: L=thue(t^3+2,10^30)
*** ^-----------------
*** thue: overflow in thue (SmallSols): y <= 80665203789619036028928.
? thue(x^2+2, 10^30) \\ quadratic case much easier
%1 = [[-1000000000000000, 0], [1000000000000000, 0]]
@eprog
\misctitle{Note} It is sometimes possible to circumvent the above, and in any
case obtain an important speed-up, if you can write $P = Q(x^{d})$ for some
$d > 1$ and $Q$ still satisfying the \kbd{thueinit} hypotheses. You can then
solve
the equation attached to $Q$ then eliminate all solutions $(x,y)$ such that
either $x$ or $y$ is not a $d$-th power.
\bprog
? thue(x^4+1, 10^40); \\ stopped after 10 hours
? filter(L,d) =
my(x,y); [[x,y] | v<-L, ispower(v[1],d,&x)&&ispower(v[2],d,&y)];
? L = thue(x^2+1, 10^40);
? filter(L, 2)
%4 = [[0, 10000000000], [10000000000, 0]]
@eprog\noindent The last 2 commands use less than 20ms.
\misctitle{Note} When $P$ is irreducible without a real root, the equation
can be solved unconditionnally in time $|a|^{1/\deg P}$. When this
latter quantity is huge and the equation has no solutions, this fact
may still be ascertained via arithmetic conditions but this now implies
solving norm equations, computing a \var{bnf} and possibly assuming the GRH.
When there is no real root, the code does not compute a \var{bnf}
(with certification if $\fl = 1$) if it expects this to be an ``easy''
computation (because the result would only be used for huge values of $a$).
See \kbd{thue} for a way to compute an expensive \var{bnf} on your own and
still get a result where this default cheap strategy fails.
The library syntax is \fun{GEN}{thueinit}{GEN P, long flag, long prec}.
\section{Vectors, matrices, linear algebra and sets}
\label{se:linear_algebra}
Note that most linear algebra functions operating on subspaces defined by
generating sets (such as \tet{mathnf}, \tet{qflll}, etc.) take matrices as
arguments. As usual, the generating vectors are taken to be the
\emph{columns} of the given matrix.
Since PARI does not have a strong typing system, scalars live in
unspecified commutative base rings. It is very difficult to write
robust linear algebra routines in such a general setting. We thus
assume that the base ring is a domain and work over its field of
fractions. If the base ring is \emph{not} a domain, one gets an error as soon
as a nonzero pivot turns out to be noninvertible. Some functions,
e.g.~\kbd{mathnf} or \kbd{mathnfmod}, specifically assume that the base ring is
$\Z$.
\subsec{algdep$(z,k,\{\fl=0\})$}\kbdsidx{algdep}\label{se:algdep}
\sidx{algebraic dependence}
$z$ being real/complex, or $p$-adic, finds a polynomial (in the variable
\kbd{'x}) of degree at most
$k$, with integer coefficients, having $z$ as approximate root. Note that the
polynomial which is obtained is not necessarily the ``correct'' one. In fact
it is not even guaranteed to be irreducible. One can check the closeness
either by a polynomial evaluation (use \tet{subst}), or by computing the
roots of the polynomial given by \kbd{algdep} (use \tet{polroots} or
\tet{polrootspadic}).
Internally, \tet{lindep}$([1,z,\ldots,z^{k}], \fl)$ is used. A nonzero value of
$\fl$ may improve on the default behavior if the input number is known to a
\emph{huge} accuracy, and you suspect the last bits are incorrect: if $\fl > 0$
the computation is done with an accuracy of $\fl$ decimal digits; to get
meaningful results, the parameter $\fl$ should be smaller than the number of
correct decimal digits in the input. But default values are usually
sufficient, so try without $\fl$ first:
\bprog
? \p200
? z = 2^(1/6)+3^(1/5);
? algdep(z, 30); \\ right in 63ms
? algdep(z, 30, 100); \\ wrong in 39ms
? algdep(z, 30, 170); \\ right in 61ms
? algdep(z, 30, 200); \\ wrong in 146ms
? \p250
? z = 2^(1/6)+3^(1/5); \\ recompute to new, higher, accuracy !
? algdep(z, 30); \\ right in 68ms
? algdep(z, 30, 200); \\ right in 68ms
? \p500
? algdep(2^(1/6)+3^(1/5), 30); \\ right in 138ms
? \p1000
? algdep(2^(1/6)+3^(1/5), 30); \\ right in 276s
@eprog\noindent
The changes in \kbd{realprecision} only affect the quality of the
initial approximation to $2^{1/6} + 3^{1/5}$, \kbd{algdep} itself uses
exact operations. The size of its operands depend on the accuracy of the
input of course: a more accurate input means slower operations.
Proceeding by increments of 5 digits of accuracy, \kbd{algdep} with default
flag produces its first correct result at 195 digits, and from then on a
steady stream of correct results:
\bprog
\\ assume T contains the correct result, for comparison
forstep(d=100, 250, 5, \
localprec(d); \
print(d, " ", algdep(2^(1/6)+3^(1/5),30) == T))
@eprog\noindent
This example is the test case studied in a 2000 paper by Borwein and
Lisonek: Applications of integer relation algorithms, \emph{Discrete Math.},
{\bf 217}, p.~65--82. The version of PARI tested there was 1.39, which
succeeded reliably from precision 265 on, in about 1000 as much time as the
current version (on slower hardware of course).
Note that this function does not work if $z$ is a power series. The function
\kbd{seralgdep} can be used in this case to find linear relations wich
polynomial coefficients between powers of $z$.
The library syntax is \fun{GEN}{algdep0}{GEN z, long k, long flag}.
Also available is \fun{GEN}{algdep}{GEN z, long k} ($\fl=0$).
\subsec{bestapprnf$(V,T,\{\var{rootT}\})$}\kbdsidx{bestapprnf}\label{se:bestapprnf}
$T$ being an integral polynomial and $V$ being a scalar, vector, or
matrix with complex coefficients, return a reasonable approximation of $V$
with polmods modulo $T$. $T$ can also be any number field structure, in which
case the minimal polynomial attached to the structure (\kbd{$T$}.pol) is
used. The \var{rootT} argument, if present, must be an element of
\kbd{polroots($T$)} (or \kbd{$T$}.pol), i.e.~a complex root of $T$ fixing an embedding of
$\Q[x]/(T)$ into $\C$.
\bprog
? bestapprnf(sqrt(5), polcyclo(5))
%1 = Mod(-2*x^3 - 2*x^2 - 1, x^4 + x^3 + x^2 + x + 1)
? bestapprnf(sqrt(5), polcyclo(5), exp(4*I*Pi/5))
%2 = Mod(2*x^3 + 2*x^2 + 1, x^4 + x^3 + x^2 + x + 1)
@eprog\noindent When the output has huge rational coefficients, try to
increase the working \kbd{realbitprecision}: if the answer does not
stabilize, consider that the reconstruction failed.
Beware that if $T$ is not Galois over $\Q$, some embeddings
may not allow to reconstruct $V$:
\bprog
? T = x^3-2; vT = polroots(T); z = 3*2^(1/3)+1;
? bestapprnf(z, T, vT[1])
%2 = Mod(3*x + 1, x^3 - 2)
? bestapprnf(z, T, vT[2])
%3 = 4213714286230872/186454048314072 \\ close to 3*2^(1/3) + 1
@eprog
The library syntax is \fun{GEN}{bestapprnf}{GEN V, GEN T, GEN rootT = NULL, long prec}.
\subsec{charpoly$(A,\{v=\kbd{'}x\},\{\fl=5\})$}\kbdsidx{charpoly}\label{se:charpoly}
\idx{characteristic polynomial}
of $A$ with respect to the variable $v$, i.e.~determinant of $v*I-A$ if $A$
is a square matrix.
\bprog
? charpoly([1,2;3,4]);
%1 = x^2 - 5*x - 2
? charpoly([1,2;3,4],, 't)
%2 = t^2 - 5*t - 2
@eprog\noindent
If $A$ is not a square matrix, the function returns the characteristic
polynomial of the map ``multiplication by $A$'' if $A$ is a scalar:
\bprog
? charpoly(Mod(x+2, x^3-2))
%1 = x^3 - 6*x^2 + 12*x - 10
? charpoly(I)
%2 = x^2 + 1
? charpoly(quadgen(5))
%3 = x^2 - x - 1
? charpoly(ffgen(ffinit(2,4)))
%4 = Mod(1, 2)*x^4 + Mod(1, 2)*x^3 + Mod(1, 2)*x^2 + Mod(1, 2)*x + Mod(1, 2)
@eprog
The value of $\fl$ is only significant for matrices, and we advise to stick
to the default value. Let $n$ be the dimension of $A$.
If $\fl=0$, same method (Le Verrier's) as for computing the adjoint matrix,
i.e.~using the traces of the powers of $A$. Assumes that $n!$ is
invertible; uses $O(n^{4})$ scalar operations.
If $\fl=1$, uses Lagrange interpolation which is usually the slowest method.
Assumes that $n!$ is invertible; uses $O(n^{4})$ scalar operations.
If $\fl=2$, uses the Hessenberg form. Assumes that the base ring is a field.
Uses $O(n^{3})$ scalar operations, but suffers from coefficient explosion
unless the base field is finite or $\R$.
If $\fl=3$, uses Berkowitz's division free algorithm, valid over any
ring (commutative, with unit). Uses $O(n^{4})$ scalar operations.
If $\fl=4$, $x$ must be integral. Uses a modular algorithm: Hessenberg form
for various small primes, then Chinese remainders.
If $\fl=5$ (default), uses the ``best'' method given $x$.
This means we use Berkowitz unless the base ring is $\Z$ (use $\fl=4$)
or a field where coefficient explosion does not occur,
e.g.~a finite field or the reals (use $\fl=2$).
The library syntax is \fun{GEN}{charpoly0}{GEN A, long v = -1, long flag} where \kbd{v} is a variable number.
Also available are
\fun{GEN}{charpoly}{GEN x, long v} ($\fl=5$),
\fun{GEN}{caract}{GEN A, long v} ($\fl=1$),
\fun{GEN}{carhess}{GEN A, long v} ($\fl=2$),
\fun{GEN}{carberkowitz}{GEN A, long v} ($\fl=3$) and
\fun{GEN}{caradj}{GEN A, long v, GEN *pt}. In this
last case, if \var{pt} is not \kbd{NULL}, \kbd{*pt} receives the address of
the adjoint matrix of $A$ (see \tet{matadjoint}), so both can be obtained at
once.
\subsec{concat$(x,\{y\})$}\kbdsidx{concat}\label{se:concat}
Concatenation of $x$ and $y$. If $x$ or $y$ is
not a vector or matrix, it is considered as a one-dimensional vector. All
types are allowed for $x$ and $y$, but the sizes must be compatible. Note
that matrices are concatenated horizontally, i.e.~the number of rows stays
the same. Using transpositions, one can concatenate them vertically,
but it is often simpler to use \tet{matconcat}.
\bprog
? x = matid(2); y = 2*matid(2);
? concat(x,y)
%2 =
[1 0 2 0]
[0 1 0 2]
? concat(x~,y~)~
%3 =
[1 0]
[0 1]
[2 0]
[0 2]
? matconcat([x;y])
%4 =
[1 0]
[0 1]
[2 0]
[0 2]
@eprog\noindent
To concatenate vectors sideways (i.e.~to obtain a two-row or two-column
matrix), use \tet{Mat} instead, or \tet{matconcat}:
\bprog
? x = [1,2];
? y = [3,4];
? concat(x,y)
%3 = [1, 2, 3, 4]
? Mat([x,y]~)
%4 =
[1 2]
[3 4]
? matconcat([x;y])
%5 =
[1 2]
[3 4]
@eprog
Concatenating a row vector to a matrix having the same number of columns will
add the row to the matrix (top row if the vector is $x$, i.e.~comes first, and
bottom row otherwise).
The empty matrix \kbd{[;]} is considered to have a number of rows compatible
with any operation, in particular concatenation. (Note that this is
\emph{not} the case for empty vectors \kbd{[~]} or \kbd{[~]\til}.)
If $y$ is omitted, $x$ has to be a row vector or a list, in which case its
elements are concatenated, from left to right, using the above rules.
\bprog
? concat([1,2], [3,4])
%1 = [1, 2, 3, 4]
? a = [[1,2]~, [3,4]~]; concat(a)
%2 =
[1 3]
[2 4]
? concat([1,2; 3,4], [5,6]~)
%3 =
[1 2 5]
[3 4 6]
? concat([%, [7,8]~, [1,2,3,4]])
%5 =
[1 2 5 7]
[3 4 6 8]
[1 2 3 4]
@eprog
The library syntax is \fun{GEN}{gconcat}{GEN x, GEN y = NULL}.
\fun{GEN}{gconcat1}{GEN x} is a shortcut for \kbd{gconcat(x,NULL)}.
\subsec{dirpowers$(n,x)$}\kbdsidx{dirpowers}\label{se:dirpowers}
For nonnegative $n$ and complex number $x$, return the vector with $n$
components $[1^{x},2^{x},\dots,n^{x}]$.
\bprog
? dirpowers(5, 2)
%1 = [1, 4, 9, 16, 25]
? dirpowers(5, 1/2)
%2 = [1, 1.414..., 1.732..., 2.000..., 2.236...]
@eprog\noindent When $n \le 0$, the function returns the empty vector \kbd{[]}.
The library syntax is \fun{GEN}{dirpowers}{long n, GEN x, long prec}.
\subsec{forqfvec$(v,q,b,\var{expr})$}\kbdsidx{forqfvec}\label{se:forqfvec}
$q$ being a square and symmetric integral matrix representing a positive
definite quadratic form, evaluate \kbd{expr} for all pairs of nonzero
vectors $(-v,v)$ such that $q(v)\leq b$. The formal variable $v$ runs
through representatives of all such pairs in turn.
\bprog
? forqfvec(v, [3,2;2,3], 3, print(v))
[0, 1]~
[1, 0]~
[-1, 1]~
@eprog
The library syntax is \fun{void}{forqfvec0}{GEN v, GEN q = NULL, GEN b}.
The following functions are also available:
\fun{void}{forqfvec}{void *E, long (*fun)(void *, GEN, GEN, double), GEN q, GEN b}:
Evaluate \kbd{fun(E,U,v,m)} on all $v$ such that $q(U\*v)<b$, where $U$ is a
\typ{MAT}, $v$ is a \typ{VECSMALL} and $m=q(v)$ is a C double. The function
\kbd{fun} must return $0$, unless \kbd{forqfvec} should stop, in which case,
it should return $1$.
\fun{void}{forqfvec1}{void *E, long (*fun)(void *, GEN), GEN q, GEN b}:
Evaluate \kbd{fun(E,v)} on all $v$ such that $q(v)<b$, where $v$ is a
\typ{COL}. The function \kbd{fun} must return $0$, unless \kbd{forqfvec}
should stop, in which case, it should return $1$.
\subsec{lindep$(v,\{\fl=0\})$}\kbdsidx{lindep}\label{se:lindep}
\sidx{linear dependence} finds a small nontrivial integral linear
combination between components of $v$. If none can be found return an empty
vector.
If $v$ is a vector with real/complex entries we use a floating point
(variable precision) LLL algorithm. If $\fl = 0$ the accuracy is chosen
internally using a crude heuristic. If $\fl > 0$ the computation is done with
an accuracy of $\fl$ decimal digits. To get meaningful results in the latter
case, the parameter $\fl$ should be smaller than the number of correct
decimal digits in the input.
\bprog
? lindep([sqrt(2), sqrt(3), sqrt(2)+sqrt(3)])
%1 = [-1, -1, 1]~
@eprog
If $v$ is $p$-adic, $\fl$ is ignored and the algorithm LLL-reduces a
suitable (dual) lattice.
\bprog
? lindep([1, 2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5)])
%2 = [1, -2]~
@eprog
If $v$ is a matrix (or a vector of column vectors, or a vector of row
vectors), $\fl$ is ignored and the function returns a non trivial kernel
vector if one exists, else an empty vector.
\bprog
? lindep([1,2,3;4,5,6;7,8,9])
%3 = [1, -2, 1]~
? lindep([[1,0], [2,0]])
%4 = [2, -1]~
? lindep([[1,0], [0,1]])
%5 = []~
@eprog
If $v$ contains polynomials or power series over some base field, finds a
linear relation with coefficients in the field.
\bprog
? lindep([x*y, x^2 + y, x^2*y + x*y^2, 1])
%4 = [y, y, -1, -y^2]~
@eprog\noindent For better control, it is preferable to use \typ{POL} rather
than \typ{SER} in the input, otherwise one gets a linear combination which is
$t$-adically small, but not necessarily $0$. Indeed, power series are first
converted to the minimal absolute accuracy occurring among the entries of $v$
(which can cause some coefficients to be ignored), then truncated to
polynomials:
\bprog
? v = [t^2+O(t^4), 1+O(t^2)]; L=lindep(v)
%1 = [1, 0]~
? v*L
%2 = t^2+O(t^4) \\ small but not 0
@eprog
The library syntax is \fun{GEN}{lindep0}{GEN v, long flag}.
\subsec{matadjoint$(M,\{\fl=0\})$}\kbdsidx{matadjoint}\label{se:matadjoint}
\idx{adjoint matrix} of $M$, i.e.~a matrix $N$
of cofactors of $M$, satisfying $M*N=\det(M)*\Id$. $M$ must be a
(not necessarily invertible) square matrix of dimension $n$.
If $\fl$ is 0 or omitted, we try to use Leverrier-Faddeev's algorithm,
which assumes that $n!$ invertible. If it fails or $\fl = 1$,
computes $T = \kbd{charpoly}(M)$ independently first and returns
$(-1)^{n-1} (T(x)-T(0))/x$ evaluated at $M$.
\bprog
? a = [1,2,3;3,4,5;6,7,8] * Mod(1,4);
? matadjoint(a)
%2 =
[Mod(1, 4) Mod(1, 4) Mod(2, 4)]
[Mod(2, 4) Mod(2, 4) Mod(0, 4)]
[Mod(1, 4) Mod(1, 4) Mod(2, 4)]
@eprog\noindent
Both algorithms use $O(n^{4})$ operations in the base ring. Over a field,
they are usually slower than computing the characteristic polynomial or
the inverse of $M$ directly.
The library syntax is \fun{GEN}{matadjoint0}{GEN M, long flag}.
Also available are
\fun{GEN}{adj}{GEN x} ($\fl=0$) and
\fun{GEN}{adjsafe}{GEN x} ($\fl=1$).
\subsec{matcompanion$(x)$}\kbdsidx{matcompanion}\label{se:matcompanion}
The left companion matrix to the nonzero polynomial $x$.
The library syntax is \fun{GEN}{matcompanion}{GEN x}.
\subsec{matconcat$(v)$}\kbdsidx{matconcat}\label{se:matconcat}
Returns a \typ{MAT} built from the entries of $v$, which may
be a \typ{VEC} (concatenate horizontally), a \typ{COL} (concatenate
vertically), or a \typ{MAT} (concatenate vertically each column, and
concatenate vertically the resulting matrices). The entries of $v$ are always
considered as matrices: they can themselves be \typ{VEC} (seen as a row
matrix), a \typ{COL} seen as a column matrix), a \typ{MAT}, or a scalar (seen
as an $1 \times 1$ matrix).
\bprog
? A=[1,2;3,4]; B=[5,6]~; C=[7,8]; D=9;
? matconcat([A, B]) \\ horizontal
%1 =
[1 2 5]
[3 4 6]
? matconcat([A, C]~) \\ vertical
%2 =
[1 2]
[3 4]
[7 8]
? matconcat([A, B; C, D]) \\ block matrix
%3 =
[1 2 5]
[3 4 6]
[7 8 9]
@eprog\noindent
If the dimensions of the entries to concatenate do not match up, the above
rules are extended as follows:
\item each entry $v_{i,j}$ of $v$ has a natural length and height: $1 \times
1$ for a scalar, $1 \times n$ for a \typ{VEC} of length $n$, $n \times 1$
for a \typ{COL}, $m \times n$ for an $m\times n$ \typ{MAT}
\item let $H_{i}$ be the maximum over $j$ of the lengths of the $v_{i,j}$,
let $L_{j}$ be the maximum over $i$ of the heights of the $v_{i,j}$.
The dimensions of the $(i,j)$-th block in the concatenated matrix are
$H_{i} \times L_{j}$.
\item a scalar $s = v_{i,j}$ is considered as $s$ times an identity matrix
of the block dimension $\min (H_{i},L_{j})$
\item blocks are extended by 0 columns on the right and 0 rows at the
bottom, as needed.
\bprog
? matconcat([1, [2,3]~, [4,5,6]~]) \\ horizontal
%4 =
[1 2 4]
[0 3 5]
[0 0 6]
? matconcat([1, [2,3], [4,5,6]]~) \\ vertical
%5 =
[1 0 0]
[2 3 0]
[4 5 6]
? matconcat([B, C; A, D]) \\ block matrix
%6 =
[5 0 7 8]
[6 0 0 0]
[1 2 9 0]
[3 4 0 9]
? U=[1,2;3,4]; V=[1,2,3;4,5,6;7,8,9];
? matconcat(matdiagonal([U, V])) \\ block diagonal
%7 =
[1 2 0 0 0]
[3 4 0 0 0]
[0 0 1 2 3]
[0 0 4 5 6]
[0 0 7 8 9]
@eprog
The library syntax is \fun{GEN}{matconcat}{GEN v}.
\subsec{matdet$(x,\{\fl=0\})$}\kbdsidx{matdet}\label{se:matdet}
Determinant of the square matrix $x$.
If $\fl=0$, uses an appropriate algorithm depending on the coefficients:
\item integer entries: modular method due to Dixon, Pernet and Stein.
\item real or $p$-adic entries: classical Gaussian elimination using maximal
pivot.
\item intmod entries: classical Gaussian elimination using first nonzero
pivot.
\item other cases: Gauss-Bareiss.
If $\fl=1$, uses classical Gaussian elimination with appropriate pivoting
strategy (maximal pivot for real or $p$-adic coefficients). This is usually
worse than the default.
The library syntax is \fun{GEN}{det0}{GEN x, long flag}.
Also available are \fun{GEN}{det}{GEN x} ($\fl=0$),
\fun{GEN}{det2}{GEN x} ($\fl=1$) and \fun{GEN}{ZM_det}{GEN x} for integer
entries.
\subsec{matdetint$(B)$}\kbdsidx{matdetint}\label{se:matdetint}
Let $B$ be an $m\times n$ matrix with integer coefficients. The
\emph{determinant} $D$ of the lattice generated by the columns of $B$ is
the square root of $\det(B^{T} B)$ if $B$ has maximal rank $m$, and $0$
otherwise.
This function uses the Gauss-Bareiss algorithm to compute a positive
\emph{multiple} of $D$. When $B$ is square, the function actually returns
$D = |\det B|$.
This function is useful in conjunction with \kbd{mathnfmod}, which needs to
know such a multiple. If the rank is maximal but the matrix is nonsquare,
you can obtain $D$ exactly using
\bprog
matdet( mathnfmod(B, matdetint(B)) )
@eprog\noindent
Note that as soon as one of the dimensions gets large ($m$ or $n$ is larger
than 20, say), it will often be much faster to use \kbd{mathnf(B, 1)} or
\kbd{mathnf(B, 4)} directly.
The library syntax is \fun{GEN}{detint}{GEN B}.
\subsec{matdetmod$(x,d)$}\kbdsidx{matdetmod}\label{se:matdetmod}
Given a matrix $x$ with \typ{INT} entries and $d$ an arbitrary positive
integer, return the determinant of $x$ modulo $d$.
\bprog
? A = [4,2,3; 4,5,6; 7,8,9]
? matdetmod(A,27)
%2 = 9
@eprog Note that using the generic function \kbd{matdet} on a matrix with
\typ{INTMOD} entries uses Gaussian reduction and will fail in general when
the modulus is not prime.
\bprog
? matdet(A * Mod(1,27))
*** at top-level: matdet(A*Mod(1,27))
*** ^------------------
*** matdet: impossible inverse in Fl_inv: Mod(3, 27).
@eprog
The library syntax is \fun{GEN}{matdetmod}{GEN x, GEN d}.
\subsec{matdiagonal$(x)$}\kbdsidx{matdiagonal}\label{se:matdiagonal}
$x$ being a vector, creates the diagonal matrix
whose diagonal entries are those of $x$.
\bprog
? matdiagonal([1,2,3]);
%1 =
[1 0 0]
[0 2 0]
[0 0 3]
@eprog\noindent Block diagonal matrices are easily created using
\tet{matconcat}:
\bprog
? U=[1,2;3,4]; V=[1,2,3;4,5,6;7,8,9];
? matconcat(matdiagonal([U, V]))
%1 =
[1 2 0 0 0]
[3 4 0 0 0]
[0 0 1 2 3]
[0 0 4 5 6]
[0 0 7 8 9]
@eprog
The library syntax is \fun{GEN}{diagonal}{GEN x}.
\subsec{mateigen$(x,\{\fl=0\})$}\kbdsidx{mateigen}\label{se:mateigen}
Returns the (complex) eigenvectors of $x$ as columns of a matrix.
If $\fl=1$, return $[L,H]$, where $L$ contains the
eigenvalues and $H$ the corresponding eigenvectors; multiple eigenvalues are
repeated according to the eigenspace dimension (which may be less
than the eigenvalue multiplicity in the characteristic polynomial).
This function first computes the characteristic polynomial of $x$ and
approximates its complex roots $(\lambda_{i})$, then tries to compute the
eigenspaces as kernels of the $x - \lambda_{i}$. This algorithm is
ill-conditioned and is likely to miss kernel vectors if some roots of the
characteristic polynomial are close, in particular if it has multiple roots.
\bprog
? A = [13,2; 10,14]; mateigen(A)
%1 =
[-1/2 2/5]
[ 1 1]
? [L,H] = mateigen(A, 1);
? L
%3 = [9, 18]
? H
%4 =
[-1/2 2/5]
[ 1 1]
? A * H == H * matdiagonal(L)
%5 = 1
@eprog\noindent
For symmetric matrices, use \tet{qfjacobi} instead; for Hermitian matrices,
compute
\bprog
A = real(x);
B = imag(x);
y = matconcat([A, -B; B, A]);
@eprog\noindent and apply \kbd{qfjacobi} to $y$.
The library syntax is \fun{GEN}{mateigen}{GEN x, long flag, long prec}.
Also available is \fun{GEN}{eigen}{GEN x, long prec} ($\fl = 0$)
\subsec{matfrobenius$(M,\{\fl\},\{v=\kbd{'}x\})$}\kbdsidx{matfrobenius}\label{se:matfrobenius}
Returns the Frobenius form of
the square matrix \kbd{M}. If $\fl=1$, returns only the elementary divisors as
a vector of polynomials in the variable \kbd{v}. If $\fl=2$, returns a
two-components vector [F,B] where \kbd{F} is the Frobenius form and \kbd{B} is
the basis change so that $M=B^{-1}FB$.
The library syntax is \fun{GEN}{matfrobenius}{GEN M, long flag, long v = -1} where \kbd{v} is a variable number.
\subsec{mathess$(x)$}\kbdsidx{mathess}\label{se:mathess}
Returns a matrix similar to the square matrix $x$, which is in upper Hessenberg
form (zero entries below the first subdiagonal).
The library syntax is \fun{GEN}{hess}{GEN x}.
\subsec{mathilbert$(n)$}\kbdsidx{mathilbert}\label{se:mathilbert}
Creates the \idx{Hilbert matrix} of order $n \geq 0$, i.e.~the square
matrix $H$ whose coefficient $H[i,j]$ is $1 / (i+j-1)$. This matrix is
ill-conditionned but its inverse has integer entries.
The library syntax is \fun{GEN}{mathilbert}{long n}.
\subsec{mathnf$(M,\{\fl=0\})$}\kbdsidx{mathnf}\label{se:mathnf}
Let $R$ be a Euclidean ring, equal to $\Z$ or to $K[X]$ for some field
$K$. If $M$ is a (not necessarily square) matrix with entries in $R$, this
routine finds the \emph{upper triangular} \idx{Hermite normal form} of $M$.
If the rank of $M$ is equal to its number of rows, this is a square
matrix. In general, the columns of the result form a basis of the $R$-module
spanned by the columns of $M$.
The values of $\fl$ are:
\item 0 (default): only return the Hermite normal form $H$
\item 1 (complete output): return $[H,U]$, where $H$ is the Hermite
normal form of $M$, and $U$ is a transformation matrix such that $MU=[0|H]$.
The matrix $U$ belongs to $\text{GL}(R)$. When $M$ has a large kernel, the
entries of $U$ are in general huge.
\noindent For these two values, we use a naive algorithm, which behaves well
in small dimension only. Larger values correspond to different algorithms,
are restricted to \emph{integer} matrices, and all output the unimodular
matrix $U$. From now on all matrices have integral entries.
\item $\fl=4$, returns $[H,U]$ as in ``complete output'' above, using a
variant of \idx{LLL} reduction along the way. The matrix $U$ is provably
small in the $L_{2}$ sense, and often close to optimal; but the
reduction is in general slow, although provably polynomial-time.
If $\fl=5$, uses Batut's algorithm and output $[H,U,P]$, such that $H$ and
$U$ are as before and $P$ is a permutation of the rows such that $P$ applied
to $MU$ gives $H$. This is in general faster than $\fl=4$ but the matrix $U$
is usually worse; it is heuristically smaller than with the default algorithm.
When the matrix is dense and the dimension is large (bigger than 100, say),
$\fl = 4$ will be fastest. When $M$ has maximal rank, then
\bprog
H = mathnfmod(M, matdetint(M))
@eprog\noindent will be even faster. You can then recover $U$ as $M^{-1}H$.
\bprog
? M = matrix(3,4,i,j,random([-5,5]))
%1 =
[ 0 2 3 0]
[-5 3 -5 -5]
[ 4 3 -5 4]
? [H,U] = mathnf(M, 1);
? U
%3 =
[-1 0 -1 0]
[ 0 5 3 2]
[ 0 3 1 1]
[ 1 0 0 0]
? H
%5 =
[19 9 7]
[ 0 9 1]
[ 0 0 1]
? M*U
%6 =
[0 19 9 7]
[0 0 9 1]
[0 0 0 1]
@eprog
For convenience, $M$ is allowed to be a \typ{VEC}, which is then
automatically converted to a \typ{MAT}, as per the \tet{Mat} function.
For instance to solve the generalized extended gcd problem, one may use
\bprog
? v = [116085838, 181081878, 314252913,10346840];
? [H,U] = mathnf(v, 1);
? U
%2 =
[ 103 -603 15 -88]
[-146 13 -1208 352]
[ 58 220 678 -167]
[-362 -144 381 -101]
? v*U
%3 = [0, 0, 0, 1]
@eprog\noindent This also allows to input a matrix as a \typ{VEC} of
\typ{COL}s of the same length (which \kbd{Mat} would concatenate to
the \typ{MAT} having those columns):
\bprog
? v = [[1,0,4]~, [3,3,4]~, [0,-4,-5]~]; mathnf(v)
%1 =
[47 32 12]
[ 0 1 0]
[ 0 0 1]
@eprog
The library syntax is \fun{GEN}{mathnf0}{GEN M, long flag}.
Also available are \fun{GEN}{hnf}{GEN M} ($\fl=0$) and
\fun{GEN}{hnfall}{GEN M} ($\fl=1$). To reduce \emph{huge} relation matrices
(sparse with small entries, say dimension $400$ or more), you can use the
pair \kbd{hnfspec} / \kbd{hnfadd}. Since this is quite technical and the
calling interface may change, they are not documented yet. Look at the code
in \kbd{basemath/hnf\_snf.c}.
\subsec{mathnfmod$(x,d)$}\kbdsidx{mathnfmod}\label{se:mathnfmod}
If $x$ is a (not necessarily square) matrix of
maximal rank with integer entries, and $d$ is a multiple of the (nonzero)
determinant of the lattice spanned by the columns of $x$, finds the
\emph{upper triangular} \idx{Hermite normal form} of $x$.
If the rank of $x$ is equal to its number of rows, the result is a square
matrix. In general, the columns of the result form a basis of the lattice
spanned by the columns of $x$. Even when $d$ is known, this is in general
slower than \kbd{mathnf} but uses much less memory.
The library syntax is \fun{GEN}{hnfmod}{GEN x, GEN d}.
\subsec{mathnfmodid$(x,d)$}\kbdsidx{mathnfmodid}\label{se:mathnfmodid}
Outputs the (upper triangular)
\idx{Hermite normal form} of $x$ concatenated with the diagonal
matrix with diagonal $d$. Assumes that $x$ has integer entries.
Variant: if $d$ is an integer instead of a vector, concatenate $d$ times the
identity matrix.
\bprog
? m=[0,7;-1,0;-1,-1]
%1 =
[ 0 7]
[-1 0]
[-1 -1]
? mathnfmodid(m, [6,2,2])
%2 =
[2 1 1]
[0 1 0]
[0 0 1]
? mathnfmodid(m, 10)
%3 =
[10 7 3]
[ 0 1 0]
[ 0 0 1]
@eprog
The library syntax is \fun{GEN}{hnfmodid}{GEN x, GEN d}.
\subsec{mathouseholder$(Q,v)$}\kbdsidx{mathouseholder}\label{se:mathouseholder}
\sidx{Householder transform}applies a sequence $Q$ of Householder
transforms, as returned by \kbd{matqr}$(M,1)$ to the vector or matrix $v$.
\bprog
? m = [2,1; 3,2]; \\ some random matrix
? [Q,R] = matqr(m);
? Q
%3 =
[-0.554... -0.832...]
[-0.832... 0.554...]
? R
%4 =
[-3.605... -2.218...]
[0 0.277...]
? v = [1, 2]~; \\ some random vector
? Q * v
%6 = [-2.218..., 0.277...]~
? [q,r] = matqr(m, 1);
? exponent(r - R) \\ r is the same as R
%8 = -128
? q \\ but q has a different structure
%9 = [[0.0494..., [5.605..., 3]]]]
? mathouseholder(q, v) \\ applied to v
%10 = [-2.218..., 0.277...]~
@eprog\noindent The point of the Householder structure is that it efficiently
represents the linear operator $v \mapsto Q \* v$ in a more stable way
than expanding the matrix $Q$:
\bprog
? m = mathilbert(20); v = vectorv(20,i,i^2+1);
? [Q,R] = matqr(m);
? [q,r] = matqr(m, 1);
? \p100
? [q2,r2] = matqr(m, 1); \\ recompute at higher accuracy
? exponent(R - r)
%5 = -127
? exponent(R - r2)
%6 = -127
? exponent(mathouseholder(q,v) - mathouseholder(q2,v))
%7 = -119
? exponent(Q*v - mathouseholder(q2,v))
%8 = 9
@eprog\noindent We see that $R$ is OK with or without a flag to \kbd{matqr}
but that multiplying by $Q$ is considerably less precise than applying the
sequence of Householder transforms encoded by $q$.
The library syntax is \fun{GEN}{mathouseholder}{GEN Q, GEN v}.
\subsec{matid$(n)$}\kbdsidx{matid}\label{se:matid}
Creates the $n\times n$ identity matrix.
The library syntax is \fun{GEN}{matid}{long n}.
\subsec{matimage$(x,\{\fl=0\})$}\kbdsidx{matimage}\label{se:matimage}
Gives a basis for the image of the
matrix $x$ as columns of a matrix. A priori the matrix can have entries of
any type. If $\fl=0$, use standard Gauss pivot. If $\fl=1$, use
\kbd{matsupplement} (much slower: keep the default flag!).
The library syntax is \fun{GEN}{matimage0}{GEN x, long flag}.
Also available is \fun{GEN}{image}{GEN x} ($\fl=0$).
\subsec{matimagecompl$(x)$}\kbdsidx{matimagecompl}\label{se:matimagecompl}
Gives the vector of the column indices which
are not extracted by the function \kbd{matimage}, as a permutation
(\typ{VECSMALL}). Hence the number of
components of \kbd{matimagecompl(x)} plus the number of columns of
\kbd{matimage(x)} is equal to the number of columns of the matrix $x$.
The library syntax is \fun{GEN}{imagecompl}{GEN x}.
\subsec{matimagemod$(x,d,\&U)$}\kbdsidx{matimagemod}\label{se:matimagemod}
Gives a Howell basis (unique representation for submodules
of~$(\Z/d\Z)^{n}$)
for the image of the matrix $x$ modulo $d$ as columns of a matrix $H$. The
matrix $x$ must have \typ{INT} entries, and $d$ can be an arbitrary positive
integer. If $U$ is present, set it to a matrix such that~$AU = H$.
\bprog
? A = [2,1;0,2];
? matimagemod(A,6,&U)
%2 =
[1 0]
[0 2]
? U
%3 =
[5 1]
[3 4]
? (A*U)%6
%4 =
[1 0]
[0 2]
@eprog
\misctitle{Caveat} In general the number of columns of the Howell form is not
the minimal number of generators of the submodule. Example:
\bprog
? matimagemod([1;2],4)
%5 =
[2 1]
[0 2]
@eprog
\misctitle{Caveat 2} In general the matrix $U$ is not invertible, even if~$A$
and~$H$ have the same size. Example:
\bprog
? matimagemod([4,1;0,4],8,&U)
%6 =
[2 1]
[0 4]
? U
%7 =
[0 0]
[2 1]
@eprog
The library syntax is \fun{GEN}{matimagemod}{GEN x, GEN d, GEN *U = NULL}.
\subsec{matindexrank$(M)$}\kbdsidx{matindexrank}\label{se:matindexrank}
$M$ being a matrix of rank $r$, returns a vector with two
\typ{VECSMALL} components $y$ and $z$ of length $r$ giving a list of rows
and columns respectively (starting from 1) such that the extracted matrix
obtained from these two vectors using $\tet{vecextract}(M,y,z)$ is
invertible. The vectors $y$ and $z$ are sorted in increasing order.
The library syntax is \fun{GEN}{indexrank}{GEN M}.
\subsec{matintersect$(x,y)$}\kbdsidx{matintersect}\label{se:matintersect}
$x$ and $y$ being two matrices with the same number of rows, finds a
basis of the vector space equal to the intersection of the spaces spanned by
the columns of $x$ and $y$ respectively. For efficiency, the columns of $x$
(resp.~$y$) should be independent.
The faster function \tet{idealintersect} can be used to intersect
fractional ideals (projective $\Z_{K}$ modules of rank $1$); the slower but
more general function \tet{nfhnf} can be used to intersect general
$\Z_{K}$-modules.
The library syntax is \fun{GEN}{intersect}{GEN x, GEN y}.
\subsec{matinverseimage$(x,y)$}\kbdsidx{matinverseimage}\label{se:matinverseimage}
Given a matrix $x$ and
a column vector or matrix $y$, returns a preimage $z$ of $y$ by $x$ if one
exists (i.e such that $x z = y$), an empty vector or matrix otherwise. The
complete inverse image is $z + \text{Ker} x$, where a basis of the kernel of
$x$ may be obtained by \kbd{matker}.
\bprog
? M = [1,2;2,4];
? matinverseimage(M, [1,2]~)
%2 = [1, 0]~
? matinverseimage(M, [3,4]~)
%3 = []~ \\@com no solution
? matinverseimage(M, [1,3,6;2,6,12])
%4 =
[1 3 6]
[0 0 0]
? matinverseimage(M, [1,2;3,4])
%5 = [;] \\@com no solution
? K = matker(M)
%6 =
[-2]
[1]
@eprog
The library syntax is \fun{GEN}{inverseimage}{GEN x, GEN y}.
\subsec{matinvmod$(x,d)$}\kbdsidx{matinvmod}\label{se:matinvmod}
Computes a left inverse of the matrix~$x$ modulo~$d$. The matrix $x$ must
have \typ{INT} entries, and $d$ can be an arbitrary positive integer.
\bprog
? A = [3,1,2;1,2,1;3,1,1];
? U = matinvmod(A,6)
%2 =
[1 1 3]
[2 3 5]
[1 0 5]
? (U*A)%6
%3 =
[1 0 0]
[0 1 0]
[0 0 1]
? matinvmod(A,5)
*** at top-level: matinvmod(A,5)
*** ^--------------
*** matinvmod: impossible inverse in gen_inv: 0.
@eprog
The library syntax is \fun{GEN}{matinvmod}{GEN x, GEN d}.
\subsec{matisdiagonal$(x)$}\kbdsidx{matisdiagonal}\label{se:matisdiagonal}
Returns true (1) if $x$ is a diagonal matrix, false (0) if not.
The library syntax is \fun{int}{isdiagonal}{GEN x}.
\subsec{matker$(x,\{\fl=0\})$}\kbdsidx{matker}\label{se:matker}
Gives a basis for the kernel of the matrix $x$ as columns of a matrix.
The matrix can have entries of any type, provided they are compatible with
the generic arithmetic operations ($+$, $\times$ and $/$).
If $x$ is known to have integral entries, set $\fl=1$.
The library syntax is \fun{GEN}{matker0}{GEN x, long flag}.
Also available are \fun{GEN}{ker}{GEN x} ($\fl=0$),
\fun{GEN}{ZM_ker}{GEN x} ($\fl=1$).
\subsec{matkerint$(x,\{\fl=0\})$}\kbdsidx{matkerint}\label{se:matkerint}
Gives an \idx{LLL}-reduced $\Z$-basis
for the lattice equal to the kernel of the matrix $x$ with rational entries.
\fl{} is deprecated, kept for backward compatibility. The function
\kbd{matsolvemod} allows to solve more general linear systems over $\Z$.
The library syntax is \fun{GEN}{matkerint0}{GEN x, long flag}.
Use directly \fun{GEN}{kerint}{GEN x} if $x$ is known to have
integer entries, and \tet{Q_primpart} first otherwise.
\subsec{matkermod$(x,d,\&\var{im})$}\kbdsidx{matkermod}\label{se:matkermod}
Gives a Howell basis (unique representation for submodules
of~$(\Z/d\Z)^{n}$,
cf. \kbd{matimagemod}) for the kernel of the matrix $x$ modulo $d$ as columns
of a matrix. The matrix $x$ must have \typ{INT} entries, and $d$ can be an
arbitrary positive integer. If $im$ is present, set it to a basis of the image
of~$x$ (which is computed on the way).
\bprog
? A = [1,2,3;5,1,4]
%1 =
[1 2 3]
[5 1 4]
? K = matkermod(A,6)
%2 =
[2 1]
[2 1]
[0 3]
? (A*K)%6
%3 =
[0 0]
[0 0]
@eprog
The library syntax is \fun{GEN}{matkermod}{GEN x, GEN d, GEN *im = NULL}.
\subsec{matmuldiagonal$(x,d)$}\kbdsidx{matmuldiagonal}\label{se:matmuldiagonal}
Product of the matrix $x$ by the diagonal
matrix whose diagonal entries are those of the vector $d$. Equivalent to,
but much faster than $x*\kbd{matdiagonal}(d)$.
The library syntax is \fun{GEN}{matmuldiagonal}{GEN x, GEN d}.
\subsec{matmultodiagonal$(x,y)$}\kbdsidx{matmultodiagonal}\label{se:matmultodiagonal}
Product of the matrices $x$ and $y$ assuming that the result is a
diagonal matrix. Much faster than $x*y$ in that case. The result is
undefined if $x*y$ is not diagonal.
The library syntax is \fun{GEN}{matmultodiagonal}{GEN x, GEN y}.
\subsec{matpascal$(n,\{q\})$}\kbdsidx{matpascal}\label{se:matpascal}
Creates as a matrix the lower triangular
\idx{Pascal triangle} of order $x+1$ (i.e.~with binomial coefficients
up to $x$). If $q$ is given, compute the $q$-Pascal triangle (i.e.~using
$q$-binomial coefficients).
The library syntax is \fun{GEN}{matqpascal}{long n, GEN q = NULL}.
Also available is \fun{GEN}{matpascal}{GEN x}.
\subsec{matpermanent$(x)$}\kbdsidx{matpermanent}\label{se:matpermanent}
Permanent of the square matrix $x$ using Ryser's formula in Gray code
order.
\bprog
? n = 20; m = matrix(n,n,i,j, i!=j);
? matpermanent(m)
%2 = 895014631192902121
? n! * sum(i=0,n, (-1)^i/i!)
%3 = 895014631192902121
@eprog\noindent This function runs in time $O(2^{n} n)$ for a matrix of size
$n$ and is not implemented for $n$ large.
The library syntax is \fun{GEN}{matpermanent}{GEN x}.
\subsec{matqr$(M,\{\fl=0\})$}\kbdsidx{matqr}\label{se:matqr}
Returns $[Q,R]$, the \idx{QR-decomposition} of the square invertible
matrix $M$ with real entries: $Q$ is orthogonal and $R$ upper triangular. If
$\fl=1$, the orthogonal matrix is returned as a sequence of Householder
transforms: applying such a sequence is stabler and faster than
multiplication by the corresponding $Q$ matrix.\sidx{Householder transform}
More precisely, if
\bprog
[Q,R] = matqr(M);
[q,r] = matqr(M, 1);
@eprog\noindent then $r = R$ and \kbd{mathouseholder}$(q, M)$ is
(close to) $R$; furthermore
\bprog
mathouseholder(q, matid(#M)) == Q~
@eprog\noindent the inverse of $Q$. This function raises an error if the
precision is too low or $x$ is singular.
The library syntax is \fun{GEN}{matqr}{GEN M, long flag, long prec}.
\subsec{matrank$(x)$}\kbdsidx{matrank}\label{se:matrank}
Rank of the matrix $x$.
The library syntax is \fun{long}{rank}{GEN x}.
\subsec{matreduce$(m)$}\kbdsidx{matreduce}\label{se:matreduce}
Let $m$ be a factorization matrix, i.e., a 2-column matrix whose
columns contains arbitrary ``generators'' and integer ``exponents''
respectively. Returns the canonical form of $m$: the
first column is sorted with unique elements and the second one contains the
merged ``exponents'' (exponents of identical entries in the first column of
$m$ are added, rows attached to $0$ exponents are deleted). The generators are
sorted with respect to the universal \kbd{cmp} routine; in particular, this
function is the identity on true integer factorization matrices, but not on
other factorizations (in products of polynomials or maximal ideals, say). It
is idempotent.
For convenience, this function also allows a vector $m$, which is handled as a
factorization with all exponents equal to $1$, as in \kbd{factorback}.
\bprog
? A=[x,2;y,4]; B=[x,-2; y,3; 3, 4]; C=matconcat([A,B]~)
%1 =
[x 2]
[y 4]
[x -2]
[y 3]
[3 4]
? matreduce(C)
%2 =
[3 4]
[y 7]
? matreduce([x,x,y,x,z,x,y]) \\ vector argument
%3 =
[x 4]
[y 2]
[z 1]
@eprog\noindent The following one-line functions will list elements
occurring exactly once (resp. more than once) in the vector or list $v$:
\bprog
unique(v) = [ x[1] | x <- matreduce(v)~, x[2] == 1 ];
duplicates(v) = [ x[1] | x <- matreduce(v)~, x[2] > 1 ];
? v = [0,1,2,3,1,2];
? unique(v)
%2 = [0, 3]
? duplicates(v)
%3 = [1, 2]
@eprog
The library syntax is \fun{GEN}{matreduce}{GEN m}.
\subsec{matrix$(m,\{n=m\},\{X\},\{Y\},\{\var{expr}=0\})$}\kbdsidx{matrix}\label{se:matrix}
Creation of the
$m\times n$ matrix whose coefficients are given by the expression
\var{expr}. There are two formal parameters in \var{expr}, the first one
($X$) corresponding to the rows, the second ($Y$) to the columns, and $X$
goes from 1 to $m$, $Y$ goes from 1 to $n$. If one of the last 3 parameters
is omitted, fill the matrix with zeroes. If $n$ is omitted, return a
square $m \times m$ matrix.
%\syn{NO}
\subsec{matrixqz$(A,\{p=0\})$}\kbdsidx{matrixqz}\label{se:matrixqz}
$A$ being an $m\times n$ matrix in $M_{m,n}(\Q)$, let
$\text{Im}_{\Q} A$ (resp.~$\text{Im}_{\Z} A$) the $\Q$-vector space
(resp.~the $\Z$-module) spanned by the columns of $A$. This function has
varying behavior depending on the sign of $p$:
If $p \geq 0$, $A$ is assumed to have maximal rank $n\leq m$. The function
returns a matrix $B\in M_{m,n}(\Z)$, with $\text{Im}_{\Q} B =
\text{Im}_{\Q} A$,
such that the GCD of all its $n\times n$ minors is coprime to
$p$; in particular, if $p = 0$ (default), this GCD is $1$.
If $p=-1$, returns a basis of the lattice $\Z^{m} \cap \text{Im}_{\Z} A$.
If $p=-2$, returns a basis of the lattice $\Z^{m} \cap \text{Im}_{\Q} A$.
\misctitle{Caveat} ($p=-1$ or $-2$) For efficiency reason, we do not compute
the HNF of the resulting basis.
\bprog
? minors(x) = vector(#x[,1], i, matdet(x[^i,]));
? A = [3,1/7; 5,3/7; 7,5/7]; minors(A)
%1 = [4/7, 8/7, 4/7] \\ determinants of all 2x2 minors
? B = matrixqz(A)
%2 =
[3 1]
[5 2]
[7 3]
? minors(%)
%3 = [1, 2, 1] \\ B integral with coprime minors
? matrixqz(A,-1)
%4 =
[3 1]
[5 3]
[7 5]
? matrixqz(A,-2)
%5 =
[3 1]
[5 2]
[7 3]
@eprog
The library syntax is \fun{GEN}{matrixqz0}{GEN A, GEN p = NULL}.
\subsec{matsize$(x)$}\kbdsidx{matsize}\label{se:matsize}
$x$ being a vector or matrix, returns a row vector
with two components, the first being the number of rows (1 for a row vector),
the second the number of columns (1 for a column vector).
The library syntax is \fun{GEN}{matsize}{GEN x}.
\subsec{matsnf$(X,\{\fl=0\})$}\kbdsidx{matsnf}\label{se:matsnf}
If $X$ is a (singular or nonsingular) matrix outputs the vector of
\idx{elementary divisors} of $X$, i.e.~the diagonal of the
\idx{Smith normal form} of $X$, normalized so that $d_{n} \mid d_{n-1} \mid
\ldots \mid d_{1}$. $X$ must have integer or polynomial entries; in the latter
case, $X$ must be a square matrix.
The binary digits of \fl\ mean:
1 (complete output): if set, outputs $[U,V,D]$, where $U$ and $V$ are two
unimodular matrices such that $UXV$ is the diagonal matrix $D$. Otherwise
output only the diagonal of $D$. If $X$ is not a square matrix, then $D$
will be a square diagonal matrix padded with zeros on the left or the top.
4 (cleanup): if set, cleans up the output. This means that elementary
divisors equal to $1$ will be deleted, i.e.~outputs a shortened vector $D'$
instead of $D$. If complete output was required, returns $[U',V',D']$ so
that $U'XV' = D'$ holds. If this flag is set, $X$ is allowed to be of the
form `vector of elementary divisors' or $[U,V,D]$ as would normally be
output with the cleanup flag unset.
If $v$ is an output from \kbd{matsnf} and $p$ is a power of an irreducible
element, then \kbd{snfrank(v, p)} returns the $p$-rank of the attached
module.
\bprog
? X = [27,0; 0,3; 1,1; 0,0]; matsnf(X)
%1 = [0, 0, 3, 1]
? [U,V,D] = v = matsnf(X, 1); U*X*V == D
%2
? U
%3 =
[0 0 0 1]
[1 9 -27 0]
[0 1 0 0]
[0 0 1 0]
? V
%4 =
[-1 1]
[ 1 0]
? snfrank(v, 3)
%5 = 3
@eprog\noindent Continuing the same example after cleanup:
\bprog
? [U,V,D] = v = matsnf(X, 1+4); U*X*V == D
%6 = 1
? D
%7 =
[0]
[0]
[3]
? snfrank(v, 3)
%8 = 3
? snfrank(v, 2)
%9 = 2
@eprog
The library syntax is \fun{GEN}{matsnf0}{GEN X, long flag}.
\subsec{matsolve$(M,B)$}\kbdsidx{matsolve}\label{se:matsolve}
Let $M$ be a left-invertible matrix and $B$ a column vector
such that there exists a solution $X$ to the system of linear equations
$MX = B$; return the (unique) solution $X$. This has the same effect as, but
is faster, than $M^{-1}*B$. Uses Dixon $p$-adic lifting method if $M$ and
$B$ are integral and Gaussian elimination otherwise. When there is no
solution, the function returns an $X$ such that $MX - B$ is nonzero
although it has at least $\#M$ zero entries:
\bprog
? M = [1,2;3,4;5,6];
? B = [4,6,8]~; X = matsolve(M, B)
%2 = [-2, 3]~
? M*X == B
%3 = 1
? B = [1,2,4]~; X = matsolve(M, [1,2,4]~)
%4 = [0, 1/2]~
? M*X - B
%5 = [0, 0, -1]~
@eprog\noindent Raises an exception if $M$ is not left-invertible, even if
there is a solution:
\bprog
? M = [1,1;1,1]; matsolve(M, [1,1]~)
*** at top-level: matsolve(M,[1,1]~)
*** ^------------------
*** matsolve: impossible inverse in gauss: [1, 1; 1, 1].
@eprog\noindent The function also works when $B$ is a matrix and we return
the unique matrix solution $X$ provided it exists. Again, if there is no
solution, the function returns an $X$ such that $MX - B$ is nonzero
although it has at least $\#M$ zero rows.
The library syntax is \fun{GEN}{gauss}{GEN M, GEN B}.
\subsec{matsolvemod$(M,D,B,\{\fl=0\})$}\kbdsidx{matsolvemod}\label{se:matsolvemod}
$M$ being any integral matrix,
$D$ a column vector of nonnegative integer moduli, and $B$ an integral
column vector, gives an integer solution to the system of congruences
$\sum_{i} m_{i,j}x_{j}\equiv b_{i}\pmod{d_{i}}$ if one exists, otherwise
returns the integer zero. Note that we explicitly allow $d_{i} = 0$
corresponding to an equality in $\Z$. Shorthand notation: $B$ (resp.~$D$)
can be given as a single integer, in which case all the $b_{i}$
(resp.~$d_{i}$) above are taken to be equal to $B$
(resp.~$D$). Again, $D = 0$ solves the linear system of equations over $\Z$.
\bprog
? M = [1,2;3,4];
? matsolvemod(M, [3,4]~, [1,2]~)
%2 = [10, 0]~
? matsolvemod(M, 3, 1) \\ M X = [1,1]~ over F_3
%3 = [2, 1]~
? matsolvemod(M, [3,0]~, [1,2]~) \\ x + 2y = 1 (mod 3), 3x + 4y = 2 (in Z)
%4 = [6, -4]~
? matsolvemod(M, 0, [1,2]~) \\ no solution in Z for x + 2y = 1, 3x + 4y = 2
@eprog
If $\fl=1$, all solutions are returned in the form of a two-component row
vector $[x,u]$, where $x$ is an integer solution to the system of
congruences and $u$ is a matrix whose columns give a basis of the homogeneous
system (so that all solutions can be obtained by adding $x$ to any linear
combination of columns of $u$). If no solution exists, returns zero.
The library syntax is \fun{GEN}{matsolvemod}{GEN M, GEN D, GEN B, long flag}.
Also available are \fun{GEN}{gaussmodulo}{GEN M, GEN D, GEN B}
($\fl=0$) and \fun{GEN}{gaussmodulo2}{GEN M, GEN D, GEN B} ($\fl=1$).
\subsec{matsupplement$(x)$}\kbdsidx{matsupplement}\label{se:matsupplement}
Assuming that the columns of the matrix $x$
are linearly independent (if they are not, an error message is issued), finds
a square invertible matrix whose first columns are the columns of $x$,
i.e.~supplement the columns of $x$ to a basis of the whole space.
\bprog
? matsupplement([1;2])
%1 =
[1 0]
[2 1]
@eprog
Raises an error if $x$ has 0 columns, since (due to a long standing design
bug), the dimension of the ambient space (the number of rows) is unknown in
this case:
\bprog
? matsupplement(matrix(2,0))
*** at top-level: matsupplement(matrix
*** ^--------------------
*** matsupplement: sorry, suppl [empty matrix] is not yet implemented.
@eprog
The library syntax is \fun{GEN}{suppl}{GEN x}.
\subsec{mattranspose$(x)$}\kbdsidx{mattranspose}\label{se:mattranspose}
Transpose of $x$ (also $x\til$).
This has an effect only on vectors and matrices.
The library syntax is \fun{GEN}{gtrans}{GEN x}.
\subsec{minpoly$(A,\{v=\kbd{'}x\})$}\kbdsidx{minpoly}\label{se:minpoly}
\idx{minimal polynomial}
of $A$ with respect to the variable $v$., i.e. the monic polynomial $P$
of minimal degree (in the variable $v$) such that $P(A) = 0$.
The library syntax is \fun{GEN}{minpoly}{GEN A, long v = -1} where \kbd{v} is a variable number.
\subsec{norml2$(x)$}\kbdsidx{norml2}\label{se:norml2}
Square of the $L^{2}$-norm of $x$. More precisely,
if $x$ is a scalar, $\kbd{norml2}(x)$ is defined to be the square
of the complex modulus of $x$ (real \typ{QUAD}s are not supported).
If $x$ is a polynomial, a (row or column) vector or a matrix, \kbd{norml2($x$)} is
defined recursively as $\sum_{i} \kbd{norml2}(x_{i})$, where $(x_{i})$
run through
the components of $x$. In particular, this yields the usual
$\sum_{i} |x_{i}|^{2}$ (resp.~$\sum_{i,j} |x_{i,j}|^{2}$) if $x$ is a
polynomial or vector (resp.~matrix) with complex components.
\bprog
? norml2( [ 1, 2, 3 ] ) \\ vector
%1 = 14
? norml2( [ 1, 2; 3, 4] ) \\ matrix
%2 = 30
? norml2( 2*I + x )
%3 = 5
? norml2( [ [1,2], [3,4], 5, 6 ] ) \\ recursively defined
%4 = 91
@eprog
The library syntax is \fun{GEN}{gnorml2}{GEN x}.
\subsec{normlp$(x,\{p=\var{oo}\})$}\kbdsidx{normlp}\label{se:normlp}
$L^{p}$-norm of $x$; sup norm if $p$ is omitted or \kbd{+oo}. More precisely,
if $x$ is a scalar, \kbd{normlp}$(x, p)$ is defined to be \kbd{abs}$(x)$.
If $x$ is a polynomial, a (row or column) vector or a matrix:
\item if $p$ is omitted or \kbd{+oo}, then \kbd{normlp($x$)} is defined
recursively as $\max_{i} \kbd{normlp}(x_{i}))$, where $x_{i}$ runs through the
components of~$x$. In particular, this yields the usual sup norm if $x$ is a
polynomial or vector with complex components.
\item otherwise, \kbd{normlp($x$, $p$)} is defined recursively as
$(\sum_{i} \kbd{normlp}^{p}(x_{i},p))^{1/p}$. In particular, this yields the
usual $(\sum_{i} |x_{i}|^{p})^{1/p}$ if $x$ is a polynomial or vector with
complex components.
\bprog
? v = [1,-2,3]; normlp(v) \\ vector
%1 = 3
? normlp(v, +oo) \\ same, more explicit
%2 = 3
? M = [1,-2;-3,4]; normlp(M) \\ matrix
%3 = 4
? T = (1+I) + I*x^2; normlp(T)
%4 = 1.4142135623730950488016887242096980786
? normlp([[1,2], [3,4], 5, 6]) \\ recursively defined
%5 = 6
? normlp(v, 1)
%6 = 6
? normlp(M, 1)
%7 = 10
? normlp(T, 1)
%8 = 2.4142135623730950488016887242096980786
@eprog
The library syntax is \fun{GEN}{gnormlp}{GEN x, GEN p = NULL, long prec}.
\subsec{powers$(x,n,\{\var{x0}\})$}\kbdsidx{powers}\label{se:powers}
For nonnegative $n$, return the vector with $n+1$ components
$[1,x,\dots,x^{n}]$ if \kbd{x0} is omitted, and
$[x_{0}, x_{0}*x, ..., x_{0}*x^{n}]$ otherwise.
\bprog
? powers(Mod(3,17), 4)
%1 = [Mod(1, 17), Mod(3, 17), Mod(9, 17), Mod(10, 17), Mod(13, 17)]
? powers(Mat([1,2;3,4]), 3)
%2 = [[1, 0; 0, 1], [1, 2; 3, 4], [7, 10; 15, 22], [37, 54; 81, 118]]
? powers(3, 5, 2)
%3 = [2, 6, 18, 54, 162, 486]
@eprog\noindent When $n < 0$, the function returns the empty vector \kbd{[]}.
The library syntax is \fun{GEN}{gpowers0}{GEN x, long n, GEN x0 = NULL}.
Also available is
\fun{GEN}{gpowers}{GEN x, long n} when \kbd{x0} is \kbd{NULL}.
\subsec{qfauto$(G,\{\var{fl}\})$}\kbdsidx{qfauto}\label{se:qfauto}
$G$ being a square and symmetric matrix with integer entries representing a
positive definite quadratic form, outputs the automorphism group of the
associate lattice.
Since this requires computing the minimal vectors, the computations can
become very lengthy as the dimension grows. $G$ can also be given by an
\kbd{qfisominit} structure.
See \kbd{qfisominit} for the meaning of \var{fl}.
The output is a two-components vector $[o,g]$ where $o$ is the group order
and $g$ is the list of generators (as a vector). For each generator $H$,
the equality $G={^{t}}H\*G\*H$ holds.
The interface of this function is experimental and will likely change in the
future.
This function implements an algorithm of Plesken and Souvignier, following
Souvignier's implementation.
\bprog
? K = matkerint(Mat(concat([vector(23,i,2*i+1), 51, 145])));
? M = matdiagonal(vector(25,i,if(i==25,-1,1)));
? L24 = K~ * M * K; \\ the Leech lattice
? [o,g] = qfauto(L24); o
%4 = 8315553613086720000
? #g
%5 = 2
@eprog
The library syntax is \fun{GEN}{qfauto0}{GEN G, GEN fl = NULL}.
The function \fun{GEN}{qfauto}{GEN G, GEN fl} is also available
where $G$ is a vector of \kbd{zm} matrices.
\subsec{qfautoexport$(\var{qfa},\{\fl\})$}\kbdsidx{qfautoexport}\label{se:qfautoexport}
\var{qfa} being an automorphism group as output by
\tet{qfauto}, export the underlying matrix group as a string suitable
for (no flags or $\fl=0$) GAP or ($\fl=1$) Magma. The following example
computes the size of the matrix group using GAP:
\bprog
? G = qfauto([2,1;1,2])
%1 = [12, [[-1, 0; 0, -1], [0, -1; 1, 1], [1, 1; 0, -1]]]
? s = qfautoexport(G)
%2 = "Group([[-1, 0], [0, -1]], [[0, -1], [1, 1]], [[1, 1], [0, -1]])"
? extern("echo \"Order("s");\" | gap -q")
%3 = 12
@eprog
The library syntax is \fun{GEN}{qfautoexport}{GEN qfa, long flag}.
\subsec{qfbil$(x,y,\{q\})$}\kbdsidx{qfbil}\label{se:qfbil}
This function is obsolete, use \kbd{qfeval}.
The library syntax is \fun{GEN}{qfbil}{GEN x, GEN y, GEN q = NULL}.
\subsec{qfcholesky$(q)$}\kbdsidx{qfcholesky}\label{se:qfcholesky}
Given a square symmetric \typ{MAT} $M$, return $R$ such that
$^t{}R\*R = M$, or $[]$ if there is no solution.
The library syntax is \fun{GEN}{qfcholesky}{GEN q, long prec}.
\subsec{qfcvp$(x,t,\{B\},\{m\},\{\fl=0\})$}\kbdsidx{qfcvp}\label{se:qfcvp}
$x$ being a square and symmetric matrix of dimension $d$ representing
a positive definite quadratic form, and $t$ a vector of the same dimension $d$.
This function deals with the vectors whose squared distance to $t$ is
less than $B$, enumerated using the Fincke-Pohst algorithm, storing at most
$m$ vectors. There is no limit if $m$ is omitted: beware that this may be a
huge vector! The vectors are returned in no particular order.
The function searches for the closest vectors to $t$ if $B$ is omitted
or $\leq 0$.
The behavior is undefined if $x$ is not positive definite (a ``precision too
low'' error is most likely, although more precise error messages are
possible). The precise behavior depends on $\fl$.
\item If $\fl=0$ (default), return $[N, M, V]$, where $N$ is the number of
vectors enumerated (possibly larger than $m$), $M \leq B$ is the maximum
squared distance found, and $V$ is a matrix whose columns are found vectors.
\item If $\fl=1$, ignore $m$ and return $[M,v]$, where $v$ is a vector at
squared distance $M \leq B$. If no vector has distance $\leq B$, return $[]$.
In these two cases, $x$ must have integral \emph{small} entries: more
precisely, we definitely must have $d\cdot \|x\|_\infty^2 < 2^{53}$ but
even that may not be enough. The implementation uses low precision floating
point computations for maximal speed and gives incorrect results when $x$
has large entries. That condition is checked in the code and the routine
raises an error if large rounding errors occur.
\bprog
? M = [2,1;1,2]; t = [1/2, -1/2];
? qfcvp(M, t, 0)
%2 = [2, 0.5000000000000000000, [0, 1; 0, -1]]
? qfcvp(M, t, 1.5)
%3 = [4, 1.5000000000000000000, [1, 0, 1, 0; 0, 0, -1, -1]]
@eprog
The library syntax is \fun{GEN}{qfcvp0}{GEN x, GEN t, GEN B = NULL, GEN m = NULL, long flag}.
\subsec{qfeval$(\{q\},x,\{y\})$}\kbdsidx{qfeval}\label{se:qfeval}
Evaluate the quadratic form $q$ (given by a symmetric matrix)
at the vector $x$; if $y$ is present, evaluate the polar form at $(x,y)$;
if $q$ omitted, use the standard Euclidean scalar product, corresponding to
the identity matrix.
Roughly equivalent to \kbd{x\til * q * y}, but a little faster and
more convenient (does not distinguish between column and row vectors):
\bprog
? x = [1,2,3]~; y = [-1,3,1]~; q = [1,2,3;2,2,-1;3,-1,9];
? qfeval(q,x,y)
%2 = 23
? for(i=1,10^6, qfeval(q,x,y))
time = 661ms
? for(i=1,10^6, x~*q*y)
time = 697ms
@eprog\noindent The speedup is noticeable for the quadratic form,
compared to \kbd{x\til * q * x}, since we save almost half the
operations:
\bprog
? for(i=1,10^6, qfeval(q,x))
time = 487ms
@eprog\noindent The special case $q = \text{Id}$ is handled faster if we
omit $q$ altogether:
\bprog
? qfeval(,x,y)
%6 = 8
? q = matid(#x);
? for(i=1,10^6, qfeval(q,x,y))
time = 529 ms.
? for(i=1,10^6, qfeval(,x,y))
time = 228 ms.
? for(i=1,10^6, x~*y)
time = 274 ms.
@eprog
We also allow \typ{MAT}s of compatible dimensions for $x$,
and return \kbd{x\til * q * x} in this case as well:
\bprog
? M = [1,2,3;4,5,6;7,8,9]; qfeval(,M) \\ Gram matrix
%5 =
[66 78 90]
[78 93 108]
[90 108 126]
? q = [1,2,3;2,2,-1;3,-1,9];
? for(i=1,10^6, qfeval(q,M))
time = 2,008 ms.
? for(i=1,10^6, M~*q*M)
time = 2,368 ms.
? for(i=1,10^6, qfeval(,M))
time = 1,053 ms.
? for(i=1,10^6, M~*M)
time = 1,171 ms.
@eprog
If $q$ is a \typ{QFB}, it is implicitly converted to the
attached symmetric \typ{MAT}. This is done more
efficiently than by direct conversion, since we avoid introducing a
denominator $2$ and rational arithmetic:
\bprog
? q = Qfb(2,3,4); x = [2,3];
? qfeval(q, x)
%2 = 62
? Q = Mat(q)
%3 =
[ 2 3/2]
[3/2 4]
? qfeval(Q, x)
%4 = 62
? for (i=1, 10^6, qfeval(q,x))
time = 758 ms.
? for (i=1, 10^6, qfeval(Q,x))
time = 1,110 ms.
@eprog
Finally, when $x$ is a \typ{MAT} with \emph{integral} coefficients, we allow
a \typ{QFB} for $q$ and return the binary
quadratic form $q \circ M$. Again, the conversion to \typ{MAT} is less
efficient in this case:
\bprog
? q = Qfb(2,3,4); Q = Mat(q); x = [1,2;3,4];
? qfeval(q, x)
%2 = Qfb(47, 134, 96)
? qfeval(Q,x)
%3 =
[47 67]
[67 96]
? for (i=1, 10^6, qfeval(q,x))
time = 701 ms.
? for (i=1, 10^6, qfeval(Q,x))
time = 1,639 ms.
@eprog
The library syntax is \fun{GEN}{qfeval0}{GEN q = NULL, GEN x, GEN y = NULL}.
\subsec{qfgaussred$(q,\{\fl=0\})$}\kbdsidx{qfgaussred}\label{se:qfgaussred}
\idx{decomposition into squares} of the
quadratic form represented by the symmetric matrix $q$. If $\fl=0$ (default),
the result is a matrix $M$ whose diagonal entries are the coefficients of the
squares, and the off-diagonal entries on each line represent the bilinear
forms. More precisely, if $(a_{ij})$ denotes the output, one has
$$ q(x) = \sum_{i} a_{i,i} (x_{i} + \sum_{j \neq i} a_{i,j} x_{j})^{2} $$
\bprog
? qfgaussred([0,1;1,0])
%1 =
[1/2 1]
[-1 -1/2]
@eprog\noindent This means that $2xy = (1/2)(x+y)^{2} - (1/2)(x-y)^{2}$.
Singular matrices are supported, in which case some diagonal coefficients
vanish:
\bprog
? qfgaussred([1,1;1,1])
%2 =
[1 1]
[1 0]
@eprog\noindent This means that $x^{2} + 2xy + y^{2} = (x+y)^{2}$.
If $\fl=1$, return \kbd{[U,V]} where $U$ is a square matrix and $V$ a vector,
such that if \kbd{D=matdiagonal(V)}, $q = {^{t}} U D U$. More
precisely
$$ q(x) = \sum_{i} D_{i} (\sum_{j} U_{i,j} x_{j})^{2} $$
and the matrix $M$ is recovered as $M = U + D - 1$.
\bprog
? q = [0,1;1,0];
? [U,V] = qfgaussred(q,1); D = matdiagonal(V);
? U~*D*U
%5 =
[0 1]
[1 0]
? U+D-1
%6 =
[1/2 1]
[ -1 -1/2]
@eprog
The library syntax is \fun{GEN}{qfgaussred0}{GEN q, long flag}.
See also the functions \fun{GEN}{qfgaussred}{GEN a}
(for \kbd{qfgaussred(a,0)}),
\fun{GEN}{qfgaussred2}{GEN a} (for \kbd{qfgaussred0(a,1)}). Finally,
the function
\fun{GEN}{qfgaussred_positive}{GEN q} assumes that $q$ is
positive definite and is a little faster; returns \kbd{NULL} if a vector
with negative norm occurs (non positive matrix or too many rounding errors).
\subsec{qfisom$(G,H,\{\var{fl}\},\{\var{grp}\})$}\kbdsidx{qfisom}\label{se:qfisom}
$G$, $H$ being square and symmetric matrices with integer entries representing
positive definite quadratic forms, return an invertible matrix $S$ such that
$G={^{t}}S\*H\*S$. This defines a isomorphism between the corresponding lattices.
Since this requires computing the minimal vectors, the computations can
become very lengthy as the dimension grows.
See \kbd{qfisominit} for the meaning of \var{fl}.
If \var{grp} is given it must be the automorphism group of $H$. It will be used
to speed up the computation.
$G$ can also be given by an \kbd{qfisominit} structure which is preferable if
several forms $H$ need to be compared to $G$.
This function implements an algorithm of Plesken and Souvignier, following
Souvignier's implementation.
The library syntax is \fun{GEN}{qfisom0}{GEN G, GEN H, GEN fl = NULL, GEN grp = NULL}.
Also available is \fun{GEN}{qfisom}{GEN G, GEN H, GEN fl, GEN grp}
where $G$ is a vector of \kbd{zm}, and $H$ is a \kbd{zm}, and $grp$ is
either \kbd{NULL} or a vector of \kbd{zm}.
\subsec{qfisominit$(G,\{\var{fl}\},\{m\})$}\kbdsidx{qfisominit}\label{se:qfisominit}
$G$ being a square and symmetric matrix with integer entries representing a
positive definite quadratic form, return an \kbd{isom} structure allowing to
compute isomorphisms between $G$ and other quadratic forms faster.
The interface of this function is experimental and will likely change in future
release.
If present, the optional parameter \var{fl} must be a \typ{VEC} with two
components. It allows to specify the invariants used, which can make the
computation faster or slower. The components are
\item \kbd{fl[1]} Depth of scalar product combination to use.
\item \kbd{fl[2]} Maximum level of Bacher polynomials to use.
If present, $m$ must be the set of vectors of norm up to the maximal of the
diagonal entry of $G$, either as a matrix or as given by \kbd{qfminim}.
Otherwise this function computes the minimal vectors so it become very
lengthy as the dimension of $G$ grows.
The library syntax is \fun{GEN}{qfisominit0}{GEN G, GEN fl = NULL, GEN m = NULL}.
Also available is
\fun{GEN}{qfisominit}{GEN F, GEN fl}
where $F$ is a vector of \kbd{zm}.
\subsec{qfjacobi$(A)$}\kbdsidx{qfjacobi}\label{se:qfjacobi}
Apply Jacobi's eigenvalue algorithm to the real symmetric matrix $A$.
This returns $[L, V]$, where
\item $L$ is the vector of (real) eigenvalues of $A$, sorted in increasing
order,
\item $V$ is the corresponding orthogonal matrix of eigenvectors of $A$.
\bprog
? \p19
? A = [1,2;2,1]; mateigen(A)
%1 =
[-1 1]
[ 1 1]
? [L, H] = qfjacobi(A);
? L
%3 = [-1.000000000000000000, 3.000000000000000000]~
? H
%4 =
[ 0.7071067811865475245 0.7071067811865475244]
[-0.7071067811865475244 0.7071067811865475245]
? norml2( (A-L[1])*H[,1] ) \\ approximate eigenvector
%5 = 9.403954806578300064 E-38
? norml2(H*H~ - 1)
%6 = 2.350988701644575016 E-38 \\ close to orthogonal
@eprog
The library syntax is \fun{GEN}{jacobi}{GEN A, long prec}.
\subsec{qflll$(x,\{\fl=0\})$}\kbdsidx{qflll}\label{se:qflll}
\idx{LLL} algorithm applied to the
\emph{columns} of the matrix $x$. The columns of $x$ may be linearly
dependent. The result is by default a unimodular transformation matrix $T$
such that $x \cdot T$ is an LLL-reduced basis of the lattice generated by
the column vectors of $x$. Note that if $x$ is not of maximal rank $T$ will
not be square. The LLL parameters are $(0.51,0.99)$, meaning that the
Gram-Schmidt coefficients for the final basis satisfy $|\mu_{i,j}| \leq
0.51$, and the Lov\'{a}sz's constant is $0.99$.
If $\fl=0$ (default), assume that $x$ has either exact (integral or
rational) or real floating point entries. The matrix is rescaled, converted
to integers and the behavior is then as in $\fl = 1$.
Computations involving Gram-Schmidt
vectors are approximate, with precision varying as needed (Lehmer's trick,
as generalized by Schnorr). Adapted from Nguyen and Stehl\'e's algorithm
and Stehl\'e's code (\kbd{fplll-1.3}) as building blocks for the FLATTER
(block recursive) algorithm of Heninger and Ryan.
If $\fl=1$, disable use of FLATTER algorithm; use \kbd{fplll}. This flag
is provided to experiment with the concrete speed-ups allowed by FLATTER,
as well as to genuinely disable it on the rare classes of lattices for which
it turns out it performs badly: many such classes are detected in the code,
which then restricts to stock \kbd{fplll}, but new exemples may turn up.
If $\fl=2$, $x$ should be an integer matrix whose columns are linearly
independent. Returns a partially reduced basis for $x$, using an unpublished
algorithm by Peter Montgomery: a basis is said to be \emph{partially reduced}
if $|v_{i} \pm v_{j}| \geq |v_{i}|$ for any two distinct basis vectors
$v_{i}, \, v_{j}$. This is faster than $\fl=1$, esp. when one row is huge
compared
to the other rows (knapsack-style), and should quickly produce relatively
short vectors. The resulting basis is \emph{not} LLL-reduced in general.
If LLL reduction is eventually desired, avoid this partial reduction:
applying LLL to the partially reduced matrix is significantly \emph{slower}
than starting from a knapsack-type lattice.
If $\fl=3$, as $\fl=0$, but the reduction is performed in place: the
routine returns $x \cdot T$. This is usually faster for knapsack-type
lattices.
If $\fl=4$, as $\fl=0$, returning a vector $[K, T]$ of matrices: the
columns of $K$ represent a basis of the integer kernel of $x$
(not LLL-reduced in general) and $T$ is the transformation
matrix such that $x\cdot T$ is an LLL-reduced $\Z$-basis of the image
of the matrix $x$.
If $\fl=5$, case as $\fl=4$, but $x$ may have polynomial coefficients.
If $\fl=8$, same as $\fl=0$, but $x$ may have polynomial coefficients.
\bprog
? \p500
realprecision = 500 significant digits
? a = 2*cos(2*Pi/97);
? C = 10^450;
? v = powers(a,48); b = round(matconcat([matid(48),C*v]~));
? p = b * qflll(b)[,1]; \\ tiny linear combination of powers of 'a'
time = 4,470 ms.
? exponent(v * p / C)
%5 = -1418
? p3 = qflll(b,3)[,1]; \\ compute in place, faster
time = 3,790 ms.
? p3 == p \\ same result
%7 = 1
? p2 = b * qflll(b,2)[,1]; \\ partial reduction: faster, not as good
time = 343 ms.
? exponent(v * p2 / C)
%9 = -1190
@eprog
The library syntax is \fun{GEN}{qflll0}{GEN x, long flag}.
Also available are \fun{GEN}{lll}{GEN x} ($\fl=0$),
\fun{GEN}{lllint}{GEN x} ($\fl=1$), and \fun{GEN}{lllkerim}{GEN x} ($\fl=4$).
\subsec{qflllgram$(G,\{\fl=0\})$}\kbdsidx{qflllgram}\label{se:qflllgram}
Same as \kbd{qflll}, except that the
matrix $G = \kbd{x\til * x}$ is the Gram matrix of some lattice vectors $x$,
and not the coordinates of the vectors themselves. In particular, $G$ must
now be a square symmetric real matrix, corresponding to a positive
quadratic form (not necessarily definite: $x$ needs not have maximal rank).
The result is a unimodular
transformation matrix $T$ such that $x \cdot T$ is an LLL-reduced basis of
the lattice generated by the column vectors of $x$. See \tet{qflll} for
further details about the LLL implementation.
If $\fl=0$ (default), assume that $G$ has either exact (integral or
rational) or real floating point entries. The matrix is rescaled, converted
to integers.
Computations involving Gram-Schmidt vectors are approximate, with precision
varying as needed (Lehmer's trick, as generalized by Schnorr). Adapted from
Nguyen and Stehl\'e's algorithm and Stehl\'e's code (\kbd{fplll-1.3}) and
FLATTER algorithm for Heninger and Ryan.
If $\fl=1$, disable use of FLATTER algorithm.
$\fl=4$: $G$ has integer entries, gives the kernel and reduced image of $x$.
$\fl=5$: same as $4$, but $G$ may have polynomial coefficients.
The library syntax is \fun{GEN}{qflllgram0}{GEN G, long flag}.
Also available are \fun{GEN}{lllgram}{GEN G} ($\fl=0$),
\fun{GEN}{lllgramint}{GEN G} ($\fl=1$), and \fun{GEN}{lllgramkerim}{GEN G}
($\fl=4$).
\subsec{qfminim$(x,\{B\},\{m\},\{\fl=0\})$}\kbdsidx{qfminim}\label{se:qfminim}
$x$ being a square and symmetric matrix of dimension $d$ representing
a positive definite quadratic form, this function deals with the vectors of
$x$ whose norm is less than or equal to $B$, enumerated using the
Fincke-Pohst algorithm, storing at most $m$ pairs of vectors: only one
vector is given for each pair $\pm v$. There is no limit if $m$ is omitted:
beware that this may be a huge vector! The vectors are returned in no
particular order.
The function searches for the minimal nonzero vectors if $B$ is omitted.
The behavior is undefined if $x$ is not positive definite (a ``precision too
low'' error is most likely, although more precise error messages are
possible). The precise behavior depends on $\fl$.
\item If $\fl=0$ (default), return $[N, M, V]$, where $N$ is the number of
vectors enumerated (an even number, possibly larger than $2m$), $M \leq B$
is the maximum norm found, and $V$ is a matrix whose columns are found
vectors.
\item If $\fl=1$, ignore $m$ and return $[M,v]$, where $v$ is a nonzero
vector of length $M \leq B$. If no nonzero vector has length $\leq B$,
return $[]$. If no explicit $B$ is provided, return a vector of smallish
norm, namely the vector of smallest length (usually the first one but not
always) in an LLL-reduced basis for $x$.
In these two cases, $x$ must have integral \emph{small} entries: more
precisely, we definitely must have $d\cdot \|x\|_{\infty}^{2} < 2^{53}$ but
even that may not be enough. The implementation uses low precision floating
point computations for maximal speed and gives incorrect results when $x$
has large entries. That condition is checked in the code and the routine
raises an error if large rounding errors occur. A more robust, but much
slower, implementation is chosen if the following flag is used:
\item If $\fl=2$, $x$ can have non integral real entries, but this is also
useful when $x$ has large integral entries. Return $[N, M, V]$ as in case
$\fl = 0$, where $M$ is returned as a floating point number. If $x$ is
inexact and $B$ is omitted, the ``minimal'' vectors in $V$ only have
approximately the same norm (up to the internal working accuracy).
This version is very robust but still offers no hard and fast guarantee
about the result: it involves floating point operations performed at a high
floating point precision depending on your input, but done without rigorous
tracking of roundoff errors (as would be provided by interval arithmetic for
instance). No example is known where the input is exact but the function
returns a wrong result.
\bprog
? x = matid(2);
? qfminim(x) \\@com 4 minimal vectors of norm 1: $\pm[0,1]$, $\pm[1,0]$
%2 = [4, 1, [0, 1; 1, 0]]
? { x = \\ The Leech lattice
[4, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1, 0,-1, 0, 0, 0,-2;
2, 4,-2,-2, 0,-2, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1, 0, 1,-1,-1;
0,-2, 4, 0,-2, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 0, 0, 1,-1,-1, 0, 0;
0,-2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1,-1, 0, 1,-1, 1, 0;
0, 0,-2, 0, 4, 0, 0, 0, 1,-1, 0, 0, 1, 0, 0, 0,-2, 0, 0,-1, 1, 1, 0, 0;
-2, -2,0, 0, 0, 4,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,-1, 1, 1;
0, 0, 0, 0, 0,-2, 4,-2, 0, 0, 0, 0, 0, 1, 0, 0, 0,-1, 0, 0, 0, 1,-1, 0;
0, 0, 0, 0, 0, 0,-2, 4, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1,-1,-1, 0, 1, 0;
0, 0, 0, 0, 1,-1, 0, 0, 4, 0,-2, 0, 1, 1, 0,-1, 0, 1, 0, 0, 0, 0, 0, 0;
0, 0, 0, 0,-1, 0, 0, 0, 0, 4, 0, 0, 1, 1,-1, 1, 0, 0, 0, 1, 0, 0, 1, 0;
0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 4,-2, 0,-1, 0, 0, 0,-1, 0,-1, 0, 0, 0, 0;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 4,-1, 1, 0, 0,-1, 1, 0, 1, 1, 1,-1, 0;
1, 0,-1, 1, 1, 0, 0,-1, 1, 1, 0,-1, 4, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1,-1;
-1,-1, 1,-1, 0, 0, 1, 0, 1, 1,-1, 1, 0, 4, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0;
0, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 1, 0, 4, 0, 0, 0, 0, 1, 1, 0, 0;
0, 0, 1, 0,-2, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 4, 1, 1, 1, 0, 0, 1, 1;
1, 0, 0, 1, 0, 0,-1, 0, 1, 0,-1, 1, 1, 0, 0, 0, 1, 4, 0, 1, 1, 0, 1, 0;
0, 0, 0,-1, 0, 1, 0,-1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 4, 0, 1, 1, 0, 1;
-1, -1,1, 0,-1, 1, 0,-1, 0, 1,-1, 1, 0, 1, 0, 0, 1, 1, 0, 4, 0, 0, 1, 1;
0, 0,-1, 1, 1, 0, 0,-1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 4, 1, 0, 1;
0, 1,-1,-1, 1,-1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 4, 0, 1;
0,-1, 0, 1, 0, 1,-1, 1, 0, 1, 0,-1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 4, 1;
-2,-1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 4]; }
? qfminim(x,,0) \\ 0: don't store minimal vectors
time = 121 ms.
%4 = [196560, 4, [;]] \\ 196560 minimal vectors of norm 4
? qfminim(x) \\ store all minimal vectors !
time = 821 ms.
? qfminim(x,,0,2); \\ safe algorithm. Slower and unnecessary here.
time = 5,540 ms.
%6 = [196560, 4.000061035156250000, [;]]
? qfminim(x,,,2); \\ safe algorithm; store all minimal vectors
time = 6,602 ms.
@eprog\noindent\sidx{Leech lattice}\sidx{minimal vector}
In this example, storing 0 vectors limits memory use; storing all of them
requires a \kbd{parisize} about 50MB. All minimal vectors are nevertheless
enumerated in both cases of course, which means the speedup is likely to be
marginal.
The library syntax is \fun{GEN}{qfminim0}{GEN x, GEN B = NULL, GEN m = NULL, long flag, long prec}.
Also available are
\fun{GEN}{minim}{GEN x, GEN B = NULL, GEN m = NULL} ($\fl=0$),
\fun{GEN}{minim2}{GEN x, GEN B = NULL, GEN m = NULL} ($\fl=1$).
\fun{GEN}{minim_raw}{GEN x, GEN B = NULL, GEN m = NULL} (do not perform LLL
reduction on x and return \kbd{NULL} on accuracy error).
\fun{GEN}{minim_zm}{GEN x, GEN B = NULL, GEN m = NULL} ($\fl=0$, return vectors as
\typ{VECSMALL} to save memory)
\subsec{qfminimize$(G)$}\kbdsidx{qfminimize}\label{se:qfminimize}
Given a square symmetric matrix $G$ with rational coefficients, and
non-zero determinant, of dimension $n \geq 1$, return \kbd{[H,U,c]} such that
\kbd{H = c*U\til*G*U} for some rational $c$, and $H$ integral with minimal
determinant. The coefficients of $U$ are usually nonintegral.
\bprog
? G = matdiagonal([650, -104329, -104329]);
? [H,U,c]=qfminimize(G); H
%2 = [-1,0,0;0,-1,0;0,0,1]
? U
%3 = [0,0,1/5;5/323,-1/323,0;-1/323,-5/323,0]
? c
%4 = 1/26
? c * U~ * G * U
%4 = [-1,0,0;0,-1,0;0,0,1]
@eprog
The library syntax is \fun{GEN}{qfminimize}{GEN G}.
\subsec{qfnorm$(x,\{q\})$}\kbdsidx{qfnorm}\label{se:qfnorm}
This function is obsolete, use \kbd{qfeval}.
The library syntax is \fun{GEN}{qfnorm}{GEN x, GEN q = NULL}.
\subsec{qforbits$(G,V)$}\kbdsidx{qforbits}\label{se:qforbits}
Return the orbits of $V$ under the action of the group
of linear transformation generated by the set $G$.
It is assumed that $G$ contains minus identity, and only one vector
in $\{v, -v\}$ should be given.
If $G$ does not stabilize $V$, the function return $0$.
In the example below, we compute representatives and lengths of the orbits of
the vectors of norm $\leq 3$ under the automorphisms of the lattice $\Z^{6}$.
\bprog
? Q=matid(6); G=qfauto(Q); V=qfminim(Q,3);
? apply(x->[x[1],#x],qforbits(G,V))
%2 = [[[0,0,0,0,0,1]~,6],[[0,0,0,0,1,-1]~,30],[[0,0,0,1,-1,-1]~,80]]
@eprog
The library syntax is \fun{GEN}{qforbits}{GEN G, GEN V}.
\subsec{qfparam$(G,\var{sol},\{\fl=0\})$}\kbdsidx{qfparam}\label{se:qfparam}
Coefficients of binary quadratic forms that parametrize the
solutions of the ternary quadratic form $G$, using the particular
solution~\var{sol}.
$\fl$ is optional and can be 1, 2, or 3, in which case the $\fl$-th form is
reduced. The default is $\fl=0$ (no reduction).
\bprog
? G = [1,0,0;0,1,0;0,0,-34];
? M = qfparam(G, qfsolve(G))
%2 =
[ 3 -10 -3]
[-5 -6 5]
[ 1 0 1]
@eprog
Indeed, the solutions can be parametrized as
$$(3x^{2}-10xy-3y^{2})^{2} + (-5x^{2}-6xy+5y^{2})^{2} -34(x^{2}+y^{2})^{2}
= 0.$$
\bprog
? v = y^2 * M*[1,x/y,(x/y)^2]~
%3 = [3*x^2 - 10*y*x - 3*y^2, -5*x^2 - 6*y*x + 5*y^2, -x^2 - y^2]~
? v~*G*v
%4 = 0
@eprog
The library syntax is \fun{GEN}{qfparam}{GEN G, GEN sol, long flag}.
\subsec{qfperfection$(G)$}\kbdsidx{qfperfection}\label{se:qfperfection}
$G$ being a square and symmetric matrix with integer entries
representing a positive definite quadratic form, outputs the perfection rank
of the form. That is, gives the rank of the family of the $s$ symmetric
matrices $v{^{t}}v$, where $v$ runs through the minimal vectors.
A form is perfect if and only if its perfection rank is $d(d+1)/2$ where
$d$ is the dimension of $G$.
The algorithm computes the minimal vectors and its runtime is exponential
in $d$.
The library syntax is \fun{GEN}{qfperfection}{GEN G}.
\subsec{qfrep$(q,B,\{\fl=0\})$}\kbdsidx{qfrep}\label{se:qfrep}
$q$ being a square and symmetric matrix with integer entries representing a
positive definite quadratic form, count the vectors representing successive
integers.
\item If $\fl = 0$, count all vectors. Outputs the vector whose $i$-th
entry, $1 \leq i \leq B$ is half the number of vectors $v$ such that $q(v)=i$.
\item If $\fl = 1$, count vectors of even norm. Outputs the vector
whose $i$-th entry, $1 \leq i \leq B$ is half the number of vectors such
that $q(v) = 2i$.
\bprog
? q = [2, 1; 1, 3];
? qfrep(q, 5)
%2 = Vecsmall([0, 1, 2, 0, 0]) \\ 1 vector of norm 2, 2 of norm 3, etc.
? qfrep(q, 5, 1)
%3 = Vecsmall([1, 0, 0, 1, 0]) \\ 1 vector of norm 2, 0 of norm 4, etc.
@eprog\noindent
This routine uses a naive algorithm based on \tet{qfminim}, and
will fail if any entry becomes larger than $2^{31}$ (or $2^{63}$).
The library syntax is \fun{GEN}{qfrep0}{GEN q, GEN B, long flag}.
\subsec{qfsign$(x)$}\kbdsidx{qfsign}\label{se:qfsign}
Returns $[p,m]$ the signature of the quadratic form represented by the
symmetric matrix $x$. Namely, $p$ (resp.~$m$) is the number of positive
(resp.~negative) eigenvalues of $x$. The result is computed using Gaussian
reduction.
The library syntax is \fun{GEN}{qfsign}{GEN x}.
\subsec{qfsolve$(G)$}\kbdsidx{qfsolve}\label{se:qfsolve}
Given a square symmetric matrix $G$ of dimension $n \geq 1$, solve over
$\Q$ the quadratic equation ${^{t}}X G X = 0$. The matrix $G$ must have rational
coefficients. When $G$ is integral, the argument can also be a vector $[G,F]$
where $F$ is the factorization matrix of the absolute value of the determinant
of $G$.
The solution might be a single nonzero column vector
(\typ{COL}) or a matrix (whose columns generate a totally isotropic
subspace).
If no solution exists, returns an integer, that can be a prime $p$ such that
there is no local solution at $p$, or $-1$ if there is no real solution,
or $-2$ if $n = 2$ and $-\det G$ is not a square (which implies there is a
real solution, but no local solution at some $p$ dividing $\det G$).
\bprog
? G = [1,0,0;0,1,0;0,0,-34];
? qfsolve(G)
%1 = [-3, -5, 1]~
? qfsolve([1,0; 0,2])
%2 = -1 \\ no real solution
? qfsolve([1,0,0;0,3,0; 0,0,-2])
%3 = 3 \\ no solution in Q_3
? qfsolve([1,0; 0,-2])
%4 = -2 \\ no solution, n = 2
@eprog
The library syntax is \fun{GEN}{qfsolve}{GEN G}.
\subsec{setbinop$(f,X,\{Y\})$}\kbdsidx{setbinop}\label{se:setbinop}
The set whose elements are the f(x,y), where x,y run through X,Y.
respectively. If $Y$ is omitted, assume that $X = Y$ and that $f$ is symmetric:
$f(x,y) = f(y,x)$ for all $x,y$ in $X$.
\bprog
? X = [1,2,3]; Y = [2,3,4];
? setbinop((x,y)->x+y, X,Y) \\ set X + Y
%2 = [3, 4, 5, 6, 7]
? setbinop((x,y)->x-y, X,Y) \\ set X - Y
%3 = [-3, -2, -1, 0, 1]
? setbinop((x,y)->x+y, X) \\ set 2X = X + X
%2 = [2, 3, 4, 5, 6]
@eprog
The library syntax is \fun{GEN}{setbinop}{GEN f, GEN X, GEN Y = NULL}.
\subsec{setdelta$(x,y)$}\kbdsidx{setdelta}\label{se:setdelta}
Symmetric difference of the two sets $x$ and $y$ (see \kbd{setisset}).
If $x$ or $y$ is not a set, the result is undefined.
\bprog
? a=[1,2,2,3];b=[4,2,3,4];
? setdelta(Set(a), Set(b))
%2 = [1, 4] \\ the symmetric difference of the two sets
? setdelta(a,b)
%3 = [1, 2, 2, 3, 4, 2, 3, 4] \\ undefined result
@eprog
The library syntax is \fun{GEN}{setdelta}{GEN x, GEN y}.
\subsec{setintersect$(x,y)$}\kbdsidx{setintersect}\label{se:setintersect}
Intersection of the two sets $x$ and $y$ (see \kbd{setisset}).
If $x$ or $y$ is not a set, the result is undefined.
The library syntax is \fun{GEN}{setintersect}{GEN x, GEN y}.
\subsec{setisset$(x)$}\kbdsidx{setisset}\label{se:setisset}
Returns true (1) if $x$ is a set, false (0) if
not. In PARI, a set is a row vector whose entries are strictly
increasing with respect to a (somewhat arbitrary) universal comparison
function. To convert any object into a set (this is most useful for
vectors, of course), use the function \kbd{Set}.
\bprog
? a = [3, 1, 1, 2];
? setisset(a)
%2 = 0
? Set(a)
%3 = [1, 2, 3]
@eprog
The library syntax is \fun{long}{setisset}{GEN x}.
\subsec{setminus$(x,y)$}\kbdsidx{setminus}\label{se:setminus}
Difference of the two sets $x$ and $y$ (see \kbd{setisset}),
i.e.~set of elements of $x$ which do not belong to $y$.
If $x$ or $y$ is not a set, the result is undefined.
The library syntax is \fun{GEN}{setminus}{GEN x, GEN y}.
\subsec{setsearch$(S,x,\{\fl=0\})$}\kbdsidx{setsearch}\label{se:setsearch}
Determines whether $x$ belongs to the set or sorted list $S$
(see \kbd{setisset}).
We first describe the default behavior, when $\fl$ is zero or omitted. If $x$
belongs to the set $S$, returns the index $j$ such that $S[j]=x$, otherwise
returns 0.
\bprog
? T = [7,2,3,5]; S = Set(T);
? setsearch(S, 2)
%2 = 1
? setsearch(S, 4) \\ not found
%3 = 0
? setsearch(T, 7) \\ search in a randomly sorted vector
%4 = 0 \\ WRONG !
@eprog\noindent
If $S$ is not a set, we also allow sorted lists with
respect to the \tet{cmp} sorting function, without repeated entries,
as per \tet{listsort}$(L,1)$; otherwise the result is undefined.
\bprog
? L = List([1,4,2,3,2]); setsearch(L, 4)
%1 = 0 \\ WRONG !
? listsort(L, 1); L \\ sort L first
%2 = List([1, 2, 3, 4])
? setsearch(L, 4)
%3 = 4 \\ now correct
@eprog\noindent
If $\fl$ is nonzero, this function returns the index $j$ where $x$ should be
inserted, and $0$ if it already belongs to $S$. This is meant to be used for
dynamically growing (sorted) lists, in conjunction with \kbd{listinsert}.
\bprog
? L = List([1,5,2,3,2]); listsort(L,1); L
%1 = List([1,2,3,5])
? j = setsearch(L, 4, 1) \\ 4 should have been inserted at index j
%2 = 4
? listinsert(L, 4, j); L
%3 = List([1, 2, 3, 4, 5])
@eprog
The library syntax is \fun{long}{setsearch}{GEN S, GEN x, long flag}.
\subsec{setunion$(x,y)$}\kbdsidx{setunion}\label{se:setunion}
Union of the two sets $x$ and $y$ (see \kbd{setisset}).
If $x$ or $y$ is not a set, the result is undefined.
The library syntax is \fun{GEN}{setunion}{GEN x, GEN y}.
\subsec{snfrank$(D,\{q=0\})$}\kbdsidx{snfrank}\label{se:snfrank}
Assuming that $D$ is a Smith normal form
(i.e. vector of elementary divisors) for some module and $q$ a power of an
irreducible element or $0$, returns the minimal number of generators for
$D/qD$. For instance, if $q=p^{n}$ where $p$ is a prime number, this is the
dimension of $(p^{n-1}D)/p^{n}D$ as an $\F_{p}$-vector space. An argument $q = 0$
may be omitted.
\bprog
? snfrank([4,4,2], 2)
%1 = 3
? snfrank([4,4,2], 4)
%2 = 2
? snfrank([4,4,2], 8)
%3 = 0
? snfrank([4,4,2]) \\ or snfrank([4,4,2], 0)
%4 = 3
@eprog\noindent The function also works for $K[x]$-modules:
\bprog
? D=matsnf([-x-5,-1,-1,0; 0,x^2+10*x+26,-1,-x-5; 1,-x-5,-x-5,1; -1,0,0,1]);
? snfrank(D, x^2 + 10*x + 27)
%6 = 2
? A=matdiagonal([x-1,x^2+1,x-1,(x^2+1)^2,x,(x-1)^2]); D=matsnf(A);
? snfrank(D,x-1)
%8 = 3
? snfrank(D,(x-1)^2)
%9 = 1
? snfrank(D,(x-1)^3)
%9 = 0
? snfrank(D,x^2+1)
%10 = 2
@eprog\noindent Finally this function supports any output from \kbd{matsnf}
(e.g., with transformation matrices included, with or without cleanup).
The library syntax is \fun{long}{snfrank}{GEN D, GEN q = NULL}.
\subsec{trace$(x)$}\kbdsidx{trace}\label{se:trace}
This applies to quite general $x$. If $x$ is not a
matrix, it is equal to the sum of $x$ and its conjugate, except for polmods
where it is the trace as an algebraic number.
For $x$ a square matrix, it is the ordinary trace. If $x$ is a
nonsquare matrix (but not a vector), an error occurs.
The library syntax is \fun{GEN}{gtrace}{GEN x}.
\subsec{vecextract$(x,y,\{z\})$}\kbdsidx{vecextract}\label{se:vecextract}
Extraction of components of the vector or matrix $x$ according to $y$.
In case $x$ is a matrix, its components are the \emph{columns} of $x$. The
parameter $y$ is a component specifier, which is either an integer, a string
describing a range, or a vector.
If $y$ is an integer, it is considered as a mask: the binary bits of $y$ are
read from right to left, but correspond to taking the components from left to
right. For example, if $y=13=(1101)_{2}$ then the components 1,3 and 4 are
extracted.
If $y$ is a vector (\typ{VEC}, \typ{COL} or \typ{VECSMALL}), which must have
integer entries, these entries correspond to the component numbers to be
extracted, in the order specified.
If $y$ is a string, it can be
\item a single (nonzero) index giving a component number (a negative
index means we start counting from the end).
\item a range of the form \kbd{"$a$..$b$"}, where $a$ and $b$ are
indexes as above. Any of $a$ and $b$ can be omitted; in this case, we take
as default values $a = 1$ and $b = -1$, i.e.~ the first and last components
respectively. We then extract all components in the interval $[a,b]$, in
reverse order if $b < a$.
In addition, if the first character in the string is \kbd{\pow}, the
complement of the given set of indices is taken.
If $z$ is not omitted, $x$ must be a matrix. $y$ is then the \emph{row}
specifier, and $z$ the \emph{column} specifier, where the component specifier
is as explained above.
\bprog
? v = [a, b, c, d, e];
? vecextract(v, 5) \\@com mask
%1 = [a, c]
? vecextract(v, [4, 2, 1]) \\@com component list
%2 = [d, b, a]
? vecextract(v, "2..4") \\@com interval
%3 = [b, c, d]
? vecextract(v, "-1..-3") \\@com interval + reverse order
%4 = [e, d, c]
? vecextract(v, "^2") \\@com complement
%5 = [a, c, d, e]
? vecextract(matid(3), "2..", "..")
%6 =
[0 1 0]
[0 0 1]
@eprog
The range notations \kbd{v[i..j]} and \kbd{v[\pow i]} (for \typ{VEC} or
\typ{COL}) and \kbd{M[i..j, k..l]} and friends (for \typ{MAT}) implement a
subset of the above, in a simpler and \emph{faster} way, hence should be
preferred in most common situations. The following features are not
implemented in the range notation:
\item reverse order,
\item omitting either $a$ or $b$ in \kbd{$a$..$b$}.
The library syntax is \fun{GEN}{extract0}{GEN x, GEN y, GEN z = NULL}.
\subsec{vecprod$(v)$}\kbdsidx{vecprod}\label{se:vecprod}
Return the product of the components of the vector $v$. Return $1$ on an
empty vector.
\bprog
? vecprod([1,2,3])
%1 = 6
? vecprod([])
%2 = 1
@eprog
The library syntax is \fun{GEN}{vecprod}{GEN v}.
\subsec{vecsearch$(v,x,\{\var{cmpf}\})$}\kbdsidx{vecsearch}\label{se:vecsearch}
Determines whether $x$ belongs to the sorted vector or list $v$: return
the (positive) index where $x$ was found, or $0$ if it does not belong to
$v$.
If the comparison function cmpf is omitted, we assume that $v$ is sorted in
increasing order, according to the standard comparison function \kbd{lex},
thereby restricting the possible types for $x$ and the elements of $v$
(integers, fractions, reals, and vectors of such). We also transparently
allow a \typ{VECSMALL} $x$ in this case, for the natural ordering of the
integers.
If \kbd{cmpf} is present, it is understood as a comparison function and we
assume that $v$ is sorted according to it, see \tet{vecsort} for how to
encode comparison functions.
\bprog
? v = [1,3,4,5,7];
? vecsearch(v, 3)
%2 = 2
? vecsearch(v, 6)
%3 = 0 \\ not in the list
? vecsearch([7,6,5], 5) \\ unsorted vector: result undefined
%4 = 0
@eprog\noindent Note that if we are sorting with respect to a key
which is expensive to compute (e.g. a discriminant), one should rather
precompute all keys, sort that vector and search in the vector of keys,
rather than searching in the original vector with respect to a comparison
function.
By abuse of notation, $x$ is also allowed to be a matrix, seen as a vector
of its columns; again by abuse of notation, a \typ{VEC} is considered
as part of the matrix, if its transpose is one of the matrix columns.
\bprog
? v = vecsort([3,0,2; 1,0,2]) \\ sort matrix columns according to lex order
%1 =
[0 2 3]
[0 2 1]
? vecsearch(v, [3,1]~)
%2 = 3
? vecsearch(v, [3,1]) \\ can search for x or x~
%3 = 3
? vecsearch(v, [1,2])
%4 = 0 \\ not in the list
@eprog\noindent
The library syntax is \fun{long}{vecsearch}{GEN v, GEN x, GEN cmpf = NULL}.
\subsec{vecsort$(x,\{\var{cmpf}\},\{\fl=0\})$}\kbdsidx{vecsort}\label{se:vecsort}
Sorts the vector $x$ in ascending order, using a mergesort method.
$x$ must be a list, vector or matrix (seen as a vector of its columns).
Note that mergesort is stable, hence the initial ordering of ``equal''
entries (with respect to the sorting criterion) is not changed.
If \kbd{cmpf} is omitted, we use the standard comparison function
\kbd{lex}, thereby restricting the possible types for the elements of $x$
(integers, fractions or reals and vectors of those). We also transparently
allow a \typ{VECSMALL} $x$ in this case, for the standard ordering on the
integers.
If \kbd{cmpf} is present, it is understood as a comparison function and we
sort according to it. The following possibilities exist:
\item an integer $k$: sort according to the value of the $k$-th
subcomponents of the components of~$x$.
\item a vector: sort lexicographically according to the components listed in
the vector. For example, if $\kbd{cmpf}=\kbd{[2,1,3]}$, sort with respect to
the second component, and when these are equal, with respect to the first,
and when these are equal, with respect to the third.
\item a comparison function: \typ{CLOSURE} with two arguments $x$ and $y$,
and returning a real number which is $<0$, $>0$ or $=0$ if $x<y$, $x>y$ or
$x=y$ respectively.
\item a key: \typ{CLOSURE} with one argument $x$ and returning
the value $f(x)$ with respect to which we sort.
\bprog
? vecsort([3,0,2; 1,0,2]) \\ sort columns according to lex order
%1 =
[0 2 3]
[0 2 1]
? vecsort(v, (x,y)->y-x) \\@com reverse sort
? vecsort(v, (x,y)->abs(x)-abs(y)) \\@com sort by increasing absolute value
? vecsort(v, abs) \\@com sort by increasing absolute value, using key
? cmpf(x,y) = my(dx = poldisc(x), dy = poldisc(y)); abs(dx) - abs(dy);
? v = [x^2+1, x^3-2, x^4+5*x+1] vecsort(v, cmpf) \\@com comparison function
? vecsort(v, x->abs(poldisc(x))) \\@com key
@eprog\noindent
The \kbd{abs} and \kbd{cmpf} examples show how to use a named function
instead of an anonymous function. It is preferable to use a \var{key}
whenever possible rather than include it in the comparison function as above
since the key is evaluated $O(n)$ times instead of $O(n\log n)$,
where $n$ is the number of entries.
A direct approach is also possible and equivalent to using a sorting key:
\bprog
? T = [abs(poldisc(x)) | x<-v];
? perm = vecsort(T,,1); \\@com indirect sort
? vecextract(v, perm)
@eprog\noindent This also provides the vector $T$ of all keys, which is
interesting for instance in later \tet{vecsearch} calls: it is more
efficient to sort $T$ (\kbd{T = vecextract(T, perm)}) then search for a key
in $T$ rather than to search in $v$ using a comparison function or a key.
Note also that \tet{mapisdefined} is often easier to use and faster than
\kbd{vecsearch}.
\noindent The binary digits of \fl\ mean:
\item 1: indirect sorting of the vector $x$, i.e.~if $x$ is an
$n$-component vector, returns a permutation of $[1,2,\dots,n]$ which
applied to the components of $x$ sorts $x$ in increasing order.
For example, \kbd{vecextract(x, vecsort(x,,1))} is equivalent to
\kbd{vecsort(x)}.
\item 4: use descending instead of ascending order.
\item 8: remove ``duplicate'' entries with respect to the sorting function
(keep the first occurring entry). For example:
\bprog
? vecsort([Pi,Mod(1,2),z], (x,y)->0, 8) \\@com make everything compare equal
%1 = [3.141592653589793238462643383]
? vecsort([[2,3],[0,1],[0,3]], 2, 8)
%2 = [[0, 1], [2, 3]]
@eprog
The library syntax is \fun{GEN}{vecsort0}{GEN x, GEN cmpf = NULL, long flag}.
\subsec{vecsum$(v)$}\kbdsidx{vecsum}\label{se:vecsum}
Return the sum of the components of the vector $v$. Return $0$ on an
empty vector.
\bprog
? vecsum([1,2,3])
%1 = 6
? vecsum([])
%2 = 0
@eprog
The library syntax is \fun{GEN}{vecsum}{GEN v}.
\subsec{vector$(n,\{X\},\{\var{expr}=0\})$}\kbdsidx{vector}\label{se:vector}
Creates a row vector (type
\typ{VEC}) with $n$ components whose components are the expression
\var{expr} evaluated at the integer points between 1 and $n$. If the last
two arguments are omitted, fills the vector with zeroes.
\bprog
? vector(3,i, 5*i)
%1 = [5, 10, 15]
? vector(3)
%2 = [0, 0, 0]
@eprog
The variable $X$ is lexically scoped to each evaluation of \var{expr}. Any
change to $X$ within \var{expr} does not affect subsequent evaluations, it
still runs 1 to $n$. A local change allows for example different indexing:
\bprog
vector(10, i, i=i-1; f(i)) \\ i = 0, ..., 9
vector(10, i, i=2*i; f(i)) \\ i = 2, 4, ..., 20
@eprog\noindent
This per-element scope for $X$ differs from \kbd{for} loop evaluations,
as the following example shows:
\bprog
n = 3
v = vector(n); vector(n, i, i++) ----> [2, 3, 4]
v = vector(n); for (i = 1, n, v[i] = i++) ----> [2, 0, 4]
@eprog\noindent
%\syn{NO}
\subsec{vectorsmall$(n,\{X\},\{\var{expr}=0\})$}\kbdsidx{vectorsmall}\label{se:vectorsmall}
Creates a row vector of small integers (type \typ{VECSMALL}) with $n$
components whose components are the expression \var{expr} evaluated at the
integer points between 1 and $n$.
%\syn{NO}
\subsec{vectorv$(n,\{X\},\{\var{expr}=0\})$}\kbdsidx{vectorv}\label{se:vectorv}
As \tet{vector}, but returns a column vector (type \typ{COL}).
%\syn{NO}
\section{Transcendental functions}\label{se:trans}
Since the values of transcendental functions cannot be exactly represented,
these functions will always return an inexact object: a real number,
a complex number, a $p$-adic number or a power series. All these objects
have a certain finite precision.
As a general rule, which of course in some cases may have exceptions,
transcendental functions operate in the following way:
\item If the argument is either a real number or an inexact complex number
(like \kbd{1.0 + I} or \kbd{Pi*I} but not \kbd{2 - 3*I}), then the
computation is done with the precision of the argument.
In the example below, we see that changing the precision to $50$ digits does
not matter, because $x$ only had a precision of $19$ digits.
\bprog
? \p 15
realprecision = 19 significant digits (15 digits displayed)
? x = Pi/4
%1 = 0.785398163397448
? \p 50
realprecision = 57 significant digits (50 digits displayed)
? sin(x)
%2 = 0.7071067811865475244
@eprog
Note that even if the argument is real, the result may be complex
(e.g.~$\text{acos}(2.0)$ or $\text{acosh}(0.0)$). See each individual
function help for the definition of the branch cuts and choice of principal
value.
\item If the argument is either an integer, a rational, an exact complex
number or a quadratic number, it is first converted to a real
or complex number using the current \idx{precision}, which can be
view and manipulated using the defaults \tet{realprecision} (in decimal
digits) or \tet{realbitprecision} (in bits). This precision can be changed
indifferently
\item in decimal digits: use \b{p} or \kbd{default(realprecision,...)}.
\item in bits: use \b{pb} or \kbd{default(realbitprecision,...)}.
After this conversion, the computation proceeds as above for real or complex
arguments.
In library mode, the \kbd{realprecision} does not matter; instead the
precision is taken from the \kbd{prec} parameter which every transcendental
function has. As in \kbd{gp}, this \kbd{prec} is not used when the argument
to a function is already inexact. Note that the argument \var{prec} stands
for the length in words of a real number, including codewords. Hence we must
have $\var{prec} \geq 3$. (Some functions allow a \kbd{bitprec} argument
instead which allow finer granularity.)
Some accuracies attainable on 32-bit machines cannot be attained
on 64-bit machines for parity reasons. For example, an accuracy
of 28 decimal digits on 32-bit machines corresponds to \var{prec} having
the value 5, for a mantissa of $3 \times 32 = 96$ bits. But this cannot be
attained on 64-bit machines: we can attain either 64 or 128 bits, but values
in between.
\item If the argument is a polmod (representing an algebraic number),
then the function is evaluated for every possible complex embedding of that
algebraic number. A column vector of results is returned, with one component
for each complex embedding. Therefore, the number of components equals
the degree of the \typ{POLMOD} modulus.
\item If the argument is an intmod or a $p$-adic, at present only a
few functions like \kbd{sqrt} (square root), \kbd{sqr} (square), \kbd{log},
\kbd{exp}, powering, \kbd{teichmuller} (Teichm\"uller character) and
\kbd{agm} (arithmetic-geometric mean) are implemented.
Note that in the case of a $2$-adic number, $\kbd{sqr}(x)$ may not be
identical to $x*x$: for example if $x = 1+O(2^{5})$ and $y = 1+O(2^{5})$ then
$x*y = 1+O(2^{5})$ while $\kbd{sqr}(x) = 1+O(2^{6})$. Here, $x * x$ yields the
same result as $\kbd{sqr}(x)$ since the two operands are known to be
\emph{identical}. The same statement holds true for $p$-adics raised to the
power $n$, where $v_{p}(n) > 0$.
\misctitle{Remark} If we wanted to be strictly consistent with
the PARI philosophy, we should have $x*y = (4 \mod 8)$ and $\kbd{sqr}(x) =
(4 \mod 32)$ when both $x$ and $y$ are congruent to $2$ modulo $4$.
However, since intmod is an exact object, PARI assumes that the modulus
must not change, and the result is hence $(0\, \mod\, 4)$ in both cases. On
the other hand, $p$-adics are not exact objects, hence are treated
differently.
\item If the argument is a polynomial, a power series or a rational function,
it is, if necessary, first converted to a power series using the current
series precision, held in the default \tet{seriesprecision}. This precision
(the number of significant terms) can be changed using \b{ps} or
\kbd{default(seriesprecision,...)}. Then the Taylor series expansion of the
function around $X=0$ (where $X$ is the main variable) is computed to a
number of terms depending on the number of terms of the argument and the
function being computed.
Under \kbd{gp} this again is transparent to the user. When programming in
library mode, however, it is \emph{strongly} advised to perform an explicit
conversion to a power series first, as in
\bprog
x = gtoser(x, gvar(x), seriesprec)
@eprog\noindent
where the number of significant terms \kbd{seriesprec} can be specified
explicitly. If you do not do this, a global variable \kbd{precdl} is used
instead, to convert polynomials and rational functions to a power series with
a reasonable number of terms; tampering with the value of this global
variable is \emph{deprecated} and strongly discouraged.
\item If the argument is a vector or a matrix, the result is the
\emph{componentwise} evaluation of the function. In particular, transcendental
functions on square matrices, are not built-in. For this you can use the
following technique, which is neither very efficient nor numerical stable,
but is often good enough provided we restrict to diagonalizable matrices:
\bprog
mateval(f, M) =
{ my([L, H] = mateigen(M, 1));
H * matdiagonal(f(L)) * H^(-1);
}
? A = [13,2;10,14];
? a = mateval(sqrt, A) /*@Ccom approximates $\sqrt{A}$ */
%2 =
[3.5522847498307933... 0.27614237491539669...]
[1.3807118745769834... 3.69035593728849174...]
? exponent(a^2 - A)
%3 = -123 \\ OK
? b = mateval(exp, A);
? exponent(mateval(log, b) - A)
%5 = -115 \\ tolerable
@eprog The absolute error depends on the condition number of the base
change matrix $H$ and on the largest $|f(\lambda)|$, where $\lambda$ runs
through the eigenvalues. If $M$ is real symmetric, you may use
\kbd{qfjacobi} instead of \kbd{mateigen}.
Of course when the input is not diagonalizable, this function produces junk:
\bprog
? mateval(sqrt, [0,1;0,0])
%6 = \\ oops ...
[0.E-57 0]
[ 0 0]
@eprog
\subsec{Catalan}\kbdsidx{Catalan}\label{se:Catalan}
Catalan's constant $G = \sum_{n>=0}\dfrac{(-1)^{n}}{(2n+1)^{2}}
=0.91596\cdots$.
Note that \kbd{Catalan} is one of the few reserved names which cannot be
used for user variables.
The library syntax is \fun{GEN}{mpcatalan}{long prec}.
\subsec{Euler}\kbdsidx{Euler}\label{se:Euler}
Euler's constant $\gamma=0.57721\cdots$. Note that
\kbd{Euler} is one of the few reserved names which cannot be used for
user variables.
The library syntax is \fun{GEN}{mpeuler}{long prec}.
\subsec{I}\kbdsidx{I}\label{se:I}
The complex number $\sqrt{-1}$.
The library syntax is \fun{GEN}{gen_I}{}.
\subsec{Pi}\kbdsidx{Pi}\label{se:Pi}
The constant $\pi$ ($3.14159\cdots$). Note that \kbd{Pi} is one of the few
reserved names which cannot be used for user variables.
The library syntax is \fun{GEN}{mppi}{long prec}.
\subsec{abs$(x)$}\kbdsidx{abs}\label{se:abs}
Absolute value of $x$ (modulus if $x$ is complex).
Rational functions are not allowed. Contrary to most transcendental
functions, an exact argument is \emph{not} converted to a real number before
applying \kbd{abs} and an exact result is returned if possible.
\bprog
? abs(-1)
%1 = 1
? abs(3/7 + 4/7*I)
%2 = 5/7
? abs(1 + I)
%3 = 1.414213562373095048801688724
@eprog\noindent
If $x$ is a polynomial, returns $-x$ if the leading coefficient is
real and negative else returns $x$. For a power series, the constant
coefficient is considered instead.
The library syntax is \fun{GEN}{gabs}{GEN x, long prec}.
\subsec{acos$(x)$}\kbdsidx{acos}\label{se:acos}
Principal branch of $\cos^{-1}(x) = -i \log (x + i\sqrt{1-x^{2}})$.
In particular, $\Re(\text{acos}(x))\in [0,\pi]$ and if $x\in \R$ and $|x|>1$,
then $\text{acos}(x)$ is complex. The branch cut is in two pieces:
$]-\infty,-1]$ , continuous with quadrant II, and $[1,+\infty[$, continuous
with quadrant IV. We have $\text{acos}(x) = \pi/2 - \text{asin}(x)$ for all
$x$.
The library syntax is \fun{GEN}{gacos}{GEN x, long prec}.
\subsec{acosh$(x)$}\kbdsidx{acosh}\label{se:acosh}
Principal branch of $\cosh^{-1}(x) = 2
\log(\sqrt{(x+1)/2} + \sqrt{(x-1)/2})$. In particular,
$\Re(\text{acosh}(x))\geq 0$ and
$\Im(\text{acosh}(x))\in ]-\pi,\pi]$; if $x\in \R$ and $x<1$, then
$\text{acosh}(x)$ is complex.
The library syntax is \fun{GEN}{gacosh}{GEN x, long prec}.
\subsec{agm$(x,y)$}\kbdsidx{agm}\label{se:agm}
Arithmetic-geometric mean of $x$ and $y$. In the
case of complex or negative numbers, the optimal AGM is returned
(the largest in absolute value over all choices of the signs of the square
roots). $p$-adic or power series arguments are also allowed. Note that
a $p$-adic agm exists only if $x/y$ is congruent to 1 modulo $p$ (modulo
16 for $p=2$). $x$ and $y$ cannot both be vectors or matrices.
The library syntax is \fun{GEN}{agm}{GEN x, GEN y, long prec}.
\subsec{airy$(z)$}\kbdsidx{airy}\label{se:airy}
Airy $[Ai,Bi]$ functions of argument $z$.
\bprog
? [A,B] = airy(1);
? A
%2 = 0.13529241631288141552414742351546630617
? B
%3 = 1.2074235949528712594363788170282869954
@eprog\noindent
The library syntax is \fun{GEN}{airy}{GEN z, long prec}.
\subsec{arg$(x)$}\kbdsidx{arg}\label{se:arg}
Argument of the complex number $x$, such that $-\pi < \arg(x) \le \pi$.
The library syntax is \fun{GEN}{garg}{GEN x, long prec}.
\subsec{asin$(x)$}\kbdsidx{asin}\label{se:asin}
Principal branch of $\sin^{-1}(x) = -i \log(ix + \sqrt{1 - x^{2}})$.
In particular, $\Re(\text{asin}(x))\in [-\pi/2,\pi/2]$ and if $x\in \R$ and
$|x|>1$ then $\text{asin}(x)$ is complex. The branch cut is in two pieces:
$]-\infty,-1]$, continuous with quadrant II, and $[1,+\infty[$ continuous
with quadrant IV. The function satisfies $i \text{asin}(x) =
\text{asinh}(ix)$.
The library syntax is \fun{GEN}{gasin}{GEN x, long prec}.
\subsec{asinh$(x)$}\kbdsidx{asinh}\label{se:asinh}
Principal branch of $\sinh^{-1}(x) = \log(x + \sqrt{1+x^{2}})$. In
particular $\Im(\text{asinh}(x))\in [-\pi/2,\pi/2]$.
The branch cut is in two pieces: $]-i \infty ,-i]$, continuous with quadrant
III and $[+i,+i \infty[$, continuous with quadrant I.
The library syntax is \fun{GEN}{gasinh}{GEN x, long prec}.
\subsec{atan$(x)$}\kbdsidx{atan}\label{se:atan}
Principal branch of $\text{tan}^{-1}(x) = \log ((1+ix)/(1-ix)) /
2i$. In particular the real part of $\text{atan}(x)$ belongs to
$]-\pi/2,\pi/2[$.
The branch cut is in two pieces:
$]-i\infty,-i[$, continuous with quadrant IV, and $]i,+i \infty[$ continuous
with quadrant II. The function satisfies $\text{atan}(x) =
-i\text{atanh}(ix)$ for all $x\neq \pm i$.
The library syntax is \fun{GEN}{gatan}{GEN x, long prec}.
\subsec{atanh$(x)$}\kbdsidx{atanh}\label{se:atanh}
Principal branch of $\text{tanh}^{-1}(x) = \log ((1+x)/(1-x)) / 2$. In
particular the imaginary part of $\text{atanh}(x)$ belongs to
$[-\pi/2,\pi/2]$; if $x\in \R$ and $|x|>1$ then $\text{atanh}(x)$ is complex.
The library syntax is \fun{GEN}{gatanh}{GEN x, long prec}.
\subsec{besselh1$(\var{nu},x)$}\kbdsidx{besselh1}\label{se:besselh1}
$H^{1}$-Bessel function of index \var{nu} and argument $x$.
The library syntax is \fun{GEN}{hbessel1}{GEN nu, GEN x, long prec}.
\subsec{besselh2$(\var{nu},x)$}\kbdsidx{besselh2}\label{se:besselh2}
$H^{2}$-Bessel function of index \var{nu} and argument $x$.
The library syntax is \fun{GEN}{hbessel2}{GEN nu, GEN x, long prec}.
\subsec{besseli$(\var{nu},x)$}\kbdsidx{besseli}\label{se:besseli}
$I$-Bessel function of index \var{nu} and
argument $x$. If $x$ converts to a power series, the initial factor
$(x/2)^{\nu}/\Gamma(\nu+1)$ is omitted (since it cannot be represented in PARI
when $\nu$ is not integral).
The library syntax is \fun{GEN}{ibessel}{GEN nu, GEN x, long prec}.
\subsec{besselj$(\var{nu},x)$}\kbdsidx{besselj}\label{se:besselj}
$J$-Bessel function of index \var{nu} and
argument $x$. If $x$ converts to a power series, the initial factor
$(x/2)^{\nu}/\Gamma(\nu+1)$ is omitted (since it cannot be represented in
PARI when $\nu$ is not integral).
The library syntax is \fun{GEN}{jbessel}{GEN nu, GEN x, long prec}.
\subsec{besseljh$(n,x)$}\kbdsidx{besseljh}\label{se:besseljh}
$J$-Bessel function of half integral index.
More precisely, $\kbd{besseljh}(n,x)$ computes $J_{n+1/2}(x)$ where $n$
must be of type integer, and $x$ is any element of $\C$. In the
present version \vers, this function is not very accurate when $x$ is small.
The library syntax is \fun{GEN}{jbesselh}{GEN n, GEN x, long prec}.
\subsec{besseljzero$(\var{nu},\{k=1\})$}\kbdsidx{besseljzero}\label{se:besseljzero}
$k$-th zero of the $J$-Bessel function of index \var{nu}, close
to $\pi(\nu/2 + k - 1/4)$, usually noted $j_{\nu,k}$.
\bprog
? besseljzero(0) \\ @com{first zero of $J_{0}$}
%1 = 2.4048255576957727686216318793264546431
? besselj(0, %)
%2 = 7.1951595399463653939930598011247182898 E-41
? besseljzero(0, 2) \\ @com{second zero}
%3 = 5.5200781102863106495966041128130274252
? besseljzero(I) \\ @com{also works for complex orders, here $J_{i}$}
%4 = 2.5377... + 1.4753...*I
@eprog\noindent The function uses a Newton iteration due to Temme.
If $\nu$ is real and nonnegative, the result is guaranteed and the function really
returns the $k$-th positive zero of $J_{\nu}$. For general $\nu$, the result
is not well defined, given by the Newton iteration with $\pi(\nu/2 + k - 1/4)$
as a starting value. (N.B. Using this method for large real $\nu$ would give
completely different results than the $j_{\nu,k}$ unless $k$ is large enough.)
The library syntax is \fun{GEN}{besseljzero}{GEN nu, long k, long bitprec}.
\subsec{besselk$(\var{nu},x)$}\kbdsidx{besselk}\label{se:besselk}
$K$-Bessel function of index \var{nu} and argument $x$.
The library syntax is \fun{GEN}{kbessel}{GEN nu, GEN x, long prec}.
\subsec{besseln$(\var{nu},x)$}\kbdsidx{besseln}\label{se:besseln}
Deprecated alias for \kbd{bessely}.
The library syntax is \fun{GEN}{ybessel}{GEN nu, GEN x, long prec}.
\subsec{bessely$(\var{nu},x)$}\kbdsidx{bessely}\label{se:bessely}
$Y$-Bessel function of index \var{nu} and argument $x$.
The library syntax is \fun{GEN}{ybessel}{GEN nu, GEN x, long prec}.
\subsec{besselyzero$(\var{nu},\{k=1\})$}\kbdsidx{besselyzero}\label{se:besselyzero}
$k$-th zero of the $Y$-Bessel function of index \var{nu}, close
to $\pi(\nu/2 + k - 3/4)$, usually noted $y_{\nu,k}$.
\bprog
? besselyzero(0) \\ @com{first zero of $Y_{0}$}
%1 = 0.89357696627916752158488710205833824123
? bessely(0, %)
%2 = 1.8708573650996561952 E-39
? besselyzero(0, 2) \\ @com{second zero}
%3 = 3.9576784193148578683756771869174012814
? besselyzero(I) \\ @com{also works for complex orders, here $Y_{i}$}
%4 = 1.03930... + 1.3266...*I
@eprog\noindent The function uses a Newton iteration due to Temme.
If $\nu$ is real and nonnegative, the result is guaranteed and the function really
returns the $k$-th positive zero of $Y_{\nu}$. For general $\nu$, the result
is not well defined, given by Newton iteration with $\pi(\nu/2 + k - 3/4)$
as a starting value. (N.B. Using this method for large real $\nu$ would give
completely different results than the $y_{\nu,k}$ unless $k$ is large enough.)
The library syntax is \fun{GEN}{besselyzero}{GEN nu, long k, long bitprec}.
\subsec{cos$(x)$}\kbdsidx{cos}\label{se:cos}
Cosine of $x$.
Note that, for real $x$, cosine and sine can be obtained simultaneously as
\bprog
cs(x) = my(z = exp(I*x)); [real(z), imag(z)];
@eprog and for general complex $x$ as
\bprog
cs2(x) = my(z = exp(I*x), u = 1/z); [(z+u)/2, (z-u)/2];
@eprog Note that the latter function suffers from catastrophic cancellation
when $z^{2} \approx \pm1$.
The library syntax is \fun{GEN}{gcos}{GEN x, long prec}.
\subsec{cosh$(x)$}\kbdsidx{cosh}\label{se:cosh}
Hyperbolic cosine of $x$.
The library syntax is \fun{GEN}{gcosh}{GEN x, long prec}.
\subsec{cotan$(x)$}\kbdsidx{cotan}\label{se:cotan}
Cotangent of $x$.
The library syntax is \fun{GEN}{gcotan}{GEN x, long prec}.
\subsec{cotanh$(x)$}\kbdsidx{cotanh}\label{se:cotanh}
Hyperbolic cotangent of $x$.
The library syntax is \fun{GEN}{gcotanh}{GEN x, long prec}.
\subsec{dilog$(x)$}\kbdsidx{dilog}\label{se:dilog}
Principal branch of the dilogarithm of $x$,
i.e.~analytic continuation of the power series
$\text{Li}_{2}(x)=\sum_{n\ge1}x^{n}/n^{2}$.
The library syntax is \fun{GEN}{dilog}{GEN x, long prec}.
\subsec{eint1$(x,\{n\})$}\kbdsidx{eint1}\label{se:eint1}
Exponential integral $\int_{x}^{\infty} \dfrac{e^{-t}}{t}\,dt =
\kbd{incgam}(0, x)$, where the latter expression extends the function
definition from real $x > 0$ to all complex $x \neq 0$.
If $n$ is present, we must have $x > 0$; the function returns the
$n$-dimensional vector $[\kbd{eint1}(x),\dots,\kbd{eint1}(nx)]$. Contrary to
other transcendental functions, and to the default case ($n$ omitted), the
values are correct up to a bounded \emph{absolute}, rather than relative,
error $10^{-n}$, where $n$ is \kbd{precision}$(x)$ if $x$ is a \typ{REAL}
and defaults to \kbd{realprecision} otherwise. (In the most important
application, to the computation of $L$-functions via approximate functional
equations, those values appear as weights in long sums and small individual
relative errors are less useful than controlling the absolute error.) This is
faster than repeatedly calling \kbd{eint1($i$ * x)}, but less precise.
The library syntax is \fun{GEN}{veceint1}{GEN x, GEN n = NULL, long prec}.
Also available is \fun{GEN}{eint1}{GEN x, long prec}.
\subsec{ellE$(k)$}\kbdsidx{ellE}\label{se:ellE}
Complete elliptic integral of the second kind
$$E(k)=\int_{0}^{\pi/2}(1-k^{2}\sin(t)^{2})^{1/2}\,dt$$ for the
complex parameter $k$ using the agm.
In particular, the perimeter of an ellipse of semi-major and semi-minor axes
$a$ and $b$ is given by
\bprog
e = sqrt(1 - (b/a)^2); \\ eccentricity
4 * a * ellE(e) \\ perimeter
@eprog
The library syntax is \fun{GEN}{ellE}{GEN k, long prec}.
\subsec{ellK$(k)$}\kbdsidx{ellK}\label{se:ellK}
Complete elliptic integral of the first kind
$$K(k)=\int_{0}^{\pi/2}(1-k^{2}\sin(t)^{2})^{-1/2}\,dt$$ for the
complex parameter $k$ using the agm.
The library syntax is \fun{GEN}{ellK}{GEN k, long prec}.
\subsec{erfc$(x)$}\kbdsidx{erfc}\label{se:erfc}
Complementary error function, analytic continuation of
$(2/\sqrt\pi)\int_{x}^{\infty} e^{-t^{2}}\,dt
= \text{sign(x)}\kbd{incgam}(1/2,x^{2})/\sqrt\pi$ for real $x \neq 0$.
The latter expression extends the function definition from real $x$ to
complex $x$ with positive real part (or zero real part and positive
imaginary part). This is extended to the whole complex plane by
the functional equation $\kbd{erfc}(-x) = 2 - \kbd{erfc}(x)$.
\bprog
? erfc(0)
%1 = 1.0000000000000000000000000000000000000
? erfc(1)
%2 = 0.15729920705028513065877936491739074071
? erfc(1+I)
%3 = -0.31615128169794764488027108024367036903
- 0.19045346923783468628410886196916244244*I
@eprog
The library syntax is \fun{GEN}{gerfc}{GEN x, long prec}.
\subsec{eta$(z,\{\fl=0\})$}\kbdsidx{eta}\label{se:eta}
Variants of \idx{Dedekind}'s $\eta$ function.
If $\fl = 0$, return $\prod_{n=1}^{\infty}(1-q^{n})$, where $q$ depends on $x$
in the following way:
\item $q = e^{2i\pi x}$ if $x$ is a \emph{complex number} (which must then
have positive imaginary part); notice that the factor $q^{1/24}$ is
missing!
\item $q = x$ if $x$ is a \typ{PADIC}, or can be converted to a
\emph{power series} (which must then have positive valuation).
If $\fl$ is nonzero, $x$ is converted to a complex number and we return the
true $\eta$ function, $q^{1/24}\prod_{n=1}^{\infty}(1-q^{n})$,
where $q = e^{2i\pi x}$.
The library syntax is \fun{GEN}{eta0}{GEN z, long flag, long prec}.
Also available is \fun{GEN}{trueeta}{GEN x, long prec} ($\fl=1$).
\subsec{exp$(x)$}\kbdsidx{exp}\label{se:exp}
Exponential of $x$.
$p$-adic arguments with positive valuation are accepted.
The library syntax is \fun{GEN}{gexp}{GEN x, long prec}.
For a \typ{PADIC} $x$, the function
\fun{GEN}{Qp_exp}{GEN x} is also available.
\subsec{expm1$(x)$}\kbdsidx{expm1}\label{se:expm1}
Return $\exp(x)-1$, computed in a way that is also accurate
when the real part of $x$ is near $0$.
A naive direct computation would suffer from catastrophic cancellation;
PARI's direct computation of $\exp(x)$ alleviates this well known problem at
the expense of computing $\exp(x)$ to a higher accuracy when $x$ is small.
Using \kbd{expm1} is recommended instead:
\bprog
? default(realprecision, 10000); x = 1e-100;
? a = expm1(x);
time = 4 ms.
? b = exp(x)-1;
time = 4 ms.
? default(realprecision, 10040); x = 1e-100;
? c = expm1(x); \\ reference point
? abs(a-c)/c \\ relative error in expm1(x)
%7 = 1.4027986153764843997 E-10019
? abs(b-c)/c \\ relative error in exp(x)-1
%8 = 1.7907031188259675794 E-9919
@eprog\noindent As the example above shows, when $x$ is near $0$,
\kbd{expm1} is more accurate than \kbd{exp(x)-1}.
The library syntax is \fun{GEN}{gexpm1}{GEN x, long prec}.
\subsec{gamma$(s)$}\kbdsidx{gamma}\label{se:gamma}
For $s$ a complex number, evaluates Euler's gamma
function\sidx{gamma-function}, which is the analytic continuation of
$$\Gamma(s)=\int_{0}^{\infty} t^{s-1}\exp(-t)\,dt,\quad \Re(s) > 0.$$
Error if $s$ is a nonpositive integer, where $\Gamma$ has a (simple) pole.
\bprog
? gamma(5) \\ @com $\Gamma(n) = (n-1)!$ for a positive integer $n$
%1 = 24.000000000000000000000000000000000000
? gamma(0)
*** at top-level: gamma(0)
*** ^--------
*** gamma: domain error in gamma: argument = nonpositive integer
? gamma(x + O(x^3))
%2 = x^-1 - 0.57721566490153286060651209008240243104 + O(x)
@eprog
For $s$ a \typ{PADIC}, evaluates the Morita gamma function at $s$, that
is the unique continuous $p$-adic function on the $p$-adic integers
extending $\Gamma_{p}(k)=(-1)^{k} \prod_{j<k}'j$, where the prime means that
$p$ does not divide $j$.
\bprog
? gamma(1/4 + O(5^10))
%1= 1 + 4*5 + 3*5^4 + 5^6 + 5^7 + 4*5^9 + O(5^10)
? algdep(%,4)
%2 = x^4 + 4*x^2 + 5
@eprog
The library syntax is \fun{GEN}{ggamma}{GEN s, long prec}.
For a \typ{PADIC} $x$, the function \fun{GEN}{Qp_gamma}{GEN x} is
also available.
\subsec{gammah$(x)$}\kbdsidx{gammah}\label{se:gammah}
Gamma function evaluated at the argument $x+1/2$.
The library syntax is \fun{GEN}{ggammah}{GEN x, long prec}.
\subsec{gammamellininv$(G,t,\{m=0\})$}\kbdsidx{gammamellininv}\label{se:gammamellininv}
Returns the value at $t$ of the inverse Mellin transform
$G$ initialized by \tet{gammamellininvinit}. If the optional parameter
$m$ is present, return the $m$-th derivative $G^{(m)}(t)$.
\bprog
? G = gammamellininvinit([0]);
? gammamellininv(G, 2) - 2*exp(-Pi*2^2)
%2 = -4.484155085839414627 E-44
@eprog
The shortcut
\bprog
gammamellininv(A,t,m)
@eprog\noindent for
\bprog
gammamellininv(gammamellininvinit(A,m), t)
@eprog\noindent is available.
The library syntax is \fun{GEN}{gammamellininv}{GEN G, GEN t, long m, long bitprec}.
\subsec{gammamellininvasymp$(A,n,\{m=0\})$}\kbdsidx{gammamellininvasymp}\label{se:gammamellininvasymp}
Return the first $n$ terms of the asymptotic expansion at infinity
of the $m$-th derivative $K^{(m)}(t)$ of the inverse Mellin transform of the
function
$$f(s) = \Gamma_{\R}(s+a_{1})\*\ldots\*\Gamma_{\R}(s+a_{d})\;,$$
where \kbd{A} is the vector $[a_{1},\ldots,a_{d}]$ and
$\Gamma_{\R}(s)=\pi^{-s/2}\*\Gamma(s/2)$ (Euler's \kbd{gamma}).
The result is a vector
$[M[1]...M[n]]$ with M[1]=1, such that
$$K^{(m)}(t)=\sqrt{2^{d+1}/d}t^{a+m(2/d-1)}e^{-d\pi t^{2/d}}
\sum_{n\ge0} M[n+1] (\pi t^{2/d})^{-n} $$
with $a=(1-d+\sum_{1\le j\le d}a_{j})/d$. We also allow $A$ to be the
output of \kbd{gammamellininvinit}.
The library syntax is \fun{GEN}{gammamellininvasymp}{GEN A, long precdl, long n}.
\subsec{gammamellininvinit$(A,\{m=0\})$}\kbdsidx{gammamellininvinit}\label{se:gammamellininvinit}
Initialize data for the computation by \tet{gammamellininv} of
the $m$-th derivative of the inverse Mellin transform of the function
$$f(s) = \Gamma_{\R}(s+a_{1})\*\ldots\*\Gamma_{\R}(s+a_{d})$$
where \kbd{A} is the vector $[a_{1},\ldots,a_{d}]$ and
$\Gamma_{\R}(s)=\pi^{-s/2}\*\Gamma(s/2)$ (Euler's \kbd{gamma}). This is the
special case of Meijer's $G$ functions used to compute $L$-values via the
approximate functional equation. By extension, $A$ is allowed to be an
\kbd{Ldata} or an \kbd{Linit}, understood as the inverse Mellin transform
of the $L$-function gamma factor.
\misctitle{Caveat} Contrary to the PARI convention, this function
guarantees an \emph{absolute} (rather than relative) error bound.
For instance, the inverse Mellin transform of $\Gamma_{\R}(s)$ is
$2\exp(-\pi z^{2})$:
\bprog
? G = gammamellininvinit([0]);
? gammamellininv(G, 2) - 2*exp(-Pi*2^2)
%2 = -4.484155085839414627 E-44
@eprog
The inverse Mellin transform of $\Gamma_{\R}(s+1)$ is
$2 z\exp(-\pi z^{2})$, and its second derivative is
$ 4\pi z \exp(-\pi z^{2})(2\pi z^{2} - 3)$:
\bprog
? G = gammamellininvinit([1], 2);
? a(z) = 4*Pi*z*exp(-Pi*z^2)*(2*Pi*z^2-3);
? b(z) = gammamellininv(G,z);
? t(z) = b(z) - a(z);
? t(3/2)
%3 = -1.4693679385278593850 E-39
@eprog
The library syntax is \fun{GEN}{gammamellininvinit}{GEN A, long m, long bitprec}.
\subsec{hypergeom$(\{N\},\{D\},z)$}\kbdsidx{hypergeom}\label{se:hypergeom}
General hypergeometric function, where \kbd{N} and \kbd{D} are
the vector of parameters in the numerator and denominator respectively,
evaluated at the argument $z$, which may be complex, $p$-adic or a power
series.
This function implements hypergeometric functions
$$_{p}F_{q}((a_{i})_{1\le i\le p},(b_{j})_{1\le j\le q};z)
= \sum_{n\ge0}\dfrac{\prod_{1\le i\le p}(a_{i})_{n}}{\prod_{1\le j\le q}(b_{j})_{n}}
\dfrac{z^{n}}{n!}\;,$$
where $(a)_{n}=a(a+1)\cdots(a+n-1)$ is the rising Pochhammer symbol. For this
to make sense, none of the $b_{j}$ must be a negative or zero integer. The
corresponding general GP command is
\bprog
hypergeom([a1,a2,...,ap], [b1,b2,...,bq], z)
@eprog\noindent Whenever $p = 1$ or $q = 1$, a one-element vector can be
replaced by the element it contains. Whenever $p = 0$ or $q = 0$, an empty
vector can be omitted. For instance hypergeom(,b,z) computes
$_{0}F_{1}(;b;z)$.
The non-archimedean cases ($z$ a $p$-adic or power series) are handled
trivially. We now discuss the case of a complex $z$; we distinguish three
kinds of such functions according to their radius of convergence $R$:
\item $q\ge p$: $R = \infty$.
\item $q=p-1$: $R=1$. Nonetheless, by integral representations, $_{p}F_{q}$
can be analytically continued outside the disc of convergence.
\item $q\le p-2$: $R=0$. By integral representations, one can make sense of
the function in a suitable domain, by analytic continuation.
The list of implemented functions and their domain of validity in
our implementation is as follows:
\kbd{F01}: \kbd{hypergeom(,a,z)} (or \kbd{[a]}).
This is essentially a Bessel function and computed as such. $R=\infty$.
\kbd{F10}: \kbd{hypergeom(a,,z)}
This is $(1-z)^{-a}$.
\kbd{F11}: \kbd{hypergeom(a,b,z)} is the Kummer confluent hypergeometric
function, computed by summing the series. $R=\infty$
\kbd{F20}: \kbd{hypergeom([a,b],,z)}. $R=0$, computed as
$$\dfrac{1}{\Gamma(a)}\int_{0}^{\infty} t^{a-1}(1-zt)^{-b}e^{-t}\,dt\;.$$
\kbd{F21}: \kbd{hypergeom([a,b],c,z)} (or \kbd{[c]}).
$R=1$, extended by
$$\dfrac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)}
\int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-zt)^{a}\,dt\;.$$
This is Gauss's Hypergeometric function, and almost all of the implementation
work is done for this function.
\kbd{F31}: \kbd{hypergeom([a,b,c],d,z)} (or \kbd{[d]}). $R=0$, computed as
$$\dfrac{1}{\Gamma(a)}\int_{0}^{\infty} t^{a-1}e^{-t}
{}_{2}F_{1}(b,c;d;tz)\,dt\;.$$
\kbd{F32}: \kbd{hypergeom([a,b,c],[d,e],z)}. $R=1$, extended by
$$\dfrac{\Gamma(e)}{\Gamma(c)\Gamma(e-c)}
\int_{0}^{1}t^{c-1}(1-t)^{e-c-1}{}_{2}F_{1}(a,b;d;tz)\,dt\;.$$
For other inputs: if $R=\infty$ or $R=1$ and $|z| < 1- \varepsilon$ is not
too close to the circle of convergence, we simply sum the series.
\bprog
? hypergeom([3,2], 3.4, 0.7) \\ 2F1(3,2; 3.4; 0.7)
%1 = 7.9999999999999999999999999999999999999
? a=5/3; T1=hypergeom([1,1,1],[a,a],1) \\ 3F2(1,1,1; a,a; 1)
%2 = 3.1958592952314032651578713968927593818
? T2=hypergeom([2,1,1],[a+1,a+1],1)
%3 = 1.6752931349345765309211012564734179541
? T3=hypergeom([2*a-1,1,1],[a+1,a+1],1)
%4 = 1.9721037126267142061807688820853354440
? T1 + (a-1)^2/(a^2*(2*a-3)) * (T2-2*(a-1)*T3) \\
- gamma(a)^2/((2*a-3)*gamma(2*a-2))
%5 = -1.880790961315660013 E-37 \\ ~ 0
@eprog\noindent This identity is due to Bercu.
The library syntax is \fun{GEN}{hypergeom}{GEN N = NULL, GEN D = NULL, GEN z, long prec}.
\subsec{hyperu$(a,b,z)$}\kbdsidx{hyperu}\label{se:hyperu}
$U$-confluent hypergeometric function with complex
parameters $a, b, z$. Note that $_{2}F_{0}(a,b,z)
= (-z)^{-a}U(a, a+1-b, -1/z)$,
\bprog
? hyperu(1, 3/2, I)
%1 = 0.23219... - 0.80952...*I
? -I * hypergeom([1, 1+1-3/2], [], -1/I)
%2 = 0.23219... - 0.80952...*I
@eprog
The library syntax is \fun{GEN}{hyperu}{GEN a, GEN b, GEN z, long prec}.
\subsec{incgam$(s,x,\{g\})$}\kbdsidx{incgam}\label{se:incgam}
Incomplete gamma function $\int_{x}^{\infty} e^{-t}t^{s-1}\,dt$,
extended by
analytic continuation to all complex $x, s$ not both $0$. The relative error
is bounded in terms of the precision of $s$ (the accuracy of $x$ is ignored
when determining the output precision). When $g$ is given, assume that
$g=\Gamma(s)$. For small $|x|$, this will speed up the computation.
The library syntax is \fun{GEN}{incgam0}{GEN s, GEN x, GEN g = NULL, long prec}.
Also available is \fun{GEN}{incgam}{GEN s, GEN x, long prec}.
\subsec{incgamc$(s,x)$}\kbdsidx{incgamc}\label{se:incgamc}
Complementary incomplete gamma function.
The arguments $x$ and $s$ are complex numbers such that $s$ is not a pole of
$\Gamma$ and $|x|/(|s|+1)$ is not much larger than 1 (otherwise the
convergence is very slow). The result returned is $\int_{0}^{x}
e^{-t}t^{s-1}\,dt$.
The library syntax is \fun{GEN}{incgamc}{GEN s, GEN x, long prec}.
\subsec{lambertw$(y,\{\var{branch}=0\})$}\kbdsidx{lambertw}\label{se:lambertw}
Lambert $W$ function, solution of the implicit equation $xe^{x}=y$.
\item For real inputs $y$:
If \kbd{branch = 0}, principal branch $W_{0}$ defined for $y\ge-\exp(-1)$.
If \kbd{branch = -1}, branch $W_{-1}$ defined for $-\exp(-1)\le y<0$.
\item For $p$-adic inputs, $p$ odd: give a solution of $x\exp(x)=y$ if $y$ has
positive valuation, of $\log(x)+x=\log(y)$ otherwise.
\item For $2$-adic inputs: give a solution of $x\exp(x)=y$ if $y$ has
valuation $> 1$, of $\log(x)+x=\log(y)$ otherwise.
\misctitle{Caveat}
Complex values of $y$ are also supported but experimental. The other
branches $W_{k}$ for $k$ not equal to $0$ or $-1$ (set \kbd{branch} to $k$)
are also experimental.
For $k\ge1$, $W_{-1-k}(x)=\overline{W_{k}(x)}$, and $\Im(W_{k}(x))$ is
close to $(\pi/2)(4k-\text{sign}(x))$.
The library syntax is \fun{GEN}{glambertW}{GEN y, long branch, long prec}.
\subsec{lerchphi$(z,s,a)$}\kbdsidx{lerchphi}\label{se:lerchphi}
Lerch transcendent $\Phi(z,s,a)=\sum_{n\ge0}z^{n}(n+a)^{-s}$ and
analytically continued, for reasonable values of the arguments.
The library syntax is \fun{GEN}{lerchphi}{GEN z, GEN s, GEN a, long prec}.
\subsec{lerchzeta$(s,a,\var{lam})$}\kbdsidx{lerchzeta}\label{se:lerchzeta}
Lerch zeta function
$$L(s,a,\lambda)=\sum_{n\ge0}e^{2\pi i\lambda n}(n+a)^{-s}$$
and analytically continued, for reasonable values of the arguments.
The library syntax is \fun{GEN}{lerchzeta}{GEN s, GEN a, GEN lam, long prec}.
\subsec{lngamma$(x)$}\kbdsidx{lngamma}\label{se:lngamma}
Principal branch of the logarithm of the gamma function of $x$. This
function is analytic on the complex plane with nonpositive integers
removed, and can have much larger arguments than \kbd{gamma} itself.
For $x$ a power series such that $x(0)$ is not a pole of \kbd{gamma},
compute the Taylor expansion. (PARI only knows about regular power series
and can't include logarithmic terms.)
\bprog
? lngamma(1+x+O(x^2))
%1 = -0.57721566490153286060651209008240243104*x + O(x^2)
? lngamma(x+O(x^2))
*** at top-level: lngamma(x+O(x^2))
*** ^-----------------
*** lngamma: domain error in lngamma: valuation != 0
? lngamma(-1+x+O(x^2))
*** lngamma: Warning: normalizing a series with 0 leading term.
*** at top-level: lngamma(-1+x+O(x^2))
*** ^--------------------
*** lngamma: domain error in intformal: residue(series, pole) != 0
@eprog
For $x$ a \typ{PADIC}, return the $p$-adic $\log\Gamma_{p}$ function, which
is the $p$-adic logarithm of Morita's gamma function for $x \in \Z_{p}$,
and Diamond's function if $|x| > 1$.
\bprog
? lngamma(5+O(5^7))
%2 = 4*5^2 + 4*5^3 + 5^4 + 2*5^5 + O(5^6)
? log(gamma(5+O(5^7)))
%3 = 4*5^2 + 4*5^3 + 5^4 + 2*5^5 + O(5^6)
? lngamma(1/5+O(5^4))
%4 = 4*5^-1 + 4 + 2*5 + 5^2 + 5^3 + O(5^4)
? gamma(1/5+O(5^4))
*** at top-level: gamma(1/5+O(5^4))
*** ^-----------------
*** gamma: domain error in gamma: v_p(x) < 0
@eprog
The library syntax is \fun{GEN}{glngamma}{GEN x, long prec}.
\subsec{log$(x)$}\kbdsidx{log}\label{se:log}
Principal branch of the natural logarithm of
$x \in \C^{*}$, i.e.~such that $\Im(\log(x))\in{} ]-\pi,\pi]$.
The branch cut lies
along the negative real axis, continuous with quadrant 2, i.e.~such that
$\lim_{b\to 0^{+}} \log (a+bi) = \log a$ for $a \in\R^{*}$.
The result is complex
(with imaginary part equal to $\pi$) if $x\in \R$ and $x < 0$. In general,
the algorithm uses the formula
$$\log(x) \approx {\pi\over 2\text{agm}(1, 4/s)} - m \log 2, $$
if $s = x 2^{m}$ is large enough. (The result is exact to $B$ bits provided
$s > 2^{B/2}$.) At low accuracies, the series expansion near $1$ is used.
$p$-adic arguments are also accepted for $x$, with the convention that
$\log(p)=0$. Hence in particular $\exp(\log(x))/x$ is not in general equal to
1 but to a $(p-1)$-th root of unity (or $\pm1$ if $p=2$) times a power of $p$.
The library syntax is \fun{GEN}{glog}{GEN x, long prec}.
For a \typ{PADIC} $x$, the function
\fun{GEN}{Qp_log}{GEN x} is also available.
\subsec{log1p$(x)$}\kbdsidx{log1p}\label{se:log1p}
Return $\log(1+x)$, computed in a way that is also accurate
when the real part of $x$ is near $0$. This is the reciprocal function
of \kbd{expm1}$(x) = \exp(x)-1$.
\bprog
? default(realprecision, 10000); x = Pi*1e-100;
? (expm1(log1p(x)) - x) / x
%2 = -7.668242895059371866 E-10019
? (log1p(expm1(x)) - x) / x
%3 = -7.668242895059371866 E-10019
@eprog\noindent When $x$ is small, this function is both faster and more
accurate than $\log(1+x)$:
\bprog
? \p38
? x = 1e-20;
? localprec(100); c = log1p(x); \\ reference point
? a = log1p(x); abs((a - c)/c)
%6 = 0.E-38
? b = log(1+x); abs((b - c)/c) \\ slightly less accurate
%7 = 1.5930919111324522770 E-38
? for (i=1,10^5,log1p(x))
time = 81 ms.
? for (i=1,10^5,log(1+x))
time = 100 ms. \\ slower, too
@eprog
The library syntax is \fun{GEN}{glog1p}{GEN x, long prec}.
\subsec{polylog$(m,x,\{\fl=0\})$}\kbdsidx{polylog}\label{se:polylog}
One of the different polylogarithms, depending on $\fl$:
If $\fl=0$ or is omitted: $m^{\text{th}}$ polylogarithm of $x$, i.e.~analytic
continuation of the power series $\text{Li}_{m}(x)=\sum_{n\ge1}x^{n}/n^{m}$
($x < 1$). Uses the functional equation linking the values at $x$ and $1/x$
to restrict to the case $|x|\leq 1$, then the power series when
$|x|^{2}\le1/2$, and the power series expansion in $\log(x)$ otherwise.
Using $\fl$, computes a modified $m^{\text{th}}$ polylogarithm of $x$.
We use Zagier's notations; let $\Re_{m}$ denote $\Re$ or $\Im$ depending
on whether $m$ is odd or even:
If $\fl=1$: compute $\tilde D_{m}(x)$, defined for $|x|\le1$ by
$$\Re_{m}\left(\sum_{k=0}^{m-1} \dfrac{(-\log|x|)^{k}}{k!}\text{Li}_{m-k}(x)
+\dfrac{(-\log|x|)^{m-1}}{m!}\log|1-x|\right).$$
If $\fl=2$: compute $D_{m}(x)$, defined for $|x|\le1$ by
$$\Re_{m}\left(\sum_{k=0}^{m-1}\dfrac{(-\log|x|)^{k}}{k!}\text{Li}_{m-k}(x)
-\dfrac{1}{2}\dfrac{(-\log|x|)^{m}}{m!}\right).$$
If $\fl=3$: compute $P_{m}(x)$, defined for $|x|\le1$ by
$$\Re_{m}\left(\sum_{k=0}^{m-1}\dfrac{2^{k}B_{k}}{k!}
(\log|x|)^{k}\text{Li}_{m-k}(x)
-\dfrac{2^{m-1}B_{m}}{m!}(\log|x|)^{m}\right).$$
These three functions satisfy the functional equation
$f_{m}(1/x) = (-1)^{m-1}f_{m}(x)$.
The library syntax is \fun{GEN}{polylog0}{long m, GEN x, long flag, long prec}.
Also available is
\fun{GEN}{gpolylog}{long m, GEN x, long prec} ($\fl = 0$).
\subsec{polylogmult$(s,\{z\},\{t=0\})$}\kbdsidx{polylogmult}\label{se:polylogmult}
For $s$ a vector of positive integers and $z$ a vector of complex
numbers of the same length, returns the multiple polylogarithm value (MPV)
$$\zeta(s_{1},\dots, s_{r}; z_{1},\dots,z_{r})
= \sum_{n_{1}>\dots>n_{r}>0}
\prod_{1\le i\le r}z_{i}^{n_{i}}/n_{i}^{s_{i}}.$$
If $z$ is omitted, assume $z=[1,\dots,1]$, i.e., Multiple Zeta Value.
More generally, return Yamamoto's interpolation between ordinary multiple
polylogarithms ($t = 0$) and star polylogarithms ($t = 1$, using the
condition $n_{1}\ge \dots \ge n_{r} > 0$), evaluated at $t$.
We must have $|z_{1}\cdots z_{i}|\le1$ for all $i$, and if $s_{1}=1$ we
must have $z_{1}\ne1$.
\bprog
? 8*polylogmult([2,1],[-1,1]) - zeta(3)
%1 = 0.E-38
@eprog\noindent
\misctitle{Warning} The algorithm used converges when the $z_{i}$ are
$\pm 1$. It may not converge as some $z_{i} \neq 1$ becomes too close to $1$,
even at roots of $1$ of moderate order:
\bprog
? polylogmult([2,1], (99+20*I)/101 * [1,1])
*** polylogmult: sorry, polylogmult in this range is not yet implemented.
? polylogmult([2,1], exp(I*Pi/20)* [1,1])
*** polylogmult: sorry, polylogmult in this range is not yet implemented.
@eprog\noindent More precisely, if $y_{i} := 1 / (z_{1}\cdots z_{i})$ and
$$ v := \min_{i < j; y_{i} \neq 1} |(1 - y_{i}) y_{j}| > 1/4$$
then the algorithm computes the value up to a $2^{-b}$ absolute error
in $O(k^{2}N)$ operations on floating point numbers of $O(N)$ bits,
where $k = \sum_{i} s_{i}$ is the weight and $N = b / \log_{2} (4v)$.
The library syntax is \fun{GEN}{polylogmult_interpolate}{GEN s, GEN z = NULL, GEN t = NULL, long prec}.
Also available is
\fun{GEN}{polylogmult}{GEN s, GEN z, long prec} ($t$ is \kbd{NULL}).
\subsec{psi$(x,\{\var{der}\})$}\kbdsidx{psi}\label{se:psi}
The $\psi$-function of $x$, i.e.~the logarithmic derivative
$\Gamma'(x)/\Gamma(x)$. If $\var{der}$ is set, return the $\var{der}$-th derivative.
For $s$ a \typ{PADIC}, evaluates the $\var{der}$-th derivative of the Morita
$\psi$ function at $s$.
The library syntax is \fun{GEN}{gpsi_der}{GEN x, long der, long prec}.
For a \typ{PADIC} $x$, the function
\fun{GEN}{Qp_psi}{GEN x, long der} is also available.
For $\var{der} = 0$,
\fun{GEN}{gpsi}{GEN x, long prec} is also available.
\subsec{rootsof1$(N)$}\kbdsidx{rootsof1}\label{se:rootsof1}
Return the column vector $v$ of all complex $N$-th roots of $1$, where $N$
is a positive integer. In other words,
$v[k] = \exp(2I(k-1)\pi/N)$ for $k = 1, \dots, N$. Rational components
(e.g., the roots $\pm1$ and $\pm I$) are given exactly, not as floating point
numbers:
\bprog
? rootsof1(4)
%1 = [1, I, -1, -I]~
? rootsof1(3)
%2 = [1, -1/2 + 0.866025...*I, -1/2 - 0.866025...*I]~
@eprog
The library syntax is \fun{GEN}{grootsof1}{long N, long prec}.
\subsec{sin$(x)$}\kbdsidx{sin}\label{se:sin}
Sine of $x$.
Note that, for real $x$, cosine and sine can be obtained simultaneously as
\bprog
cs(x) = my(z = exp(I*x)); [real(z), imag(z)];
@eprog and for general complex $x$ as
\bprog
cs2(x) = my(z = exp(I*x), u = 1/z); [(z+u)/2, (z-u)/2];
@eprog Note that the latter function suffers from catastrophic cancellation
when $z^{2} \approx \pm1$.
The library syntax is \fun{GEN}{gsin}{GEN x, long prec}.
\subsec{sinc$(x)$}\kbdsidx{sinc}\label{se:sinc}
Cardinal sine of $x$, i.e. $\sin(x)/x$ if $x\neq 0$, $1$ otherwise.
Note that this function also allows to compute
$$(1-\cos(x)) / x^{2} = \kbd{sinc}(x/2)^{2} / 2$$
accurately near $x = 0$.
The library syntax is \fun{GEN}{gsinc}{GEN x, long prec}.
\subsec{sinh$(x)$}\kbdsidx{sinh}\label{se:sinh}
Hyperbolic sine of $x$.
The library syntax is \fun{GEN}{gsinh}{GEN x, long prec}.
\subsec{sqr$(x)$}\kbdsidx{sqr}\label{se:sqr}
Square of $x$. This operation is not completely
straightforward, i.e.~identical to $x * x$, since it can usually be
computed more efficiently (roughly one-half of the elementary
multiplications can be saved). Also, squaring a $2$-adic number increases
its precision. For example,
\bprog
? (1 + O(2^4))^2
%1 = 1 + O(2^5)
? (1 + O(2^4)) * (1 + O(2^4))
%2 = 1 + O(2^4)
@eprog\noindent
Note that this function is also called whenever one multiplies two objects
which are known to be \emph{identical}, e.g.~they are the value of the same
variable, or we are computing a power.
\bprog
? x = (1 + O(2^4)); x * x
%3 = 1 + O(2^5)
? (1 + O(2^4))^4
%4 = 1 + O(2^6)
@eprog\noindent
(note the difference between \kbd{\%2} and \kbd{\%3} above).
The library syntax is \fun{GEN}{gsqr}{GEN x}.
\subsec{sqrt$(x)$}\kbdsidx{sqrt}\label{se:sqrt}
Principal branch of the square root of $x$, defined as $\sqrt{x} =
\exp(\log x / 2)$. In particular, we have
$\text{Arg}(\text{sqrt}(x))\in{} ]-\pi/2, \pi/2]$, and if $x\in \R$ and $x<0$,
then the result is complex with positive imaginary part.
Intmod a prime $p$, \typ{PADIC} and \typ{FFELT} are allowed as arguments. In
the first 2 cases (\typ{INTMOD}, \typ{PADIC}), the square root (if it
exists) which is returned is the one whose first $p$-adic digit is in the
interval $[0,p/2]$. For other arguments, the result is undefined.
The library syntax is \fun{GEN}{gsqrt}{GEN x, long prec}.
For a \typ{PADIC} $x$, the function
\fun{GEN}{Qp_sqrt}{GEN x} is also available.
\subsec{sqrtn$(x,n,\{\&z\})$}\kbdsidx{sqrtn}\label{se:sqrtn}
Principal branch of the $n$th root of $x$,
i.e.~such that $\text{Arg}(\text{sqrtn}(x))\in{} ]-\pi/n, \pi/n]$. Intmod
a prime and $p$-adics are allowed as arguments.
If $z$ is present, it is set to a suitable root of unity allowing to
recover all the other roots. If it was not possible, z is
set to zero. In the case this argument is present and no $n$th root exist,
$0$ is returned instead of raising an error.
\bprog
? sqrtn(Mod(2,7), 2)
%1 = Mod(3, 7)
? sqrtn(Mod(2,7), 2, &z); z
%2 = Mod(6, 7)
? sqrtn(Mod(2,7), 3)
*** at top-level: sqrtn(Mod(2,7),3)
*** ^-----------------
*** sqrtn: nth-root does not exist in gsqrtn.
? sqrtn(Mod(2,7), 3, &z)
%2 = 0
? z
%3 = 0
@eprog
The following script computes all roots in all possible cases:
\bprog
sqrtnall(x,n)=
{ my(V,r,z,r2);
r = sqrtn(x,n, &z);
if (!z, error("Impossible case in sqrtn"));
if (type(x) == "t_INTMOD" || type(x)=="t_PADIC",
r2 = r*z; n = 1;
while (r2!=r, r2*=z;n++));
V = vector(n); V[1] = r;
for(i=2, n, V[i] = V[i-1]*z);
V
}
addhelp(sqrtnall,"sqrtnall(x,n):compute the vector of nth-roots of x");
@eprog\noindent
The library syntax is \fun{GEN}{gsqrtn}{GEN x, GEN n, GEN *z = NULL, long prec}.
If $x$ is a \typ{PADIC}, the function
\fun{GEN}{Qp_sqrtn}{GEN x, GEN n, GEN *z} is also available.
\subsec{tan$(x)$}\kbdsidx{tan}\label{se:tan}
Tangent of $x$.
The library syntax is \fun{GEN}{gtan}{GEN x, long prec}.
\subsec{tanh$(x)$}\kbdsidx{tanh}\label{se:tanh}
Hyperbolic tangent of $x$.
The library syntax is \fun{GEN}{gtanh}{GEN x, long prec}.
\subsec{teichmuller$(x,\{\var{tab}\})$}\kbdsidx{teichmuller}\label{se:teichmuller}
Teichm\"uller character of the $p$-adic number $x$, i.e. the unique
$(p-1)$-th root of unity congruent to $x / p^{v_{p}(x)}$ modulo $p$.
If $x$ is of the form $[p,n]$, for a prime $p$ and integer $n$,
return the lifts to $\Z$ of the images of $i + O(p^{n})$ for
$i = 1, \dots, p-1$, i.e. all roots of $1$ ordered by residue class modulo
$p$. Such a vector can be fed back to \kbd{teichmuller}, as the
optional argument \kbd{tab}, to speed up later computations.
\bprog
? z = teichmuller(2 + O(101^5))
%1 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)
? z^100
%2 = 1 + O(101^5)
? T = teichmuller([101, 5]);
? teichmuller(2 + O(101^5), T)
%4 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)
@eprog\noindent As a rule of thumb, if more than
$$p \,/\, 2(\log_{2}(p) + \kbd{hammingweight}(p))$$
values of \kbd{teichmuller} are to be computed, then it is worthwile to
initialize:
\bprog
? p = 101; n = 100; T = teichmuller([p,n]); \\ instantaneous
? for(i=1,10^3, vector(p-1, i, teichmuller(i+O(p^n), T)))
time = 60 ms.
? for(i=1,10^3, vector(p-1, i, teichmuller(i+O(p^n))))
time = 1,293 ms.
? 1 + 2*(log(p)/log(2) + hammingweight(p))
%8 = 22.316[...]
@eprog\noindent Here the precomputation induces a speedup by a factor
$1293/ 60 \approx 21.5$.
\misctitle{Caveat}
If the accuracy of \kbd{tab} (the argument $n$ above) is lower than the
precision of $x$, the \emph{former} is used, i.e. the cached value is not
refined to higher accuracy. It the accuracy of \kbd{tab} is larger, then
the precision of $x$ is used:
\bprog
? Tlow = teichmuller([101, 2]); \\ lower accuracy !
? teichmuller(2 + O(101^5), Tlow)
%10 = 2 + 83*101 + O(101^5) \\ no longer a root of 1
? Thigh = teichmuller([101, 10]); \\ higher accuracy
? teichmuller(2 + O(101^5), Thigh)
%12 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)
@eprog
The library syntax is \fun{GEN}{teichmuller}{GEN x, GEN tab = NULL}.
Also available are the functions \fun{GEN}{teich}{GEN x} (\kbd{tab} is
\kbd{NULL}) as well as
\fun{GEN}{teichmullerinit}{long p, long n}.
\subsec{theta$(q,z)$}\kbdsidx{theta}\label{se:theta}
Jacobi sine theta-function
$$ \theta_{1}(z, q) =
2q^{1/4} \sum_{n\geq 0} (-1)^{n} q^{n(n+1)} \sin((2n+1)z).$$
The library syntax is \fun{GEN}{theta}{GEN q, GEN z, long prec}.
\subsec{thetanullk$(q,k)$}\kbdsidx{thetanullk}\label{se:thetanullk}
$k$-th derivative at $z=0$ of $\kbd{theta}(q,z)$.
The library syntax is \fun{GEN}{thetanullk}{GEN q, long k, long prec}.
\fun{GEN}{vecthetanullk}{GEN q, long k, long prec} returns the vector
of all $\dfrac{d^{i}\theta}{dz^{i}}(q,0)$ for all odd $i = 1, 3, \dots, 2k-1$.
\fun{GEN}{vecthetanullk_tau}{GEN tau, long k, long prec} returns
\kbd{vecthetanullk\_tau} at $q = \exp(2i\pi \kbd{tau})$.
\subsec{weber$(x,\{\fl=0\})$}\kbdsidx{weber}\label{se:weber}
One of Weber's three $f$ functions.
If $\fl=0$, returns
$$f(x)=\exp(-i\pi/24)\cdot\eta((x+1)/2)\,/\,\eta(x) \quad\hbox{such that}\quad
j=(f^{24}-16)^{3}/f^{24}\,,$$
where $j$ is the elliptic $j$-invariant (see the function \kbd{ellj}).
If $\fl=1$, returns
$$f_{1}(x)=\eta(x/2)\,/\,\eta(x)\quad\hbox{such that}\quad
j=(f_{1}^{24}+16)^{3}/f_{1}^{24}\,.$$
Finally, if $\fl=2$, returns
$$f_{2}(x)=\sqrt{2}\eta(2x)\,/\,\eta(x)\quad\hbox{such that}\quad
j=(f_{2}^{24}+16)^{3}/f_{2}^{24}.$$
Note the identities $f^{8}=f_{1}^{8}+f_{2}^{8}$ and $ff_{1}f_{2}=\sqrt2$.
The library syntax is \fun{GEN}{weber0}{GEN x, long flag, long prec}.
Also available are \fun{GEN}{weberf}{GEN x, long prec},
\fun{GEN}{weberf1}{GEN x, long prec} and \fun{GEN}{weberf2}{GEN x, long prec}.
\subsec{zeta$(s)$}\kbdsidx{zeta}\label{se:zeta}
For $s \neq 1$ a complex number, Riemann's zeta
function \sidx{Riemann zeta-function} $\zeta(s)=\sum_{n\ge1}n^{-s}$,
computed using the \idx{Euler-Maclaurin} summation formula, except
when $s$ is of type integer, in which case it is computed using
Bernoulli numbers\sidx{Bernoulli numbers} for $s\le0$ or $s>0$ and
even, and using modular forms for $s>0$ and odd. Power series
are also allowed:
\bprog
? zeta(2) - Pi^2/6
%1 = 0.E-38
? zeta(1+x+O(x^3))
%2 = 1.0000000000000000000000000000000000000*x^-1 + \
0.57721566490153286060651209008240243104 + O(x)
@eprog
For $s\neq 1$ a $p$-adic number, Kubota-Leopoldt zeta function at $s$, that
is the unique continuous $p$-adic function on the $p$-adic integers
that interpolates the values of $(1 - p^{-k}) \zeta(k)$ at negative
integers $k$ such that $k \equiv 1 \pmod{p-1}$ (resp. $k$ is odd) if
$p$ is odd (resp. $p = 2$). Power series are not allowed in this case.
\bprog
? zeta(-3+O(5^10))
%1 = 4*5^-1 + 4 + 3*5 + 4*5^3 + 4*5^5 + 4*5^7 + O(5^9)))))
? (1-5^3) * zeta(-3)
%2 = -1.0333333333333333333333333333333333333
? bestappr(%)
%3 = -31/30
? zeta(-3+O(5^10)) - (-31/30)
%4 = O(5^9)
@eprog
The library syntax is \fun{GEN}{gzeta}{GEN s, long prec}.
\subsec{zetahurwitz$(s,x,\{\var{der}=0\})$}\kbdsidx{zetahurwitz}\label{se:zetahurwitz}
Hurwitz zeta function $\zeta(s,x)=\sum_{n\ge0}(n+x)^{-s}$ and
analytically continued, with $s\ne1$ and $x$ not a negative or zero
integer. Note that $\zeta(s,1) = \zeta(s)$. $s$ can also be a polynomial,
rational function, or power series. If \kbd{der} is positive, compute the
\kbd{der}'th derivative with respect to $s$. Note that the derivative
with respect to $x$ is simply $-s\zeta(s+1,x)$.
\bprog
? zetahurwitz(Pi,Pi)
%1 = 0.056155444497585099925180502385781494484
? zetahurwitz(2,1) - zeta(2)
%2 = -2.350988701644575016 E-38
? zetahurwitz(Pi,3) - (zeta(Pi)-1-1/2^Pi)
%3 = -2.2040519077917890774 E-39
? zetahurwitz(-7/2,1) - zeta(-7/2)
%4 = -2.295887403949780289 E-41
? zetahurwitz(-2.3,Pi+I*log(2))
%5 = -5.1928369229555125820137832704455696057\
- 6.1349660138824147237884128986232049582*I
? zetahurwitz(-1+x^2+O(x^3),1)
%6 = -0.083333333333333333333333333333333333333\
- 0.16542114370045092921391966024278064276*x^2 + O(x^3)
? zetahurwitz(1+x+O(x^4),2)
%7 = 1.0000000000000000000000000000000000000*x^-1\
- 0.42278433509846713939348790991759756896\
+ 0.072815845483676724860586375874901319138*x + O(x^2)
? zetahurwitz(2,1,2) \\ zeta''(2)
%8 = 1.9892802342989010234208586874215163815
@eprog
The derivative can be used to compute Barnes' multiple gamma functions.
For instance:
\bprog
? mygamma(z)=exp(zetahurwitz(0,z,1)-zeta'(0));
/* Alternate way to compute the gamma function */
? BarnesG(z)=exp(-zetahurwitz(-1,z,1)+(z-1)*lngamma(z)+zeta'(-1));
/* Barnes G function, satisfying G(z+1)=gamma(z)*G(z): */
? BarnesG(6)/BarnesG(5)
% = 24.000000000000000000000000000000000002
@eprog
The library syntax is \fun{GEN}{zetahurwitz}{GEN s, GEN x, long der, long bitprec}.
\subsec{zetamult$(s,\{t=0\})$}\kbdsidx{zetamult}\label{se:zetamult}
For $s$ a vector of positive integers such that $s[1] \geq 2$,
returns the multiple zeta value (MZV)
$$\zeta(s_{1},\dots, s_{k}) = \sum_{n_{1}>\dots>n_{k}>0}
n_{1}^{-s_{1}}\dots n_{k}^{-s_{k}}$$
of length $k$ and weight $\sum_{i} s_{i}$.
More generally, return Yamamoto's $t$-MZV interpolation evaluated at $t$:
for $t = 0$, this is the ordinary MZV; for $t = 1$, we obtain the MZSV
star value, with $\geq$ instead of strict inequalities;
and of course, for $t = \kbd{'x}$ we obtain Yamamoto's one-variable polynomial.
\bprog
? zetamult([2,1]) - zeta(3) \\ Euler's identity
%1 = 0.E-38
? zetamult([2,1], 1) \\ star value
%2 = 2.4041138063191885707994763230228999815
? zetamult([2,1], 'x)
%3 = 1.20205[...]*x + 1.20205[...]
@eprog\noindent
If the bit precision is $B$, this function runs in time
$\tilde{O}(k(B+k)^{2})$ if $t = 0$, and $\tilde{O}(kB^{3})$ otherwise.
In addition to the above format (\kbd{avec}), the function
also accepts a binary word format \kbd{evec} (each $s_{i}$ is replaced
by $s_{i}$ bits, all of them 0 but the last one) giving the MZV
representation as an iterated integral, and an \kbd{index} format
(if $e$ is the positive integer attached the \kbd{evec} vector of
bits, the index is the integer $e + 2^{k-2}$). The function
\kbd{zetamultconvert} allows to pass from one format to the other; the
function \kbd{zetamultall} computes simultaneously all MZVs of weight
$\sum_{i\leq k} s_{i}$ up to $n$.
The library syntax is \fun{GEN}{zetamult_interpolate}{GEN s, GEN t = NULL, long prec}.
Also available is \fun{GEN}{zetamult}{GEN s, long prec} for $t = 0$.
\subsec{zetamultall$(k,\{\fl=0\})$}\kbdsidx{zetamultall}\label{se:zetamultall}
List of all multiple zeta values (MZVs) for weight $s_{1} + \dots + s_{r}$
up to $k$. Binary digits of $\fl$ mean : 0 = star values if set;
1 = values up to to duality if set (see \kbd{zetamultdual}, ignored if
star values); 2 = values of weight $k$ if set (else all values up to weight
$k$); 3 = return the 2-component vector \kbd{[Z, M]}, where $M$ is the vector
of the corresponding indices $m$, i.e., such that
\kbd{zetamult(M[i])} = \kbd{Z[i]}. Note that it is necessary to use
\kbd{zetamultconvert} to have the corresponding \kbd{avec}
$(s_{1},\dots, s_{r})$.
With the default value $\fl=0$, the function returns a vector with $2^{k-1}-1$
components whose $i$-th entry is the MZV of \kbd{index} $i$ (see
\kbd{zetamult}). If the bit precision is $B$, this function runs in time
$O(2^{k} k B^{2})$ for an output of size $O(2^{k} B)$.
\bprog
? Z = zetamultall(5); #Z \\ 2^4 - 1 MZVs of weight <= 5
%1 = 15
? Z[10]
%2 = 0.22881039760335375976874614894168879193
? zetamultconvert(10)
%3 = Vecsmall([3, 2]) \\ @com{index $10$ corresponds to $\zeta(3,2)$}
? zetamult(%) \\ double check
%4 = 0.22881039760335375976874614894168879193
? zetamult(10) \\ we can use the index directly
%5 = 0.22881039760335375976874614894168879193
@eprog\noindent If we use flag bits 1 and 2, we avoid unnecessary
computations and copying, saving a potential factor 4: half the values
are in lower weight and computing up to duality save another rough factor 2.
Unfortunately, the indexing now no longer corresponds to the new shorter
vector of MZVs:
\bprog
? Z = zetamultall(5, 2); #Z \\ up to duality
%6 = 9
? Z = zetamultall(5, 2); #Z \\ only weight 5
%7 = 8
? Z = zetamultall(5, 2 + 4); #Z \\ both
%8 = 4
@eprog\noindent So how to recover the value attached to index 10 ? Flag
bit 3 returns the actual indices used:
\bprog
? [Z, M] = zetamultall(5, 2 + 8); M \\ other indices were not included
%9 = Vecsmall([1, 2, 4, 5, 6, 8, 9, 10, 12])
? Z[8] \\ index m = 10 is now in M[8]
%10 = 0.22881039760335375976874614894168879193
? [Z, M] = zetamultall(5, 2 + 4 + 8); M
%11 = Vecsmall([8, 9, 10, 12])
? Z[3] \\ index m = 10 is now in M[3]
%12 = 0.22881039760335375976874614894168879193
@eprog\noindent The following construction automates the above
programmatically, looking up the MZVs of index $10$ ($=\zeta(3,2)$) in all
cases, without inspecting the various index sets $M$ visually:
\bprog
? Z[vecsearch(M, 10)] \\ works in all the above settings
%13 = 0.22881039760335375976874614894168879193
@eprog
The library syntax is \fun{GEN}{zetamultall}{long k, long flag, long prec}.
\subsec{zetamultconvert$(a,\{\fl=1\})$}\kbdsidx{zetamultconvert}\label{se:zetamultconvert}
\kbd{a} being either an \kbd{evec}, \kbd{avec}, or index \kbd{m},
converts into \kbd{evec} ($\fl=0$), \kbd{avec} ($\fl=1$), or
index \kbd{m} ($\fl=2$).
\bprog
? zetamultconvert(10)
%1 = Vecsmall([3, 2])
? zetamultconvert(13)
%2 = Vecsmall([2, 2, 1])
? zetamultconvert(10, 0)
%3 = Vecsmall([0, 0, 1, 0, 1])
? zetamultconvert(13, 0)
%4 = Vecsmall([0, 1, 0, 1, 1])
@eprog\noindent The last two lines imply that $[3,2]$ and $[2,2,1]$
are dual (reverse order of bits and swap $0$ and $1$ in \kbd{evec} form).
Hence they have the same zeta value:
\bprog
? zetamult([3,2])
%5 = 0.22881039760335375976874614894168879193
? zetamult([2,2,1])
%6 = 0.22881039760335375976874614894168879193
@eprog
The library syntax is \fun{GEN}{zetamultconvert}{GEN a, long flag}.
\subsec{zetamultdual$(s)$}\kbdsidx{zetamultdual}\label{se:zetamultdual}
$s$ being either an \kbd{evec}, \kbd{avec}, or index \kbd{m},
return the dual sequence in \kbd{avec} format.
The dual of a sequence of length $r$ and weight $k$ has length $k-r$ and
weight $k$. Duality is an involution and zeta values attached to
dual sequences are the same:
\bprog
? zetamultdual([4])
%1 = Vecsmall([2, 1, 1])
? zetamultdual(%)
%2 = Vecsmall([4])
? zetamult(%1) - zetamult(%2)
%3 = 0.E-38
@eprog
In \kbd{evec} form, duality simply reverses the order of bits and swaps $0$
and $1$:
\bprog
? zetamultconvert([4], 0)
%4 = Vecsmall([0, 0, 0, 1])
? zetamultconvert([2,1,1], 0)
%5 = Vecsmall([0, 1, 1, 1])
@eprog
The library syntax is \fun{GEN}{zetamultdual}{GEN s}.
\section{Sums, products, integrals and similar functions}
\label{se:sums}
Although the \kbd{gp} calculator is programmable, it is useful to have
a number of preprogrammed loops, including sums, products, and a certain
number of recursions. Also, a number of functions from numerical analysis
like numerical integration and summation of series will be described here.
One of the parameters in these loops must be the control variable, hence a
simple variable name. In the descriptions, the letter $X$ will always denote
any simple variable name, and represents the formal parameter used in the
function. The expression to be summed, integrated, etc. is any legal PARI
expression, including of course expressions using loops.
\misctitle{Library mode}
Since it is easier to program directly the loops in library mode, these
functions are mainly useful for GP programming. On the other hand, numerical
routines code a function (to be integrated, summed, etc.) with two parameters
named
\bprog
GEN (*eval)(void*,GEN)
void *E; \\ context: eval(E, x) must evaluate your function at x.
@eprog\noindent
see the Libpari manual for details.
\misctitle{Numerical integration}\sidx{numerical integration}
The ``double exponential'' (DE) univariate
integration method is implemented in \tet{intnum} and its variants. Romberg
integration is still available under the name \tet{intnumromb}, but
superseded. It is possible to compute numerically integrals to thousands of
decimal places in reasonable time, as long as the integrand is regular. It is
also reasonable to compute numerically integrals in several variables,
although more than two becomes lengthy. The integration domain may be
noncompact, and the integrand may have reasonable singularities at
endpoints. To use \kbd{intnum}, you must split the integral into a sum
of subintegrals where the function has no singularities except at the
endpoints. Polynomials in logarithms are not considered singular, and
neglecting these logs, singularities are assumed to be algebraic (asymptotic
to $C(x-a)^{-\alpha}$ for some $\alpha > -1$ when $x$ is
close to $a$), or to correspond to simple discontinuities of some (higher)
derivative of the function. For instance, the point $0$ is a singularity of
$\text{abs}(x)$.
Assume the bitprecision is $b$, so we try to achieve an absolute error less
than $2^{-b}$. DE methods use $O(b \log b)$ function evaluations and should
work for both compact and non-compact intervals as long as the integrand is
the restriction of an analytic function to a suitable domain and its behaviour
at infinity is correctly described.
When integrating regular functions on a \emph{compact} interval, away from
poles of the integrand, Gauss-Legendre integration (\tet{intnumgauss})
is the best choice, using $O(b)$ function evaluations. To integrate
oscillating functions on non-compact interval, the slower but robust
\tet{intnumosc} is available, performing Gaussian integration on intervals of
length the half-period (or quasi-period) and using Sidi's $mW$ algorithm to
extrapolate their sum. If poles are close to the integration interval,
Gaussian integration may run into difficulties and it is then advisable to
split the integral using \kbd{intnum} to get away from poles, then
\kbd{intnumosc} for the remainder.
For maximal efficiency, abscissas and integration
weights can be precomputed, respectively using \tet{intnuminit} ($O(b^{2})$)
or \tet{intnumgaussinit} ($O(b^{3})$).
\misctitle{Numerical summation}\sidx{numerical summation}
Many numerical summation methods are available to approximate
$\sum_{n\geq n_{0}} f(n)$ at accuracy $2^{-b}$: the overall best choice should
be \tet{sumnum}, which uses Euler-MacLaurin (and $O(b\log b)$ function
evaluations); initialization time (\tet{sumnuminit}) is $O(b^{3})$.
Also available are
\item Abel-Plana summation (\tet{sumnumap}),
also $O(b\log b)$ function evaluations and $O(b^{3})$ initialization
(\tet{sumnumapinit}) with a larger implied constant;
\item Lagrange summation (\tet{sumnumlagrange}) uses $O(b)$ evaluations
but more brittle and the asymptotic behaviour of $f$ must be correctly
indicated. Initialization (\tet{sumnumlagrangeinit}) can vary from $O(b^{2})$
to $O(b^{3})$ depending on the asymptotic behaviour.
\item Sidi summation (\tet{sumnumsidi}) uses $O(b)$ evaluations and should
be more robust than Lagrange summation. No initialization is needed.
\item Monien summation (\tet{sumnummonien}) uses $O(b/\log b)$ evaluations
but is even more brittle than Lagrange and also has a $O(b^{3})$ initialization
(\kbd{summonieninit}).
\item To sum rational functions, use \tet{sumnumrat}.
All the function so far require $f$ to be be the restriction to integers
of a regular function on the reals, and even on the complex numbers for
Monien summation. The following algorithms allow functions defined
only on the integers, under asumptions that are hard to verify. They are
best used heuristically since they in fact are often valid when those
asumptions do not hold, and for instance often yield a result for divergent
series (e.g., Borel resummation).
\item To sum alternating series, use \tet{sumalt}, which requires
$O(b)$ function evaluations.
\item To sum functions of a fixed sign, \tet{sumpos}
uses van Wijngarten's trick to reduce to an alternating series,
for a cost of $O(b\log b)$ function evaluations but beware that $f$ must be
evaluated at large integers, of the order of $2^{b/\alpha}$ if we assume
that $f(n) = O(1 / n^{\alpha+1})$ for some $\alpha > 0$.
\subsec{asympnum$(\var{expr},\{\var{alpha} = 1\})$}\kbdsidx{asympnum}\label{se:asympnum}
Asymptotic expansion of \var{expr}, corresponding to a sequence $u(n)$,
assuming it has the shape
$$u(n) \approx \sum_{i \geq 0} a_{i} n^{-i\alpha}$$
with rational coefficients $a_{i}$ with reasonable height; the algorithm
is heuristic and performs repeated calls to limitnum, with
\kbd{alpha} as in \kbd{limitnum}. As in \kbd{limitnum}, $u(n)$ may be
given either by a closure $n\mapsto u(n)$ or as a closure $N\mapsto
[u(1),\dots,u(N)]$, the latter being often more efficient.
\bprog
? f(n) = n! / (n^n*exp(-n)*sqrt(n));
? asympnum(f)
%2 = [] \\ failure !
? localprec(57); l = limitnum(f)
%3 = 2.5066282746310005024157652848110452530
? asympnum(n->f(n)/l) \\ normalize
%4 = [1, 1/12, 1/288, -139/51840, -571/2488320, 163879/209018880,
5246819/75246796800]
@eprog\noindent and we indeed get a few terms of Stirling's expansion. Note
that it definitely helps to normalize with a limit computed to higher
accuracy (as a rule of thumb, multiply the bit accuracy by $1.612$):
\bprog
? l = limitnum(f)
? asympnum(n->f(n) / l) \\ failure again !!!
%6 = []
@eprog\noindent We treat again the example of the Motzkin numbers $M_{n}$ given
in \kbd{limitnum}:
\bprog
\\ [M_k, M_{k*2}, ..., M_{k*N}] / (3^n / n^(3/2))
? vM(N, k = 1) =
{ my(q = k*N, V);
if (q == 1, return ([1/3]));
V = vector(q); V[1] = V[2] = 1;
for(n = 2, q - 1,
V[n+1] = ((2*n + 1)*V[n] + 3*(n - 1)*V[n-1]) / (n + 2));
f = (n -> 3^n / n^(3/2));
return (vector(N, n, V[n*k] / f(n*k)));
}
? localprec(100); l = limitnum(n->vM(n,10)); \\ 3/sqrt(12*Pi)
? \p38
? asympnum(n->vM(n,10)/l)
%2 = [1, -3/32, 101/10240, -1617/1638400, 505659/5242880000, ...]
@eprog
If \kbd{alpha} is not a rational number, loss of accuracy is
expected, so it should be precomputed to double accuracy, say:
\bprog
? \p38
? asympnum(n->log(1+1/n^Pi),Pi)
%1 = [0, 1, -1/2, 1/3, -1/4, 1/5]
? localprec(76); a = Pi;
? asympnum(n->log(1+1/n^Pi), a) \\ more terms
%3 = [0, 1, -1/2, 1/3, -1/4, 1/5, -1/6, 1/7, -1/8, 1/9, -1/10, 1/11, -1/12]
? asympnum(n->log(1+1/sqrt(n)),1/2) \\ many more terms
%4 = 49
@eprog The expression is evaluated for $n = 1, 2, \dots, N$
for an $N = O(B)$ if the current bit accuracy is $B$. If it is not defined
for one of these values, translate or rescale accordingly:
\bprog
? asympnum(n->log(1-1/n)) \\ can't evaluate at n = 1 !
*** at top-level: asympnum(n->log(1-1/n))
*** ^-----------------------
*** in function asympnum: log(1-1/n)
*** ^----------
*** log: domain error in log: argument = 0
? asympnum(n->-log(1-1/(2*n)))
%5 = [0, 1/2, 1/8, 1/24, ...]
? asympnum(n->-log(1-1/(n+1)))
%6 = [0, 1, -1/2, 1/3, -1/4, ...]
@eprog\noindent
\synt{asympnum}{void *E, GEN (*u)(void *,GEN,long), GEN alpha, long prec}, where \kbd{u(E, n, prec)} must return either $u(n)$ or $[u(1),\dots,u(n)]$
in precision \kbd{prec}. Also available is
\fun{GEN}{asympnum0}{GEN u, GEN alpha, long prec}, where $u$ is a closure
as above or a vector of sufficient length.
\subsec{asympnumraw$(\var{expr},N,\{\var{alpha} = 1\})$}\kbdsidx{asympnumraw}\label{se:asympnumraw}
Return the $N+1$ first terms of asymptotic expansion of \var{expr},
corresponding to a sequence $u(n)$, as floating point numbers. Assume
that the expansion has the shape
$$u(n) \approx \sum_{i \geq 0} a_{i} n^{-i\alpha}$$
and return approximation of $[a_{0}, a_{1},\dots, a_{N}]$.
The algorithm is heuristic and performs repeated calls to limitnum, with
\kbd{alpha} as in \kbd{limitnum}. As in \kbd{limitnum}, $u(n)$ may be
given either by a closure $n\mapsto u(n)$ or as a closure $N\mapsto
[u(1),\dots,u(N)]$, the latter being often more efficient. This function
is related to, but more flexible than, \kbd{asympnum}, which requires
rational asymptotic expansions.
\bprog
? f(n) = n! / (n^n*exp(-n)*sqrt(n));
? asympnum(f)
%2 = [] \\ failure !
? v = asympnumraw(f, 10);
? v[1] - sqrt(2*Pi)
%4 = 0.E-37
? bestappr(v / v[1], 2^60)
%5 = [1, 1/12, 1/288, -139/51840, -571/2488320, 163879/209018880,...]
@eprog\noindent and we indeed get a few terms of Stirling's expansion (the
first 9 terms are correct).
If $u(n)$ has an asymptotic expansion in $n^{-\alpha}$ with $\alpha$ not an
integer, the default $alpha=1$ is inaccurate:
\bprog
? f(n) = (1+1/n^(7/2))^(n^(7/2));
? v1 = asympnumraw(f,10);
? v1[1] - exp(1)
%8 = 4.62... E-12
? v2 = asympnumraw(f,10,7/2);
? v2[1] - exp(1)
%7 0.E-37
@eprog\noindent
As in \kbd{asympnum}, if \kbd{alpha} is not a rational number,
loss of accuracy is expected, so it should be precomputed to double
accuracy, say.
\synt{asympnumraw}{void *E, GEN (*u)(void *,GEN,long), long N, GEN alpha, long prec}, where \kbd{u(E, n, prec)} must return either $u(n)$ or
$[u(1),\dots,u(n)]$ in precision \kbd{prec}.
Also available is
\fun{GEN}{asympnumraw0}{GEN u, GEN alpha, long prec} where $u$ is either
a closure as above or a vector of sufficient length.
\subsec{contfraceval$(\var{CF},t,\{\var{lim}=-1\})$}\kbdsidx{contfraceval}\label{se:contfraceval}
Given a continued fraction \kbd{CF} output by \kbd{contfracinit}, evaluate
the first \kbd{lim} terms of the continued fraction at \kbd{t} (all
terms if \kbd{lim} is negative or omitted; if positive, \kbd{lim} must be
less than or equal to the length of \kbd{CF}.
The library syntax is \fun{GEN}{contfraceval}{GEN CF, GEN t, long lim}.
\subsec{contfracinit$(M,\{\var{lim} = -1\})$}\kbdsidx{contfracinit}\label{se:contfracinit}
Given $M$ representing the power series $S=\sum_{n\ge0} M[n+1]z^{n}$,
transform it into a continued fraction in Euler form, using the
quotient-difference algorithm; restrict to
$n\leq \kbd{lim}$ if latter is nonnegative. $M$ can be a vector, a power
series, a polynomial; if the limiting parameter \kbd{lim} is present, a
rational function is also allowed (and converted to a power series of that
accuracy).
The result is a 2-component vector $[A,B]$ such that
$S = M[1] / (1+A[1]z+B[1]z^{2}/(1+A[2]z+B[2]z^{2}/(1+\dots 1/(1+A[lim/2]z))))$.
Does not work if any coefficient of $M$ vanishes, nor for series for
which certain partial denominators vanish.
The library syntax is \fun{GEN}{contfracinit}{GEN M, long lim}.
Also available is
\fun{GEN}{quodif}{GEN M, long n}
which returns the standard continued fraction, as a vector $C$ such that
$S = c[1] / (1 + c[2]z / (1+c[3]z/(1+\dots...c[lim]z)))$.
\subsec{derivnum$(X=a,\var{expr},\{\var{ind}=1\})$}\kbdsidx{derivnum}\label{se:derivnum}
Numerical derivation of \var{expr} with respect to $X$ at $X=a$. The
order of derivation is 1 by default.
\bprog
? derivnum(x=0, sin(exp(x))) - cos(1)
%1 = 0.E-38
@eprog
A clumsier approach, which would not work in library mode, is
\bprog
? f(x) = sin(exp(x))
? f'(0) - cos(1)
%2 = 0.E-38
@eprog
\item When $a$ is a numerical type (integer, rational number, real number or
\typ{COMPLEX} of such), performs numerical derivation.
\item When $a$ is a (polynomial, rational function or) power series, compute
\kbd{derivnum(t=a,f)} as $f'(a) = (f(a))'/a'$:
\bprog
? derivnum(x = 1 + t, sqrt(x))
%1 = 1/2 - 1/4*t + 3/16*t^2 - 5/32*t^3 + ... + O(t^16)
? derivnum(x = 1/(1 + t), sqrt(x))
%2 = 1/2 + 1/4*t - 1/16*t^2 + 1/32*t^3 + ... + O(t^16)
? derivnum(x = 1 + t + O(t^17), sqrt(x))
%3 = 1/2 - 1/4*t + 3/16*t^2 - 5/32*t^3 + ... + O(t^16)
@eprog
If the parameter \var{ind} is present, it can be
\item a nonnegative integer $m$, in which case we return $f^{(m)}(x)$;
\item or a vector of orders, in which case we return the vector of
derivatives.
\bprog
? derivnum(x = 0, exp(sin(x)), 16) \\ 16-th derivative
%1 = -52635599.000000000000000000000000000000
? round( derivnum(x = 0, exp(sin(x)), [0..13]) ) \\ 0-13-th derivatives
%2 = [1, 1, 1, 0, -3, -8, -3, 56, 217, 64, -2951, -12672, 5973, 309376]
@eprog
\synt{derivfunk}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN ind, long prec}.
Also available is
\fun{GEN}{derivfun}{void *E, GEN (*eval)(void *, GEN), GEN a, long prec}.
If $a$ is a numerical type (\typ{INT}, \typ{FRAC}, \typ{REAL} or
\typ{COMPLEX} of such, we have
\fun{GEN}{derivnumk}{void *E, GEN (*eval)(void *, GEN, long), GEN a, GEN ind, long prec}
and
\fun{GEN}{derivnum}{void *E, GEN (*eval)(void *, GEN, long prec), GEN a, long prec}
\subsec{intcirc$(X=a,R,\var{expr},\{\var{tab}\})$}\kbdsidx{intcirc}\label{se:intcirc}
Numerical
integration of $(2i\pi)^{-1}\var{expr}$ with respect to $X$ on the circle
$|X-a| = R$.
In other words, when \var{expr} is a meromorphic
function, sum of the residues in the corresponding disk; \var{tab} is as in
\kbd{intnum}, except that if computed with \kbd{intnuminit} it should be with
the endpoints \kbd{[-1, 1]}.
\bprog
? \p105
? intcirc(s=1, 0.5, zeta(s)) - 1
time = 496 ms.
%1 = 1.2883911040127271720 E-101 + 0.E-118*I
@eprog
\synt{intcirc}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN R,GEN tab, long prec}.
\subsec{intfuncinit$(t=a,b,f,\{m=0\})$}\kbdsidx{intfuncinit}\label{se:intfuncinit}
Initialize tables for use with integral transforms (such as Fourier,
Laplace or Mellin transforms) in order to compute
$$ \int_{a}^{b} f(t) k(t,z) \, dt $$
for some kernel $k(t,z)$.
The endpoints $a$ and $b$ are coded as in \kbd{intnum}, $f$ is the
function to which the integral transform is to be applied and the
nonnegative integer $m$ is as in \kbd{intnum}: multiply the number of
sampling points roughly by $2^{m}$, hopefully increasing the accuracy. This
function is particularly useful when the function $f$ is hard to compute,
such as a gamma product.
\misctitle{Limitation} The endpoints $a$ and $b$ must be at infinity,
with the same asymptotic behavior. Oscillating types are not supported.
This is easily overcome by integrating vectors of functions, see example
below.
\misctitle{Examples}
\item numerical Fourier transform
$$F(z) = \int_{-\infty}^{+\infty} f(t)e^{-2i\pi z t}\, dt. $$
First the easy case, assume that $f$ decrease exponentially:
\bprog
f(t) = exp(-t^2);
A = [-oo,1];
B = [+oo,1];
\p200
T = intfuncinit(t = A,B , f(t));
F(z) =
{ my(a = -2*I*Pi*z);
intnum(t = A,B, exp(a*t), T);
}
? F(1) - sqrt(Pi)*exp(-Pi^2)
%1 = -1.3... E-212
@eprog\noindent
Now the harder case, $f$ decrease slowly: we must specify the oscillating
behavior. Thus, we cannot precompute usefully since everything depends on
the point we evaluate at:
\bprog
f(t) = 1 / (1+ abs(t));
\p200
\\ Fourier cosine transform
FC(z) =
{ my(a = 2*Pi*z);
intnum(t = [-oo, a*I], [+oo, a*I], cos(a*t)*f(t));
}
FC(1)
@eprog
\item Fourier coefficients: we must integrate over a period, but
\kbd{intfuncinit} does not support finite endpoints.
The solution is to integrate a vector of functions !
\bprog
FourierSin(f, T, k) = \\ first k sine Fourier coeffs
{
my (w = 2*Pi/T);
my (v = vector(k+1));
intnum(t = -T/2, T/2,
my (z = exp(I*w*t));
v[1] = z;
for (j = 2, k, v[j] = v[j-1]*z);
f(t) * imag(v)) * 2/T;
}
FourierSin(t->sin(2*t), 2*Pi, 10)
@eprog\noindent The same technique can be used instead of \kbd{intfuncinit}
to integrate $f(t) k(t,z)$ whenever the list of $z$-values is known
beforehand.
Note that the above code includes an unrelated optimization: the
$\sin(j w t)$ are computed as imaginary parts of $\exp(i j w t)$ and the
latter by successive multiplications.
\item numerical Mellin inversion
$$F(z) = (2i\pi)^{-1} \int_{c -i\infty}^{c+i\infty} f(s)z^{-s}\, ds
= (2\pi)^{-1} \int_{-\infty}^{+\infty}
f(c + i t)e^{-\log z(c + it)}\, dt. $$
We take $c = 2$ in the program below:
\bprog
f(s) = gamma(s)^3; \\ f(c+it) decrease as exp(-3Pi|t|/2)
c = 2; \\ arbitrary
A = [-oo,3*Pi/2];
B = [+oo,3*Pi/2];
T = intfuncinit(t=A,B, f(c + I*t));
F(z) =
{ my (a = -log(z));
intnum(t=A,B, exp(a*I*t), T)*exp(a*c) / (2*Pi);
}
@eprog
\synt{intfuncinit}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b,long m, long prec}.
\subsec{intnum$(X=a,b,\var{expr},\{\var{tab}\})$}\kbdsidx{intnum}\label{se:intnum}
Numerical integration
of \var{expr} on $]a,b[$ with respect to $X$, using the
double-exponential method, and thus $O(D\log D)$ evaluation of
the integrand in precision $D$. The integrand may have values
belonging to a vector space over the real numbers; in particular, it can be
complex-valued or vector-valued. But it is assumed that the function is
regular on $]a,b[$. If the endpoints $a$ and $b$ are finite and the
function is regular there, the situation is simple:
\bprog
? intnum(x = 0,1, x^2)
%1 = 0.3333333333333333333333333333
? intnum(x = 0,Pi/2, [cos(x), sin(x)])
%2 = [1.000000000000000000000000000, 1.000000000000000000000000000]
@eprog\noindent
An endpoint equal to $\pm\infty$ is coded as \kbd{+oo} or \kbd{-oo}, as
expected:
\bprog
? intnum(x = 1,+oo, 1/x^2)
%3 = 1.000000000000000000000000000
@eprog\noindent
In basic usage, it is assumed that the function does not decrease
exponentially fast at infinity:
\bprog
? intnum(x=0,+oo, exp(-x))
*** at top-level: intnum(x=0,+oo,exp(-
*** ^--------------------
*** exp: overflow in expo().
@eprog\noindent
We shall see in a moment how to avoid that last problem, after describing
the last \emph{optional} argument \var{tab}.
\misctitle{The \var{tab} argument} The routine uses weights $w_{i}$, which are
mostly independent of the function
being integrated, evaluated at many sampling points $x_{i}$ and
approximates the integral by $\sum w_{i} f(x_{i})$. If \var{tab} is
\item a nonnegative integer $m$, we multiply the number of sampling points
by $2^{m}$, hopefully increasing accuracy. Note that the running time
increases roughly by a factor $2^{m}$. One may try consecutive values of $m$
until they give the same value up to an accepted error.
\item a set of integration tables containing precomputed $x_{i}$ and $w_{i}$
as output by \tet{intnuminit}. This is useful if several integrations of
the same type are performed (on the same kind of interval and functions,
for a given accuracy): we skip a precomputation of $O(D\log D)$
elementary functions in accuracy $D$, whose running time has the same order
of magnitude as the evaluation of the integrand. This is in particular
useful for multivariate integrals.
\misctitle{Specifying the behavior at endpoints} This is done as follows.
An endpoint $a$ is either given as such (a scalar,
real or complex, \kbd{oo} or \kbd{-oo} for $\pm\infty$), or as a two
component vector $[a,\alpha]$, to indicate the behavior of the integrand in a
neighborhood of $a$.
If $a$ is finite, the code $[a,\alpha]$ means the function has a
singularity of the form $(x-a)^{\alpha}$, up to logarithms. (If $\alpha \ge
0$, we only assume the function is regular, which is the default assumption.)
If a wrong singularity exponent is used, the result will lose decimals:
\bprog
? c = -9/10;
? intnum(x=0, 1, x^c) \\@com assume $x^{-9/10}$ is regular at 0
%1 = 9.9999839078827082322596783301939063944
? intnum(x=[0,c], 1, x^c) \\@com no, it's not
%2 = 10.000000000000000000000000000000000000
? intnum(x=[0,c/2], 1, x^c) \\@com using a wrong exponent is bad
%3 = 9.9999999997122749095442279375719919769
@eprog
If $a$ is $\pm\infty$, which is coded as \kbd{+oo} or \kbd{-oo},
the situation is more complicated, and $[\pm\kbd{oo},\alpha]$ means:
\item $\alpha=0$ (or no $\alpha$ at all, i.e. simply $\pm\kbd{oo}$)
assumes that the integrand tends to zero moderately quickly, at least as
$O(x^{-2})$ but not exponentially fast.
\item $\alpha>0$ assumes that the function tends to zero exponentially fast
approximately as $\exp(-\alpha|x|)$. This includes oscillating but quickly
decreasing functions such as $\exp(-x)\sin(x)$.
\bprog
? intnum(x=0, +oo, exp(-2*x))
*** at top-level: intnum(x=0,+oo,exp(-
*** ^--------------------
*** exp: exponent (expo) overflow
? intnum(x=0, [+oo, 2], exp(-2*x)) \\@com OK!
%1 = 0.50000000000000000000000000000000000000
? intnum(x=0, [+oo, 3], exp(-2*x)) \\@com imprecise exponent, still OK !
%2 = 0.50000000000000000000000000000000000000
? intnum(x=0, [+oo, 10], exp(-2*x)) \\@com wrong exponent $\Rightarrow$ disaster
%3 = 0.49999999999952372962457451698256707393
@eprog\noindent As the last exemple shows, the exponential decrease rate
\emph{must} be indicated to avoid overflow, but the method is robust enough
for a rough guess to be acceptable.
\item $\alpha<-1$ assumes that the function tends to $0$ slowly, like
$x^{\alpha}$. Here the algorithm is less robust and it is essential to give a
sharp $\alpha$, unless $\alpha \le -2$ in which case we use
the default algorithm as if $\alpha$ were missing (or equal to $0$).
\bprog
? intnum(x=1, +oo, x^(-3/2)) \\ default
%1 = 1.9999999999999999999999999999646391207
? intnum(x=1, [+oo,-3/2], x^(-3/2)) \\ precise decrease rate
%2 = 2.0000000000000000000000000000000000000
? intnum(x=1, [+oo,-11/10], x^(-3/2)) \\ worse than default
%3 = 2.0000000000000000000000000089298011973
@eprog
\smallskip The last two codes are reserved for oscillating functions.
Let $k > 0$ real, and $g(x)$ a nonoscillating function tending slowly to $0$
(e.g. like a negative power of $x$), then
\item $\alpha=k * I$ assumes that the function behaves like $\cos(kx)g(x)$.
\item $\alpha=-k* I$ assumes that the function behaves like $\sin(kx)g(x)$.
\noindent Here it is critical to give the exact value of $k$. If the
oscillating part is not a pure sine or cosine, one must expand it into a
Fourier series, use the above codings, and sum the resulting contributions.
Otherwise you will get nonsense. Note that $\cos(kx)$, and similarly
$\sin(kx)$, means that very function, and not a translated version such as
$\cos(kx+a)$. Note that the (slower) function \kbd{intnumosc} is more robust
and should be able to integrate much more general quasi-periodic functions
such as fractional parts or Bessel $J$ and $Y$ functions.
\bprog
? \pb1664
? exponent(intnum(x=0,+oo, sinc(x)) - Pi/2)
time = 308 ms.
%1 = 5 \\ junk
? exponent(intnum(x=0,[+oo,-I], sinc(x)) - Pi/2)
time = 493 ms.
%2 = -1663 \\ perfect when k is given
? exponent(intnum(x=0,[+oo,-0.999*I], sinc(x)) - Pi/2)
time = 604 ms.
%3 = -14 \\ junk when k is off
\\ intnumosc requires the half-period
? exponent(intnumosc(x=0, sinc(x), Pi) - Pi/2)
time = 20,570 ms.
%4 = -1663 \\ slower but perfect
? exponent(intnumosc(x=0, sinc(x), Pi, 1) - Pi/2)
time = 7,976 ms.
%4 = -1663 \\ also perfect in fast unsafe mode
? exponent(intnumosc(x=0, sinc(x), Pi+0.001, 1) - Pi/2)
time = 23,115 ms.
%5 = -1278 \\ loses some accuracy when period is off, but much less
@eprog
\misctitle{Note} If $f(x)=\cos(kx)g(x)$ where $g(x)$ tends to zero
exponentially fast as $\exp(-\alpha x)$, it is up to the user to choose
between $[\pm\kbd{oo},\alpha]$ and $[\pm\kbd{oo},k* I]$, but a good rule of
thumb is that
if the oscillations are weaker than the exponential decrease, choose
$[\pm\kbd{oo},\alpha]$, otherwise choose $[\pm\kbd{oo},k*I]$, although the
latter can reasonably be used in all cases, while the former cannot. To take
a specific example, in most inverse Mellin transforms, the integrand is a
product of an exponentially decreasing and an oscillating factor. If we
choose the oscillating type of integral we perhaps obtain the best results,
at the expense of having to recompute our functions for a different value of
the variable $z$ giving the transform, preventing us to use a function such
as \kbd{intfuncinit}. On the other hand using the exponential type of
integral, we obtain less accurate results, but we skip expensive
recomputations. See \kbd{intfuncinit} for more explanations.
\misctitle{Power series limits}
The limits $a$ and $b$ can be power series of nonnegative valuation,
giving a power series expansion for the integral -- provided it exists.
\bprog
? intnum(t=0,X + O(X^3), exp(t))
%4 = 1.000...*X - 0.5000...*X^2 + O(X^3)
? bestappr( intnum(t=0,X + O(X^17), exp(t)) )- exp(X) + 1
%5 = O(X^17)
@eprog\noindent The valuation of the limit cannot be negative
since $\int_{0}^{1/X}(1+t^{2})^{-1}\, dt = \pi/2 - \kbd{sign}(X)+O(X^{2})$.
Polynomials and rational functions are also allowed and
converted to power series using current \kbd{seriesprecision}:
\bprog
? bestappr( intnum(t=1,1+X, 1/t) )
%6 = X - 1/2*X^2 + 1/3*X^3 - 1/4*X^4 + [...] + 1/15*X^15 + O(X^16)
@eprog\noindent
The function does not work if the integral is singular with the constant
coefficient of the series as limit:
\bprog
? intnum(t=X^2+O(X^4),1, 1/sqrt(t))
%8 = 2.000... - 6.236608109630992528 E28*X^2 + O(X^4)
@eprog\noindent
however you can use
\bprog
? intnum(t=[X^2+O(X^4),-1/2],1, 1/sqrt(t))
%10 = 2.000000000000000000000000000-2.000000000000000000000000000*X^2+O(X^4)
@eprog\noindent whis is translated internally to
\bprog
? intnum(t=[0,-1/2],1, 1/sqrt(t))-intnum(t=[0,-1/2],X^2+O(X^4), 1/sqrt(t))
@eprog\noindent
For this form the argument \var{tab} can be used only as an integer, not a
table precomputed by \kbd{intnuminit}.
\smallskip
We shall now see many examples to get a feeling for what the various
parameters achieve. All examples below assume precision is set to $115$
decimal digits. We first type
\bprog
? \p 115
@eprog
\misctitle{Apparent singularities} In many cases, apparent singularities
can be ignored. For instance, if $f(x) = 1
/(\exp(x)-1) - \exp(-x)/x$, then $\int_{0}^{\infty} f(x)\,dx=\gamma$, Euler's
constant \kbd{Euler}. But
\bprog
? f(x) = 1/(exp(x)-1) - exp(-x)/x
? intnum(x = 0, [oo,1], f(x)) - Euler
%1 = 0.E-115
@eprog\noindent
But close to $0$ the function $f$ is computed with an enormous loss of
accuracy, and we are in fact lucky that it get multiplied by weights which are
sufficiently close to $0$ to hide this:
\bprog
? f(1e-200)
%2 = -3.885337784451458142 E84
@eprog
A more robust solution is to define the function differently near special
points, e.g. by a Taylor expansion
\bprog
? F = truncate( f(t + O(t^10)) ); \\@com expansion around t = 0
? poldegree(F)
%4 = 7
? g(x) = if (x > 1e-18, f(x), subst(F,t,x)); \\@com note that $7 \cdot 18 > 105$
? intnum(x = 0, [oo,1], g(x)) - Euler
%2 = 0.E-115
@eprog\noindent It is up to the user to determine constants such as the
$10^{-18}$ and $10$ used above.
\misctitle{True singularities} With true singularities the result is worse.
For instance
\bprog
? intnum(x = 0, 1, x^(-1/2)) - 2
%1 = -3.5... E-68 \\@com only $68$ correct decimals
? intnum(x = [0,-1/2], 1, x^(-1/2)) - 2
%2 = 0.E-114 \\@com better
@eprog
\misctitle{Oscillating functions}
\bprog
? intnum(x = 0, oo, sin(x) / x) - Pi/2
%1 = 16.19.. \\@com nonsense
? intnum(x = 0, [oo,1], sin(x)/x) - Pi/2
%2 = -0.006.. \\@com bad
? intnum(x = 0, [oo,-I], sin(x)/x) - Pi/2
%3 = 0.E-115 \\@com perfect
? intnum(x = 0, [oo,-I], sin(2*x)/x) - Pi/2 \\@com oops, wrong $k$
%4 = 0.06...
? intnum(x = 0, [oo,-2*I], sin(2*x)/x) - Pi/2
%5 = 0.E-115 \\@com perfect
? intnum(x = 0, [oo,-I], sin(x)^3/x) - Pi/4
%6 = -0.0008... \\@com bad
? sin(x)^3 - (3*sin(x)-sin(3*x))/4
%7 = O(x^17)
@eprog\noindent
We may use the above linearization and compute two oscillating integrals with
endpoints \kbd{[oo, -I]} and \kbd{[oo, -3*I]} respectively, or
notice the obvious change of variable, and reduce to the single integral
${1\over 2}\int_{0}^{\infty} \sin(x)/x\,dx$. We finish with some more
complicated examples:
\bprog
? intnum(x = 0, [oo,-I], (1-cos(x))/x^2) - Pi/2
%1 = -0.0003... \\@com bad
? intnum(x = 0, 1, (1-cos(x))/x^2) \
+ intnum(x = 1, oo, 1/x^2) - intnum(x = 1, [oo,I], cos(x)/x^2) - Pi/2
%2 = 0.E-115 \\@com perfect
? intnum(x = 0, [oo, 1], sin(x)^3*exp(-x)) - 0.3
%3 = -7.34... E-55 \\@com bad
? intnum(x = 0, [oo,-I], sin(x)^3*exp(-x)) - 0.3
%4 = 8.9... E-103 \\@com better. Try higher $m$
? tab = intnuminit(0,[oo,-I], 1); \\@com double number of sampling points
? intnum(x = 0, oo, sin(x)^3*exp(-x), tab) - 0.3
%6 = 0.E-115 \\@com perfect
@eprog
\misctitle{Warning} Like \tet{sumalt}, \kbd{intnum} often assigns a
reasonable value to diverging integrals. Use these values at your own risk!
For example:
\bprog
? intnum(x = 0, [oo, -I], x^2*sin(x))
%1 = -2.0000000000...
@eprog\noindent
Note the formula
$$ \int_{0}^{\infty} \sin(x)x^{-s}\,dx = \cos(\pi s/2) \Gamma(1-s)\;, $$
a priori valid only for $0 < \Re(s) < 2$, but the right hand side provides an
analytic continuation which may be evaluated at $s = -2$\dots
\misctitle{Multivariate integration}
Using successive univariate integration with respect to different formal
parameters, it is immediate to do naive multivariate integration. But it is
important to use a suitable \kbd{intnuminit} to precompute data for the
\emph{internal} integrations at least!
For example, to compute the double integral on the unit disc $x^{2}+y^{2}\le1$
of the function $x^{2}+y^{2}$, we can write
\bprog
? tab = intnuminit(-1,1);
? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab),tab) - Pi/2
%2 = -7.1... E-115 \\@com OK
@eprog\noindent
The first \var{tab} is essential, the second optional. Compare:
\bprog
? tab = intnuminit(-1,1);
time = 4 ms.
? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2));
time = 3,092 ms. \\@com slow
? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab), tab);
time = 252 ms. \\@com faster
? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab));
time = 261 ms. \\@com the \emph{internal} integral matters most
@eprog
\synt{intnum}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b,GEN tab, long prec},
where an omitted \var{tab} is coded as \kbd{NULL}.
\subsec{intnumgauss$(X=a,b,\var{expr},\{\var{tab}\})$}\kbdsidx{intnumgauss}\label{se:intnumgauss}
Numerical integration of \var{expr} on the compact interval $[a,b]$ with
respect to $X$ using Gauss-Legendre quadrature; \kbd{tab} is either omitted
or precomputed with \kbd{intnumgaussinit}. As a convenience, it can be an
integer $n$ in which case we call
\kbd{intnumgaussinit}$(n)$ and use $n$-point quadrature.
\bprog
? test(n, b = 1) = T=intnumgaussinit(n);\
intnumgauss(x=-b,b, 1/(1+x^2),T) - 2*atan(b);
? test(0) \\ default
%1 = -9.490148553624725335 E-22
? test(40)
%2 = -6.186629001816965717 E-31
? test(50)
%3 = -1.1754943508222875080 E-38
? test(50, 2) \\ double interval length
%4 = -4.891779568527713636 E-21
? test(90, 2) \\ n must almost be doubled as well!
%5 = -9.403954806578300064 E-38
@eprog\noindent On the other hand, we recommend to split the integral
and change variables rather than increasing $n$ too much:
\bprog
? f(x) = 1/(1+x^2);
? b = 100;
? intnumgauss(x=0,1, f(x)) + intnumgauss(x=1,1/b, f(1/x)*(-1/x^2)) - atan(b)
%3 = -1.0579449157400587572 E-37
@eprog
The library syntax is \fun{GEN}{intnumgauss0}{GEN X, GEN b, GEN expr, GEN tab = NULL, long prec}.
\subsec{intnumgaussinit$(\{n\})$}\kbdsidx{intnumgaussinit}\label{se:intnumgaussinit}
Initialize tables for $n$-point Gauss-Legendre integration of
a smooth function $f$ on a compact interval $[a,b]$. If $n$ is omitted, make a
default choice $n \approx B / 4$, where $B$ is
\kbd{realbitprecision}, suitable for analytic functions on $[-1,1]$.
The error is bounded by
$$
\dfrac{(b-a)^{2n+1} (n!)^{4}}{(2n+1)!(2n)!} \dfrac{f^{(2n)}}{(2n)!} (\xi) ,
\qquad a < \xi < b.
$$
If $r$ denotes the distance of the nearest pole to the interval $[a,b]$,
then this is of the order of $((b-a) / (4r))^{2n}$. In particular, the
integral must be subdivided if the interval length $b - a$ becomes close to
$4r$. The default choice $n \approx B / 4$ makes this quantity of order
$2^{-B}$ when $b - a = r$, as is the case when integrating $1/(1+t)$ on
$[0,1]$ for instance. If the interval length increases, $n$ should be
increased as well.
Specifically, the function returns a pair of vectors $[x,w]$, where $x$
contains the nonnegative roots of the $n$-th Legendre polynomial $P_{n}$ and
$w$ the corresponding Gaussian integration weights
$Q_{n}(x_{j})/P'_{n}(x_{j}) = 2 / ((1-x_{j}^{2})P'_{n}(x_{j}))^{2}$ such that
$$ \int_{-1}^{1} f(t)\, dt \approx \sum_{j} w_{j} f(x_{j})\;. $$
\bprog
? T = intnumgaussinit();
? intnumgauss(t=-1,1,exp(t), T) - exp(1)+exp(-1)
%1 = -5.877471754111437540 E-39
? intnumgauss(t=-10,10,exp(t), T) - exp(10)+exp(-10)
%2 = -8.358367809712546836 E-35
? intnumgauss(t=-1,1,1/(1+t^2), T) - Pi/2 \\ b - a = 2r
%3 = -9.490148553624725335 E-22 \\ ... loses half the accuracy
? T = intnumgaussinit(50);
? intnumgauss(t=-1,1,1/(1+t^2), T) - Pi/2
%5 = -1.1754943508222875080 E-38
? intnumgauss(t=-5,5,1/(1+t^2), T) - 2*atan(5)
%6 = -1.2[...]E-8
@eprog
On the other hand, we recommend to split the integral and change variables
rather than increasing $n$ too much, see \tet{intnumgauss}.
The library syntax is \fun{GEN}{intnumgaussinit}{long n, long prec}.
\subsec{intnuminit$(a,b,\{m=0\})$}\kbdsidx{intnuminit}\label{se:intnuminit}
Initialize tables for integration from
$a$ to $b$, where $a$ and $b$ are coded as in \kbd{intnum}. Only the
compactness, the possible existence of singularities, the speed of decrease
or the oscillations at infinity are taken into account, and not the values.
For instance {\tt intnuminit(-1,1)} is equivalent to {\tt intnuminit(0,Pi)},
and {\tt intnuminit([0,-1/2],oo)} is equivalent to
{\tt intnuminit([-1,-1/2], -oo)}; on the other hand, the order matters
and
{\tt intnuminit([0,-1/2], [1,-1/3])} is \emph{not} equivalent to
{\tt intnuminit([0,-1/3], [1,-1/2])} !
If $m$ is present, it must be nonnegative and we multiply the default
number of sampling points by $2^{m}$ (increasing the running time by a
similar factor).
The result is technical and liable to change in the future, but we document
it here for completeness. Let $x=\phi(t)$, $t\in ]-\infty,\infty[$ be an
internally chosen change of variable, achieving double exponential decrease of
the integrand at infinity. The integrator \kbd{intnum} will compute
$$ h \sum_{|n| < N} \phi'(nh) F(\phi(nh)) $$
for some integration step $h$ and truncation parameter $N$.
In basic use, let
\bprog
[h, x0, w0, xp, wp, xm, wm] = intnuminit(a,b);
@eprog
\item $h$ is the integration step
\item $x_{0} = \phi(0)$ and $w_{0} = \phi'(0)$,
\item \var{xp} contains the $\phi(nh)$, $0 < n < N$,
\item \var{xm} contains the $\phi(nh)$, $0 < -n < N$, or is empty.
\item \var{wp} contains the $\phi'(nh)$, $0 < n < N$,
\item \var{wm} contains the $\phi'(nh)$, $0 < -n < N$, or is empty.
The arrays \var{xm} and \var{wm} are left empty when $\phi$ is an odd
function. In complicated situations,
\kbd{intnuminit} may return up to $3$ such arrays, corresponding
to a splitting of up to $3$ integrals of basic type.
If the functions to be integrated later are of the form $F = f(t) k(t,z)$
for some kernel $k$ (e.g. Fourier, Laplace, Mellin, \dots), it is
useful to also precompute the values of $f(\phi(nh))$, which is accomplished
by \tet{intfuncinit}. The hard part is to determine the behavior
of $F$ at endpoints, depending on $z$.
The library syntax is \fun{GEN}{intnuminit}{GEN a, GEN b, long m, long prec}.
\subsec{intnumosc$(x=a,\var{expr},H,\{\fl=0\},\{\var{tab}\})$}\kbdsidx{intnumosc}\label{se:intnumosc}
Numerical integration from $a$ to $\infty$ of oscillating
quasi-periodic function \var{expr} of half-period $H$, meaning that we
at least expect the distance between the function's consecutive zeros to be
close to $H$: the sine or cosine functions ($H = \pi$) are paradigmatic
examples, but the Bessel $J_{\nu}$ or $Y_{\nu}$ functions ($H = \pi/2$) can
also be handled. The integral from $a$ to $\infty$ is computed
by summing the integral between two consecutive multiples of $H$;
\fl determines the summation algorithm used: either $0$ (Sidi extrapolation,
safe mode), 1 (Sidi extrapolation, unsafe mode), 2 (\kbd{sumalt}),
3 (\kbd{sumnumlagrange}) or 4 (\kbd{sumpos}). For the last two modes
(Lagrange and Sumpos), one should input the period $2H$ instead of the
half-period $H$.
The default is $\fl = 0$; Sidi summation should be the most
robust algorithm; you can try it in unsafe mode when the integrals between
two consecutive multiples of $H$ form an alternating series, this should be
about twice faster than the default and not lose accuracy. Sumpos should be
by far the slowest method, but also very robust and may be able to handle
integrals where Sidi fails. Sumalt should be fast but often wrong,
especially when the integrals between two consecutive multiples of $H$
do not form an alternating series), and Lagrange should be as fast as Sumalt
but more often wrong.
When one of the Sidi modes runs into difficulties, it will return the result
to the accuracy believed to be correct (the other modes do not perform
extrapolation and do not have this property) :
\bprog
? f(x)=besselj(0,x)^4*log(x+1);
? \pb384
? intnumosc(x = 0, f(x), Pi)
%1 = 0.4549032054850867417 \\ fewer digits than expected !
? bitprecision(%)
%2 = 64
? \g1 \\ increase debug level to see diagnostics
? intnumosc(x = 0, f(x), Pi)
sumsidi: reached accuracy of 23 bits.
%2 = 0.4549032054850867417
@eprog\noindent The algorithm could extrapolate the series to 23 bits of
accuracy, then diverged. So only the absolute error is likely to be
around $2^{-23}$ instead of the possible $2^{-64}$ (or the requested
$2^{-384}$). We'll come back to this example at the end.
In case of difficulties, you may try to replace the half-(quasi)-period $H$
by a multiple, such as the quasi-period $2H$: since we do not expect
alternating behaviour, \kbd{sumalt} mode will almost surely be broken, but
others may improve, in particular Lagrange or Sumpos.
\kbd{tab} is either omitted or precomputed with \kbd{intnumgaussinit};
if using Sidi summation in safe mode ($\fl = 0$) \emph{and} precompute
\kbd{tab}, you should use a precision roughly 50\% larger than the target
(this is not necessary for any of the other summations).
First an alternating example:
\bprog
? \pb384
\\ Sidi, safe mode
? exponent(intnumosc(x=0,sinc(x),Pi) - Pi/2)
time = 183 ms.
%1 = -383
? exponent(intnumosc(x=0,sinc(x),2*Pi) - Pi/2)
time = 224 ms.
%2 = -383 \\ also works with 2H, a little slower
\\ Sidi, unsafe mode
? exponent(intnumosc(x=0,sinc(x),Pi,1) - Pi/2)
time = 79 ms.
%3 = -383 \\ alternating: unsafe mode is fine and almost twice faster
? exponent(intnumosc(x=0,sinc(x),2*Pi,1) - Pi/2)
time = 86 ms.
%4 = -285 \\ but this time 2H loses accuracy
\\ Sumalt
? exponent(intnumosc(x=0,sinc(x),Pi,2) - Pi/2)
time = 115 ms. \\ sumalt is just as accurate and fast
%5 = -383
? exponent(intnumosc(x=0,sinc(x),2*Pi,2) - Pi/2)
time = 115 ms.
%6 = -10 \\ ...but breaks completely with 2H
\\ Lagrange
? exponent(intnumosc(x=0,sinc(x),Pi,2) - Pi/2)
time = 100 ms. \\ junk
%7 = 224
? exponent(intnumosc(x=0,sinc(x),2*Pi,2) - Pi/2)
time = 100 ms.
%8 = -238 \\ ...a little better with 2H
\\ Sumpos
? exponent(intnumosc(x=0,sinc(x),Pi,4) - Pi/2)
time = 17,961 ms.
%9 = 7 \\ junk; slow
? exponent(intnumosc(x=0,sinc(x),2*Pi,4) - Pi/2)
time = 19,105 ms.
%10 = -4 \\ still junk
@eprog
Now a non-alternating one:
\bprog
? exponent(intnumosc(x=0,sinc(x)^2,Pi) - Pi/2)
time = 277 ms.
%1 = -383 \\ safe mode is still perfect
? exponent(intnumosc(x=0,sinc(x)^2,Pi,1) - Pi/2)
time = 97 ms.
%2 = -284 \\ non-alternating; this time, Sidi's unsafe mode loses accuracy
? exponent(intnumosc(x=0,sinc(x)^2,Pi,2) - Pi/2)
time = 113 ms.
%3 = -10 \\ this time sumalt fails completely
? exponent(intnumosc(x=0,sinc(x)^2,Pi,3) - Pi/2)
time = 103 ms.
%4 = -237 \\ Lagrange loses accuracy (same with 2H = 2*Pi)
? exponent(intnumosc(x=0,sinc(x)^2,Pi,4) - Pi/2)
time = 17,681 ms.
%4 = -381 \\ and Sumpos is good but slow (perfect with 2H)
@eprog
Exemples of a different flavour:
\bprog
? exponent(intnumosc(x = 0, besselj(0,x)*sin(3*x), Pi) - 1/sqrt(8))
time = 4,615 ms.
%1 = -385 \\ more expensive but correct
? exponent(intnumosc(x = 0, besselj(0,x)*sin(3*x), Pi, 1) - 1/sqrt(8))
time = 1,424 ms.
%2 = -279 \\ unsafe mode loses some accuracy (other modes return junk)
? S = log(2*Pi)- Euler - 1;
? exponent(intnumosc(t=1, (frac(t)/t)^2, 1/2) - S)
time = 21 ms.
%4 = -6 \\ junk
? exponent(intnumosc(t=1, (frac(t)/t)^2, 1) - S)
time = 66ms.
%5 = -384 \\ perfect with 2H
? exponent(intnumosc(t=1, (frac(t)/t)^2, 1, 1) - S)
time = 20 ms.
%6 = -286 \\ unsafe mode loses accuracy
? exponent(intnumosc(t=1, (frac(t)/t)^2, 1, 3) - S)
time = 30 ms.
%7 = -236 \\ and so does Lagrange (Sumalt fails)
? exponent(intnumosc(t=1, (frac(t)/t)^2, 1, 4) - S)
time = 2,315 ms.
%8 = -382 \\ Sumpos is perfect but slow
@eprog\noindent Again, Sidi extrapolation behaves well, especially in safe
mode, but $2H$ is required here.
If the integrand has singularities close to the interval of integration,
it is advisable to split the integral in two: use the more robust \kbd{intnum}
to handle the singularities, then \kbd{intnumosc} for the remainder:
\bprog
? \p38
? f(x) = besselj(0,x)^3 * log(x); \\ mild singularity at 0
? g() = intnumosc(x = 0, f(x), Pi); \\ direct
? h() = intnum(x = 0, Pi, f(x)) + intnumosc(x = Pi, f(x), Pi); \\ split at Pi
? G = g();
time = 293 ms.
? H = h();
time = 320 ms. \\ about as fast
? exponent(G-H)
%6 = -12 \\ at least one of them is junk
? \p77 \\ increase accuracy
? G2=g(); H2=h();
? exponent(G - G2)
%8 = -13 \\ g() is not consistent
? exponent(H - H2)
%9 = -128 \\ not a proof, but h() looks good
@eprog\noindent Finally, here is an exemple where all methods fail, even
when splitting the integral, except Sumpos:
\bprog
? \p38
? f(x)=besselj(0,x)^4*log(x+1);
? F = intnumosc(x=0,f(x), Pi, 4)
time = 2,437 ms.
%2 = 0.45489838778971732178155161172638343214
? \p76 \\ double accuracy to check
? exponent(F - intnumosc(x = 0,f(x), Pi, 4))
time = 18,817 ms.
%3 = -122 \\ F was almost perfect
@eprog
The library syntax is \fun{GEN}{intnumosc0}{GEN x, GEN expr, GEN H, long flag, GEN tab = NULL, long prec}.
\subsec{intnumromb$(X=a,b,\var{expr},\{\fl=0\})$}\kbdsidx{intnumromb}\label{se:intnumromb}
Numerical integration of \var{expr} (smooth in $]a,b[$), with respect to
$X$. Suitable for low accuracy; if \var{expr} is very regular (e.g. analytic
in a large region) and high accuracy is desired, try \tet{intnum} first.
Set $\fl=0$ (or omit it altogether) when $a$ and $b$ are not too large, the
function is smooth, and can be evaluated exactly everywhere on the interval
$[a,b]$.
If $\fl=1$, uses a general driver routine for doing numerical integration,
making no particular assumption (slow).
$\fl=2$ is tailored for being used when $a$ or $b$ are infinite using the
change of variable $t = 1/X$. One \emph{must} have $ab>0$, and in fact if
for example $b=+\infty$, then it is preferable to have $a$ as large as
possible, at least $a\ge1$.
If $\fl=3$, the function is allowed to be undefined
at $a$ (but right continuous) or $b$ (left continuous),
for example the function $\sin(x)/x$ between $x=0$ and $1$.
The user should not require too much accuracy: \tet{realprecision} about
30 decimal digits (\tet{realbitprecision} about 100 bits) is OK,
but not much more. In addition, analytical cleanup of the integral must have
been done: there must be no singularities in the interval or at the
boundaries. In practice this can be accomplished with a change of
variable. Furthermore, for improper integrals, where one or both of the
limits of integration are plus or minus infinity, the function must decrease
sufficiently rapidly at infinity, which can often be accomplished through
integration by parts. Finally, the function to be integrated should not be
very small (compared to the current precision) on the entire interval. This
can of course be accomplished by just multiplying by an appropriate constant.
Note that \idx{infinity} can be represented with essentially no loss of
accuracy by an appropriate huge number. However beware of real underflow
when dealing with rapidly decreasing functions. For example, in order to
compute the $\int_{0}^{\infty} e^{-x^{2}}\,dx$ to 38 decimal digits, then
one can set infinity equal to 10 for example, and certainly not to
\kbd{1e1000}.
%\syn{NO}
The library syntax is \fun{GEN}{intnumromb}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b, long flag, long bitprec}, where \kbd{eval}$(x, E)$ returns the value of the
function at $x$. You may store any additional information required by
\kbd{eval} in $E$, or set it to \kbd{NULL}.
\subsec{laurentseries$(f,\{M=\var{seriesprecision}\},\{x=\kbd{'}x\})$}\kbdsidx{laurentseries}\label{se:laurentseries}
Expand $f$ as a Laurent series around $x = 0$ to order $M$. This
function computes $f(x + O(x^{n}))$ until $n$ is large enough: it
must be possible to evaluate $f$ on a power series with $0$ constant term.
\bprog
? laurentseries(t->sin(t)/(1-cos(t)), 5)
%1 = 2*x^-1 - 1/6*x - 1/360*x^3 - 1/15120*x^5 + O(x^6)
? laurentseries(log)
*** at top-level: laurentseries(log)
*** ^------------------
*** in function laurentseries: log
*** ^---
*** log: domain error in log: series valuation != 0
@eprog
Note that individual Laurent coefficients of order $\leq M$
can be retrieved from $s = \kbd{laurentseries}(f,M)$ via \kbd{polcoef(s,i)}
for any $i \leq M$. The series $s$ may occasionally be more precise that
the required $O(x^{M+1})$.
With respect to successive calls to \tet{derivnum},
\kbd{laurentseries} is both faster and more precise:
\bprog
? laurentseries(t->log(3+t),1)
%1 = 1.0986122886681096913952452369225257047 + 1/3*x - 1/18*x^2 + O(x^3)
? derivnum(t=0,log(3+t),1)
%2 = 0.33333333333333333333333333333333333333
? derivnum(t=0,log(3+t),2)
%3 = -0.11111111111111111111111111111111111111
? f = x->sin(exp(x));
? polcoef(laurentseries(x->f(x+2), 1), 1)
%5 = 3.3129294231043339804683687620360224365
? exp(2) * cos(exp(2));
%6 = 3.3129294231043339804683687620360224365
? derivnum(x = 2, f(x))
%7 = 3.3129294231043339804683687620360224364 \\ 1 ulp off
? default(realprecision,115);
? for(i=1,10^4, laurentseries(x->f(x+2),1))
time = 279 ms.
? for(i=1,10^4, derivnum(x=2,f(x))) \\ ... and slower
time = 1,134 ms.
@eprog
\synt{laurentseries}{void *E, GEN (*f)(void*,GEN,long), long M, long v, long prec}.
\subsec{limitnum$(\var{expr},\{\var{alpha}=1\})$}\kbdsidx{limitnum}\label{se:limitnum}
Lagrange-Zagier numerical extrapolation of \var{expr}, corresponding to
a sequence $u_{n}$, either given by a closure \kbd{n->u(n)}. I.e., assuming
that $u_{n}$ tends to a finite limit $\ell$, try to determine $\ell$.
The routine assume that $u_{n}$ has an asymptotic expansion in $n^{-\alpha}$ :
$$u_{n} = \ell + \sum_{i\geq 1} a_{i} n^{-i\alpha}$$
for some $a_{i}$. It is purely numerical and heuristic, thus may or may not
work on your examples. The expression will be evaluated for $n = 1, 2,
\dots, N$ for an $N = O(B)$ at a bit accuracy bounded by $1.612 B$.
\bprog
? limitnum(n -> n*sin(1/n))
%1 = 1.0000000000000000000000000000000000000
? limitnum(n -> (1+1/n)^n) - exp(1)
%2 = 0.E-37
? limitnum(n -> 2^(4*n+1)*(n!)^4 / (2*n)! /(2*n+1)! ) - Pi
%3 = 0.E -37
@eprog\noindent
It is not mandatory to specify $\alpha$ when the $u_{n}$ have an asymptotic
expansion in $n^{-1}$. However, if the series in $n^{-1}$ is lacunary,
specifying $\alpha$ allows faster computation:
\bprog
? \p1000
? limitnum(n->(1+1/n^2)^(n^2)) - exp(1)
time = 1min, 44,681 ms.
%4 = 0.E-1001
? limitnum(n->(1+1/n^2)^(n^2), 2) - exp(1)
time = 27,271 ms.
%5 = 0.E-1001 \\ still perfect, 4 times faster
@eprog\noindent
When $u_{n}$ has an asymptotic expansion in $n^{-\alpha}$ with $\alpha$ not an
integer, leaving $\alpha$ unspecified will bring an inexact limit. Giving a
satisfying optional argument improves precision; the program runs faster when
the optional argument gives non lacunary series.
\bprog
? \p50
? limitnum(n->(1+1/n^(7/2))^(n^(7/2))) - exp(1)
time = 982 ms.
%6 = 4.13[...] E-12
? limitnum(n->(1+1/n^(7/2))^(n^(7/2)), 1/2) - exp(1)
time = 16,745 ms.
%7 = 0.E-57
? limitnum(n->(1+1/n^(7/2))^(n^(7/2)), 7/2) - exp(1)
time = 105 ms.
%8 = 0.E-57
@eprog\noindent
Alternatively, $u_{n}$ may be given by a closure
$N\mapsto [u_{1},\dots, u_{N}]$
which can often be programmed in a more efficient way, for instance
when $u_{n+1}$ is a simple function of the preceding terms:
\bprog
? \p2000
? limitnum(n -> 2^(4*n+1)*(n!)^4 / (2*n)! /(2*n+1)! ) - Pi
time = 1,755 ms.
%9 = 0.E-2003
? vu(N) = \\ exploit hypergeometric property
{ my(v = vector(N)); v[1] = 8./3;\
for (n=2, N, my(q = 4*n^2); v[n] = v[n-1]*q/(q-1));\
return(v);
}
? limitnum(vu) - Pi \\ much faster
time = 106 ms.
%11 = 0.E-2003
@eprog\noindent All sums and recursions can be handled in the same way.
In the above it is essential that $u_{n}$ be defined as a closure because
it must be evaluated at a higher precision than the one expected for the
limit. Make sure that the closure does not depend on a global variable which
would be computed at a priori fixed accuracy. For instance, precomputing
\kbd{v1 = 8.0/3} first and using \kbd{v1} in \kbd{vu} above would be wrong
because the resulting vector of values will use the accuracy of \kbd{v1}
instead of the ambient accuracy at which \kbd{limitnum} will call it.
Alternatively, and more clumsily, $u_{n}$ may be given by a vector of values:
it must be long and precise enough for the extrapolation
to make sense. Let $B$ be the current \kbd{realbitprecision}, the vector
length must be at least $1.102 B$ and the values computed with bit accuracy
$1.612 B$.
\bprog
? limitnum(vector(10,n,(1+1/n)^n))
*** ^--------------------
*** limitnum: nonexistent component in limitnum: index < 43
\\ at this accuracy, we must have at least 43 values
? limitnum(vector(43,n,(1+1/n)^n)) - exp(1)
%12 = 0.E-37
? v = vector(43);
? s = 0; for(i=1,#v, s += 1/i; v[i]= s - log(i));
? limitnum(v) - Euler
%15 = -1.57[...] E-16
? v = vector(43);
\\ ~ 128 bit * 1.612
? localbitprec(207);\
s = 0; for(i=1,#v, s += 1/i; v[i]= s - log(i));
? limitnum(v) - Euler
%18 = 0.E-38
@eprog
Because of the above problems, the preferred format is thus a closure,
given either a single value or the vector of values $[u_{1},\dots,u_{N}]$. The
function distinguishes between the two formats by evaluating the closure
at $N\neq 1$ and $1$ and checking whether it yields vectors of respective
length $N$ and $1$ or not.
\misctitle{Warning} The expression is evaluated for $n = 1, 2, \dots, N$
for an $N = O(B)$ if the current bit accuracy is $B$. If it is not defined
for one of these values, translate or rescale accordingly:
\bprog
? limitnum(n->log(1-1/n)) \\ can't evaluate at n = 1 !
*** at top-level: limitnum(n->log(1-1/n))
*** ^-----------------------
*** in function limitnum: log(1-1/n)
*** ^----------
*** log: domain error in log: argument = 0
? limitnum(n->-log(1-1/(2*n)))
%19 = -6.11[...] E-58
@eprog
We conclude with a complicated example. Since the function is heuristic,
it is advisable to check whether it produces the same limit for
$u_{n}, u_{2n}, \dots u_{km}$ for a suitable small multiplier $k$.
The following function implements the recursion for the Motzkin numbers
$M_{n}$ which count the number of ways to draw non intersecting chords between
$n$ points on a circle:
$$ M_{n} = M_{n-1} + \sum_{i < n-1} M_{i} M_{n-2-i}
= ((n+1)M_{n-1}+(3n-3)M_{n-2}) / (n+2).$$
It is known that $M_{n}^2 \sim \dfrac{9^{n+1}}{12\pi n^{3}}$.
\bprog
\\ [M_k, M_{k*2}, ..., M_{k*N}] / (3^n / n^(3/2))
vM(N, k = 1) =
{ my(q = k*N, V);
if (q == 1, return ([1/3]));
V = vector(q); V[1] = V[2] = 1;
for(n = 2, q - 1,
V[n+1] = ((2*n + 1)*V[n] + 3*(n - 1)*V[n-1]) / (n + 2));
f = (n -> 3^n / n^(3/2));
return (vector(N, n, V[n*k] / f(n*k)));
}
? limitnum(vM) - 3/sqrt(12*Pi) \\ complete junk
%1 = 35540390.753542730306762369615276452646
? limitnum(N->vM(N,5)) - 3/sqrt(12*Pi) \\ M_{5n}: better
%2 = 4.130710262178469860 E-25
? limitnum(N->vM(N,10)) - 3/sqrt(12*Pi) \\ M_{10n}: perfect
%3 = 0.E-38
? \p2000
? limitnum(N->vM(N,10)) - 3/sqrt(12*Pi) \\ also at high accuracy
time = 409 ms.
%4 = 1.1048895470044788191 E-2004
@eprog\noindent In difficult cases such as the above a multiplier of 5 to 10
is usually sufficient. The above example is typical: a good multiplier usually
remains sufficient when the requested precision increases!
\synt{limitnum}{void *E, GEN (*u)(void *,GEN,long), GEN alpha, long prec}, where \kbd{u(E, n, prec)} must return $u(n)$ in precision \kbd{prec}.
Also available is
\fun{GEN}{limitnum0}{GEN u, GEN alpha, long prec}, where $u$
must be a vector of sufficient length as above.
\subsec{prod$(X=a,b,\var{expr},\{x=1\})$}\kbdsidx{prod}\label{se:prod}
Product of expression
\var{expr}, initialized at $x$, the formal parameter $X$ going from $a$ to
$b$. As for \kbd{sum}, the main purpose of the initialization parameter $x$
is to force the type of the operations being performed. For example if it is
set equal to the integer 1, operations will start being done exactly. If it
is set equal to the real $1.$, they will be done using real numbers having
the default precision. If it is set equal to the power series $1+O(X^{k})$ for
a certain $k$, they will be done using power series of precision at most $k$.
These are the three most common initializations.
\noindent As an extreme example, compare
\bprog
? prod(i=1, 100, 1 - X^i); \\@com this has degree $5050$ !!
time = 128 ms.
? prod(i=1, 100, 1 - X^i, 1 + O(X^101))
time = 8 ms.
%2 = 1 - X - X^2 + X^5 + X^7 - X^12 - X^15 + X^22 + X^26 - X^35 - X^40 + \
X^51 + X^57 - X^70 - X^77 + X^92 + X^100 + O(X^101)
@eprog\noindent
Of course, in this specific case, it is faster to use \tet{eta},
which is computed using Euler's formula.
\bprog
? prod(i=1, 1000, 1 - X^i, 1 + O(X^1001));
time = 589 ms.
? \ps1000
seriesprecision = 1000 significant terms
? eta(X) - %
time = 8ms.
%4 = O(X^1001)
@eprog
\synt{produit}{GEN a, GEN b, char *expr, GEN x}.
\subsec{prodeuler$(p=a,b,\var{expr})$}\kbdsidx{prodeuler}\label{se:prodeuler}
Product of expression \var{expr}, initialized at \kbd{1.0}
(i.e.~to a floating point number equal to 1 to the
current \kbd{realprecision}), the formal parameter $p$ ranging over the prime
numbers between $a$ and $b$.\sidx{Euler product}
\bprog
? prodeuler(p = 2, 10^4, 1 - p^-2)
%1 = 0.60793306911405513018380499671124428015
? P = 1; forprime(p = 2, 10^4, P *= (1 - p^-2))
? exponent(numerator(P))
%3 = 22953
@eprog\noindent The function returns a floating point number because,
as the second expression shows, such products are usually intractably
large rational numbers when computed symbolically.
If the expression is a rational function, \kbd{prodeulerrat} computes the
product over all primes:
\bprog
? prodeulerrat(1 - p^-2)
%4 = 0.60792710185402662866327677925836583343
? 6/Pi^2
%3 = 0.60792710185402662866327677925836583343
@eprog
\synt{prodeuler}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b, long prec}.
\subsec{prodeulerrat$(F,\{s=1\},\{a=2\})$}\kbdsidx{prodeulerrat}\label{se:prodeulerrat}
$\prod_{p\ge a}F(p^{s})$, where the product is taken over prime numbers
and $F$ is a rational function.
\bprog
? prodeulerrat(1+1/q^3,1)
%1 = 1.1815649490102569125693997341604542605
? zeta(3)/zeta(6)
%2 = 1.1815649490102569125693997341604542606
@eprog
The library syntax is \fun{GEN}{prodeulerrat}{GEN F, GEN s = NULL, long a, long prec}.
\subsec{prodinf$(X=a,\var{expr},\{\fl=0\})$}\kbdsidx{prodinf}\label{se:prodinf}
\idx{infinite product} of
expression \var{expr}, the formal parameter $X$ starting at $a$. The evaluation
stops when the relative error of the expression minus 1 is less than the
default precision. In particular, divergent products result in infinite
loops. The expressions must always evaluate to an element of $\C$.
If $\fl=1$, do the product of the ($1+\var{expr}$) instead.
\synt{prodinf}{void *E, GEN (*eval)(void*,GEN), GEN a, long prec}
($\fl=0$), or \tet{prodinf1} with the same arguments ($\fl=1$).
\subsec{prodnumrat$(F,a)$}\kbdsidx{prodnumrat}\label{se:prodnumrat}
$\prod_{n\ge a}F(n)$, where $F-1$ is a rational function of degree less
than or equal to $-2$.
\bprog
? prodnumrat(1+1/x^2,1)
%1 = 3.6760779103749777206956974920282606665
@eprog
The library syntax is \fun{GEN}{prodnumrat}{GEN F, long a, long prec}.
\subsec{solve$(X=a,b,\var{expr})$}\kbdsidx{solve}\label{se:solve}
Find a real root of expression
\var{expr} between $a$ and $b$.
If both $a$ and $b$ are finite, the condition is that
$\var{expr}(X=a) * \var{expr}(X=b) \le 0$. (You will get an error message
\kbd{roots must be bracketed in solve} if this does not hold.)
If only one between $a$ and $b$ is finite, say $a$, then $b=\pm\infty$. The
routine will test all $b=a\pm 2^{r}$, with $r\geq \log_{2}(|a|)$ until it finds
a bracket for the root which satisfies the abovementioned condition.
If both $a$ and $b$ are infinite, the routine will test $0$ and all
$\pm 2^{r}$, $r\geq 0$, until it finds a bracket for the root which
satisfies the condition.
This routine uses Brent's method and can fail miserably if \var{expr} is
not defined in the whole of $[a,b]$ (try \kbd{solve(x=1, 2, tan(x))}).
\synt{zbrent}{void *E,GEN (*eval)(void*,GEN),GEN a,GEN b,long prec}.
\subsec{solvestep$(X=a,b,\var{step},\var{expr},\{\fl=0\})$}\kbdsidx{solvestep}\label{se:solvestep}
Find zeros of a continuous function in the real interval $[a,b]$ by naive
interval splitting. This function is heuristic and may or may not find the
intended zeros. Binary digits of \fl\ mean
\item 1: return as soon as one zero is found, otherwise return all
zeros found;
\item 2: refine the splitting until at least one zero is found
(may loop indefinitely if there are no zeros);
\item 4: do a multiplicative search (we must have $a > 0$ and $\var{step} >
1$), otherwise an additive search; \var{step} is the multiplicative or
additive step.
\item 8: refine the splitting until at least one zero is very close to an
integer.
\bprog
? solvestep(X=0,10,1,sin(X^2),1)
%1 = 1.7724538509055160272981674833411451828
? solvestep(X=1,12,2,besselj(4,X),4)
%2 = [7.588342434..., 11.064709488...]
@eprog\noindent
\synt{solvestep}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b, GEN step,long flag,long prec}.
\subsec{sum$(X=a,b,\var{expr},\{x=0\})$}\kbdsidx{sum}\label{se:sum}
Sum of expression \var{expr},
initialized at $x$, the formal parameter going from $a$ to $b$. As for
\kbd{prod}, the initialization parameter $x$ may be given to force the type
of the operations being performed.
\noindent As an extreme example, compare
\bprog
? sum(i=1, 10^4, 1/i); \\@com rational number: denominator has $4345$ digits.
time = 236 ms.
? sum(i=1, 5000, 1/i, 0.)
time = 8 ms.
%2 = 9.787606036044382264178477904
@eprog
% \syn{NO}
\subsec{sumalt$(X=a,\var{expr},\{\fl=0\})$}\kbdsidx{sumalt}\label{se:sumalt}
Numerical summation of the series \var{expr}, which should be an
\idx{alternating series} $(-1)^{k} a_{k}$, the formal variable $X$ starting at
$a$. Use an algorithm of Cohen, Villegas and Zagier (\emph{Experiment. Math.}
{\bf 9} (2000), no.~1, 3--12).
If $\fl=0$, assuming that the $a_{k}$ are the moments of a positive
measure on $[0,1]$, the relative error is $O(3+\sqrt8)^{-n}$ after using
$a_{k}$ for $k\leq n$. If \kbd{realprecision} is $p$, we thus set
$n = \log(10)p/\log(3+\sqrt8)\approx 1.3 p$; besides the time needed to
compute the $a_{k}$, $k\leq n$, the algorithm overhead is negligible: time
$O(p^{2})$ and space $O(p)$.
If $\fl=1$, use a variant with more complicated polynomials, see
\tet{polzagier}. If the $a_{k}$ are the moments of $w(x)dx$ where $w$
(or only $xw(x^{2})$) is a smooth function extending analytically to the whole
complex plane, convergence is in $O(14.4^{-n})$. If $xw(x^{2})$ extends
analytically to a smaller region, we still have exponential convergence,
with worse constants. Usually faster when the computation of $a_{k}$ is
expensive. If \kbd{realprecision} is $p$, we thus set
$n = \log(10)p/\log(14.4)\approx 0.86 p$; besides the time needed to
compute the $a_{k}$, $k\leq n$, the algorithm overhead is \emph{not}
negligible: time $O(p^{3})$ and space $O(p^{2})$. Thus, even if the analytic
conditions for rigorous use are met, this variant is only worthwile if the
$a_{k}$ are hard to compute, at least $O(p^{2})$ individually on average:
otherwise we gain a small constant factor (1.5, say) in the number of
needed $a_{k}$ at the expense of a large overhead.
The conditions for rigorous use are hard to check but the routine is best used
heuristically: even divergent alternating series can sometimes be summed by
this method, as well as series which are not exactly alternating (see for
example \secref{se:user_defined}). It should be used to try and guess the
value of an infinite sum. (However, see the example at the end of
\secref{se:userfundef}.)
If the series already converges geometrically,
\tet{suminf} is often a better choice:
\bprog
? \p38
? sumalt(i = 1, -(-1)^i / i) - log(2)
time = 0 ms.
%1 = 0.E-38
? suminf(i = 1, -(-1)^i / i) \\@com Had to hit \kbd{Ctrl-C}
*** at top-level: suminf(i=1,-(-1)^i/i)
*** ^------
*** suminf: user interrupt after 10min, 20,100 ms.
? \p1000
? sumalt(i = 1, -(-1)^i / i) - log(2)
time = 90 ms.
%2 = 4.459597722 E-1002
? sumalt(i = 0, (-1)^i / i!) - exp(-1)
time = 670 ms.
%3 = -4.03698781490633483156497361352190615794353338591897830587 E-944
? suminf(i = 0, (-1)^i / i!) - exp(-1)
time = 110 ms.
%4 = -8.39147638 E-1000 \\ @com faster and more accurate
@eprog
\synt{sumalt}{void *E, GEN (*eval)(void*,GEN),GEN a,long prec}. Also
available is \tet{sumalt2} with the same arguments ($\fl = 1$).
\subsec{sumdiv$(n,X,\var{expr})$}\kbdsidx{sumdiv}\label{se:sumdiv}
Sum of expression \var{expr} over the positive divisors of $n$.
This function is a trivial wrapper essentially equivalent to
\bprog
D = divisors(n);
sum (i = 1, #D, my(X = D[i]); eval(expr))
@eprog\noindent
If \var{expr} is a multiplicative function, use \tet{sumdivmult}.
%\syn{NO}
\subsec{sumdivmult$(n,d,\var{expr})$}\kbdsidx{sumdivmult}\label{se:sumdivmult}
Sum of \emph{multiplicative} expression \var{expr} over the positive
divisors $d$ of $n$. Assume that \var{expr} evaluates to $f(d)$
where $f$ is multiplicative: $f(1) = 1$ and $f(ab) = f(a)f(b)$ for coprime
$a$ and $b$.
\synt{sumdivmultexpr}{void *E, GEN (*eval)(void*,GEN), GEN d}
\subsec{sumeulerrat$(F,\{s=1\},\{a=2\})$}\kbdsidx{sumeulerrat}\label{se:sumeulerrat}
$\sum_{p\ge a}F(p^{s})$, where the sum is taken over prime numbers
and $F$ is a rational function.
\bprog
? sumeulerrat(1/p^2)
%1 = 0.45224742004106549850654336483224793417
? sumeulerrat(1/p, 2)
%2 = 0.45224742004106549850654336483224793417
@eprog
The library syntax is \fun{GEN}{sumeulerrat}{GEN F, GEN s = NULL, long a, long prec}.
\subsec{suminf$(X=a,\var{expr})$}\kbdsidx{suminf}\label{se:suminf}
Naive summation of expression \var{expr}, the formal parameter $X$
going from $a$ to infinity. The evaluation stops when the relative error of
the expression is less than the default bit precision for 3 consecutive
evaluations. The expressions must evaluate to a complex number.
If the expression tends slowly to $0$, like $n^{-a}$ for some $a > 1$,
make sure $b = \kbd{realbitprecision}$ is low: indeed, the algorithm will
require $O(2^{b/a})$ function evaluations and we expect only about $b(1-1/a)$
correct bits in the answer. If the series is alternating, we can expect $b$
correct bits but the \tet{sumalt} function should be used instead since its
complexity is polynomial in $b$, instead of exponential. More generally,
\kbd{sumpos} should be used if the terms have a constant sign and
\kbd{sumnum} if the function is $C^{\infty}$.
\bprog
? \pb25
realbitprecision = 25 significant bits (7 decimal digits displayed)
? exponent(suminf(i = 1, (-1)^i / i) + log(2))
time = 2min, 2,602 ms.
%1 = -29
? \pb45
realbitprecision = 45 significant bits (13 decimal digits displayed)
? exponent(suminf(i = 1, 1 / i^2) - zeta(2))
time = 2,186 ms.
%2 = -23
\\ alternatives are much faster
? \pb 10000
realbitprecision = 10000 significant bits (3010 decimal digits displayed)
? exponent(sumalt(i = 1, (-1)^i / i) + log(2))
time = 25 ms.
%3 = -10043
? \pb 4000
realbitprecision = 4000 significant bits (1204 decimal digits displayed)))
? exponent(sumpos(i = 1, 1 / i^2) - zeta(2))
time = 22,593 ms.
%4 = -4030
? exponent(sumnum(i = 1, 1 / i^2) - zeta(2))
time = 7,032 ms.
%5 = -4031
\\ but suminf is perfect for geometrically converging series
? exponent(suminf(i = 1, 2^-i) - 1)
time = 25 ms.
%6 = -4003
@eprog
\synt{suminf}{void *E, GEN (*eval)(void*,GEN), GEN a, long prec}.
\subsec{sumnum$(n=a,f,\{\var{tab}\})$}\kbdsidx{sumnum}\label{se:sumnum}
Numerical summation of $f(n)$ at high accuracy using Euler-MacLaurin,
the variable $n$ taking values from $a$ to $+\infty$, where $f$ is assumed to
have positive values and is a $C^{\infty}$ function; \kbd{a} must be an integer
and \kbd{tab}, if given, is the output of \kbd{sumnuminit}. The latter
precomputes abscissas and weights, speeding up the computation; it also allows
to specify the behavior at infinity via \kbd{sumnuminit([+oo, asymp])}.
\bprog
? \p500
? z3 = zeta(3);
? sumpos(n = 1, n^-3) - z3
time = 2,332 ms.
%2 = 2.438468843 E-501
? sumnum(n = 1, n^-3) - z3 \\ here slower than sumpos
time = 2,752 ms.
%3 = 0.E-500
@eprog
\misctitle{Complexity}
The function $f$ will be evaluated at $O(D \log D)$ real arguments,
where $D \approx \kbd{realprecision} \cdot \log(10)$. The routine is geared
towards slowly decreasing functions: if $f$ decreases exponentially fast,
then one of \kbd{suminf} or \kbd{sumpos} should be preferred.
If $f$ satisfies the stronger hypotheses required for Monien summation,
i.e. if $f(1/z)$ is holomorphic in a complex neighbourhood of $[0,1]$,
then \tet{sumnummonien} will be faster since it only requires $O(D/\log D)$
evaluations:
\bprog
? sumnummonien(n = 1, 1/n^3) - z3
time = 1,985 ms.
%3 = 0.E-500
@eprog\noindent The \kbd{tab} argument precomputes technical data
not depending on the expression being summed and valid for a given accuracy,
speeding up immensely later calls:
\bprog
? tab = sumnuminit();
time = 2,709 ms.
? sumnum(n = 1, 1/n^3, tab) - z3 \\ now much faster than sumpos
time = 40 ms.
%5 = 0.E-500
? tabmon = sumnummonieninit(); \\ Monien summation allows precomputations too
time = 1,781 ms.
? sumnummonien(n = 1, 1/n^3, tabmon) - z3
time = 2 ms.
%7 = 0.E-500
@eprog\noindent The speedup due to precomputations becomes less impressive
when the function $f$ is expensive to evaluate, though:
\bprog
? sumnum(n = 1, lngamma(1+1/n)/n, tab);
time = 14,180 ms.
? sumnummonien(n = 1, lngamma(1+1/n)/n, tabmon); \\ fewer evaluations
time = 717 ms.
@eprog
\misctitle{Behaviour at infinity}
By default, \kbd{sumnum} assumes that \var{expr} decreases slowly at infinity,
but at least like $O(n^{-2})$. If the function decreases like $n^{\alpha}$
for some $-2 < \alpha < -1$, then it must be indicated via
\bprog
tab = sumnuminit([+oo, alpha]); /* alpha < 0 slow decrease */
@eprog\noindent otherwise loss of accuracy is expected.
If the functions decreases quickly, like $\exp(-\alpha n)$ for some
$\alpha > 0$, then it must be indicated via
\bprog
tab = sumnuminit([+oo, alpha]); /* alpha > 0 exponential decrease */
@eprog\noindent otherwise exponent overflow will occur.
\bprog
? sumnum(n=1,2^-n)
*** at top-level: sumnum(n=1,2^-n)
*** ^----
*** _^_: overflow in expo().
? tab = sumnuminit([+oo,log(2)]); sumnum(n=1,2^-n, tab)
%1 = 1.000[...]
@eprog
As a shortcut, one can also input
\bprog
sumnum(n = [a, asymp], f)
@eprog\noindent instead of
\bprog
tab = sumnuminit(asymp);
sumnum(n = a, f, tab)
@eprog
\misctitle{Further examples}
\bprog
? \p200
? sumnum(n = 1, n^(-2)) - zeta(2) \\ accurate, fast
time = 200 ms.
%1 = -2.376364457868949779 E-212
? sumpos(n = 1, n^(-2)) - zeta(2) \\ even faster
time = 96 ms.
%2 = 0.E-211
? sumpos(n=1,n^(-4/3)) - zeta(4/3) \\ now much slower
time = 13,045 ms.
%3 = -9.980730723049589073 E-210
? sumnum(n=1,n^(-4/3)) - zeta(4/3) \\ fast but inaccurate
time = 365 ms.
%4 = -9.85[...]E-85
? sumnum(n=[1,-4/3],n^(-4/3)) - zeta(4/3) \\ with decrease rate, now accurate
time = 416 ms.
%5 = -4.134874156691972616 E-210
? tab = sumnuminit([+oo,-4/3]);
time = 196 ms.
? sumnum(n=1, n^(-4/3), tab) - zeta(4/3) \\ faster with precomputations
time = 216 ms.
%5 = -4.134874156691972616 E-210
? sumnum(n=1,-log(n)*n^(-4/3), tab) - zeta'(4/3)
time = 321 ms.
%7 = 7.224147951921607329 E-210
@eprog
Note that in the case of slow decrease ($\alpha < 0$), the exact
decrease rate must be indicated, while in the case of exponential decrease,
a rough value will do. In fact, for exponentially decreasing functions,
\kbd{sumnum} is given for completeness and comparison purposes only: one
of \kbd{suminf} or \kbd{sumpos} should always be preferred.
\bprog
? sumnum(n=[1, 1], 2^-n) \\ pretend we decrease as exp(-n)
time = 240 ms.
%8 = 1.000[...] \\ perfect
? sumpos(n=1, 2^-n)
%9 = 1.000[...] \\ perfect and instantaneous
@eprog
\misctitle{Beware cancellation} The function $f(n)$ is evaluated for huge
values of $n$, so beware of cancellation in the evaluation:
\bprog
? f(n) = 2 - 1/n - 2*n*log(1+1/n); \\ result is O(1/n^2)
? z = -2 + log(2*Pi) - Euler;
? sumnummonien(n=1, f(n)) - z
time = 149 ms.
%12 = 0.E-212 \\ perfect
? sumnum(n=1, f(n)) - z
time = 116 ms.
%13 = -948.216[...] \\ junk
@eprog\noindent As \kbd{sumnum(n=1, print(n))} shows, we evaluate $f(n)$ for
$n > 1e233$ and our implementation of $f$ suffers from massive cancellation
since we are summing two terms of the order of $O(1)$ for a result in
$O(1/n^{2})$. You can either rewrite your sum so that individual terms are
evaluated without cancellation or locally replace $f(n)$ by an accurate
asymptotic expansion:
\bprog
? F = truncate( f(1/x + O(x^30)) );
? sumnum(n=1, if(n > 1e7, subst(F,x,1/n), f(n))) - z
%15 = 1.1 E-212 \\ now perfect
@eprog
\synt{sumnum}{(void *E, GEN (*eval)(void*, GEN), GEN a, GEN tab, long prec)}
where an omitted \var{tab} is coded as \kbd{NULL}.
\subsec{sumnumap$(n=a,f,\{\var{tab}\})$}\kbdsidx{sumnumap}\label{se:sumnumap}
Numerical summation of $f(n)$ at high accuracy using Abel-Plana,
the variable $n$ taking values from $a$ to $+\infty$, where $f$ is
holomorphic in the right half-place $\Re(z) > a$; \kbd{a} must be an integer
and \kbd{tab}, if given, is the output of \kbd{sumnumapinit}. The latter
precomputes abscissas and weights, speeding up the computation; it also allows
to specify the behavior at infinity via \kbd{sumnumapinit([+oo, asymp])}.
\bprog
? \p500
? z3 = zeta(3);
? sumpos(n = 1, n^-3) - z3
time = 2,332 ms.
%2 = 2.438468843 E-501
? sumnumap(n = 1, n^-3) - z3 \\ here slower than sumpos
time = 2,565 ms.
%3 = 0.E-500
@eprog
\misctitle{Complexity}
The function $f$ will be evaluated at $O(D \log D)$ real arguments
and $O(D)$ complex arguments,
where $D \approx \kbd{realprecision} \cdot \log(10)$. The routine is geared
towards slowly decreasing functions: if $f$ decreases exponentially fast,
then one of \kbd{suminf} or \kbd{sumpos} should be preferred.
The default algorithm \kbd{sumnum} is usually a little \emph{slower}
than \kbd{sumnumap} but its initialization function \kbd{sumnuminit}
becomes much faster as \kbd{realprecision} increases.
If $f$ satisfies the stronger hypotheses required for Monien summation,
i.e. if $f(1/z)$ is holomorphic in a complex neighbourhood of $[0,1]$,
then \tet{sumnummonien} will be faster since it only requires $O(D/\log D)$
evaluations:
\bprog
? sumnummonien(n = 1, 1/n^3) - z3
time = 1,128 ms.
%3 = 0.E-500
@eprog\noindent The \kbd{tab} argument precomputes technical data
not depending on the expression being summed and valid for a given accuracy,
speeding up immensely later calls:
\bprog
? tab = sumnumapinit();
time = 2,567 ms.
? sumnumap(n = 1, 1/n^3, tab) - z3 \\ now much faster than sumpos
time = 39 ms.
%5 = 0.E-500
? tabmon = sumnummonieninit(); \\ Monien summation allows precomputations too
time = 1,125 ms.
? sumnummonien(n = 1, 1/n^3, tabmon) - z3
time = 2 ms.
%7 = 0.E-500
@eprog\noindent The speedup due to precomputations becomes less impressive
when the function $f$ is expensive to evaluate, though:
\bprog
? sumnumap(n = 1, lngamma(1+1/n)/n, tab);
time = 10,762 ms.
? sumnummonien(n = 1, lngamma(1+1/n)/n, tabmon); \\ fewer evaluations
time = 205 ms.
@eprog
\misctitle{Behaviour at infinity}
By default, \kbd{sumnumap} assumes that \var{expr} decreases slowly at
infinity, but at least like $O(n^{-2})$. If the function decreases
like $n^{\alpha}$ for some $-2 < \alpha < -1$, then it must be indicated via
\bprog
tab = sumnumapinit([+oo, alpha]); /* alpha < 0 slow decrease */
@eprog\noindent otherwise loss of accuracy is expected.
If the functions decreases quickly, like $\exp(-\alpha n)$ for some
$\alpha > 0$, then it must be indicated via
\bprog
tab = sumnumapinit([+oo, alpha]); /* alpha > 0 exponential decrease */
@eprog\noindent otherwise exponent overflow will occur.
\bprog
? sumnumap(n=1,2^-n)
*** at top-level: sumnumap(n=1,2^-n)
*** ^----
*** _^_: overflow in expo().
? tab = sumnumapinit([+oo,log(2)]); sumnumap(n=1,2^-n, tab)
%1 = 1.000[...]
@eprog
As a shortcut, one can also input
\bprog
sumnumap(n = [a, asymp], f)
@eprog\noindent instead of
\bprog
tab = sumnumapinit(asymp);
sumnumap(n = a, f, tab)
@eprog
\misctitle{Further examples}
\bprog
? \p200
? sumnumap(n = 1, n^(-2)) - zeta(2) \\ accurate, fast
time = 169 ms.
%1 = -4.752728915737899559 E-212
? sumpos(n = 1, n^(-2)) - zeta(2) \\ even faster
time = 79 ms.
%2 = 0.E-211
? sumpos(n=1,n^(-4/3)) - zeta(4/3) \\ now much slower
time = 10,518 ms.
%3 = -9.980730723049589073 E-210
? sumnumap(n=1,n^(-4/3)) - zeta(4/3) \\ fast but inaccurate
time = 309 ms.
%4 = -2.57[...]E-78
? sumnumap(n=[1,-4/3],n^(-4/3)) - zeta(4/3) \\ decrease rate: now accurate
time = 329 ms.
%6 = -5.418110963941205497 E-210
? tab = sumnumapinit([+oo,-4/3]);
time = 160 ms.
? sumnumap(n=1, n^(-4/3), tab) - zeta(4/3) \\ faster with precomputations
time = 175 ms.
%5 = -5.418110963941205497 E-210
? sumnumap(n=1,-log(n)*n^(-4/3), tab) - zeta'(4/3)
time = 258 ms.
%7 = 9.125239518216767153 E-210
@eprog
Note that in the case of slow decrease ($\alpha < 0$), the exact
decrease rate must be indicated, while in the case of exponential decrease,
a rough value will do. In fact, for exponentially decreasing functions,
\kbd{sumnumap} is given for completeness and comparison purposes only: one
of \kbd{suminf} or \kbd{sumpos} should always be preferred.
\bprog
? sumnumap(n=[1, 1], 2^-n) \\ pretend we decrease as exp(-n)
time = 240 ms.
%8 = 1.000[...] \\ perfect
? sumpos(n=1, 2^-n)
%9 = 1.000[...] \\ perfect and instantaneous
@eprog
\synt{sumnumap}{(void *E, GEN (*eval)(void*,GEN), GEN a, GEN tab, long prec)}
where an omitted \var{tab} is coded as \kbd{NULL}.
\subsec{sumnumapinit$(\{\var{asymp}\})$}\kbdsidx{sumnumapinit}\label{se:sumnumapinit}
Initialize tables for Abel--Plana summation of a series $\sum f(n)$,
where $f$ is holomorphic in a right half-plane.
If given, \kbd{asymp} is of the form $[\kbd{+oo}, \alpha]$,
as in \tet{intnum} and indicates the decrease rate at infinity of functions
to be summed. A positive
$\alpha > 0$ encodes an exponential decrease of type $\exp(-\alpha n)$ and
a negative $-2 < \alpha < -1$ encodes a slow polynomial decrease of type
$n^{\alpha}$.
\bprog
? \p200
? sumnumap(n=1, n^-2);
time = 163 ms.
? tab = sumnumapinit();
time = 160 ms.
? sumnumap(n=1, n^-2, tab); \\ faster
time = 7 ms.
? tab = sumnumapinit([+oo, log(2)]); \\ decrease like 2^-n
time = 164 ms.
? sumnumap(n=1, 2^-n, tab) - 1
time = 36 ms.
%5 = 3.0127431466707723218 E-282
? tab = sumnumapinit([+oo, -4/3]); \\ decrease like n^(-4/3)
time = 166 ms.
? sumnumap(n=1, n^(-4/3), tab);
time = 181 ms.
@eprog
The library syntax is \fun{GEN}{sumnumapinit}{GEN asymp = NULL, long prec}.
\subsec{sumnuminit$(\{\var{asymp}\})$}\kbdsidx{sumnuminit}\label{se:sumnuminit}
Initialize tables for Euler--MacLaurin delta summation of a series with
positive terms. If given, \kbd{asymp} is of the form $[\kbd{+oo}, \alpha]$,
as in \tet{intnum} and indicates the decrease rate at infinity of functions
to be summed. A positive
$\alpha > 0$ encodes an exponential decrease of type $\exp(-\alpha n)$ and
a negative $-2 < \alpha < -1$ encodes a slow polynomial decrease of type
$n^{\alpha}$.
\bprog
? \p200
? sumnum(n=1, n^-2);
time = 200 ms.
? tab = sumnuminit();
time = 188 ms.
? sumnum(n=1, n^-2, tab); \\ faster
time = 8 ms.
? tab = sumnuminit([+oo, log(2)]); \\ decrease like 2^-n
time = 200 ms.
? sumnum(n=1, 2^-n, tab)
time = 44 ms.
? tab = sumnuminit([+oo, -4/3]); \\ decrease like n^(-4/3)
time = 200 ms.
? sumnum(n=1, n^(-4/3), tab);
time = 221 ms.
@eprog
The library syntax is \fun{GEN}{sumnuminit}{GEN asymp = NULL, long prec}.
\subsec{sumnumlagrange$(n=a,f,\{\var{tab}\})$}\kbdsidx{sumnumlagrange}\label{se:sumnumlagrange}
Numerical summation of $f(n)$ from $n=a$ to $+\infty$ using Lagrange
summation; $a$ must be an integer, and the optional argument \kbd{tab} is
the output of \kbd{sumnumlagrangeinit}. By default, the program assumes that
the $N$th remainder has an asymptotic expansion in integral powers of $1/N$.
If not, initialize \kbd{tab} using \kbd{sumnumlagrangeinit(al)}, where
the asymptotic expansion of the remainder is integral powers of $1/N^{al}$;
$al$ can be equal to $1$ (default), $1/2$, $1/3$, or $1/4$, and also
equal to $2$, but in this latter case it is the $N$th remainder minus one
half of the last summand which has an asymptotic expansion in integral
powers of $1/N^{2}$.
\bprog
? \p1000
? z3 = zeta(3);
? sumpos(n = 1, n^-3) - z3
time = 4,440 ms.
%2 = -2.08[...] E-1001
? sumnumlagrange(n = 1, n^-3) - z3 \\ much faster than sumpos
time = 25 ms.
%3 = 0.E-1001
? tab = sumnumlagrangeinit();
time = 21 ms.
? sumnumlagrange(n = 1, n^-3, tab) - z3
time = 2 ms. /* even faster */
%5 = 0.E-1001
? \p115
? tab = sumnumlagrangeinit([1/3,1/3]);
time = 316 ms.
? sumnumlagrange(n = 1, n^-(7/3), tab) - zeta(7/3)
time = 24 ms.
%7 = 0.E-115
? sumnumlagrange(n = 1, n^(-2/3) - 3*(n^(1/3)-(n-1)^(1/3)), tab) - zeta(2/3)
time = 32 ms.
%8 = 1.0151767349262596893 E-115
@eprog
\misctitle{Complexity}
The function $f$ is evaluated at $O(D)$ integer arguments,
where $D \approx \kbd{realprecision} \cdot \log(10)$.
\synt{sumnumlagrange}{(void *E, GEN (*eval)(void*, GEN), GEN a, GEN tab, long prec)}
where an omitted \var{tab} is coded as \kbd{NULL}.
\subsec{sumnumlagrangeinit$(\{\var{asymp}\},\{\var{c1}\})$}\kbdsidx{sumnumlagrangeinit}\label{se:sumnumlagrangeinit}
Initialize tables for Lagrange summation of a series. By
default, assume that the remainder $R(n) = \sum_{m \geq n} f(m)$
has an asymptotic expansion
$$R(n) = \sum_{m \geq n} f(n) \approx \sum_{i\geq 1} a_{i} / n^{i}$$
at infinity. The argument \kbd{asymp} allows to specify different
expansions:
\item a real number $\beta$ means
$$ R(n) = n^{-\beta} \sum_{i\geq 1} a_{i} / n^{i} $$
\item a \typ{CLOSURE} $g$ means
$$R(n) = g(n) \sum_{i\geq 1} a_{i} / n^{i}$$
(The preceding case corresponds to $g(n) = n^{-\beta}$.)
\item a pair $[\alpha,\beta]$ where $\beta$ is as above and
$\alpha\in \{2, 1, 1/2, 1/3, 1/4\}$. We let $R_{2}(n) = R(n) - f(n)/2$
and $R_{\alpha}(n) = R(n)$ for $\alpha\neq 2$. Then
$$R_{\alpha}(n) = g(n) \sum_{i\geq 1} a_{i} / n^{i\alpha}$$
Note that the initialization times increase considerable for the $\alpha$
is this list ($1/4$ being the slowest).
The constant $c1$ is technical and computed by the program, but can be set
by the user: the number of interpolation steps will be chosen close to
$c1\cdot B$, where $B$ is the bit accuracy.
\bprog
? \p2000
? sumnumlagrange(n=1, n^-2);
time = 173 ms.
? tab = sumnumlagrangeinit();
time = 172 ms.
? sumnumlagrange(n=1, n^-2, tab);
time = 4 ms.
? \p115
? sumnumlagrange(n=1, n^(-4/3)) - zeta(4/3);
%1 = -0.1093[...] \\ junk: expansion in n^(1/3)
time = 84 ms.
? tab = sumnumlagrangeinit([1/3,0]); \\ alpha = 1/3
time = 336 ms.
? sumnumlagrange(n=1, n^(-4/3), tab) - zeta(4/3)
time = 84 ms.
%3 = 1.0151767349262596893 E-115 \\ now OK
? tab = sumnumlagrangeinit(1/3); \\ alpha = 1, beta = 1/3: much faster
time = 3ms
? sumnumlagrange(n=1, n^(-4/3), tab) - zeta(4/3) \\ ... but wrong
%5 = -0.273825[...] \\ junk !
? tab = sumnumlagrangeinit(-2/3); \\ alpha = 1, beta = -2/3
time = 3ms
? sumnumlagrange(n=1, n^(-4/3), tab) - zeta(4/3)
%6 = 2.030353469852519379 E-115 \\ now OK
@eprog\noindent in The final example with $\zeta(4/3)$, the remainder
$R_{1}(n)$ is of the form $n^{-1/3} \sum_{i\geq 0} a_{i} / n^{i}$, i.e.
$n^{2/3} \sum_{i\geq 1} a_{i} / n^{i}$. The explains the wrong result
for $\beta = 1/3$ and the correction with $\beta = -2/3$.
The library syntax is \fun{GEN}{sumnumlagrangeinit}{GEN asymp = NULL, GEN c1 = NULL, long prec}.
\subsec{sumnummonien$(n=a,f,\{\var{tab}\})$}\kbdsidx{sumnummonien}\label{se:sumnummonien}
Numerical summation $\sum_{n\geq a} f(n)$ at high accuracy, the variable
$n$ taking values from the integer $a$ to $+\infty$ using Monien summation,
which assumes that $f(1/z)$ has a complex analytic continuation in a (complex)
neighbourhood of the segment $[0,1]$.
The function $f$ is evaluated at $O(D / \log D)$ real arguments,
where $D \approx \kbd{realprecision} \cdot \log(10)$.
By default, assume that $f(n) = O(n^{-2})$ and has a nonzero asymptotic
expansion
$$f(n) = \sum_{i\geq 2} a_{i} n^{-i}$$
at infinity. To handle more complicated behaviors and allow time-saving
precomputations (for a given \kbd{realprecision}), see \kbd{sumnummonieninit}.
The library syntax is \fun{GEN}{sumnummonien0}{GEN n, GEN f, GEN tab = NULL, long prec}.
\subsec{sumnummonieninit$(\{\var{asymp}\},\{w\},\{\var{n0} = 1\})$}\kbdsidx{sumnummonieninit}\label{se:sumnummonieninit}
Initialize tables for Monien summation of a series $\sum_{n\geq n_{0}}
f(n)$ where $f(1/z)$ has a complex analytic continuation in a (complex)
neighbourhood of the segment $[0,1]$.
By default, assume that $f(n) = O(n^{-2})$ and has a nonzero asymptotic
expansion
$$f(n) = \sum_{i\geq 2} a_{i} / n^{i}$$
at infinity. Note that the sum starts at $i = 2$! The argument \kbd{asymp}
allows to specify different expansions:
\item a real number $\beta > 0$ means
$$f(n) = \sum_{i\geq 1} a_{i} / n^{i + \beta}$$
(Now the summation starts at $1$.)
\item a vector $[\alpha,\beta]$ of reals, where we must have $\alpha > 0$
and $\alpha + \beta > 1$ to ensure convergence, means that
$$f(n) = \sum_{i\geq 1} a_{i} / n^{\alpha i + \beta}$$
Note that $\kbd{asymp} = [1, \beta]$ is equivalent to
$\kbd{asymp}=\beta$.
\bprog
? \p57
? s = sumnum(n = 1, sin(1/sqrt(n)) / n); \\ reference point
? \p38
? sumnummonien(n = 1, sin(1/sqrt(n)) / n) - s
%2 = -0.001[...] \\ completely wrong
? t = sumnummonieninit(1/2); \\ f(n) = sum_i 1 / n^(i+1/2)
? sumnummonien(n = 1, sin(1/sqrt(n)) / n, t) - s
%3 = 0.E-37 \\ now correct
@eprog\noindent (As a matter of fact, in the above summation, the
result given by \kbd{sumnum} at \kbd{\bs p38} is slighly incorrect,
so we had to increase the accuracy to \kbd{\bs p57}.)
The argument $w$ is used to sum expressions of the form
$$ \sum_{n\geq n_{0}} f(n) w(n),$$
for varying $f$ \emph{as above}, and fixed weight function $w$, where we
further assume that the auxiliary sums
$$g_{w}(m) = \sum_{n\geq n_{0}} w(n) / n^{\alpha m + \beta} $$
converge for all $m\geq 1$. Note that for nonnegative integers $k$,
and weight $w(n) = (\log n)^{k}$, the function
$g_{w}(m) = \zeta^{(k)}(\alpha m + \beta)$ has a simple expression;
for general weights, $g_{w}$ is
computed using \kbd{sumnum}. The following variants are available
\item an integer $k \geq 0$, to code $w(n) = (\log n)^{k}$;
\item a \typ{CLOSURE} computing the values $w(n)$, where we
assume that $w(n) = O(n^{\epsilon})$ for all $\epsilon > 0$;
\item a vector $[w, \kbd{fast}]$, where $w$ is a closure as above
and \kbd{fast} is a scalar;
we assume that $w(n) = O(n^{\kbd{fast}+\epsilon})$; note that
$\kbd{w} = [w, 0]$ is equivalent to $\kbd{w} = w$. Note that if
$w$ decreases exponentially, \kbd{suminf} should be used instead.
The subsequent calls to \kbd{sumnummonien} \emph{must} use the same value
of $n_{0}$ as was used here.
\bprog
? \p300
? sumnummonien(n = 1, n^-2*log(n)) + zeta'(2)
time = 328 ms.
%1 = -1.323[...]E-6 \\ completely wrong, f does not satisfy hypotheses !
? tab = sumnummonieninit(, 1); \\ codes w(n) = log(n)
time = 3,993 ms.
? sumnummonien(n = 1, n^-2, tab) + zeta'(2)
time = 41 ms.
%3 = -5.562684646268003458 E-309 \\ now perfect
? tab = sumnummonieninit(, n->log(n)); \\ generic, slower
time = 9,808 ms.
? sumnummonien(n = 1, n^-2, tab) + zeta'(2)
time = 40 ms.
%5 = -5.562684646268003458 E-309 \\ identical result
@eprog
The library syntax is \fun{GEN}{sumnummonieninit}{GEN asymp = NULL, GEN w = NULL, GEN n0 = NULL, long prec}.
\subsec{sumnumrat$(F,a)$}\kbdsidx{sumnumrat}\label{se:sumnumrat}
$\sum_{n\geq a}F(n)$, where $F$ is a rational function of degree less
than or equal to $-2$ and where poles of $F$ at integers $\geq a$ are
omitted from the summation. The argument $a$ must be a \typ{INT}
or \kbd{-oo}.
\bprog
? sumnumrat(1/(x^2+1)^2,0)
%1 = 1.3068369754229086939178621382829073480
? sumnumrat(1/x^2, -oo) \\ value at x=0 is discarded
%2 = 3.2898681336964528729448303332920503784
? 2*zeta(2)
%3 = 3.2898681336964528729448303332920503784
@eprog\noindent When $\deg F = -1$, we define
$$\sum_{-\infty}^{\infty} F(n) := \sum_{n\geq 0} (F(n) + F(-1-n)):$$
\bprog
? sumnumrat(1/x, -oo)
%4 = 0.E-38
@eprog
The library syntax is \fun{GEN}{sumnumrat}{GEN F, GEN a, long prec}.
\subsec{sumnumsidi$(n=a,f,\{\var{safe}=1\})$}\kbdsidx{sumnumsidi}\label{se:sumnumsidi}
Numerical summation of $f(n)$ from $n=a$ to $+\infty$ using Sidi
summation; $a$ must be an integer. The optional argument \kbd{safe}
(set by default to $1$) can be set to $0$ for a faster but much less
robust program; this is likely to lose accuracy when the sum is
non-alternating.
\bprog
? \pb3328
? z = zeta(2);
? exponent(sumnumsidi(n = 1, 1/n^2) - z)
time = 1,507 ms.
%2 = -3261 \\ already loses some decimals
? exponent(sumnumsidi(n = 1, 1/n^2, 0) - z)
time = 442 ms. \\ unsafe is much faster
%3 = -2108 \\ ... but very wrong
? l2 = log(2);
? exponent(sumnumsidi(n = 1,(-1)^(n-1)/n) - z)
time = 718 ms.
%5 = -3328 \\ not so slow and perfect
? exponent(sumnumsidi(n = 1,(-1)^(n-1)/n, 0) - z)
time = 504 ms.
%5 = -3328 \\ still perfect in unsafe mode, not so much faster
@eprog
\misctitle{Complexity} If the bitprecision is $b$, we try to achieve an
absolute error less than $2^{-b}$. The function $f$ is evaluated at $O(b)$
consecutive integer arguments at bit accuracy $1.56 b$ (resp.~$b$) in safe
(resp.~unsafe) mode.
The library syntax is \fun{GEN}{sumnumsidi0}{GEN n, GEN f, long safe, long prec}.
\subsec{sumpos$(X=a,\var{expr},\{\fl=0\})$}\kbdsidx{sumpos}\label{se:sumpos}
Numerical summation of the series \var{expr}, which must be a series of
terms having the same sign, the formal variable $X$ starting at $a$. The
algorithm uses Van Wijngaarden's trick for converting such a series into
an alternating one, then \tet{sumalt}. For regular functions, the
function \kbd{sumnum} is in general much faster once the initializations
have been made using \kbd{sumnuminit}. Contrary to \kbd{sumnum},
\kbd{sumpos} allows functions defined only at integers:
\bprog
? sumnum(n = 0, 1/n!)
*** at top-level: sumnum(n=1,1/n!)
*** ^---
*** incorrect type in gtos [integer expected] (t_FRAC).
? sumpos(n = 0, 1/n!) - exp(1)
%2 = -1.0862155548773347717 E-33
@eprog\noindent On the other hand, when the function accepts general real
numbers, it is usually advantageous to replace $n$ by \kbd{$n$ * 1.0} in the
sumpos call in particular when rational functions are involved:
\bprog
? \p500
? sumpos(n = 0, n^7 / (n^9+n+1));
time = 6,108 ms.
? sumpos(n = 0, n *= 1.; n^7 / (n^9+n+1));
time = 2,788 ms.
? sumnumrat(n^7 / (n^9+n+1), 0);
time = 4 ms.
@eprog\noindent In the last example, \kbd{sumnumrat} is of course much
faster but it only applies to rational functions.
The routine is heuristic and assumes that \var{expr} is more or less a
decreasing function of $X$. In particular, the result will be completely
wrong if \var{expr} is 0 too often. We do not check either that all terms
have the same sign: as \tet{sumalt}, this function should be used to
try and guess the value of an infinite sum.
If $\fl=1$, use \kbd{sumalt}$(,1)$ instead of \kbd{sumalt}$(,0)$, see
\secref{se:sumalt}. Requiring more stringent analytic properties for
rigorous use, but allowing to compute fewer series terms.
To reach accuracy $10^{-p}$, both algorithms require $O(p^{2})$ space;
furthermore, assuming the terms decrease polynomially (in $O(n^{-C})$), both
need to compute $O(p^{2})$ terms. The \kbd{sumpos}$(,1)$ variant has a smaller
implied constant (roughly 1.5 times smaller). Since the \kbd{sumalt}$(,1)$
overhead is now small compared to the time needed to compute series terms,
this last variant should be about 1.5 faster. On the other hand, the
achieved accuracy may be much worse: as for \tet{sumalt}, since
conditions for rigorous use are hard to check, the routine is best used
heuristically.
\synt{sumpos}{void *E, GEN (*eval)(void*,GEN),GEN a,long prec}. Also
available is \tet{sumpos2} with the same arguments ($\fl = 1$).
\section{General number fields}
In this section, we describe functions related to general number fields.
Functions related to quadratic number fields are found in
\secref{se:arithmetic} (Arithmetic functions).
\subsec{Number field structures} %GPHELPskip
Let $K = \Q[X] / (T)$ a number field, $\Z_{K}$ its ring of integers,
$T\in\Z[X]$
is monic. Three basic number field structures can be attached to $K$ in
GP:
\item $\tev{nf}$ denotes a number field, i.e.~a data structure output by
\tet{nfinit}. This contains the basic arithmetic data attached to the
number field: signature, maximal order (given by a basis \kbd{nf.zk}),
discriminant, defining polynomial $T$, etc.
\item $\tev{bnf}$ denotes a ``Buchmann's number field'', i.e.~a
data structure output by \tet{bnfinit}. This contains
$\var{nf}$ and the deeper invariants of the field: units $U(K)$, class group
$\Cl(K)$, as well as technical data required to solve the two attached
discrete logarithm problems.
\item $\tev{bnr}$ denotes a ``ray number field'', i.e.~a data structure
output by \kbd{bnrinit}, corresponding to the ray class group structure of
the field, for some modulus $f$. It contains a \var{bnf}, the modulus
$f$, the ray class group $\Cl_{f}(K)$ and data attached to
the discrete logarithm problem therein.
\subsec{Algebraic numbers and ideals} %GPHELPskip
\noindent An \tev{algebraic number} belonging to $K = \Q[X]/(T)$ is given as
\item a \typ{INT}, \typ{FRAC} or \typ{POL} (implicitly modulo $T$), or
\item a \typ{POLMOD} (modulo $T$), or
\item a \typ{COL}~\kbd{v} of dimension $N = [K:\Q]$, representing
the element in terms of the computed integral basis, as
\kbd{sum(i = 1, N,~v[i] * nf.zk[i])}. Note that a \typ{VEC}
will not be recognized.
\medskip
\noindent An \tev{ideal} is given in any of the following ways:
\item an algebraic number in one of the above forms, defining a principal ideal.
\item a prime ideal, i.e.~a 5-component vector in the format output by
\kbd{idealprimedec} or \kbd{idealfactor}.
\item a \typ{MAT}, square and in Hermite Normal Form (or at least
upper triangular with nonnegative coefficients), whose columns represent a
$\Z$-basis of the ideal.
One may use \kbd{idealhnf} to convert any ideal to the last (preferred) format.
\item an \emph{extended ideal} \sidx{ideal (extended)} is a 2-component
vector $[I, t]$, where $I$ is an ideal as above and $t$ is an algebraic
number, representing the ideal $(t)I$. This is useful whenever \tet{idealred}
is involved, implicitly working in the ideal class group, while keeping track
of principal ideals. The following multiplicative ideal operations
update the principal part: \kbd{idealmul}, \kbd{idealinv},
\kbd{idealsqr}, \kbd{idealpow} and \kbd{idealred}; e.g.~using \kbd{idealmul}
on $[I,t]$, $[J,u]$, we obtain $[IJ, tu]$. In all other
functions, the extended part is silently discarded, e.g.~using
\kbd{idealadd} with the above input produces $I+J$.
The ``principal part'' $t$ in an extended ideal may be
represented in any of the above forms, and \emph{also} as a factorization
matrix (in terms of number field elements, not ideals!), possibly the empty
factorization matrix \kbd{factor(1)} representing $1$; the empty matrix
\kbd{[;]} is also accepted as a synonym for $1$. When $t$ is such a
factorization matrix, elements stay in
factored form, or \tev{famat} for \emph{fa}ctorization \emph{mat}rix, which
is a convenient way to avoid coefficient explosion. To recover the
conventional expanded form, try \tet{nffactorback}; but many functions
already accept \var{famat}s as input, for instance \tet{ideallog}, so
expanding huge elements should never be necessary.
\subsec{Finite abelian groups} %GPHELPskip
A finite abelian group $G$ in user-readable format is given by its Smith
Normal Form as a pair $[h,d]$ or triple $[h,d,g]$.
Here $h$ is the cardinality of $G$, $(d_{i})$ is the vector of elementary
divisors, and $(g_{i})$ is a vector of generators. In short,
$G = \oplus_{i\leq n} (\Z/d_{i}\Z) g_{i}$, with
$d_{n} \mid \dots \mid d_{2} \mid d_{1}$
and $\prod_{i} d_{i} = h$. This information can also be retrieved as
$G.\kbd{no}$, $G.\kbd{cyc}$ and $G.\kbd{gen}$.
\item a \tev{character} on the abelian group $\oplus (\Z/d_{j}\Z) g_{j}$
is given by a row vector $\chi = [a_{1},\ldots,a_{n}]$ such that
$\chi(\prod_{j} g_{j}^{n_{j}}) = \exp(2\pi i\sum_{j} a_{j} n_{j} / d_{j})$.
\item given such a structure, a \tev{subgroup} $H$ is input as a square
matrix in HNF, whose columns express generators of $H$ on the given generators
$g_{i}$. Note that the determinant of that matrix is equal to the index $(G:H)$.
\subsec{Relative extensions} %GPHELPskip
We now have a look at data structures attached to relative extensions
of number fields $L/K$, and to projective $\Z_{K}$-modules. When defining a
relative extension $L/K$, the $\var{nf}$ attached to the base field $K$
must be defined by a variable having a lower priority (see
\secref{se:priority}) than the variable defining the extension. For example,
you may use the variable name $y$ to define the base field $K$, and $x$ to
define the relative extension $L/K$.
\misctitle{Basic definitions}\label{se:ZKmodules} %GPHELPskip
\item $\tev{rnf}$ denotes a relative number field, i.e.~a data structure
output by \kbd{rnfinit}, attached to the extension $L/K$. The \var{nf}
attached to be base field $K$ is \kbd{rnf.nf}.
\item A \emph{relative matrix} is an $m\times n$ matrix whose entries are
elements of $K$, in any form. Its $m$ columns $A_{j}$ represent elements
in $K^{n}$.
\item An \tev{ideal list} is a row vector of fractional ideals of the number
field $\var{nf}$.
\item A \tev{pseudo-matrix} is a 2-component row vector $(A,I)$ where $A$
is a relative $m\times n$ matrix and $I$ an ideal list of length $n$. If $I =
\{\goth{a}_{1},\dots, \goth{a}_{n}\}$ and the columns of $A$ are $(A_{1},\dots,
A_{n})$, this data defines the torsion-free (projective) $\Z_{K}$-module
$\goth{a}_{1} A_{1}\oplus \goth{a}_{n} A_{n}$.
\item An \tev{integral pseudo-matrix} is a 3-component row vector $(A,I,J)$
where $A = (a_{i,j})$ is an $m\times n$ relative matrix and $I =
(\goth{b}_{1},\dots, \goth{b}_{m})$, $J = (\goth{a}_{1},\dots, \goth{a}_{n})$ are ideal
lists, such that $a_{i,j} \in \goth{b}_{i} \goth{a}_{j}^{-1}$ for all $i,j$. This
data defines two abstract projective $\Z_{K}$-modules
$N = \goth{a}_{1}\omega_{1}\oplus \cdots\oplus \goth{a}_{n}\omega_{n}$
in $K^{n}$,
$P = \goth{b}_{1}\eta_{1}\oplus \cdots\oplus \goth{b}_{m}\eta_{m}$ in $K^{m}$,
and a $\Z_{K}$-linear map $f:N\to P$ given by
$$ f(\sum_{j} \alpha_{j}\omega_{j}) = \sum_{i} \Big(a_{i,j}\alpha_{j}\Big)
\eta_{i}.$$
This data defines the $\Z_{K}$-module $M = P/f(N)$.
\item Any \emph{projective} $\Z_{K}$-module\varsidx{projective module} $M$
of finite type in $K^{m}$ can be given by a pseudo matrix $(A,I)$.
\item An arbitrary $\Z_{K}$ module of finite type in $K^{m}$, with nontrivial
torsion, is given by an integral pseudo-matrix $(A,I,J)$
\misctitle{Algebraic numbers in relative extension}
We are given a number field $K = \kbd{nfinit}(T)$, attached to $K = \Q[Y]/(T)$,
$T \in \Q[Y]$, and a relative extension $L = \kbd{rnfinit}(K, P)$, attached
to $L = K[X]/(P)$, $P \in K[X]$.
In all contexts (except \kbd{rnfeltabstorel} and \kbd{rnfeltdown}, see below), an
\tev{algebraic number} is given as
\item a \typ{INT}, \typ{FRAC} or \typ{POL} in $\Q[Y]$ (implicitly modulo $T$)
or a \typ{POL} in $K[X]$ (implicitly modulo $P$),
\item a \typ{POLMOD} (modulo $T$ or $P$), or
\item a \typ{COL}~\kbd{v} of dimension $m = [K:\Q]$, representing
the element in terms of the integral basis \kbd{K.zk};
\item if an absolute \kbd{nf} structure \kbd{Labs} was attached to $L$, via
\kbd{Labs = nfinit}$(L)$, then we can also use a \typ{COL}~\kbd{v} of
dimension $[L:\Q]$, representing the element in terms of the computed integral
basis \kbd{Labs.zk}. Be careful that in the degenerate case
$L = K$, then the previous interpretation (with respect to \kbd{$K$.zk})
takes precedence. This is no concern when $K = \Q$ or if $P = X - Y$
(because in that case the primitive
polynomial \kbd{Labs.pol} defining $L$ of $\Q$ is \kbd{nf.pol} and the
computation of \kbd{nf.zk} is deterministic); but in other cases, the
integer bases attached to $K$ and \kbd{Labs} may differ.
\misctitle{Special case: \kbd{rnfeltabstorel} and \kbd{rnfeltdown}}
These two functions assume
that elements are given in absolute representation (with respect to
\kbd{Labs.zk} or modulo \kbd{Labs.pol} and converts them to relative
representation modulo \kbd{$L$.pol}. In these two functions (only), a \typ{POL} in
$X$ is implicitly understood modulo \kbd{Labs.pol} and a \typ{COL}
of length $[L:\Q]$ refers to the integral basis \kbd{Labs.zk} in all cases,
including $L = K$.
\misctitle{Pseudo-bases, determinant} %GPHELPskip
\item The pair $(A,I)$ is a \tev{pseudo-basis} of the module it
generates if the $\goth{a}_{j}$ are nonzero, and the $A_{j}$ are $K$-linearly
independent. We call $n$ the \emph{size} of the pseudo-basis. If $A$ is a
relative matrix, the latter condition means it is square with nonzero
determinant; we say that it is in Hermite Normal
Form\sidx{Hermite normal form} (HNF) if it is upper triangular and all the
elements of the diagonal are equal to 1.
\item For instance, the relative integer basis \kbd{rnf.zk} is a pseudo-basis
$(A,I)$ of $\Z_{L}$, where $A = \kbd{rnf.zk[1]}$ is a vector of elements of $L$,
which are $K$-linearly independent. Most \var{rnf} routines return and handle
$\Z_{K}$-modules contained in $L$ (e.g.~$\Z_{L}$-ideals) via a pseudo-basis
$(A',I')$, where $A'$ is a relative matrix representing a vector of elements of
$L$ in terms of the fixed basis \kbd{rnf.zk[1]}
\item The \emph{determinant} of a pseudo-basis $(A,I)$ is the ideal
equal to the product of the determinant of $A$ by all the ideals of $I$. The
determinant of a pseudo-matrix is the determinant of any pseudo-basis of the
module it generates.
\subsec{Class field theory}\label{se:CFT}
A $\tev{modulus}$, in the sense of class field theory, is a divisor supported
on the real and finite places of $K$. In PARI terms, this means either an
ordinary ideal $I$ as above (no Archimedean component), or a pair $[I,a]$,
where $a$ is a vector with $r_{1}$ $\{0,1\}$-components, corresponding to the
infinite part of the divisor. More precisely, the $i$-th component of $a$
corresponds to the real embedding attached to the $i$-th real root of
\kbd{K.roots}. (That ordering is not canonical, but well defined once a
defining polynomial for $K$ is chosen.) For instance, \kbd{[1, [1,1]]} is a
modulus for a real quadratic field, allowing ramification at any of the two
places at infinity, and nowhere else.
A \tev{bid} or ``big ideal'' is a structure output by \kbd{idealstar}
needed to compute in $(\Z_{K}/I)^{*}$, where $I$ is a modulus in the above sense.
It is a finite abelian group as described above, supplemented by
technical data needed to solve discrete log problems.
Finally we explain how to input ray number fields (or \var{bnr}), using class
field theory. These are defined by a triple $A$, $B$, $C$, where the
defining set $[A,B,C]$ can have any of the following forms:
$[\var{bnr}]$,
$[\var{bnr},\var{subgroup}]$,
$[\var{bnr},\var{character}]$,
$[\var{bnf},\var{mod}]$,
$[\var{bnf},\var{mod},\var{subgroup}]$. The last two forms are kept for
backward compatibility, but no longer serve any real purpose (see example
below); no newly written function will accept them.
\item $\var{bnf}$ is as output by \kbd{bnfinit}, where units are mandatory
unless the modulus is trivial; \var{bnr} is as output by \kbd{bnrinit}. This
is the ground field $K$.
\item \emph{mod} is a modulus $\goth{f}$, as described above.
\item \emph{subgroup} a subgroup of the ray class group modulo $\goth{f}$ of
$K$. As described above, this is input as a square matrix expressing
generators of a subgroup of the ray class group \kbd{\var{bnr}.clgp} on the
given generators. We also allow a \typ{INT} $n$ for $n \cdot \text{Cl}_{f}$.
\item \emph{character} is a character $\chi$ of the ray class group modulo
$\goth{f}$, representing the subgroup $\text{Ker} \chi$.
The corresponding \var{bnr} is the subfield of the ray class field of $K$
modulo $\goth{f}$, fixed by the given subgroup.
\bprog
? K = bnfinit(y^2+1);
? bnr = bnrinit(K, 13)
? %.clgp
%3 = [36, [12, 3]]
? bnrdisc(bnr); \\ discriminant of the full ray class field
? bnrdisc(bnr, [3,1;0,1]); \\ discriminant of cyclic cubic extension of K
? bnrconductor(bnr, [3,1]); \\ conductor of chi: g1->zeta_12^3, g2->zeta_3
@eprog\noindent
We could have written directly
\bprog
? bnrdisc(K, 13);
? bnrdisc(K, 13, [3,1;0,1]);
@eprog\noindent
avoiding one \tet{bnrinit}, but this would actually be slower since the
\kbd{bnrinit} is called internally anyway. And now twice!
\subsec{General use}
All the functions which are specific to relative extensions, number fields,
Buchmann's number fields, Buchmann's number rays, share the prefix \kbd{rnf},
\kbd{nf}, \kbd{bnf}, \kbd{bnr} respectively. They take as first argument a
number field of that precise type, respectively output by \kbd{rnfinit},
\kbd{nfinit}, \kbd{bnfinit}, and \kbd{bnrinit}.
However, and even though it may not be specified in the descriptions of the
functions below, it is permissible, if the function expects a $\var{nf}$, to
use a $\var{bnf}$ instead, which contains much more information. On the other
hand, if the function requires a \kbd{bnf}, it will \emph{not} launch
\kbd{bnfinit} for you, which is a costly operation. Instead, it will give you
a specific error message. In short, the types
$$ \kbd{nf} \leq \kbd{bnf} \leq \kbd{bnr}$$
are ordered, each function requires a minimal type to work properly, but you
may always substitute a larger type.
The data types corresponding to the structures described above are rather
complicated. Thus, as we already have seen it with elliptic curves, GP
provides ``member functions'' to retrieve data from these structures (once
they have been initialized of course). The relevant types of number fields
are indicated between parentheses: \smallskip
\sidx{member functions}
\settabs\+xxxxxxx&(\var{bnr},x&\var{bnf},x&nf\hskip2pt&)x&: &\cr
\+\tet{bid} &(\var{bnr}&&&)&: & bid ideal structure.\cr
\+\tet{bnf} &(\var{bnr},& \var{bnf}&&)&: & Buchmann's number field.\cr
\+\tet{clgp} &(\var{bnr},& \var{bnf}&&)&: & classgroup. This one admits the
following three subclasses:\cr
\+ \quad \tet{cyc} &&&&&: & \quad cyclic decomposition
(SNF)\sidx{Smith normal form}.\cr
\+ \quad \kbd{gen}\sidx{gen (member function)} &&&&&: &
\quad generators.\cr
\+ \quad \tet{no} &&&&&: & \quad number of elements.\cr
\+\tet{diff} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & the different ideal.\cr
\+\tet{codiff}&(\var{bnr},& \var{bnf},& \var{nf}&)&: & the codifferent
(inverse of the different in the ideal group).\cr
\+\tet{disc} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & discriminant.\cr
\+\tet{fu} &( & \var{bnf}&&)&: & \idx{fundamental units}.\cr
\+\tet{index} &(\var{bnr},& \var{bnf},& \var{nf}&)&: &
\idx{index} of the power order in the ring of integers.\cr
\+\tet{mod} &(\var{bnr}&&&)&: & modulus.\cr
\+\tet{nf} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & number field.\cr
\+\tet{pol} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & defining polynomial.\cr
\+\tet{r1} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & the number
of real embeddings.\cr
\+\tet{r2} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & the number
of pairs of complex embeddings.\cr
\+\tet{reg} &( & \var{bnf}&&)&: & regulator.\cr
\+\tet{roots}&(\var{bnr},& \var{bnf},& \var{nf}&)&: & roots of the
polynomial generating the field.\cr
\+\tet{sign} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & signature $[r1,r2]$.\cr
\+\tet{t2} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & the $T_{2}$ matrix (see
\kbd{nfinit}).\cr
\+\tet{tu} &( & \var{bnf}&&)&: & a generator for the torsion
units.\cr
\+\tet{zk} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & integral basis, i.e.~a
$\Z$-basis of the maximal order.\cr
\+\tet{zkst} &(\var{bnr}&&&)&: & structure of $(\Z_{K}/m)^{*}$.\cr
The member functions \kbd{.codiff}, \kbd{.t2} and \kbd{.zk} perform a
computation and are relatively expensive in large degree: move them out of
tight loops and store them in variables.
For instance, assume that $\var{bnf} = \kbd{bnfinit}(\var{pol})$, for some
polynomial. Then \kbd{\var{bnf}.clgp} retrieves the class group, and
\kbd{\var{bnf}.clgp.no} the class number. If we had set $\var{bnf} =
\kbd{nfinit}(\var{pol})$, both would have output an error message. All these
functions are completely recursive, thus for instance
\kbd{\var{bnr}.bnf.nf.zk} will yield the maximal order of \var{bnr}, which
you could get directly with a simple \kbd{\var{bnr}.zk}.
\subsec{Class group, units, and the GRH}\label{se:GRHbnf}
Some of the functions starting with \kbd{bnf} are implementations of the
sub-exponential algorithms for finding class and unit groups under \idx{GRH},
due to Hafner-McCurley, \idx{Buchmann} and Cohen-Diaz-Olivier. The general
call to the functions concerning class groups of general number fields
(i.e.~excluding \kbd{quadclassunit}) involves a polynomial $P$ and a
technical vector
$$\var{tech} = [c_{1}, c_{2}, \var{nrpid} ],$$
where the parameters are to be understood as follows:
$P$ is the defining polynomial for the number field, which must be in
$\Z[X]$, irreducible and monic. In fact, if you supply a nonmonic polynomial
at this point, \kbd{gp} issues a warning, then \emph{transforms your
polynomial} so that it becomes monic. The \kbd{nfinit} routine
will return a different result in this case: instead of \kbd{res}, you get a
vector \kbd{[res,Mod(a,Q)]}, where \kbd{Mod(a,Q) = Mod(X,P)} gives the change
of variables. In all other routines, the variable change is simply lost.
The \var{tech} interface is obsolete and you should not tamper with
these parameters. Indeed, from version 2.4.0 on,
\item the results are always rigorous under \idx{GRH} (before that version,
they relied on a heuristic strengthening, hence the need for overrides).
\item the influence of these parameters on execution time and stack size is
marginal. They \emph{can} be useful to fine-tune and experiment with the
\kbd{bnfinit} code, but you will be better off modifying all tuning
parameters in the C code (there are many more than just those three).
We nevertheless describe it for completeness.
The numbers $c_{1} \leq c_{2}$ are nonnegative real numbers. By default they
are chosen so that the result is correct under GRH. For $i = 1,2$, let
$B_{i} = c_{i}(\log |d_{K}|)^{2}$, and denote by $S(B)$ the set of maximal
ideals of $K$ whose norm is less than $B$. We want $S(B_{1})$ to generate
$\Cl(K)$ and hope that $S(B_{2})$ can be \emph{proven} to generate $\Cl(K)$.
More precisely, $S(B_{1})$ is a factorbase used to compute a tentative
$\Cl(K)$ by generators and relations. We then check explicitly, using
essentially \kbd{bnfisprincipal}, that the elements of $S(B_{2})$ belong to the
span of $S(B_{1})$. Under the assumption that $S(B_{2})$ generates $\Cl(K)$, we
are done. User-supplied $c_{i}$ are only used to compute initial guesses for
the bounds $B_{i}$, and the algorithm increases them until one can \emph{prove}
under GRH that $S(B_{2})$ generates $\Cl(K)$. A uniform result of Greni\'e
and Molteni says
that $c_{2} = 4$ is always suitable, but this bound is very pessimistic and a
direct algorithm due to Belabas-Diaz-Friedman, improved by Greni\'e and
Molteni, is used to check the condition, assuming GRH. The default values
are $c_{1} = c_{2} = 0$. When $c_{1}$ is equal to $0$ the algorithm takes it
equal to $c_{2}$.
$\var{nrpid}$ is the maximal number of small norm relations attached to each
ideal in the factor base. Set it to $0$ to disable the search for small norm
relations. Otherwise, reasonable values are between 4 and 20. The default is
4.
\misctitle{Warning} Make sure you understand the above! By default, most of
the \kbd{bnf} routines depend on the correctness of the GRH. In particular,
any of the class number, class group structure, class group generators,
regulator and fundamental units may be wrong, independently of each other.
Any result computed from such a \kbd{bnf} may be wrong. The only guarantee is
that the units given generate a subgroup of finite index in the full unit
group. You must use \kbd{bnfcertify} to certify the computations
unconditionally.
\misctitle{Remarks}
You do not need to supply the technical parameters (under the library you
still need to send at least an empty vector, coded as \kbd{NULL}). However,
should you choose to set some of them, they \emph{must} be given in the
requested order. For example, if you want to specify a given value of
\var{nrpid}, you must give some values as well for $c_{1}$ and $c_{2}$,
and provide a vector $[c_{1},c_{2},\var{nrpid}]$.
Note also that you can use an $\var{nf}$ instead of $P$, which avoids
recomputing the integral basis and analogous quantities.
\subsec{Hecke Grossencharacters}\label{se:GCHAR}
Hecke Grossencharacters are continuous characters of the id\`ele class group;
they generalize classical Hecke characters on ray class groups obtained through
the $\var{bnr}$ structure.
Let $K$ be a number field, $\A^{\times}$ its group of id\`eles.
Every Grossencharacter
$$
\chi \colon \A^{\times}/K^{\times} \to \C^{\times}
$$
can be uniquely written~$\chi = \chi_{0} \|\cdot \|^{s}$ for some~$s\in\C$
and some character~$\chi_{0}$ of the compact
group~$\A^{\times}/(K^{\times}\cdot\R_{>0})$,
where~$\|a\| = \prod_{v} |a_{v}|_{v}$ is the id\`ele norm.
Let~$\goth{m}$ be a modulus
(an integral ideal and a finite set of real places). Let $U(\goth{m})$ be the
subgroup of id\`eles congruent to $1$ modulo $\goth{m}$
(units outside $\goth{m}$, positive at real places in $\goth{m}$).
The Hecke Grossencharacters defined modulo $\goth{m}$ are the characters of
the id\`ele class group
$$
C_{K}(\goth{m}) = \A^{\times}/(K^{\times}\cdot U(\goth{m})),
$$
that is, combinations of an archimedean
character $\chi_{\infty}$ on the connected component
$K_{\infty}^{\times \circ}$
and a ray class group character $\chi_{f}$ satisfying a compatibility
condition $\chi_{\infty}(a)\chi_{f}(a)=1$ for all units $a$ congruent to 1
modulo $\goth{m}$.
\varsidx{gchar} %
\item \var{gc} denotes a structure allowing to compute with Hecke
Grossencharacters.
\item \kbd{gcharinit(\var{bnf},\var{mod})} initializes the structure \var{gc}.
The underlying number field and modulus can be accessed using
\var{gc}\kbd{.bnf} and \var{gc}\kbd{.mod}.
\item \var{gc}\kbd{.cyc} describes the finite abelian group structure of
\var{gc}, the torsion part corresponding to finite order ray class
characters, the exact zeros corresponding to a lattice of infinite order
Grossencharacters, and the approximate zero being a placeholder for the
complex powers of the id\`ele norm.
\item A Hecke character of modulus~$\goth{m}$ is described as a \typ{COL} of
coordinates corresponding to~\var{gc}\kbd{.cyc}: all the coordinates are
integers except the last one, which can be an arbitrary complex number, or
omitted instead of~$0$.
\item Hecke Grossencharacters have $L$-functions and can be given to all
\kbd{lfun} functions as a 2 components vector \kbd{[\var{gc},\var{chi}]}, see
also Section~\ref{se:lfungchar}.
\subsec{bnfcertify$(\var{bnf},\{\fl = 0\})$}\kbdsidx{bnfcertify}\label{se:bnfcertify}
$\var{bnf}$ being as output by
\kbd{bnfinit}, checks whether the result is correct, i.e.~whether it is
possible to remove the assumption of the Generalized Riemann
Hypothesis\sidx{GRH}. It is correct if and only if the answer is 1. If it is
incorrect, the program may output some error message, or loop indefinitely.
You can check its progress by increasing the debug level. The \var{bnf}
structure must contain the fundamental units:
\bprog
? K = bnfinit(x^3+2^2^3+1); bnfcertify(K)
*** at top-level: K=bnfinit(x^3+2^2^3+1);bnfcertify(K)
*** ^-------------
*** bnfcertify: precision too low in makeunits [use bnfinit(,1)].
? K = bnfinit(x^3+2^2^3+1, 1); \\ include units
? bnfcertify(K)
%3 = 1
@eprog
If $\fl$ is present, only certify that the class group is a quotient of the
one computed in bnf (much simpler in general); likewise, the computed units
may form a subgroup of the full unit group. In this variant, the units are
no longer needed:
\bprog
? K = bnfinit(x^3+2^2^3+1); bnfcertify(K, 1)
%4 = 1
@eprog
The library syntax is \fun{long}{bnfcertify0}{GEN bnf, long flag}.
Also available is \fun{GEN}{bnfcertify}{GEN bnf} ($\fl=0$).
\subsec{bnfdecodemodule$(\var{nf},m)$}\kbdsidx{bnfdecodemodule}\label{se:bnfdecodemodule}
If $m$ is a module as output in the
first component of an extension given by \kbd{bnrdisclist}, outputs the
true module.
\bprog
? K = bnfinit(x^2+23); L = bnrdisclist(K, 10); s = L[2]
%1 = [[[Vecsmall([8]), Vecsmall([1])], [[0, 0, 0]]],
[[Vecsmall([9]), Vecsmall([1])], [[0, 0, 0]]]]
? bnfdecodemodule(K, s[1][1])
%2 =
[2 0]
[0 1]
? bnfdecodemodule(K,s[2][1])
%3 =
[2 1]
[0 1]
@eprog
The library syntax is \fun{GEN}{decodemodule}{GEN nf, GEN m}.
\subsec{bnfinit$(P,\{\fl=0\},\{\var{tech}=[\,]\})$}\kbdsidx{bnfinit}\label{se:bnfinit}
Initializes a
\kbd{bnf} structure. Used in programs such as \kbd{bnfisprincipal},
\kbd{bnfisunit} or \kbd{bnfnarrow}. By default, the results are conditional
on the GRH, see \ref{se:GRHbnf}. The result is a
10-component vector \var{bnf}.
This implements \idx{Buchmann}'s sub-exponential algorithm for computing the
class group, the regulator and a system of \idx{fundamental units} of the
general algebraic number field $K$ defined by the irreducible polynomial $P$
with integer coefficients. The meaning of $\fl$ is as follows:
\item $\fl = 0$ (default). This is the historical behavior, kept for
compatibility reasons and speed. It has severe drawbacks but is likely to be
a little faster than the alternative, twice faster say, so only use it if
speed is paramount, you obtain a useful speed gain for the fields
under consideration, and you are only interested in the field invariants
such as the classgroup structure or its regulator. The computations involve
exact algebraic numbers which are replaced by floating point embeddings for
the sake of speed. If the precision is insufficient, \kbd{gp} may not be able
to compute fundamental units, nor to solve some discrete logarithm problems.
It \emph{may} be possible to increase the precision of the \kbd{bnf}
structure using \kbd{nfnewprec} but this may fail, in particular when
fundamental units are large. In short, the resulting \kbd{bnf}
structure is correct and contains useful information but later
function calls to \kbd{bnfisprincpal} or \kbd{bnrclassfield} may fail.
When $\fl=1$, we keep an exact algebraic version of all floating point data
and this allows to guarantee that functions using the structure will always
succeed, as well as to compute the fundamental units exactly. The units are
computed in compact form, as a product of small $S$-units, possibly with
huge exponents. This flag also allows \kbd{bnfisprincipal} to compute
generators of principal ideals in factored form as well. Be warned that
expanding such products explicitly can take a very long time, but they can
easily be mapped to floating point or $\ell$-adic embeddings of bounded
accuracy, or to $K^{*}/(K^{*})^{\ell}$, and this is enough for applications. In
short, this flag should be used by default, unless you have a very good
reason for it, for instance building massive tables of class numbers, and
you do not care about units or the effect large units would have on your
computation.
$\var{tech}$ is a technical vector (empty by default, see \ref{se:GRHbnf}).
Careful use of this parameter may speed up your computations,
but it is mostly obsolete and you should leave it alone.
\smallskip
The components of a \var{bnf} are technical.
In fact: \emph{never access a component directly, always use
a proper member function.} However, for the sake of completeness and internal
documentation, their description is as follows. We use the notations
explained in the book by H. Cohen, \emph{A Course in Computational Algebraic
Number Theory}, Graduate Texts in Maths \key{138}, Springer-Verlag, 1993,
Section 6.5, and subsection 6.5.5 in particular.
$\var{bnf}[1]$ contains the matrix $W$, i.e.~the matrix in Hermite normal
form giving relations for the class group on prime ideal generators
$(\goth{p}_{i})_{1\le i\le r}$.
$\var{bnf}[2]$ contains the matrix $B$, i.e.~the matrix containing the
expressions of the prime ideal factorbase in terms of the $\goth{p}_{i}$.
It is an $r\times c$ matrix.
$\var{bnf}[3]$ contains the complex logarithmic embeddings of the system of
fundamental units which has been found. It is an
$(r_{1}+r_{2})\times(r_{1}+r_{2}-1)$ matrix.
$\var{bnf}[4]$ contains the matrix $M''_{C}$ of Archimedean components of the
relations of the matrix $(W|B)$.
$\var{bnf}[5]$ contains the prime factor base, i.e.~the list of prime
ideals used in finding the relations.
$\var{bnf}[6]$ contains a dummy $0$.
$\var{bnf}[7]$ or \kbd{\var{bnf}.nf} is equal to the number field data
$\var{nf}$ as would be given by \kbd{nfinit}.
$\var{bnf}[8]$ is a vector containing the classgroup \kbd{\var{bnf}.clgp}
as a finite abelian group, the regulator \kbd{\var{bnf}.reg},
the number of roots of unity and a generator \kbd{\var{bnf}.tu}, the
fundamental units \emph{in expanded form} \kbd{\var{bnf}.fu}. If the
fundamental units were omitted in the \var{bnf}, \kbd{\var{bnf}.fu} returns
the sentinel value $0$. If $\fl = 1$, this vector contain also algebraic
data corresponding to the fundamental units and to the discrete logarithm
problem (see \kbd{bnfisprincipal}). In particular, if $\fl = 1$ we may
\emph{only} know the units in factored form: the first call to
\kbd{\var{bnf}.fu} expands them, which may be very costly, then caches the
result.
$\var{bnf}[9]$ is a vector used in \tet{bnfisprincipal} only
and obtained as follows. Let $D = U W V$ obtained by applying the
\idx{Smith normal form} algorithm to the matrix $W$ (= $\var{bnf}[1]$) and
let $U_{r}$ be the reduction of $U$ modulo $D$. The first elements of the
factorbase are given (in terms of \kbd{bnf.gen}) by the columns of $U_{r}$,
with Archimedean component $g_{a}$; let also $GD_{a}$ be the Archimedean
components of the generators of the (principal) ideals defined by the
\kbd{bnf.gen[i]\pow bnf.cyc[i]}. Then $\var{bnf}[9]=[U_{r}, g_{a}, GD_{a}]$,
followed by technical exact components which allow to recompute $g_{a}$ and
$GD_{a}$ to higher accuracy.
$\var{bnf}[10]$ is by default unused and set equal to 0. This field is used
to store further information about the field as it becomes available, which
is rarely needed, hence would be too expensive to compute during the initial
\kbd{bnfinit} call. For instance, the generators of the principal ideals
\kbd{bnf.gen[i]\pow bnf.cyc[i]} (during a call to \tet{bnrisprincipal}), or
those corresponding to the relations in $W$ and $B$ (when the \kbd{bnf}
internal precision needs to be increased).
The library syntax is \fun{GEN}{bnfinit0}{GEN P, long flag, GEN tech = NULL, long prec}.
Also available is \fun{GEN}{Buchall}{GEN P, long flag, long prec},
corresponding to \kbd{tech = NULL}, where
$\fl$ is either $0$ (default) or \tet{nf_FORCE} (include all data in
algebraic form). The function
\fun{GEN}{Buchall_param}{GEN P, double c1, double c2, long nrpid, long flag, long prec} gives direct access to the technical parameters.
\subsec{bnfisintnorm$(\var{bnf},x,\{\fl=0\})$}\kbdsidx{bnfisintnorm}\label{se:bnfisintnorm}
Computes a complete system of
solutions (modulo units of positive norm) of the absolute norm equation
$\Norm(a)=x$,
where $a$ is an integer in $\var{bnf}$. If $\var{bnf}$ has not been certified,
the correctness of the result depends on the validity of \idx{GRH}.
If (optional) flag is set, allow returning solutions in factored form, which
helps a lot when the fundamental units are large (equivalently, when \kbd{bnf.reg}
is large); having an exact algebraic $\var{bnf}$ from \kbd{bnfinit(,1)} is
necessary in this case, else setting the flag will mostly be a no-op.
\bprog
? bnf = bnfinit(x^4-2, 1);
? bnfisintnorm(bnf,7)
%2 = [-x^2 + x - 1, x^2 + x + 1]
? bnfisintnorm(bnf,-7)
%3 = [-x^3 - 1, x^3 + 2*x^2 + 2*x + 1]
? bnf = bnfinit(x^2-2305843005992468481, 1);
? bnfisintnorm(bnf, 2305843008139952128)
\\ stack overflow with 100GB parisize
? bnf.reg \\ fundamental unit is huge
%6 = 14054016.227457155120413774802385952043
? v = bnfisintnorm(bnf, 2305843008139952128, 1); #v
%7 = 31 \\ succeeds instantly
? s = v[1]; [type(s), matsize(s)]
%8 = ["t_MAT", [165, 2]] \\ solution 1 is a product of 165 factors
? exponent(s[,2])
%9 = 105
@eprog\noindent The \emph{exponents} have $105$ bits, so there is indeed little
hope of writing down the solutions in expanded form.
See also \tet{bnfisnorm}.
The library syntax is \fun{GEN}{bnfisintnorm0}{GEN bnf, GEN x, long flag}.
The function \fun{GEN}{bnfisintnormabs0}{GEN bnf, GEN a, long flag},
where \kbd{bnf} is a true \var{bnf} structure,
returns a complete system of solutions modulo units of the absolute norm
equation $|\Norm(x)| = |a|$. As fast as \kbd{bnfisintnorm}, but solves
the two equations $\Norm(x) = \pm a$ simultaneously. The functions
\fun{GEN}{bnfisintnormabs}{GEN bnf, GEN a},
\fun{GEN}{bnfisintnorm}{GEN bnf, GEN a} correspond to $\fl = 0$.
\subsec{bnfisnorm$(\var{bnf},x,\{\fl=1\})$}\kbdsidx{bnfisnorm}\label{se:bnfisnorm}
Tries to tell whether the
rational number $x$ is the norm of some element y in $\var{bnf}$. Returns a
vector $[a,b]$ where $x=Norm(a)*b$. Looks for a solution which is an $S$-unit,
with $S$ a certain set of prime ideals containing (among others) all primes
dividing $x$. If $\var{bnf}$ is known to be \idx{Galois}, you may set $\fl=0$
(in this case, $x$ is a norm iff $b=1$). If $\fl$ is nonzero the program adds
to $S$ the following prime ideals, depending on the sign of $\fl$. If $\fl>0$,
the ideals of norm less than $\fl$. And if $\fl<0$ the ideals dividing $\fl$.
Assuming \idx{GRH}, the answer is guaranteed (i.e.~$x$ is a norm iff $b=1$),
if $S$ contains all primes less than $4\log(\disc(\var{Bnf}))^{2}$, where
$\var{Bnf}$ is the Galois closure of $\var{bnf}$.
See also \tet{bnfisintnorm}.
The library syntax is \fun{GEN}{bnfisnorm}{GEN bnf, GEN x, long flag}.
\subsec{bnfisprincipal$(\var{bnf},x,\{\fl=1\})$}\kbdsidx{bnfisprincipal}\label{se:bnfisprincipal}
$\var{bnf}$ being the \sidx{principal ideal}
number field data output by \kbd{bnfinit}, and $x$ being an ideal, this
function tests whether the ideal is principal or not. The result is more
complete than a simple true/false answer and solves a general discrete
logarithm problem. Assume the class group is $\oplus (\Z/d_{i}\Z)g_{i}$
(where the generators $g_{i}$ and their orders $d_{i}$ are respectively
given by \kbd{bnf.gen} and \kbd{bnf.cyc}). The routine returns a row vector
$[e,t]$, where $e$ is a vector of exponents $0 \leq e_{i} < d_{i}$, and $t$
is a number field element such that
$$ x = (t) \prod_{i} g_{i}^{e_{i}}.$$
For \emph{given} $g_{i}$ (i.e. for a given \kbd{bnf}), the $e_{i}$ are unique,
and $t$ is unique modulo units.
In particular, $x$ is principal if and only if $e$ is the zero vector. Note
that the empty vector, which is returned when the class number is $1$, is
considered to be a zero vector (of dimension $0$).
\bprog
? K = bnfinit(y^2+23);
? K.cyc
%2 = [3]
? K.gen
%3 = [[2, 0; 0, 1]] \\ a prime ideal above 2
? P = idealprimedec(K,3)[1]; \\ a prime ideal above 3
? v = bnfisprincipal(K, P)
%5 = [[2]~, [3/4, 1/4]~]
? idealmul(K, v[2], idealfactorback(K, K.gen, v[1]))
%6 =
[3 0]
[0 1]
? % == idealhnf(K, P)
%7 = 1
@eprog
\noindent The binary digits of $\fl$ mean:
\item $1$: If set, outputs $[e,t]$ as explained above, otherwise returns
only $e$, which is easier to compute. The following idiom only tests
whether an ideal is principal:
\bprog
is_principal(bnf, x) = !bnfisprincipal(bnf,x,0);
@eprog
\item $2$: It may not be possible to recover $t$, given the initial accuracy
to which the \kbd{bnf} structure was computed. In that case, a warning is
printed and $t$ is set equal to the empty vector \kbd{[]\til}. If this bit is
set, increase the precision and recompute needed quantities until $t$ can be
computed. Warning: setting this may induce \emph{lengthy} computations, and
the result may be too large to be physically representable in any case.
You should consider using $\fl=4$ instead.
\item $4$: Return $t$ in factored form (compact representation),
as a small product of $S$-units for a small set of finite places $S$,
possibly with huge exponents. This kind of result can be cheaply mapped to
$K^{*}/(K^{*})^{\ell}$ or to $\C$ or $\Q_{p}$ to bounded accuracy and this
is usually enough for applications. Explicitly expanding such a compact
representation is possible using \kbd{nffactorback} but may be \emph{very}
costly. The algorithm is guaranteed to succeed if the \kbd{bnf} was computed
using \kbd{bnfinit(,1)}. If not, the algorithm may fail to compute a huge
generator in this case (and replace it by \kbd{[]\til}). This is orders of
magnitude faster than $\fl=2$ when the generators are indeed large.
The library syntax is \fun{GEN}{bnfisprincipal0}{GEN bnf, GEN x, long flag}.
Instead of the above hardcoded numerical flags, one should
rather use an or-ed combination of the symbolic flags \tet{nf_GEN} (include
generators, possibly a place holder if too difficult), \tet{nf_GENMAT}
(include generators in compact form) and
\tet{nf_FORCE} (insist on finding the generators, a no-op if \tet{nf_GENMAT}
is included).
\subsec{bnfissunit$(\var{bnf},\var{sfu},x)$}\kbdsidx{bnfissunit}\label{se:bnfissunit}
This function is obsolete, use \kbd{bnfisunit}.
The library syntax is \fun{GEN}{bnfissunit}{GEN bnf, GEN sfu, GEN x}.
\subsec{bnfisunit$(\var{bnf},x,\{U\})$}\kbdsidx{bnfisunit}\label{se:bnfisunit}
\var{bnf} being the number field data
output by \kbd{bnfinit} and $x$ being an algebraic number (type integer,
rational or polmod), this outputs the decomposition of $x$ on the fundamental
units and the roots of unity if $x$ is a unit, the empty vector otherwise.
More precisely, if $u_{1}$,\dots,$u_{r}$ are the fundamental units, and $\zeta$
is the generator of the group of roots of unity (\kbd{bnf.tu}), the output is
a vector $[x_{1},\dots,x_{r},x_{r+1}]$ such that $x=u_{1}^{x_{1}}\cdots
u_{r}^{x_{r}}\cdot\zeta^{x_{r+1}}$. The $x_{i}$ are integers but the last one
($i = r+1$) is only defined modulo the order $w$ of $\zeta$ and is guaranteed
to be in $[0,w[$.
Note that \var{bnf} need not contain the fundamental units explicitly: it may
contain the placeholder $0$ instead:
\bprog
? setrand(1); bnf = bnfinit(x^2-x-100000);
? bnf.fu
%2 = 0
? u = [119836165644250789990462835950022871665178127611316131167, \
379554884019013781006303254896369154068336082609238336]~;
? bnfisunit(bnf, u)
%3 = [-1, 0]~
@eprog\noindent The given $u$ is $1/u_{1}$, where $u_{1}$ is the fundamental
unit implicitly stored in \var{bnf}. In this case, $u_{1}$ was not computed
and stored in algebraic form since the default accuracy was too low. Re-run
the \kbd{bnfinit} command at \kbd{\bs g1} or higher to see such diagnostics.
This function allows $x$ to be given in factored form, but it then assumes
that $x$ is an actual unit. (Because it is general too costly to check
whether this is the case.)
\bprog
? { v = [2, 85; 5, -71; 13, -162; 17, -76; 23, -37; 29, -104; [224, 1]~, -66;
[-86, 1]~, 86; [-241, 1]~, -20; [44, 1]~, 30; [124, 1]~, 11; [125, -1]~, -11;
[-214, 1]~, 33; [-213, -1]~, -33; [189, 1]~, 74; [190, -1]~, 104;
[-168, 1]~, 2; [-167, -1]~, -8]; }
? bnfisunit(bnf,v)
%5 = [1, 0]~
@eprog\noindent Note that $v$ is the fundamental unit of \kbd{bnf} given in
compact (factored) form.
If the argument \kbd{U} is present, as output by \kbd{bnfunits(bnf, S)},
then the function decomposes $x$ on the $S$-units generators given in
\kbd{U[1]}.
\bprog
? bnf = bnfinit(x^4 - x^3 + 4*x^2 + 3*x + 9, 1);
? bnf.sign
%2 = [0, 2]
? S = idealprimedec(bnf,5); #S
%3 = 2
? US = bnfunits(bnf,S);
? g = US[1]; #g \\ #S = #g, four S-units generators, in factored form
%5 = 4
? g[1]
%6 = [[6, -3, -2, -2]~ 1]
? g[2]
%7 =
[[-1, 1/2, -1/2, -1/2]~ 1]
[ [4, -2, -1, -1]~ 1]
? [nffactorback(bnf, x) | x <- g]
%8 = [[6, -3, -2, -2]~, [-5, 5, 0, 0]~, [-1, 1, -1, 0]~,
[1, -1, 0, 0]~]
? u = [10,-40,24,11]~;
? a = bnfisunit(bnf, u, US)
%9 = [2, 0, 1, 4]~
? nffactorback(bnf, g, a) \\ prod_i g[i]^a[i] still in factored form
%10 =
[[6, -3, -2, -2]~ 2]
[ [0, 0, -1, -1]~ 1]
[ [2, -1, -1, 0]~ -2]
[ [1, 1, 0, 0]~ 2]
[ [-1, 1, 1, 1]~ -1]
[ [1, -1, 0, 0]~ 4]
? nffactorback(bnf,%) \\ u = prod_i g[i]^a[i]
%11 = [10, -40, 24, 11]~
@eprog
The library syntax is \fun{GEN}{bnfisunit0}{GEN bnf, GEN x, GEN U = NULL}.
Also available is \fun{GEN}{bnfisunit}{GEN bnf, GEN x} for $U =
\kbd{NULL}$.
\subsec{bnflog$(\var{bnf},l)$}\kbdsidx{bnflog}\label{se:bnflog}
Let \var{bnf} be a \var{bnf} structure attached to the number field $F$ and let $l$ be
a prime number (hereafter denoted $\ell$ for typographical reasons). Return
the logarithmic $\ell$-class group $\widetilde{Cl}_{F}$
of $F$. This is an abelian group, conjecturally finite (known to be finite
if $F/\Q$ is abelian). The function returns if and only if
the group is indeed finite (otherwise it would run into an infinite loop).
Let $S = \{ \goth{p}_{1},\dots, \goth{p}_{k}\}$ be the set of $\ell$-adic places
(maximal ideals containing $\ell$).
The function returns $[D, G(\ell), G']$, where
\item $D$ is the vector of elementary divisors for $\widetilde{Cl}_{F}$.
\item $G(\ell)$ is the vector of elementary divisors for
the (conjecturally finite) abelian group
$$\widetilde{\Cl}(\ell) =
\{ \goth{a} = \sum_{i \leq k} a_{i} \goth{p}_{i} :~\deg_{F} \goth{a} = 0\},$$
where the $\goth{p}_{i}$ are the $\ell$-adic places of $F$; this is a
subgroup of $\widetilde{\Cl}$.
\item $G'$ is the vector of elementary divisors for the $\ell$-Sylow $Cl'$
of the $S$-class group of $F$; the group $\widetilde{\Cl}$ maps to $Cl'$
with a simple co-kernel.
The library syntax is \fun{GEN}{bnflog}{GEN bnf, GEN l}.
\subsec{bnflogdegree$(\var{nf},A,l)$}\kbdsidx{bnflogdegree}\label{se:bnflogdegree}
Let \var{nf} be a \var{nf} structure attached to a number field $F$,
and let $l$ be a prime number (hereafter
denoted $\ell$). The
$\ell$-adified group of id\`{e}les of $F$ quotiented by
the group of logarithmic units is identified to the $\ell$-group
of logarithmic divisors $\oplus \Z_{\ell} [\goth{p}]$, generated by the
maximal ideals of $F$.
The \emph{degree} map $\deg_{F}$ is additive with values in $\Z_{\ell}$,
defined by $\deg_{F} \goth{p} = \tilde{f}_{\goth{p}} \deg_{\ell} p$,
where the integer $\tilde{f}_{\goth{p}}$ is as in \tet{bnflogef} and
$\deg_{\ell} p$
is $\log_{\ell} p$ for $p\neq \ell$, $\log_{\ell} (1 + \ell)$ for
$p = \ell\neq 2$ and $\log_{\ell} (1 + 2^{2})$ for $p = \ell = 2$.
Let $A = \prod \goth{p}^{n_{\goth{p}}}$ be an ideal and let $\tilde{A} =
\sum n_{\goth{p}} [\goth{p}]$ be the attached logarithmic divisor. Return the
exponential of the $\ell$-adic logarithmic degree $\deg_{F} A$, which is a
natural number.
The library syntax is \fun{GEN}{bnflogdegree}{GEN nf, GEN A, GEN l}.
\subsec{bnflogef$(\var{nf},\var{pr})$}\kbdsidx{bnflogef}\label{se:bnflogef}
Let \var{nf} be a \var{nf} structure attached to a number field $F$
and let \var{pr} be a \var{prid} structure attached to a
maximal ideal $\goth{p} / p$. Return
$[\tilde{e}(F_{\goth{p}} / \Q_{p}), \tilde{f}(F_{\goth{p}} / \Q_{p})]$
the logarithmic ramification and residue degrees. Let $\Q_{p}^{c}/\Q_{p}$
be the cyclotomic $\Z_{p}$-extension, then
$\tilde{e} = [F_{\goth{p}} \colon F_{\goth{p}} \cap \Q_{p}^{c}]$ and
$\tilde{f} = [F_{\goth{p}} \cap \Q_{p}^{c} \colon \Q_{p}]$. Note that
$\tilde{e}\tilde{f} = e(\goth{p}/p) f(\goth{p}/p)$, where $e(\goth{p}/p)$ and $f(\goth{p}/p)$ denote the
usual ramification and residue degrees.
\bprog
? F = nfinit(y^6 - 3*y^5 + 5*y^3 - 3*y + 1);
? bnflogef(F, idealprimedec(F,2)[1])
%2 = [6, 1]
? bnflogef(F, idealprimedec(F,5)[1])
%3 = [1, 2]
@eprog
The library syntax is \fun{GEN}{bnflogef}{GEN nf, GEN pr}.
\subsec{bnfnarrow$(\var{bnf})$}\kbdsidx{bnfnarrow}\label{se:bnfnarrow}
\var{bnf} being as output by
\kbd{bnfinit}, computes the narrow class group of \var{bnf}. The output is
a 3-component row vector $v$ analogous to the corresponding class group
component \kbd{\var{bnf}.clgp}: the first component
is the narrow class number \kbd{$v$.no}, the second component is a vector
containing the SNF\sidx{Smith normal form} cyclic components \kbd{$v$.cyc} of
the narrow class group, and the third is a vector giving the generators of
the corresponding \kbd{$v$.gen} cyclic groups. Note that this function is a
special case of \kbd{bnrinit}; the \var{bnf} need not contain fundamental
units.
The library syntax is \fun{GEN}{bnfnarrow}{GEN bnf}.
\subsec{bnfsignunit$(\var{bnf})$}\kbdsidx{bnfsignunit}\label{se:bnfsignunit}
$\var{bnf}$ being as output by
\kbd{bnfinit}, this computes an $r_{1}\times(r_{1}+r_{2}-1)$ matrix having
$\pm1$
components, giving the signs of the real embeddings of the fundamental units.
The following functions compute generators for the totally positive units:
\bprog
/* exponents of totally positive units generators on K.tu, K.fu */
tpuexpo(K)=
{ my(M, S = bnfsignunit(K), [m,n] = matsize(S));
\\ m = K.r1, n = r1+r2-1
S = matrix(m,n, i,j, if (S[i,j] < 0, 1,0));
S = concat(vectorv(m,i,1), S); \\ add sign(-1)
M = matkermod(S, 2);
if (M, mathnfmodid(M, 2), 2*matid(n+1))
}
/* totally positive fundamental units of bnf K */
tpu(K)=
{ my(ex = tpuexpo(K)[,^1]); \\ remove ex[,1], corresponds to 1 or -1
my(v = concat(K.tu[2], K.fu));
[ nffactorback(K, v, c) | c <- ex];
}
@eprog
The library syntax is \fun{GEN}{signunits}{GEN bnf}.
\subsec{bnfsunit$(\var{bnf},S)$}\kbdsidx{bnfsunit}\label{se:bnfsunit}
Computes the fundamental $S$-units of the
number field $\var{bnf}$ (output by \kbd{bnfinit}), where $S$ is a list of
prime ideals (output by \kbd{idealprimedec}). The output is a vector $v$ with
6 components.
$v[1]$ gives a minimal system of (integral) generators of the $S$-unit group
modulo the unit group.
$v[2]$ contains technical data needed by \kbd{bnfissunit}.
$v[3]$ is an obsoleted component, now the empty vector.
$v[4]$ is the $S$-regulator (this is the product of the regulator, the
$S$-class number and the natural logarithms of the norms of the ideals
in $S$).
$v[5]$ gives the $S$-class group structure, in the usual abelian group
format: a vector whose three components give in order the $S$-class number,
the cyclic components and the generators.
$v[6]$ is a copy of $S$.
The library syntax is \fun{GEN}{bnfsunit}{GEN bnf, GEN S, long prec}.
Also available is
\fun{GEN}{sunits_mod_units}{GEN bnf, GEN S} which returns only $v[1]$.
\subsec{bnfunits$(\var{bnf},\{S\})$}\kbdsidx{bnfunits}\label{se:bnfunits}
Return the fundamental units of the number field
bnf output by bnfinit; if $S$ is present and is a list of prime ideals,
compute fundamental $S$-units instead. The first component of the result
contains independent integral $S$-units generators: first nonunits, then
$r_{1}+r_{2}-1$ fundamental units, then the torsion unit. The result may be
used
as an optional argument to bnfisunit. The units are given in compact form:
no expensive computation is attempted if the \var{bnf} does not already
contain units.
\bprog
? bnf = bnfinit(x^4 - x^3 + 4*x^2 + 3*x + 9, 1);
? bnf.sign \\ r1 + r2 - 1 = 1
%2 = [0, 2]
? U = bnfunits(bnf); u = U[1];
? #u \\ r1 + r2 = 2 units
%5 = 2;
? u[1] \\ fundamental unit as factorization matrix
%6 =
[[0, 0, -1, -1]~ 1]
[[2, -1, -1, 0]~ -2]
[ [1, 1, 0, 0]~ 2]
[ [-1, 1, 1, 1]~ -1]
? u[2] \\ torsion unit as factorization matrix
%7 =
[[1, -1, 0, 0]~ 1]
? [nffactorback(bnf, z) | z <- u] \\ same units in expanded form
%8 = [[-1, 1, -1, 0]~, [1, -1, 0, 0]~]
@eprog
Now an example involving $S$-units for a nontrivial $S$:
\bprog
? S = idealprimedec(bnf,5); #S
%9 = 2
? US = bnfunits(bnf, S); uS = US[1];
? g = [nffactorback(bnf, z) | z <- uS] \\ now 4 units
%11 = [[6, -3, -2, -2]~, [-5, 5, 0, 0]~, [-1, 1, -1, 0]~, [1, -1, 0, 0]~]
? bnfisunit(bnf,[10,-40,24,11]~)
%12 = []~ \\ not a unit
? e = bnfisunit(bnf, [10,-40,24,11]~, US)
%13 = [2, 0, 1, 4]~ \\ ...but an S-unit
? nffactorback(bnf, g, e)
%14 = [10, -40, 24, 11]~
? nffactorback(bnf, uS, e) \\ in factored form
%15 =
[[6, -3, -2, -2]~ 2]
[ [0, 0, -1, -1]~ 1]
[ [2, -1, -1, 0]~ -2]
[ [1, 1, 0, 0]~ 2]
[ [-1, 1, 1, 1]~ -1]
[ [1, -1, 0, 0]~ 4]
@eprog\noindent Note that in more complicated cases, any \kbd{nffactorback}
fully expanding an element in factored form could be \emph{very} expensive.
On the other hand, the final example expands a factorization whose components
are themselves in factored form, hence the result is a factored form:
this is a cheap operation.
The library syntax is \fun{GEN}{bnfunits}{GEN bnf, GEN S = NULL}.
\subsec{bnrL1$(\var{bnr},\{H\},\{\fl=0\})$}\kbdsidx{bnrL1}\label{se:bnrL1}
Let \var{bnr} be the number field data output by \kbd{bnrinit} and
\var{H} be a square matrix defining a congruence subgroup of the
ray class group corresponding to \var{bnr} (the trivial congruence subgroup
if omitted). This function returns, for each \idx{character} $\chi$ of the ray
class group which is trivial on $H$, the value at $s = 1$ (or $s = 0$) of the
abelian $L$-function attached to $\chi$. For the value at $s = 0$, the
function returns in fact for each $\chi$ a vector $[r_{\chi}, c_{\chi}]$ where
$$L(s, \chi) = c \cdot s^{r} + O(s^{r + 1})$$
\noindent near $0$.
The argument \fl\ is optional, its binary digits
mean 1: compute at $s = 0$ if unset or $s = 1$ if set, 2: compute the
primitive $L$-function attached to $\chi$ if unset or the $L$-function
with Euler factors at prime ideals dividing the modulus of \var{bnr} removed
if set (that is $L_{S}(s, \chi)$, where $S$ is the
set of infinite places of the number field together with the finite prime
ideals dividing the modulus of \var{bnr}), 3: return also the character if
set.
\bprog
K = bnfinit(x^2-229);
bnr = bnrinit(K,1);
bnrL1(bnr)
@eprog\noindent
returns the order and the first nonzero term of $L(s, \chi)$ at $s = 0$
where $\chi$ runs through the characters of the class group of
$K = \Q(\sqrt{229})$. Then
\bprog
bnr2 = bnrinit(K,2);
bnrL1(bnr2,,2)
@eprog\noindent
returns the order and the first nonzero terms of $L_{S}(s, \chi)$ at $s = 0$
where $\chi$ runs through the characters of the class group of $K$ and $S$ is
the set of infinite places of $K$ together with the finite prime $2$. Note
that the ray class group modulo $2$ is in fact the class group, so
\kbd{bnrL1(bnr2,0)} returns the same answer as \kbd{bnrL1(bnr,0)}.
This function will fail with the message
\bprog
*** bnrL1: overflow in zeta_get_N0 [need too many primes].
@eprog\noindent if the approximate functional equation requires us to sum
too many terms (if the discriminant of $K$ is too large).
The library syntax is \fun{GEN}{bnrL1}{GEN bnr, GEN H = NULL, long flag, long prec}.
\subsec{bnrchar$(G,g,\{v\})$}\kbdsidx{bnrchar}\label{se:bnrchar}
Returns all characters $\chi$ on $G$ such that
$\chi(g_{i}) = e(v_{i})$, where $e(x) = \exp(2i\pi x)$. $G$ is allowed to be a
\var{bnr} struct (representing a ray class group) or a \var{znstar}
(representing $(\Z/N\Z)^{*}$). If $v$ is omitted,
returns all characters that are trivial on the $g_{i}$. Else the vectors $g$
and $v$ must have the same length, the $g_{i}$ must be elements of $G$, and
each $v_{i}$ is a rational number whose denominator must divide the order of
$g_{i}$ in $G$.
For convenience, the vector of the $g_{i}$
can be replaced by a matrix whose columns give their discrete logarithm
in $G$, for instance as given by \kbd{bnrisprincipal} if $G$ is a \var{bnr};
in this particular case, $G$ can be any finite abelian group
given by a vector of elementary divisors.
\bprog
? G = bnrinit(bnfinit(x), [160,[1]], 1); /* (Z/160Z)^* */
? G.cyc
%2 = [8, 4, 2]
? g = G.gen;
? bnrchar(G, g, [1/2,0,0])
%4 = [[4, 0, 0]] \\ a unique character
? bnrchar(G, [g[1],g[3]]) \\ all characters trivial on g[1] and g[3]
%5 = [[0, 1, 0], [0, 2, 0], [0, 3, 0], [0, 0, 0]]
? bnrchar(G, [1,0,0;0,1,0;0,0,2])
%6 = [[0, 0, 1], [0, 0, 0]] \\ characters trivial on given subgroup
? G = znstar(75, 1);
? bnrchar(G, [2, 7], [11/20, 1/4])
%8 = [[1, 1]] \\ Dirichlet char: chi(2) = e(11/20), chi(7) = e(1/4)
@eprog
The library syntax is \fun{GEN}{bnrchar}{GEN G, GEN g, GEN v = NULL}.
\subsec{bnrclassfield$(\var{bnr},\{\var{subgp}\},\{\fl=0\})$}\kbdsidx{bnrclassfield}\label{se:bnrclassfield}
\var{bnr} being as output by \kbd{bnrinit}, returns a relative equation
for the class field corresponding to the congruence group defined by
$(\var{bnr},\var{subgp})$ (the full ray class field if \var{subgp} is
omitted). The subgroup can also be a \typ{INT}~$n$,
meaning~$n \cdot \text{Cl}_{f}$. The function also handles a vector of
subgroup, e.g, from \tet{subgrouplist} and returns the vector of individual
results in this case.
If $\fl=0$, returns a vector of polynomials such that the compositum of the
corresponding fields is the class field; if $\fl=1$ returns a single
polynomial; if $\fl=2$ returns a single absolute polynomial.
\bprog
? bnf = bnfinit(y^3+14*y-1); bnf.cyc
%1 = [4, 2]
? pol = bnrclassfield(bnf,,1) \\ Hilbert class field
%2 = x^8 - 2*x^7 + ... + Mod(11*y^2 - 82*y + 116, y^3 + 14*y - 1)
? rnfdisc(bnf,pol)[1]
%3 = 1
? bnr = bnrinit(bnf,3*5*7); bnr.cyc
%4 = [24, 12, 12, 2]
? bnrclassfield(bnr,2) \\ maximal 2-elementary subextension
%5 = [x^2 + (-21*y - 105), x^2 + (-5*y - 25), x^2 + (-y - 5), x^2 + (-y - 1)]
\\ quadratic extensions of maximal conductor
? bnrclassfield(bnr, subgrouplist(bnr,[2]))
%6 = [[x^2 - 105], [x^2 + (-105*y^2 - 1260)], [x^2 + (-105*y - 525)],
[x^2 + (-105*y - 105)]]
? #bnrclassfield(bnr,subgrouplist(bnr,[2],1)) \\ all quadratic extensions
%7 = 15
@eprog\noindent When the subgroup contains $n \text{Cl}_{f}$, where $n$ is
fixed, it is advised to directly compute the \kbd{bnr} modulo $n$ to avoid
expensive discrete logarithms:
\bprog
? bnf = bnfinit(y^2-5); p = 1594287814679644276013;
? bnr = bnrinit(bnf,p); \\ very slow
time = 24,146 ms.
? bnrclassfield(bnr, 2) \\ ... even though the result is trivial
%3 = [x^2 - 1594287814679644276013]
? bnr2 = bnrinit(bnf,p,,2); \\ now fast
time = 1 ms.
? bnrclassfield(bnr2, 2)
%5 = [x^2 - 1594287814679644276013]
@eprog\noindent This will save a lot of time when the modulus contains a
maximal ideal whose residue field is large.
The library syntax is \fun{GEN}{bnrclassfield}{GEN bnr, GEN subgp = NULL, long flag, long prec}.
\subsec{bnrclassno$(A,\{B\},\{C\})$}\kbdsidx{bnrclassno}\label{se:bnrclassno}
Let $A$, $B$, $C$ define a class field $L$ over a ground field $K$
(of type \kbd{[\var{bnr}]},
\kbd{[\var{bnr}, \var{subgroup}]},
or \kbd{[\var{bnf}, \var{modulus}]},
or \kbd{[\var{bnf}, \var{modulus},\var{subgroup}]},
\secref{se:CFT}); this function returns the relative degree $[L:K]$.
In particular if $A$ is a \var{bnf} (with units), and $B$ a modulus,
this function returns the corresponding ray class number modulo $B$.
One can input the attached \var{bid} (with generators if the subgroup
$C$ is non trivial) for $B$ instead of the module itself, saving some time.
This function is faster than \kbd{bnrinit} and should be used if only the
ray class number is desired. See \tet{bnrclassnolist} if you need ray class
numbers for all moduli less than some bound.
The library syntax is \fun{GEN}{bnrclassno0}{GEN A, GEN B = NULL, GEN C = NULL}.
Also available is
\fun{GEN}{bnrclassno}{GEN bnf,GEN f} to compute the ray class number
modulo~$f$.
\subsec{bnrclassnolist$(\var{bnf},\var{list})$}\kbdsidx{bnrclassnolist}\label{se:bnrclassnolist}
$\var{bnf}$ being as
output by \kbd{bnfinit}, and \var{list} being a list of moduli (with units) as
output by \kbd{ideallist} or \kbd{ideallistarch}, outputs the list of the
class numbers of the corresponding ray class groups. To compute a single
class number, \tet{bnrclassno} is more efficient.
\bprog
? bnf = bnfinit(x^2 - 2);
? L = ideallist(bnf, 100, 2);
? H = bnrclassnolist(bnf, L);
? H[98]
%4 = [1, 3, 1]
? l = L[1][98]; ids = vector(#l, i, l[i].mod[1])
%5 = [[98, 88; 0, 1], [14, 0; 0, 7], [98, 10; 0, 1]]
@eprog
The weird \kbd{l[i].mod[1]}, is the first component of \kbd{l[i].mod}, i.e.
the finite part of the conductor. (This is cosmetic: since by construction
the Archimedean part is trivial, I do not want to see it). This tells us that
the ray class groups modulo the ideals of norm 98 (printed as \kbd{\%5}) have
respectively order $1$, $3$ and $1$. Indeed, we may check directly:
\bprog
? bnrclassno(bnf, ids[2])
%6 = 3
@eprog
The library syntax is \fun{GEN}{bnrclassnolist}{GEN bnf, GEN list}.
\subsec{bnrcompositum$(A,B)$}\kbdsidx{bnrcompositum}\label{se:bnrcompositum}
Given two abelian extensions $A = \kbd{[bnr1, H1]}$ and
$B = \kbd{[bnr2, H2]}$, where \kbd{bnr1} and \kbd{bnr2} are two \kbd{bnr}
structures attached to the same base field, return their compositum
as \kbd{[bnr, H]}. The modulus attached to \kbd{bnr} need not be the
conductor of the compositum.
\bprog
? Q = bnfinit(y);
? bnr1 = bnrinit(Q, [7, [1]]); bnr1.cyc
%2 = [6]
? bnr2 = bnrinit(Q, [13, [1]]); bnr2.cyc
%3 = [12]
? H1 = Mat(2); bnrclassfield(bnr1, H1)
%4 = [x^2 + 7]
? H2 = Mat(2); bnrclassfield(bnr2, H2)
%5 = [x^2 - 13]
? [bnr,H] = bnrcompositum([bnr1, H1], [bnr2,H2]);
? bnrclassfield(bnr,H)
%7 = [x^2 - 13, x^2 + 7]
@eprog
The library syntax is \fun{GEN}{bnrcompositum}{GEN A, GEN B}.
\subsec{bnrconductor$(A,\{B\},\{C\},\{\fl=0\})$}\kbdsidx{bnrconductor}\label{se:bnrconductor}
Conductor $f$ of the subfield of a ray class field as defined by $[A,B,C]$
(of type \kbd{[\var{bnr}]},
\kbd{[\var{bnr}, \var{subgroup}]},
\kbd{[\var{bnf}, \var{modulus}]} or
\kbd{[\var{bnf}, \var{modulus}, \var{subgroup}]},
\secref{se:CFT})
If $\fl = 0$, returns $f$.
If $\fl = 1$, returns $[f, Cl_{f}, H]$, where $Cl_{f}$ is the ray class group
modulo $f$, as a finite abelian group; finally $H$ is the subgroup of
$Cl_{f}$ defining the extension.
If $\fl = 2$, returns $[f, \var{bnr}(f), H]$, as above except $Cl_{f}$ is
replaced by a \kbd{bnr} structure, as output by $\tet{bnrinit}(,f)$, without
generators unless the input contained a \var{bnr} with generators.
In place of a subgroup $H$, this function also accepts a character
\kbd{chi} $=(a_{j})$, expressed as usual in terms of the generators
\kbd{bnr.gen}: $\chi(g_{j}) = \exp(2i\pi a_{j} / d_{j})$, where $g_{j}$ has
order $d_{j} = \kbd{bnr.cyc[j]}$. In which case, the function returns
respectively
If $\fl = 0$, the conductor $f$ of $\text{Ker} \chi$.
If $\fl = 1$, $[f, Cl_{f}, \chi_{f}]$, where $\chi_{f}$ is $\chi$ expressed
on the minimal ray class group, whose modulus is the conductor.
If $\fl = 2$, $[f, \var{bnr}(f), \chi_{f}]$.
\misctitle{Note} Using this function with $\fl \neq 0$ is usually a
bad idea and kept for compatibility and convenience only: $\fl = 1$ has
always been useless, since it is no faster than $\fl = 2$ and returns less
information; $\fl = 2$ is mostly OK with two subtle drawbacks:
$\bullet$ it returns the full \var{bnr} attached to the full ray class
group, whereas in applications we only need $Cl_{f}$ modulo $N$-th powers,
where $N$ is any multiple of the exponent of $Cl_{f}/H$. Computing directly the
conductor, then calling \kbd{bnrinit} with optional argument $N$ avoids this
problem.
$\bullet$ computing the \var{bnr} needs only be done once for each
conductor, which is not possible using this function.
For maximal efficiency, the recommended procedure is as follows. Starting
from data (character or congruence subgroups) attached to a modulus $m$,
we can first compute the conductors using this function with default $\fl =
0$. Then for all data with a common conductor $f \mid m$, compute (once!) the
\var{bnr} attached to $f$ using \kbd{bnrinit} (modulo $N$-th powers for
a suitable $N$!) and finally map original data to the new \var{bnr} using
\kbd{bnrmap}.
The library syntax is \fun{GEN}{bnrconductor0}{GEN A, GEN B = NULL, GEN C = NULL, long flag}.
Also available are \fun{GEN}{bnrconductor}{GEN bnr, GEN H, long flag}
and \fun{GEN}{bnrconductormod}{GEN bnr, GEN H, long flag, GEN cycmod}
which returns ray class groups modulo \kbd{cycmod}-th powers.
\subsec{bnrconductorofchar$(\var{bnr},\var{chi})$}\kbdsidx{bnrconductorofchar}\label{se:bnrconductorofchar}
This function is obsolete, use \tev{bnrconductor}.
The library syntax is \fun{GEN}{bnrconductorofchar}{GEN bnr, GEN chi}.
\subsec{bnrdisc$(A,\{B\},\{C\},\{\fl=0\})$}\kbdsidx{bnrdisc}\label{se:bnrdisc}
$A$, $B$, $C$ defining a class field $L$ over a ground field $K$
(of type \kbd{[\var{bnr}]},
\kbd{[\var{bnr}, \var{subgroup}]},
\kbd{[\var{bnr}, \var{character}]},
\kbd{[\var{bnf}, \var{modulus}]} or
\kbd{[\var{bnf}, \var{modulus}, \var{subgroup}]},
\secref{se:CFT}), outputs data $[N,r_{1},D]$ giving the discriminant and
signature of $L$, depending on the binary digits of \fl:
\item 1: if this bit is unset, output absolute data related to $L/\Q$:
$N$ is the absolute degree $[L:\Q]$, $r_{1}$ the number of real places of $L$,
and $D$ the discriminant of $L/\Q$. Otherwise, output relative data for $L/K$:
$N$ is the relative degree $[L:K]$, $r_{1}$ is the number of real places of $K$
unramified in $L$ (so that the number of real places of $L$ is equal to $r_{1}$
times $N$), and $D$ is the relative discriminant ideal of $L/K$.
\item 2: if this bit is set and if the modulus is not the conductor of $L$,
only return 0.
The library syntax is \fun{GEN}{bnrdisc0}{GEN A, GEN B = NULL, GEN C = NULL, long flag}.
\subsec{bnrdisclist$(\var{bnf},\var{bound},\{\var{arch}\})$}\kbdsidx{bnrdisclist}\label{se:bnrdisclist}
$\var{bnf}$ being as output by \kbd{bnfinit} (with units), computes a
list of discriminants of Abelian extensions of the number field by increasing
modulus norm up to bound \var{bound}. The ramified Archimedean places are
given by \var{arch}; all possible values are taken if \var{arch} is omitted.
The alternative syntax $\kbd{bnrdisclist}(\var{bnf},\var{list})$ is
supported, where \var{list} is as output by \kbd{ideallist} or
\kbd{ideallistarch} (with units), in which case \var{arch} is disregarded.
The output $v$ is a vector, where $v[k]$ is itself a vector $w$, whose length
is the number of ideals of norm $k$.
\item We consider first the case where \var{arch} was specified. Each
component of $w$ corresponds to an ideal $m$ of norm $k$, and
gives invariants attached to the ray class field $L$ of $\var{bnf}$ of
conductor $[m, \var{arch}]$. Namely, each contains a vector $[m,d,r,D]$ with
the following meaning: $m$ is the prime ideal factorization of the modulus,
$d = [L:\Q]$ is the absolute degree of $L$, $r$ is the number of real places
of $L$, and $D$ is the factorization of its absolute discriminant. We set $d
= r = D = 0$ if $m$ is not the finite part of a conductor.
\item If \var{arch} was omitted, all $t = 2^{r_{1}}$ possible values are taken
and a component of $w$ has the form
$[m, [[d_{1},r_{1},D_{1}], \dots, [d_{t},r_{t},D_{t}]]]$,
where $m$ is the finite part of the conductor as above, and
$[d_{i},r_{i},D_{i}]$ are the invariants of the ray class field of conductor
$[m,v_{i}]$, where $v_{i}$ is the $i$-th Archimedean component, ordered by
inverse lexicographic order; so $v_{1} = [0,\dots,0]$, $v_{2} = [1,0\dots,0]$,
etc. Again, we set $d_{i} = r_{i} = D_{i} = 0$ if $[m,v_{i}]$
is not a conductor.
Finally, each prime ideal $pr = [p,\alpha,e,f,\beta]$ in the prime
factorization $m$ is coded as the integer $p\cdot n^{2}+(f-1)\cdot n+(j-1)$,
where $n$ is the degree of the base field and $j$ is such that
\kbd{pr = idealprimedec(\var{nf},p)[j]}.
\noindent $m$ can be decoded using \tet{bnfdecodemodule}.
Note that to compute such data for a single field, either \tet{bnrclassno}
or \tet{bnrdisc} are (much) more efficient.
The library syntax is \fun{GEN}{bnrdisclist0}{GEN bnf, GEN bound, GEN arch = NULL}.
\subsec{bnrgaloisapply$(\var{bnr},\var{mat},H)$}\kbdsidx{bnrgaloisapply}\label{se:bnrgaloisapply}
Apply the automorphism given by its matrix \var{mat} to the congruence
subgroup $H$ given as a HNF matrix.
The matrix \var{mat} can be computed with \tet{bnrgaloismatrix}.
The library syntax is \fun{GEN}{bnrgaloisapply}{GEN bnr, GEN mat, GEN H}.
\subsec{bnrgaloismatrix$(\var{bnr},\var{aut})$}\kbdsidx{bnrgaloismatrix}\label{se:bnrgaloismatrix}
Return the matrix of the action of the automorphism \var{aut} of the base
field \kbd{bnf.nf} on the generators of the ray class field \kbd{bnr.gen}.
The automorphism
\var{aut} can be given as a polynomial, an algebraic number, or a vector of
automorphisms and must stabilize the modulus \kbd{bnr.mod}. We also
allow a Galois group as output by \kbd{galoisinit}, in which case a
vector of matrices is returned corresponding to the generators
\kbd{aut.gen}.
Note: This function only makes sense when the ray class field attached to
\var{bnr} is Galois, which is not checked.
The generators \kbd{bnr.gen} need not be explicitly computed in the input
\var{bnr}, which saves time: the result is well defined in this case also.
\bprog
? K = bnfinit(a^4-3*a^2+253009); B = bnrinit(K,9); B.cyc
%1 = [8400, 12, 6, 3]
? G = nfgaloisconj(K)
%2 = [-a, a, -1/503*a^3 + 3/503*a, 1/503*a^3 - 3/503*a]~
? bnrgaloismatrix(B, G[2]) \\ G[2] = Id ...
%3 =
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
? bnrgaloismatrix(B, G[3]) \\ automorphism of order 2
%4 =
[799 0 0 2800]
[ 0 7 0 4]
[ 4 0 5 2]
[ 0 0 0 2]
? M = %^2; for (i=1, #B.cyc, M[i,] %= B.cyc[i]); M
%5 = \\ acts on ray class group as automorphism of order 2
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
@eprog
See \kbd{bnrisgalois} for further examples.
The library syntax is \fun{GEN}{bnrgaloismatrix}{GEN bnr, GEN aut}.
When $aut$ is a polynomial or an algebraic number,
\fun{GEN}{bnrautmatrix}{GEN bnr, GEN aut} is available.
\subsec{bnrinit$(\var{bnf},f,\{\fl=0\},\{\var{cycmod}\})$}\kbdsidx{bnrinit}\label{se:bnrinit}
$\var{bnf}$ is as
output by \kbd{bnfinit} (including fundamental units), $f$ is a modulus,
initializes data linked to the ray class group structure corresponding to
this module, a so-called \kbd{bnr} structure. One can input the attached
\var{bid} with generators for $f$ instead of the module itself, saving some
time. (As in \tet{idealstar}, the finite part of the conductor may be given
by a factorization into prime ideals, as produced by \tet{idealfactor}.)
If the positive integer \kbd{cycmod} is present, only compute the ray class
group modulo \kbd{cycmod}, which may save a lot of time when some maximal
ideals in $f$ have a huge residue field. In applications, we are given
a congruence subgroup $H$ and study the class field attached to
$\text{Cl}_{f}/H$. If that finite Abelian group has an exponent which divides
\kbd{cycmod}, then we have changed nothing theoretically, while trivializing
expensive discrete logs in residue fields (since computations can be
made modulo \kbd{cycmod}-th powers). This is useful in \kbd{bnrclassfield},
for instance when computing $p$-elementary extensions.
The following member functions are available
on the result: \kbd{.bnf} is the underlying \var{bnf},
\kbd{.mod} the modulus, \kbd{.bid} the \kbd{bid} structure attached to the
modulus; finally, \kbd{.clgp}, \kbd{.no}, \kbd{.cyc}, \kbd{.gen} refer to the
ray class group (as a finite abelian group), its cardinality, its elementary
divisors, its generators (only computed if $\fl = 1$).
The last group of functions are different from the members of the underlying
\var{bnf}, which refer to the class group; use \kbd{\var{bnr}.bnf.\var{xxx}}
to access these, e.g.~\kbd{\var{bnr}.bnf.cyc} to get the cyclic decomposition
of the class group.
They are also different from the members of the underlying \var{bid}, which
refer to $(\Z_{K}/f)^{*}$; use \kbd{\var{bnr}.bid.\var{xxx}} to access these,
e.g.~\kbd{\var{bnr}.bid.no} to get $\phi(f)$.
If $\fl=0$ (default), the generators of the ray class group are not
explicitly computed, which saves time. Hence \kbd{\var{bnr}.gen} would
produce an error. Note that implicit generators are still fixed and stored
in the \var{bnr} (and guaranteed to be the same for fixed \var{bnf} and
\var{bid} inputs), in terms of \kbd{bnr.bnf.gen} and \kbd{bnr.bid.gen}.
The computation which is not performed is the expansion of such products
in the ray class group so as to fix eplicit ideal representatives.
If $\fl=1$, as the default, except that generators are computed.
The library syntax is \fun{GEN}{bnrinitmod}{GEN bnf, GEN f, long flag, GEN cycmod = NULL}.
Instead of the above hardcoded numerical flags, one should rather use
\fun{GEN}{Buchraymod}{GEN bnf, GEN module, long flag, GEN cycmod}
where an omitted \kbd{cycmod} is coded as \kbd{NULL} and $\fl$ is an or-ed
combination of \kbd{nf\_GEN} (include generators) and \kbd{nf\_INIT} (if
omitted, return just the cardinality of the ray class group and its structure),
possibly 0. Or simply
\fun{GEN}{Buchray}{GEN bnf, GEN module, long flag}
when \kbd{cycmod} is \kbd{NULL}.
\subsec{bnrisconductor$(A,\{B\},\{C\})$}\kbdsidx{bnrisconductor}\label{se:bnrisconductor}
Fast variant of \kbd{bnrconductor}$(A,B,C)$; $A$, $B$, $C$ represent
an extension of the base field, given by class field theory
(see~\secref{se:CFT}). Outputs 1 if this modulus is the conductor, and 0
otherwise. This is slightly faster than \kbd{bnrconductor} when the
character or subgroup is not primitive.
The library syntax is \fun{long}{bnrisconductor0}{GEN A, GEN B = NULL, GEN C = NULL}.
\subsec{bnrisgalois$(\var{bnr},\var{gal},H)$}\kbdsidx{bnrisgalois}\label{se:bnrisgalois}
Check whether the class field attached to the subgroup $H$ is Galois
over the subfield of \kbd{bnr.nf} fixed by the group \var{gal}, which can be
given as output by \tet{galoisinit}, or as a matrix or a vector of matrices as
output by \kbd{bnrgaloismatrix}, the second option being preferable, since it
saves the recomputation of the matrices. Note: The function assumes that the
ray class field attached to \var{bnr} is Galois, which is not checked.
In the following example, we lists the congruence subgroups of subextension of
degree at most $3$ of the ray class field of conductor $9$ which are Galois
over the rationals.
\bprog
? K = bnfinit(a^4-3*a^2+253009); B = bnrinit(K,9); G = galoisinit(K);
? [H | H<-subgrouplist(B,3), bnrisgalois(B,G,H)];
time = 160 ms.
? M = bnrgaloismatrix(B,G);
? [H | H<-subgrouplist(B,3), bnrisgalois(B,M,H)]
time = 1 ms.
@eprog
The second computation is much faster since \kbd{bnrgaloismatrix(B,G)} is
computed only once.
The library syntax is \fun{long}{bnrisgalois}{GEN bnr, GEN gal, GEN H}.
\subsec{bnrisprincipal$(\var{bnr},x,\{\fl=1\})$}\kbdsidx{bnrisprincipal}\label{se:bnrisprincipal}
Let \var{bnr} be the ray class group data output by
\kbd{bnrinit}$(,,1)$ and let $x$ be an ideal in any form, coprime
to the modulus $f = \kbd{bnr.mod}$. Solves the discrete logarithm problem
in the ray class group, with respect to the generators \kbd{bnr.gen},
in a way similar to \tet{bnfisprincipal}. If $x$ is not coprime to the
modulus of \var{bnr} the result is undefined. Note that \var{bnr} need not
contain the ray class group generators, i.e.~it may be created with
\kbd{bnrinit}$(,,0)$; in that case, although \kbd{bnr.gen} is undefined, we
can still fix natural generators for the ray class group (in terms of the
generators in \kbd{bnr.bnf.gen} and \kbd{bnr.bid.gen}) and compute with
respect to them.
The binary digits of $\fl$ (default $\fl = 1$) mean:
\item $1$: If set returns a 2-component vector $[e,\alpha]$ where $e$
is the vector of components of $x$ on the ray class group generators,
$\alpha$ is an element congruent to $1~\text{mod}^{*} f$ such that
$x = \alpha \prod_{i} g_{i}^{e_{i}}$. If unset, returns only $e$.
\item $4$: If set, returns $[e,\alpha]$ where $\alpha$ is given in factored
form (compact representation). This is orders of magnitude faster.
\bprog
? K = bnfinit(x^2 - 30); bnr = bnrinit(K, [4, [1,1]]);
? bnr.clgp \\ ray class group is isomorphic to Z/4 x Z/2 x Z/2
%2 = [16, [4, 2, 2]]
? P = idealprimedec(K, 3)[1]; \\ the ramified prime ideal above 3
? bnrisprincipal(bnr,P) \\ bnr.gen undefined !
%5 = [[3, 0, 0]~, 9]
? bnrisprincipal(bnr,P, 0) \\ omit principal part
%5 = [3, 0, 0]~
? bnr = bnrinit(bnr, bnr.bid, 1); \\ include explicit generators
? bnrisprincipal(bnr,P) \\ ... alpha is different !
%7 = [[3, 0, 0]~, 1/128625]
@eprog It may be surprising that the generator $\alpha$ is different
although the underlying \var{bnf} and \var{bid} are the same. This defines
unique generators for the ray class group as ideal \emph{classes}, whether
we use \kbd{bnrinit(,0)} or \kbd{bnrinit(,1)}. But the actual ideal
representatives (implicit if $\fl=0$, computed and stored in the
\var{bnr} if $\fl=1$) are in general different and this is what
happens here. Indeed, the implicit generators are naturally expressed
in terms of \kbd{bnr.bnf.gen} and \kbd{bnr.bid.gen} and \emph{then}
expanded and simplified (in the same ideal class) so that we obtain ideal
representatives for \kbd{bnr.gen} which are as simple as possible.
And indeed the quotient of the two $\alpha$ found is $1$ modulo the
conductor (and positive at the infinite places it contains), and this is the
only guaranteed property.
Beware that, when \kbd{bnr} is generated using \kbd{bnrinit(, cycmod)}, the
results are given in $\text{Cl}_{f}$ modulo \kbd{cycmod}-th powers:
\bprog
? bnr2 = bnrinit(K, bnr.mod,, 2); \\ modulo squares
? bnr2.clgp
%9 = [8, [2, 2, 2]] \\ bnr.clgp tensored by Z/2Z
? bnrisprincipal(bnr2,P, 0)
%10 = [1, 0, 0]~
@eprog
The library syntax is \fun{GEN}{bnrisprincipal}{GEN bnr, GEN x, long flag}.
Instead of hardcoded numerical flags, one should rather use
\fun{GEN}{isprincipalray}{GEN bnr, GEN x} for $\fl = 0$, and if you
want generators:
\bprog
bnrisprincipal(bnr, x, nf_GEN)
@eprog
Also available is
\fun{GEN}{bnrisprincipalmod}{GEN bnr, GEN x, GEN mod, long flag}
that returns the discrete logarithm of~$x$ modulo the~\typ{INT}
\kbd{mod}; the value~$\kbd{mod = NULL}$ is treated as~$0$ (full discrete
logarithm), and~$\fl=1$ is not allowed if~\kbd{mod} is set.
\subsec{bnrmap$(A,B)$}\kbdsidx{bnrmap}\label{se:bnrmap}
This function has two different uses:
\item if $A$ and $B$ are \var{bnr} structures for the same \var{bnf} attached
to moduli $m_{A}$ and $m_{B}$ with $m_{B} \mid m_{A}$, return the canonical surjection
from $A$ to $B$, i.e. from the ray class group moodulo $m_{A}$ to the ray
class group modulo $m_{B}$. The map is coded by a triple
$[M,\var{cyc}_{A},\var{cyc}_{B}]$:
$M$ gives the image of the fixed ray class group generators of $A$ in
terms of the ones in $B$, $\var{cyc}_{A}$ and $\var{cyc}_{B}$ are the cyclic
structures \kbd{A.cyc} and \kbd{B.cyc} respectively. Note that this function
does \emph{not} need $A$ or $B$ to contain explicit generators for the ray
class groups: they may be created using \kbd{bnrinit(,0)}.
If $B$ is only known modulo $N$-th powers (from \kbd{bnrinit(,N)}), the result
is correct provided $N$ is a multiple of the exponent of $A$.
\item if $A$ is a projection map as above and $B$ is either a congruence
subgroup $H$, or a ray class character $\chi$, or a discrete logarithm
(from \kbd{bnrisprincipal}) modulo $m_{A}$ whose conductor
divides $m_{B}$, return the image of the subgroup (resp. the character, the
discrete logarighm) as defined modulo $m_{B}$. The main use of this variant is
to compute the primitive subgroup or character attached to a \var{bnr} modulo
their conductor. This is more efficient than \tet{bnrconductor} in two
respects: the \var{bnr} attached to the conductor need only be computed once
and, most importantly, the ray class group can be computed modulo $N$-th
powers, where $N$ is a multiple of the exponent of $\text{Cl}_{m_{A}} / H$
(resp.
of the order of $\chi$). Whereas \kbd{bnrconductor} is specified to return a
\var{bnr} attached to the full ray class group, which may lead to untractable
discrete logarithms in the full ray class group instead of a tiny quotient.
The library syntax is \fun{GEN}{bnrmap}{GEN A, GEN B}.
\subsec{bnrrootnumber$(\var{bnr},\var{chi},\{\fl=0\})$}\kbdsidx{bnrrootnumber}\label{se:bnrrootnumber}
If $\chi=\var{chi}$ is a
\idx{character} over \var{bnr}, not necessarily primitive, let
$L(s,\chi) = \sum_{id} \chi(id) N(id)^{-s}$ be the attached
\idx{Artin L-function}. Returns the so-called \idx{Artin root number}, i.e.~the
complex number $W(\chi)$ of modulus 1 such that
%
$$\Lambda(1-s,\chi) = W(\chi) \Lambda(s,\overline{\chi})$$
%
\noindent where $\Lambda(s,\chi) = A(\chi)^{s/2}\gamma_{\chi}(s) L(s,\chi)$ is
the enlarged L-function attached to $L$.
You can set $\fl=1$ if the character is known to be primitive. Example:
\bprog
bnf = bnfinit(x^2 - x - 57);
bnr = bnrinit(bnf, [7,[1,1]]);
bnrrootnumber(bnr, [2,1])
@eprog\noindent
returns the root number of the character $\chi$ of
$\Cl_{7\infty_{1}\infty_{2}}(\Q(\sqrt{229}))$ defined by
$\chi(g_{1}^{a}g_{2}^{b})
= \zeta_{1}^{2a}\zeta_{2}^{b}$. Here $g_{1}, g_{2}$ are the generators of the
ray-class group given by \kbd{bnr.gen} and $\zeta_{1} = e^{2i\pi/N_{1}},
\zeta_{2} = e^{2i\pi/N_{2}}$ where $N_{1}, N_{2}$ are the orders of $g_{1}$
and $g_{2}$ respectively ($N_{1}=6$ and $N_{2}=3$ as \kbd{bnr.cyc} readily
tells us).
The library syntax is \fun{GEN}{bnrrootnumber}{GEN bnr, GEN chi, long flag, long prec}.
\subsec{bnrstark$(\var{bnr},\{\var{subgroup}\})$}\kbdsidx{bnrstark}\label{se:bnrstark}
\var{bnr} being as output by \kbd{bnrinit}, finds a relative equation
for the class field corresponding to the modulus in \var{bnr} and the given
congruence subgroup (as usual, omit $\var{subgroup}$ if you want the whole ray
class group).
The main variable of \var{bnr} must not be $x$, and the ground field and the
class field must be totally real. When the base field is $\Q$, the vastly
simpler \tet{galoissubcyclo} is used instead. Here is an example:
\bprog
bnf = bnfinit(y^2 - 3);
bnr = bnrinit(bnf, 5);
bnrstark(bnr)
@eprog\noindent
returns the ray class field of $\Q(\sqrt{3})$ modulo $5$. Usually, one wants
to apply to the result one of
\bprog
rnfpolredbest(bnf, pol) \\@com compute a reduced relative polynomial
rnfpolredbest(bnf, pol, 2) \\@com compute a reduced absolute polynomial
@eprog
The routine uses \idx{Stark units} and needs to find a suitable auxiliary
conductor, which may not exist when the class field is not cyclic over the
base. In this case \kbd{bnrstark} is allowed to return a vector of
polynomials defining \emph{independent} relative extensions, whose compositum
is the requested class field. We decided that it was useful to keep the
extra information thus made available, hence the user has to take the
compositum herself, see \kbd{nfcompositum}.
Even if it exists, the auxiliary conductor may be so large that later
computations become unfeasible. (And of course, Stark's conjecture may simply
be wrong.) In case of difficulties, try \tet{bnrclassfield}:
\bprog
? bnr = bnrinit(bnfinit(y^8-12*y^6+36*y^4-36*y^2+9,1), 2);
? bnrstark(bnr)
*** at top-level: bnrstark(bnr)
*** ^-------------
*** bnrstark: need 3919350809720744 coefficients in initzeta.
*** Computation impossible.
? bnrclassfield(bnr)
time = 20 ms.
%2 = [x^2 + (-2/3*y^6 + 7*y^4 - 14*y^2 + 3)]
@eprog
The library syntax is \fun{GEN}{bnrstark}{GEN bnr, GEN subgroup = NULL, long prec}.
\subsec{bnrstarkunit$(\var{bnr},\{\var{subgroup}\})$}\kbdsidx{bnrstarkunit}\label{se:bnrstarkunit}
\var{bnr} being as output by \kbd{bnrinit}, returns the characteristic
polynomial of the (conjectural) Stark unit corresponding to the modulus in
\var{bnr} and the given congruence subgroup (as usual, omit $\var{subgroup}$
if you want the whole ray class group).
The ground field attached to \var{bnr} must be totally real and
all but one infinite place must become complex in the class field, which
must be a quadratic extension of its totally real subfield. Finally,
the output is given as a polynomial in $x$, so the main
variable of \var{bnr} must not be $x$. Here is an example:
\bprog
? bnf = bnfinit(y^2 - 2);
? bnr = bnrinit(bnf, [15, [1,0]]);
? lift(bnrstarkunit(bnr))
%3 = x^8 + (-9000*y - 12728)*x^7 + (57877380*y + 81850978)*x^6 + ... + 1
@eprog
The library syntax is \fun{GEN}{bnrstarkunit}{GEN bnr, GEN subgroup = NULL}.
\subsec{dirzetak$(\var{nf},b)$}\kbdsidx{dirzetak}\label{se:dirzetak}
Gives as a vector the first $b$
coefficients of the \idx{Dedekind} zeta function of the number field $\var{nf}$
considered as a \idx{Dirichlet series}.
The library syntax is \fun{GEN}{dirzetak}{GEN nf, GEN b}.
\subsec{factornf$(x,t)$}\kbdsidx{factornf}\label{se:factornf}
This function is obsolete, use \kbd{nffactor}.
factorization of the univariate polynomial $x$
over the number field defined by the (univariate) polynomial $t$. $x$ may
have coefficients in $\Q$ or in the number field. The algorithm reduces to
factorization over $\Q$ (\idx{Trager}'s trick). The direct approach of
\tet{nffactor}, which uses \idx{van Hoeij}'s method in a relative setting, is
in general faster.
The main variable of $t$ must be of \emph{lower} priority than that of $x$
(see \secref{se:priority}). However if nonrational number field elements
occur (as polmods or polynomials) as coefficients of $x$, the variable of
these polmods \emph{must} be the same as the main variable of $t$. For
example
\bprog
? factornf(x^2 + Mod(y, y^2+1), y^2+1);
? factornf(x^2 + y, y^2+1); \\@com these two are OK
? factornf(x^2 + Mod(z,z^2+1), y^2+1)
*** at top-level: factornf(x^2+Mod(z,z
*** ^--------------------
*** factornf: inconsistent data in rnf function.
? factornf(x^2 + z, y^2+1)
*** at top-level: factornf(x^2+z,y^2+1
*** ^--------------------
*** factornf: incorrect variable in rnf function.
@eprog
The library syntax is \fun{GEN}{polfnf}{GEN x, GEN t}.
\subsec{galoischardet$(\var{gal},\var{chi},\{o=1\})$}\kbdsidx{galoischardet}\label{se:galoischardet}
Let $G$ be the group attached to the \kbd{galoisinit}
structure~\var{gal}, and
let $\chi$ be the character of some representation $\rho$ of the group $G$,
where a polynomial variable is to be interpreted as an $o$-th root of 1.
For instance, if \kbd{[T,o] = galoischartable(gal)} the characters
$\chi$ are input as the columns of \kbd{T}.
Return the degree-$1$ character $\det\rho$ as the list of $\det \rho(g)$,
where $g$ runs through representatives of the conjugacy classes
in \kbd{galoisconjclasses(gal)}, with the same ordering.
\bprog
? P = x^5 - x^4 - 5*x^3 + 4*x^2 + 3*x - 1;
? polgalois(P)
%2 = [10, 1, 1, "D(5) = 5:2"]
? K = nfsplitting(P);
? gal = galoisinit(K); \\ dihedral of order 10
? [T,o] = galoischartable(gal);
? chi = T[,1]; \\ trivial character
? galoischardet(gal, chi, o)
%7 = [1, 1, 1, 1]~
? [galoischardet(gal, T[,i], o) | i <- [1..#T]] \\ all characters
%8 = [[1, 1, 1, 1]~, [1, 1, -1, 1]~, [1, 1, -1, 1]~, [1, 1, -1, 1]~]
@eprog
The library syntax is \fun{GEN}{galoischardet}{GEN gal, GEN chi, long o}.
\subsec{galoischarpoly$(\var{gal},\var{chi},\{o=1\})$}\kbdsidx{galoischarpoly}\label{se:galoischarpoly}
Let $G$ be the group attached to the \kbd{galoisinit}
structure~\var{gal}, and
let $\chi$ be the character of some representation $\rho$ of the group
$G$, where a polynomial variable is to be interpreted as an $o$-th root of
1, e.g., if \kbd{[T,o] = galoischartable(gal)} and $\chi$ is a column of
\kbd{T}.
Return the list of characteristic polynomials $\det(1 - \rho(g)T)$,
where $g$ runs through representatives of the conjugacy classes
in \kbd{galoisconjclasses(gal)}, with the same ordering.
\bprog
? T = x^5 - x^4 - 5*x^3 + 4*x^2 + 3*x - 1;
? polgalois(T)
%2 = [10, 1, 1, "D(5) = 5:2"]
? K = nfsplitting(T);
? gal = galoisinit(K); \\ dihedral of order 10
? [T,o] = galoischartable(gal);
? o
%5 = 5
? galoischarpoly(gal, T[,1], o) \\ T[,1] is the trivial character
%6 = [-x + 1, -x + 1, -x + 1, -x + 1]~
? galoischarpoly(gal, T[,3], o)
%7 = [x^2 - 2*x + 1,
x^2 + (y^3 + y^2 + 1)*x + 1,
-x^2 + 1,
x^2 + (-y^3 - y^2)*x + 1]~
@eprog
The library syntax is \fun{GEN}{galoischarpoly}{GEN gal, GEN chi, long o}.
\subsec{galoischartable$(\var{gal})$}\kbdsidx{galoischartable}\label{se:galoischartable}
Compute the character table of~$G$, where~$G$ is the underlying group of
the \kbd{galoisinit} structure~\var{gal}. The input~\var{gal} is also allowed
to be a \typ{VEC} of permutations that is closed under products.
Let~$N$ be the number of conjugacy classes of~$G$.
Return a \typ{VEC}~$[M,\var{e}]$ where $e \geq 1$ is an integer
and $M$ is a square \typ{MAT} of size~$N$ giving the character table
of~$G$.
\item Each column corresponds to an irreducible character; the characters
are ordered by increasing dimension and the first column is the trivial
character (hence contains only $1$'s).
\item Each row corresponds to a conjugacy class; the conjugacy classes are
ordered as specified by \kbd{galoisconjclasses(gal)}, in particular the
first row corresponds to the identity and gives the dimension $\chi(1)$
of the irreducible representation attached to the successive characters
$\chi$.
The value $M[i,j]$ of the character $j$ at the conjugacy class $i$
is represented by a polynomial in \kbd{y} whose variable should be
interpreted as an $e$-th root of unity, i.e. as the lift of
\bprog
Mod(y, polcyclo(e,'y))
@eprog\noindent (Note that $M$ is the transpose of the usual orientation for
character tables.)
The integer $e$ divides the exponent of the group $G$ and is chosen as small
as posible; for instance $e = 1$ when the characters are all defined over
$\Q$, as is the case for $S_{n}$. Examples:
\bprog
? K = nfsplitting(x^4+x+1);
? gal = galoisinit(K);
? [M,e] = galoischartable(gal);
? M~ \\ take the transpose to get the usual orientation
%4 =
[1 1 1 1 1]
[1 -1 -1 1 1]
[2 0 0 -1 2]
[3 -1 1 0 -1]
[3 1 -1 0 -1]
? e
%5 = 1
? {G = [Vecsmall([1, 2, 3, 4, 5]), Vecsmall([1, 5, 4, 3, 2]),
Vecsmall([2, 1, 5, 4, 3]), Vecsmall([2, 3, 4, 5, 1]),
Vecsmall([3, 2, 1, 5, 4]), Vecsmall([3, 4, 5, 1, 2]),
Vecsmall([4, 3, 2, 1, 5]), Vecsmall([4, 5, 1, 2, 3]),
Vecsmall([5, 1, 2, 3, 4]), Vecsmall([5, 4, 3, 2, 1])];}
\\G = D10
? [M,e] = galoischartable(G);
? M~
%8 =
[1 1 1 1]
[1 -1 1 1]
[2 0 -y^3 - y^2 - 1 y^3 + y^2]
[2 0 y^3 + y^2 -y^3 - y^2 - 1]
? e
%9 = 5
@eprog
The library syntax is \fun{GEN}{galoischartable}{GEN gal}.
\subsec{galoisconjclasses$(\var{gal})$}\kbdsidx{galoisconjclasses}\label{se:galoisconjclasses}
\var{gal} being output by \kbd{galoisinit},
return the list of conjugacy classes of the underlying group.
The ordering of the classes is consistent with \kbd{galoischartable}
and the trivial class comes first.
\bprog
? G = galoisinit(x^6+108);
? galoisidentify(G)
%2 = [6, 1] \\ S_3
? S = galoisconjclasses(G)
%3 = [[Vecsmall([1,2,3,4,5,6])],
[Vecsmall([3,1,2,6,4,5]),Vecsmall([2,3,1,5,6,4])],
[Vecsmall([6,5,4,3,2,1]),Vecsmall([5,4,6,2,1,3]),
Vecsmall([4,6,5,1,3,2])]]
? [[permorder(c[1]),#c] | c <- S ]
%4 = [[1,1], [3,2], [2,3]]
@eprog\noindent
This command also accepts subgroups returned by \kbd{galoissubgroups}:
\bprog
? subs = galoissubgroups(G); H = subs[5];
? galoisidentify(H)
%2 = [2, 1] \\ Z/2
? S = galoisconjclasses(subgroups_of_G[5]);
? [[permorder(c[1]),#c] | c <- S ]
%4 = [[1,1], [2,1]]
@eprog\noindent
The library syntax is \fun{GEN}{galoisconjclasses}{GEN gal}.
\subsec{galoisexport$(\var{gal},\{\fl\})$}\kbdsidx{galoisexport}\label{se:galoisexport}
\var{gal} being be a Galois group as output by \tet{galoisinit},
export the underlying permutation group as a string suitable
for (no flags or $\fl=0$) GAP or ($\fl=1$) Magma. The following example
compute the index of the underlying abstract group in the GAP library:
\bprog
? G = galoisinit(x^6+108);
? s = galoisexport(G)
%2 = "Group((1, 2, 3)(4, 5, 6), (1, 4)(2, 6)(3, 5))"
? extern("echo \"IdGroup("s");\" | gap -q")
%3 = [6, 1]
? galoisidentify(G)
%4 = [6, 1]
@eprog\noindent
This command also accepts subgroups returned by \kbd{galoissubgroups}.
To \emph{import} a GAP permutation into gp (for \tet{galoissubfields} for
instance), the following GAP function may be useful:
\bprog
PermToGP := function(p, n)
return Permuted([1..n],p);
end;
gap> p:= (1,26)(2,5)(3,17)(4,32)(6,9)(7,11)(8,24)(10,13)(12,15)(14,27)
(16,22)(18,28)(19,20)(21,29)(23,31)(25,30)
gap> PermToGP(p,32);
[ 26, 5, 17, 32, 2, 9, 11, 24, 6, 13, 7, 15, 10, 27, 12, 22, 3, 28, 20, 19,
29, 16, 31, 8, 30, 1, 14, 18, 21, 25, 23, 4 ]
@eprog
The library syntax is \fun{GEN}{galoisexport}{GEN gal, long flag}.
\subsec{galoisfixedfield$(\var{gal},\var{perm},\{\fl\},\{v=y\})$}\kbdsidx{galoisfixedfield}\label{se:galoisfixedfield}
\var{gal} being be a Galois group as output by \tet{galoisinit} and
\var{perm} an element of $\var{gal}.group$, a vector of such elements
or a subgroup of \var{gal} as returned by galoissubgroups,
computes the fixed field of \var{gal} by the automorphism defined by the
permutations \var{perm} of the roots $\var{gal}.roots$. $P$ is guaranteed to
be squarefree modulo $\var{gal}.p$.
If no flags or $\fl=0$, output format is the same as for \tet{nfsubfield},
returning $[P,x]$ such that $P$ is a polynomial defining the fixed field, and
$x$ is a root of $P$ expressed as a polmod in $\var{gal}.pol$.
If $\fl=1$ return only the polynomial $P$.
If $\fl=2$ return $[P,x,F]$ where $P$ and $x$ are as above and $F$ is the
factorization of $\var{gal}.pol$ over the field defined by $P$, where
variable $v$ ($y$ by default) stands for a root of $P$. The priority of $v$
must be less than the priority of the variable of $\var{gal}.pol$ (see
\secref{se:priority}).
In this case, $P$ is also expressed in the variable $v$ for compatibility
with $F$. Example:
\bprog
? G = galoisinit(x^4+1);
? galoisfixedfield(G,G.group[2],2)
%2 = [y^2 - 2, Mod(- x^3 + x, x^4 + 1), [x^2 - y*x + 1, x^2 + y*x + 1]]
@eprog\noindent
computes the factorization $x^{4}+1=(x^{2}-\sqrt{2}x+1)(x^{2}+\sqrt{2}x+1)$
The library syntax is \fun{GEN}{galoisfixedfield}{GEN gal, GEN perm, long flag, long v = -1} where \kbd{v} is a variable number.
\subsec{galoisgetgroup$(a,\{b\})$}\kbdsidx{galoisgetgroup}\label{se:galoisgetgroup}
Query the \kbd{galpol} package for a group of order $a$ with index $b$
in the GAP4 Small Group library, by Hans Ulrich Besche, Bettina Eick and
Eamonn O'Brien.
The current version of \kbd{galpol} supports groups of order $a\leq 143$.
If $b$ is omitted, return the number of isomorphism classes of
groups of order $a$.
The library syntax is \fun{GEN}{galoisgetgroup}{long a, long b}.
Also available is \fun{GEN}{galoisnbpol}{long a} when $b$
is omitted.
\subsec{galoisgetname$(a,b)$}\kbdsidx{galoisgetname}\label{se:galoisgetname}
Query the \kbd{galpol} package for a string describing the group of order
$a$ with index $b$ in the GAP4 Small Group library, by Hans Ulrich Besche,
Bettina Eick and Eamonn O'Brien.
The strings were generated using the GAP4 function \kbd{StructureDescription}.
The command below outputs the names of all abstract groups of order 12:
\bprog
? o = 12; N = galoisgetgroup(o); \\ # of abstract groups of order 12
? for(i=1, N, print(i, ". ", galoisgetname(o,i)))
1. C3 : C4
2. C12
3. A4
4. D12
5. C6 x C2
@eprog\noindent
The current version of \kbd{galpol} supports groups of order $a\leq 143$.
For $a \geq 16$, it is possible for different groups to have the same name:
\bprog
? o = 20; N = galoisgetgroup(o);
? for(i=1, N, print(i, ". ", galoisgetname(o,i)))
1. C5 : C4
2. C20
3. C5 : C4
4. D20
5. C10 x C2
@eprog
The library syntax is \fun{GEN}{galoisgetname}{long a, long b}.
\subsec{galoisgetpol$(a,\{b\},\{s\})$}\kbdsidx{galoisgetpol}\label{se:galoisgetpol}
Query the \kbd{galpol} package for a polynomial with Galois group
isomorphic to
GAP4(a,b), totally real if $s=1$ (default) and totally complex if $s=2$.
The current version of \kbd{galpol} supports groups of order $a\leq 143$.
The output is a vector [\kbd{pol}, \kbd{den}] where
\item \kbd{pol} is the polynomial of degree $a$
\item \kbd{den} is the denominator of \kbd{nfgaloisconj(pol)}.
Pass it as an optional argument to \tet{galoisinit} or \tet{nfgaloisconj} to
speed them up:
\bprog
? [pol,den] = galoisgetpol(64,4,1);
? G = galoisinit(pol);
time = 352ms
? galoisinit(pol, den); \\ passing 'den' speeds up the computation
time = 264ms
? % == %`
%4 = 1 \\ same answer
@eprog
If $b$ and $s$ are omitted, return the number of isomorphism classes of
groups of order $a$.
The library syntax is \fun{GEN}{galoisgetpol}{long a, long b, long s}.
Also available is \fun{GEN}{galoisnbpol}{long a} when $b$ and $s$
are omitted.
\subsec{galoisidentify$(\var{gal})$}\kbdsidx{galoisidentify}\label{se:galoisidentify}
\var{gal} being be a Galois group as output by \tet{galoisinit},
output the isomorphism class of the underlying abstract group as a
two-components vector $[o,i]$, where $o$ is the group order, and $i$ is the
group index in the GAP4 Small Group library, by Hans Ulrich Besche, Bettina
Eick and Eamonn O'Brien.
This command also accepts subgroups returned by \kbd{galoissubgroups}.
The current implementation is limited to degree less or equal to $127$.
Some larger ``easy'' orders are also supported.
The output is similar to the output of the function \kbd{IdGroup} in GAP4.
Note that GAP4 \kbd{IdGroup} handles all groups of order less than $2000$
except $1024$, so you can use \tet{galoisexport} and GAP4 to identify large
Galois groups.
The library syntax is \fun{GEN}{galoisidentify}{GEN gal}.
\subsec{galoisinit$(\var{pol},\{\var{den}\})$}\kbdsidx{galoisinit}\label{se:galoisinit}
Computes the Galois group
and all necessary information for computing the fixed fields of the
Galois extension $K/\Q$ where $K$ is the number field defined by
$\var{pol}$ (monic irreducible polynomial in $\Z[X]$ or
a number field as output by \tet{nfinit}). The extension $K/\Q$ must be
Galois with Galois group ``weakly'' super-solvable, see below;
returns 0 otherwise. Hence this permits to quickly check whether a polynomial
of order strictly less than $48$ is Galois or not.
The algorithm used is an improved version of the paper
``An efficient algorithm for the computation of Galois automorphisms'',
Bill Allombert, Math.~Comp, vol.~73, 245, 2001, pp.~359--375.
A group $G$ is said to be ``weakly'' super-solvable if there exists a
normal series
$\{1\} = H_{0} \triangleleft H_{1} \triangleleft \cdots \triangleleft H_{n-1}
\triangleleft H_{n}$
such that each $H_{i}$ is normal in $G$ and for $i<n$, each quotient group
$H_{i+1}/H_{i}$ is cyclic, and either $H_{n}=G$ (then $G$ is super-solvable) or
$G/H_{n}$ is isomorphic to either $A_{4}$, $S_{4}$ or the group
$(3\times 3):4$ (\kbd{GAP4(36,9)}).
In practice, almost all small groups are WKSS, the exceptions having order
48(2), 56(1), 60(1), 72(3), 75(1), 80(1), 96(10), 112(1), 120(3) and $\geq 144$.
This function is a prerequisite for most of the \kbd{galois}$xxx$ routines.
For instance:
\bprog
P = x^6 + 108;
G = galoisinit(P);
L = galoissubgroups(G);
vector(#L, i, galoisisabelian(L[i],1))
vector(#L, i, galoisidentify(L[i]))
@eprog
The output is an 8-component vector \var{gal}.
$\var{gal}[1]$ contains the polynomial \var{pol}
(\kbd{\var{gal}.pol}).
$\var{gal}[2]$ is a three-components vector $[p,e,q]$ where $p$ is a
prime number (\kbd{\var{gal}.p}) such that \var{pol} totally split
modulo $p$ , $e$ is an integer and $q=p^{e}$ (\kbd{\var{gal}.mod}) is the
modulus of the roots in \kbd{\var{gal}.roots}.
$\var{gal}[3]$ is a vector $L$ containing the $p$-adic roots of
\var{pol} as integers implicitly modulo \kbd{\var{gal}.mod}.
(\kbd{\var{gal}.roots}).
$\var{gal}[4]$ is the inverse of the Vandermonde matrix of the
$p$-adic roots of \var{pol}, multiplied by $\var{gal}[5]$.
$\var{gal}[5]$ is a multiple of the least common denominator of the
automorphisms expressed as polynomial in a root of \var{pol}.
$\var{gal}[6]$ is the Galois group $G$ expressed as a vector of
permutations of $L$ (\kbd{\var{gal}.group}).
$\var{gal}[7]$ is a generating subset $S=[s_{1},\ldots,s_{g}]$ of $G$
expressed as a vector of permutations of $L$ (\kbd{\var{gal}.gen}).
$\var{gal}[8]$ contains the relative orders $[o_{1},\ldots,o_{g}]$ of
the generators of $S$ (\kbd{\var{gal}.orders}).
Let $H_{n}$ be as above, we have the following properties:
\quad\item if $G/H_{n}\simeq A_{4}$ then $[o_{1},\ldots,o_{g}]$ ends by
$[2,2,3]$.
\quad\item if $G/H_{n}\simeq S_{4}$ then $[o_{1},\ldots,o_{g}]$ ends by
$[2,2,3,2]$.
\quad\item if $G/H_{n}\simeq (3\times 3):4$ (\kbd{GAP4(36,9)}) then
$[o_{1},\ldots,o_{g}]$ ends by $[3,3,4]$.
\quad\item for $1\leq i \leq g$ the subgroup of $G$ generated by
$[s_{1},\ldots,s_{i}]$ is normal, with the exception of $i=g-2$ in the
$A_{4}$ and $(3 \times 3):4$ cases and of $i=g-3$ in the $S_{4}$ case.
\quad\item the relative order $o_{i}$ of $s_{i}$ is its order in the
quotient group $G/\langle s_{1},\ldots,s_{i-1}\rangle$, with the same
exceptions.
\quad\item for any $x\in G$ there exists a unique family
$[e_{1},\ldots,e_{g}]$ such that (no exceptions):
-- for $1\leq i \leq g$ we have $0\leq e_{i}<o_{i}$
-- $x=g_{1}^{e_{1}}g_{2}^{e_{2}}\ldots g_{n}^{e_{n}}$
If present $den$ must be a suitable value for $\var{gal}[5]$.
The library syntax is \fun{GEN}{galoisinit}{GEN pol, GEN den = NULL}.
\subsec{galoisisabelian$(\var{gal},\{\fl=0\})$}\kbdsidx{galoisisabelian}\label{se:galoisisabelian}
\var{gal} being as output by \kbd{galoisinit}, return $0$ if
\var{gal} is not an abelian group, and the HNF matrix of \var{gal} over
\kbd{gal.gen} if $\fl=0$, $1$ if $\fl=1$, and the SNF matrix of \var{gal}
if $\fl=2$.
This command also accepts subgroups returned by \kbd{galoissubgroups}.
The library syntax is \fun{GEN}{galoisisabelian}{GEN gal, long flag}.
\subsec{galoisisnormal$(\var{gal},\var{subgrp})$}\kbdsidx{galoisisnormal}\label{se:galoisisnormal}
\var{gal} being as output by \kbd{galoisinit}, and \var{subgrp} a subgroup
of \var{gal} as output by \kbd{galoissubgroups},return $1$ if \var{subgrp} is a
normal subgroup of \var{gal}, else return 0.
This command also accepts subgroups returned by \kbd{galoissubgroups}.
The library syntax is \fun{long}{galoisisnormal}{GEN gal, GEN subgrp}.
\subsec{galoispermtopol$(\var{gal},\var{perm})$}\kbdsidx{galoispermtopol}\label{se:galoispermtopol}
\var{gal} being a
Galois group as output by \kbd{galoisinit} and \var{perm} a element of
$\var{gal}.group$, return the polynomial defining the Galois
automorphism, as output by \kbd{nfgaloisconj}, attached to the
permutation \var{perm} of the roots $\var{gal}.roots$. \var{perm} can
also be a vector or matrix, in this case, \kbd{galoispermtopol} is
applied to all components recursively.
\noindent Note that
\bprog
G = galoisinit(pol);
galoispermtopol(G, G[6])~
@eprog\noindent
is equivalent to \kbd{nfgaloisconj(pol)}, if degree of \var{pol} is greater
or equal to $2$.
The library syntax is \fun{GEN}{galoispermtopol}{GEN gal, GEN perm}.
\subsec{galoissplittinginit$(P,\{d\})$}\kbdsidx{galoissplittinginit}\label{se:galoissplittinginit}
Compute the Galois group over $Q$ of the splitting field of $P$, that is the smallest field over which $P$ is totally split. $P$ is assumed to be integral, monic and irreducible; it can also be given by a \kbd{nf} structure. If $d$ is given, it must be a multiple of
the splitting field degree. The output is compatible with functions expecting
a \kbd{galoisinit} structure.
The library syntax is \fun{GEN}{galoissplittinginit}{GEN P, GEN d = NULL}.
\subsec{galoissubcyclo$(N,H,\{\fl=0\},\{v\})$}\kbdsidx{galoissubcyclo}\label{se:galoissubcyclo}
Computes the subextension $L$ of $\Q(\zeta_{n})$ fixed by the subgroup
$H \subset (\Z/n\Z)^{*}$. By the Kronecker-Weber theorem, all abelian number
fields can be generated in this way (uniquely if $n$ is taken to be minimal).
This function output is somewhat canonical, as it returns the minimal
polynomial of a Gaussian period $\text{Tr}_{\Q(\zeta_{f})/L}(\zeta_{f})$,
where $f$ is the smallest integer so that $\zeta_n\in \Q(\zeta_{f})$.
\noindent The pair $(n, H)$ is deduced from the parameters $(N, H)$ as follows
\item $N$ an integer: then $n = N$; $H$ is a generator, i.e. an
integer or an integer modulo $n$; or a vector of generators.
\item $N$ the output of \kbd{znstar}$(n)$ or \kbd{znstar}$(n,1)$.
$H$ as in the first case above, or a matrix, taken to be a HNF left divisor
of the SNF for $(\Z/n\Z)^{*}$
(\kbd{$N$.cyc}), giving the generators of $H$ in terms of \kbd{$N$.gen}.
\item $N$ the output of \kbd{bnrinit(bnfinit(y), $m$)} where $m$ is a
module. $H$ as in the first case, or a matrix taken to be a HNF left
divisor of the SNF for the ray class group modulo $m$
(of type \kbd{$N$.cyc}), giving the generators of $H$ in terms of
\kbd{$N$.bid.gen} (= \kbd{$N$}.gen if $N$ includes generators).
In this last case, beware that $H$ is understood relatively to $N$; in
particular, if the infinite place does not divide the module, e.g if $m$ is
an integer, then it is not a subgroup of $(\Z/n\Z)^{*}$, but of its quotient by
$\{\pm 1\}$.
If $\fl=0$, computes a polynomial (in the variable \var{v}) defining
the subfield of $\Q(\zeta_{n})$ fixed by the subgroup \var{H} of
$(\Z/n\Z)^{*}$.
If $\fl=1$, computes only the conductor of the abelian extension, as a module.
If $\fl=2$, outputs $[pol, N]$, where $pol$ is the polynomial as output when
$\fl=0$ and $N$ the conductor as output when $\fl=1$.
If $\fl=3$; outputs \kbd{galoisinit(pol)}.
The following function can be used to compute all subfields of
$\Q(\zeta_{n})$ (of exact degree \kbd{d}, if \kbd{d} is set):
\bprog
subcyclo(n, d = -1)=
{ my(bnr,L,IndexBound);
IndexBound = if (d < 0, n, [d]);
bnr = bnrinit(bnfinit(y), [n,[1]]);
L = subgrouplist(bnr, IndexBound, 1);
vector(#L,i, galoissubcyclo(bnr,L[i]));
}
@eprog\noindent
Setting \kbd{L = subgrouplist(bnr, IndexBound)} would produce subfields of
exact conductor $n\infty$.
The library syntax is \fun{GEN}{galoissubcyclo}{GEN N, GEN H = NULL, long flag, long v = -1} where \kbd{v} is a variable number.
\subsec{galoissubfields$(G,\{\fl=0\},\{v\})$}\kbdsidx{galoissubfields}\label{se:galoissubfields}
Outputs all the subfields of the Galois group \var{G}, as a vector.
This works by applying \kbd{galoisfixedfield} to all subgroups. The meaning of
$\fl$ is the same as for \kbd{galoisfixedfield}.
The library syntax is \fun{GEN}{galoissubfields}{GEN G, long flag, long v = -1} where \kbd{v} is a variable number.
\subsec{galoissubgroups$(G)$}\kbdsidx{galoissubgroups}\label{se:galoissubgroups}
Outputs all the subgroups of the Galois group \kbd{gal}. A subgroup is a
vector [\var{gen}, \var{orders}], with the same meaning
as for $\var{gal}.gen$ and $\var{gal}.orders$. Hence \var{gen} is a vector of
permutations generating the subgroup, and \var{orders} is the relatives
orders of the generators. The cardinality of a subgroup is the product of the
relative orders. Such subgroup can be used instead of a Galois group in the
following command: \kbd{galoisisabelian}, \kbd{galoissubgroups},
\kbd{galoisexport} and \kbd{galoisidentify}.
To get the subfield fixed by a subgroup \var{sub} of \var{gal}, use
\bprog
galoisfixedfield(gal,sub[1])
@eprog
The library syntax is \fun{GEN}{galoissubgroups}{GEN G}.
\subsec{gcharalgebraic$(\var{gc},\{\var{type}\})$}\kbdsidx{gcharalgebraic}\label{se:gcharalgebraic}
\var{gc} being the structure returned by \kbd{gcharinit}, returns a \typ{MAT}
whose columns form a basis of the subgroup of algebraic Grossencharacters in
\var{gc} (Weil type A0). The last component is interpreted as a power of the
norm.
If \var{type} is a \typ{VEC} of length $\var{gc}\kbd{.r1}+\var{gc}\kbd{.r2}$,
containing a pair of integers $[p_{\tau},q_{\tau}]$ for each complex
embedding~$\tau$, returns a \typ{VEC} containing a character whose infinity type
at~$\tau$ is
$$ z \mapsto z^{-p_{\tau}}\bar{z}^{-q_{\tau}} $$
if such a character exists, or empty otherwise.
The full set of characters of that infinity type is obtained by multiplying by
the group of finite order characters.
\bprog
? bnf = bnfinit(x^4-2*x^3+23*x^2-22*x+6,1);
? gc = gcharinit(bnf,1);
? gc.cyc
% = [6, 0, 0, 0, 0.E-57]
? gcharalgebraic(gc)
% =
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 0]
[0 0 -1/2 -1]
? gcharalgebraic(gc,[[1,1],[0,1]])
% = [] \\ @com $p_{\tau}+q_{\tau}$ must be constant for an algebraic character to exist
? chi = gcharalgebraic(gc,[[1,1],[0,2]])[1]
% = [0, 1, 2, 0, -1]~
? for(i=0,5,print(lfuneuler([gc,chi+[i,0,0,0,0]~],3)));
\\@com all characters with this infinity type: multiply by finite order characters
@eprog
When the torsion subgroup is not cyclic, we can enumerate the characters of a
given type with \kbd{forvec}.
\bprog
? bnf = bnfinit(x^4+15*x^2+45,1);
? gc = gcharinit(bnf,1);
? gc.cyc
% = [2, 2, 0, 0, 0, 0.E-57]
? [chi] = gcharalgebraic(gc,[[2,0],[2,0]]);
? {forvec(v=vectorv(2,i,[0,gc.cyc[i]-1]),
print(round(lfunan([gc,chi+concat(v,[0,0,0,0]~)],20)));
)};
[1, 0, 0, 4, -5, 0, 0, 0, -9, 0, 16, 0, 0, 0, 0, 16, 0, 0, 16, -20]
[1, 0, 0, -4, 5, 0, 0, 0, 9, 0, 16, 0, 0, 0, 0, 16, 0, 0, -16, -20]
[1, 0, 0, 4, 5, 0, 0, 0, 9, 0, -16, 0, 0, 0, 0, 16, 0, 0, 16, 20]
[1, 0, 0, -4, -5, 0, 0, 0, -9, 0, -16, 0, 0, 0, 0, 16, 0, 0, -16, 20]
@eprog
Some algebraic Hecke characters are related to CM Abelian varieties. We first
show an example with an elliptic curve.
\bprog
? E = ellinit([0, 0, 1, -270, -1708]); \\@com elliptic curve with potential CM by $\Q(\sqrt{-3})$
? bnf = bnfinit(x^2+3,1);
? p3 = idealprimedec(bnf,3)[1];
? gc = gcharinit(bnf,Mat([p3,2]));
? gc.cyc
% = [0, 0.E-57]
? [chi] = gcharalgebraic(gc,[[1,0]])
% = [[-1, -1/2]~]
? LE = lfuncreate(E);
? lfunan(LE,20)
% = [1, 0, 0, -2, 0, 0, -1, 0, 0, 0, 0, 0, 5, 0, 0, 4, 0, 0, -7, 0]
? Lchi = lfuncreate([gc,chi]);
? round(lfunan(Lchi,20))
% = [1, 0, 0, -2, 0, 0, -1, 0, 0, 0, 0, 0, 5, 0, 0, 4, 0, 0, -7, 0]
@eprog
Here is an example with a CM Abelian surface.
\bprog
? L = lfungenus2([-2*x^4 - 2*x^3 + 2*x^2 + 3*x - 2, x^3]);
? bnf = bnfinit(a^4 - a^3 + 2*a^2 + 4*a + 3, 1);
? pr = idealprimedec(bnf,13)[1];
? gc = gcharinit(bnf,pr);
? gc.cyc
% = [3, 0, 0, 0, 0.E-57]
? chitors = [1,0,0,0,0]~;
? typ = [[1,0],[1,0]];
? [chi0] = gcharalgebraic(gc,typ);
? igood = oo; nbgood = 0;
? {for(i=0,gc.cyc[1]-1,
chi = chi0 + i*chitors;
Lchi = lfuncreate([gc,chi]);
if(lfunparams(L) == lfunparams(Lchi)
&& exponent(lfunan(L,10) - lfunan(Lchi,10)) < -50,
igood=i; nbgood++
);
)};
? nbgood
% = 1
? chi = chi0 + igood*chitors;
? Lchi = lfuncreate([gc,chi]);
? lfunan(L,30)
% = [1, 0, -3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, -4, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, -6, 0, -3, 0]
? round(lfunan(Lchi,30))
% = [1, 0, -3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, -4, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, -6, 0, -3, 0]
@eprog
The library syntax is \fun{GEN}{gcharalgebraic}{GEN gc, GEN type = NULL}.
\subsec{gcharconductor$(\var{gc},\var{chi})$}\kbdsidx{gcharconductor}\label{se:gcharconductor}
Returns the conductor of \kbd{chi}, as a modulus over \kbd{gc.bnf}. This is
the minimum modulus $\goth{m}$ such that
$U(\goth{m})\subset\text{ker}(\var{chi})$
indicating the exact ramification of \var{chi}.
\item for a real place $v$, $v\mid \goth{m}$ iff $\chi_{v}(-1)=-1$.
\item for a finite place~$\goth{p}$, the prime power~$\goth{p}^{e}$ divides
exactly $\goth{m}$ if $e\ge 0$ is the smallest integer such that $\chi_{\goth{p}}
(U_{e})=1$ where~$U_{0} = \Z_{\goth{p}}^{\times}$ and~$U_{i} =
1+\goth{p}^{i}\Z_{\goth{p}}$ for~$i>0$.
\bprog
? bnf = bnfinit(x^2-5,1);
? gc = gcharinit(bnf,[(13*19)^2,[1,1]]);
? gc.cyc
% = [8892, 6, 2, 0, 0.E-57]
? chi = [0,0,1,1]~;
? gcharconductor(gc,chi)
% = [[61009, 7267; 0, 169], [1, 0]]
? gcharconductor(gc,13*chi)
% = [[4693, 559; 0, 13], [1, 0]]
? gcharconductor(gc,13*19*chi)
% = [[247, 65; 0, 13], [1, 0]]
? gcharconductor(gc,13*19*168*chi)
% = [[19, 5; 0, 1], [0, 0]]
@eprog
The library syntax is \fun{GEN}{gchar_conductor}{GEN gc, GEN chi}.
\subsec{gcharduallog$(\var{gc},\var{chi})$}\kbdsidx{gcharduallog}\label{se:gcharduallog}
Returns internal logarithm vector of character \kbd{chi}
as a \typ{VEC} in $\R^{n}$, so that for all \var{x},
\kbd{gchareval}(\var{gc},\var{chi},\var{x},$0$) is equal to
\kbd{gcharduallog}(\var{gc},\var{chi}) * \kbd{gcharlog}(\var{gc},\var{x}) in
$\R/ \Z$.
The components are organized as follows:
\item the first \kbd{ns} components are in~$\R$ and describe the character on
the class group generators: $\theta$ encodes~$\goth{p}\mapsto
\exp(2i\pi\theta)$,
\item the next \kbd{nc} components are in~$\R$ and describe the \kbd{idealstar}
group character via its image on generators: $\theta$ encodes the
image~$\exp(2i\pi\theta)$,
\item the next $r_{1}+r_{2}$ components are in $\R$ and correspond to characters
of $\R$ for each infinite place: $\varphi$ encodes~$x\mapsto |x|^{i\varphi}$ in
the real case and~$z\mapsto |z|^{2i\varphi}$ in the complex case,
\item the last $r_{2}$ components are in $\Z$ and correspond to characters of
$\R/\Z$ for each complex place: $k$ encodes~$z\mapsto (z/|z|)^{k}$.
\item the last component~$s$ is in~$\C$ and corresponds to a
power~$\|\cdot\|^{s}$ of the ad\'elic norm.
See also \kbd{gcharlog}.
\bprog
? bnf = bnfinit(x^3+4*x-1,1);
? gc = gcharinit(bnf,[1,[1]]);
? gc.cyc
% = [2, 0, 0, 0.E-57]
? chi = [0,1,0]~;
? f = gcharduallog(gc,chi)
% = [0.153497221319231, 1/2, 0.776369647248353, -0.388184823624176, 1, 0]
? pr = idealprimedec(bnf,2)[1];
? v = gcharlog(gc,pr);
? exp(2*I*Pi*f*v)
% = -0.569867696226731232993110144 - 0.821736459454756074068598760*I
? gchareval(gc,chi,pr)
% = -0.569867696226731232993110144 - 0.821736459454756074068598760*I
@eprog
The library syntax is \fun{GEN}{gcharduallog}{GEN gc, GEN chi}.
\subsec{gchareval$(\var{gc},\var{chi},x,\{\fl=1\})$}\kbdsidx{gchareval}\label{se:gchareval}
\var{gc} being the structure returned by \kbd{gcharinit}, \var{chi} a
character in \var{gc}, and \var{x} an ideal of the base field, returns the
value~$\chi(x)$. If~$\fl=1$ (default), returns a value in~$\C^{\times}$;
if~$\fl=0$, returns a value in~$\C/\Z$, normalized so that the real part is
between~$-1/2$ and~$1/2$.
\bprog
? bnf = bnfinit(x^2-5);
? gc = gcharinit(bnf,1);
? chi = [1]~;
? pr = idealprimedec(bnf,11)[1];
? a = gchareval(gc,chi,pr)
% = -0.3804107379142448929315340886 - 0.9248176417432464199580504588*I
? b = gchareval(gc,chi,pr,0)
% = -0.3121086861831031476247589216
? a == exp(2*Pi*I*b)
%7 = 1
@eprog
The library syntax is \fun{GEN}{gchareval}{GEN gc, GEN chi, GEN x, long flag}.
\subsec{gcharidentify$(\var{gc},\var{Lv},\var{Lchiv})$}\kbdsidx{gcharidentify}\label{se:gcharidentify}
\var{gc} being a Grossencharacter group as output by \kbd{gcharinit}, $Lv$
being \typ{VEC} of places~$v$ encoded by a \typ{INT} (infinite place) or a prime
ideal structure representing a prime not dividing the modulus of~$gc$ (finite
place), and $Lchiv$ being a \typ{VEC} of local characters~$\chi_{v}$ encoded
by~$[k,\varphi]$ with~$k$ a \typ{INT} and $\varphi$ a \typ{REAL} or
\typ{COMPLEX} representing~$x\mapsto \text{sign}(x)^{k}|x|^{i\varphi}$ (real
place) or~$z\mapsto (z/|z|)^{k}|z|^{2i\varphi}$(complex place) or by a \typ{REAL}
or \typ{COMPLEX}~$\theta$ representing~$\goth{p} \mapsto \exp(2i\pi \theta)$
(finite place), returns a Grossencharacter~$\psi$ belonging to~$g$ such
that~$\psi_{v} \approx \chi_{v}$ for all~$v$.
At finite places, in place of a scalar one can provide a \typ{VEC} whose
last component is $\theta$, as output by \kbd{gcharlocal}.
To ensure proper identification, it is recommended to provide all infinite
places together with a set of primes that generate the ray class group of
modulus \var{gc}\kbd{.mod}.
\bprog
? bnf = bnfinit(x^2-5,1);
? gc = gcharinit(bnf,1);
? chi = gcharidentify(gc,[2],[[0,13.]]);
? gcharlocal(gc,chi,2)
% = [0, 13.057005210545987626926134713745179631]
? pr = idealprimedec(bnf,11)[1];
? chi = gcharidentify(gc,[pr],[0.3]);
? gchareval(gc,chi,pr,0)
% = 0.30000006229129706787363344444425752636
@eprog
If you know only few digits, it may be a good idea to reduce the current
precision to obtain a meaningful result.
\bprog
? bnf = bnfinit(x^2-5,1);
? gc = gcharinit(bnf,1);
? pr = idealprimedec(bnf,11)[1];
? chi = gcharidentify(gc,[pr],[0.184760])
% = [-420226]~ \\ @com unlikely to be meaningful
? gchareval(gc,chi,pr,0)
% = 0.18475998070331376194260927294721168954
? \p 10
realprecision = 19 significant digits (10 digits displayed)
? chi = gcharidentify(gc,[pr],[0.184760])
% = [-7]~ \\ @com probably what we were looking for
? gchareval(gc,chi,pr,0)
% = 0.1847608033
? \p 38
realprecision = 38 significant digits
? gchareval(gc,chi,pr,0)
% = 0.18476080328172203337331245154966763237
@eprog
The output may be a quasi-character.
\bprog
? bnf = bnfinit(x^2-2,1);
? gc = gcharinit(bnf,1); gc.cyc
% = [0, 0.E-57]
? gcharidentify(gc,[1,2],[[0,3.5+1/3*I],[0,-3.5+1/3*I]])
% = [-1, 1/3]~
@eprog
The library syntax is \fun{GEN}{gchar_identify}{GEN gc, GEN Lv, GEN Lchiv, long prec}.
\subsec{gcharinit$(\var{bnf},f)$}\kbdsidx{gcharinit}\label{se:gcharinit}
$\var{bnf}$ being a number field output by \kbd{bnfinit} (including
fundamental units), $f$ a modulus, initializes a structure (\kbd{gc})
describing the group of Hecke Grossencharacters of modulus $f$.
(As in \tet{idealstar}, the finite part of the conductor may be given
by a factorization into prime ideals, as produced by \tet{idealfactor}.)
The following member functions are available
on the result: \kbd{.bnf} is the underlying \var{bnf},
\kbd{.mod} the modulus, \kbd{.cyc} its elementary divisors.
The internal representation uses a logarithm map on ideals
${\cal L}: I \to \R^{n}$,
so that a Hecke Grossencharacter $\chi$ can be described by a $n$
components vector $v$ via
$\chi: a\in I \mapsto \exp(2i\pi v\cdot{{\cal L}(a)})$.
See \kbd{gcharlog} for more details on the map ${\cal L}$.
\bprog
? bnf = bnfinit(polcyclo(5),1); \\ @com initializes number field $\Q(\zeta_5)$
? pr = idealprimedec(bnf,5)[1]; \\ @com prime $\goth{p}=(1-\zeta_5)$ above 5
? gc = gcharinit(bnf,idealpow(bnf,pr,2)); \\ @com characters of modulus dividing $\goth{p}^{2}$
? gc.cyc \\ @com structure as an abelian group
% = [0,0,0,0.E-57]
? chi = [1,1,-1,0]~; \\ @com a character
? gcharconductor(gc,chi)[1]
% =
[5 4 1 4]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
@eprog
Currently, \kbd{gc} is a row vector with 11 components:
$\var{gc}[1]$ is a matrix whose rows describe a system of generators
of the characters as vectors of $\R^{n}$, under the above description.
$\var{gc}[2]$ contains the underlying number field \var{bnf}
(\kbd{\var{gc}.bnf}).
$\var{gc}[3]$ contains the underlying number field \var{nf}
(\kbd{\var{gc}.nf}), possibly stored at higher precision than \var{bnf}.
$\var{gc}[4]$ contains data for computing in $(\Z_{K}/f)^{\times}$.
$\var{gc}[5]$ is a vector $S$ of prime ideals which generate the class group.
$\var{gc}[6]$ contains data to compute discrete logarithms with respect to $S$
in the class group.
$\var{gc}[7]$ is a vector \kbd{[Sunits,m]}, where \kbd{Sunits} describes
the $S$-units of $\var{bnf}$ and $m$ is a relation matrix for internal usage.
$\var{gc}[8]$ is
\kbd{[Vecsmall([evalprec,prec,nfprec]), Vecsmall([ntors,nfree,nalg])]}
caching precisions and various dimensions.
$\var{gc}[9]$ is a vector describing $\var{gc}$ as a $\Z$-module
via its SNF invariants (\kbd{\var{gc}.cyc}), the last component
representing the norm character.
$\var{gc}[10]$ is a vector \kbd{[R,U,Ui]} allowing to convert characters
from SNF basis to internal combination of generators.
Specifically, a character \kbd{chi} in SNF basis has coordinates
\kbd{chi*Ui} in internal basis (the rows of $\var{gc}[1]$).
$\var{gc}[11]=m$ is the matrix of ${\cal L}(v)$ for all $S$-units $v$.
$\var{gc}[12]=u$ is an integral base change matrix such that $\var{gc}[1]$
corresponds to $(mu)^{-1}$.
The library syntax is \fun{GEN}{gcharinit}{GEN bnf, GEN f, long prec}.
\subsec{gcharisalgebraic$(\var{gc},\var{chi},\{\&\var{type}\})$}\kbdsidx{gcharisalgebraic}\label{se:gcharisalgebraic}
\var{gc} being the structure returned by \kbd{gcharinit} and \var{chi}
a character on \var{gc}, returns 1 if and only if \var{chi} is an algebraic
(Weil type A0) character, so that its infinity type at every complex
embedding~$\tau$ can be written
$$ z \mapsto z^{-p_{\tau}}\bar{z}^{-q_{\tau}} $$
for some pair of integers $(p_{\tau},q_{\tau})$.
If \var{type} is given, it is set to the \typ{VEC} of exponents
$[p_{\tau},q_{\tau}]$.
\bprog
? bnf = bnfinit(x^4+1,1);
? gc = gcharinit(bnf,1);
? gc.cyc
% = [0, 0, 0, 0.E-57]
? chi1 = [0,0,1]~;
? gcharisalgebraic(gc,chi1)
% = 0
? gcharlocal(gc,chi1,1)
% = [-3, -0.89110698909568455588720672648627467040]
? chi2 = [1,0,0,-3]~;
? gcharisalgebraic(gc,chi2,&typ)
% = 1
? typ
% = [[6, 0], [2, 4]]
? gcharlocal(gc,chi2,1)
% = [-6, 3*I]
@eprog
The library syntax is \fun{int}{gcharisalgebraic}{GEN gc, GEN chi, GEN *type = NULL}.
\subsec{gcharlocal$(\var{gc},\var{chi},v,\{\&\var{BID}\})$}\kbdsidx{gcharlocal}\label{se:gcharlocal}
\kbd{gc} being a gchar structure initialised by \kbd{gcharinit}, returns
the local component $\chi_{v}$, where $v$ is either an integer between~$1$
and~$r_{1}+r_{2}$ encoding an infinite place, or a prime ideal structure
encoding a finite place.
\item if~$v$ is a real place, $\chi_{v}(x) = {\rm sign}(x)^{k}
|x|^{i\varphi}$ is encoded as~$[k,\varphi]$;
\item if~$v$ is a complex place, $\chi_{v}(z) = (z/|z|)^{k} |z|^{2i\varphi}$ is
encoded as~$[k,\varphi]$;
\item if~$v = \goth{p}$ is a finite place not dividing~\var{gc}\kbd{.mod},
$\chi_{v}(\pi_{v}) = \exp(2i\pi \theta)$ is encoded as~$[\theta]$;
\item if~$v = \goth{p}$ is a finite place dividing~\var{gc}\kbd{.mod},
we can define a \var{bid} structure attached to the multiplicative group
$G = (\Z_{K}/\goth{p}^{k})^{*}$, where $\goth{p}^{k}$ divides exactly
\var{gc}\kbd{.mod} (see \kbd{idealstar}).
Then~$\chi_{v}$ is encoded as~$[c_{1},\dots,c_{n},\theta]$
where~$[c_{1},\dots,c_{n}]$ defines a character on $G$
(see \kbd{gchareval}) and~$\chi_{v}(\pi_{v}) = \exp(2i\pi\theta)$.
This \var{bid} structure only depends on \kbd{gc} and $v$
(and not on the character $\chi$);
it can be recovered through the optional argument \var{BID}.
\bprog
? bnf = bnfinit(x^3-x-1);
? gc = gcharinit(bnf,1);
? gc.cyc
% = [0, 0, 0.E-57]
? chi = [0,1,1/3]~;
? pr = idealprimedec(bnf,5)[1];
? gcharlocal(gc,chi,1)
% = [0, -4.8839310048284836274074581373242545693 - 1/3*I]
? gcharlocal(gc,chi,2)
% = [6, 2.4419655024142418137037290686621272847 - 1/3*I]
? gcharlocal(gc,chi,pr)
% = [0.115465135184293124024408915 + 0.0853833331211293579127218326*I]
? bnf = bnfinit(x^2+1,1);
? pr3 = idealprimedec(bnf,3)[1];
? pr5 = idealprimedec(bnf,5)[1];
? gc = gcharinit(bnf,[pr3,2;pr5,3]);
? gc.cyc
% = [600, 3, 0, 0.E-57]
? chi = [1,1,1]~;
? gcharlocal(gc,chi,pr3,&bid)
% = [1, 1, -21/50]
? bid.cyc
% = [24, 3]
? gcharlocal(gc,chi,pr5,&bid)
% = [98, -0.30120819117478336291229946188762973702]
? bid.cyc
% = [100]
@eprog
The library syntax is \fun{GEN}{gcharlocal}{GEN gc, GEN chi, GEN v, long prec, GEN *BID = NULL}.
\subsec{gcharlog$(\var{gc},x)$}\kbdsidx{gcharlog}\label{se:gcharlog}
Returns the internal (logarithmic) representation of the ideal $x$ suitable
for computations in $gc$, as a \typ{COL} in $\R^{n}$.
Its $n = \kbd{ns+nc}+(r_{1}+r_{2})+r_{2}+1$ components correspond to a
logarithm map on the group of fractional ideals~${\cal L}: I \to \R^{n}$, see
\kbd{gcharinit}.
More precisely, let $x = (\alpha) \prod \goth{p}_{i}^{a_{i}}$ a
principalization of $x$ on a set $S$ of primes generating
the class group (see \kbd{bnfisprincipal}),
then the logarithm of $x$ is the \typ{COL}
$$
{\cal L}(x) = \left[ (a_{i}), \log_{f}(\alpha),
\dfrac{\log|x/\alpha|_{\tau}}{2\pi},
\dfrac{\arg(x/\alpha)_{\tau}}{2\pi},
\dfrac{\log N(x)}{2\pi}\cdot i \right]
$$
where
\item the exponent vector $(a_{i})$ has \kbd{ns} components, where
$\kbd{ns}=\#S$ is the number of prime ideals used to generate the class group,
\item $\log_{f}(\alpha)$ is a discrete logarithm of
$\alpha$ in the \kbd{idealstar} group $(\Z_{K}/f)^{\times}$,
with \kbd{nc} components,
\item $\log|x/\alpha|_{\tau}$ has $r_{1}+r_{2}$ components, one for each
real embedding and pair of complex embeddings $\tau\colon K\to\C$
(and $|z|_{\tau}=|z|^{2}$ for complex $\tau$).
\item $\arg{(x/\alpha)_{\tau}}$ has $r_{2}$ components, one for each
pair of complex embeddings $\tau\colon K\to\C$.
\item $N(x)$ is the norm of the ideal~$x$.
\bprog
? bnf = bnfinit(x^3-x^2+5*x+1,1);
? gc = gcharinit(bnf,3);
? gc.cyc
% = [3, 0, 0, 0.E-57]
? chi = [1,1,0,-1]~;
? f = gcharduallog(gc,chi);
? pr = idealprimedec(bnf,5)[1];
? v = gcharlog(gc,pr)
% = [2, -5, -1, 0.0188115475004995312411, -0.0188115475004995312411,
-0.840176314833856764413, 0.256149999363388073738*I]~
? exp(2*I*Pi*f*v)
% = -4.5285995080704456583673312 + 2.1193835177957097598574507*I
? gchareval(gc,chi,pr)
% = -4.5285995080704456583673312 + 2.1193835177957097598574507*I
@eprog
The library syntax is \fun{GEN}{gcharlog}{GEN gc, GEN x, long prec}.
\subsec{gcharnewprec$(\var{gc})$}\kbdsidx{gcharnewprec}\label{se:gcharnewprec}
$\var{gc}$ being a Grossencharacter group output by \kbd{gcharinit},
recomputes its archimedean components ensuring accurate computations to
current precision.
It is advisable to increase the precision before computing several
values at large ideals.
The library syntax is \fun{GEN}{gcharnewprec}{GEN gc, long prec}.
\subsec{idealadd$(\var{nf},x,y)$}\kbdsidx{idealadd}\label{se:idealadd}
Sum of the two ideals $x$ and $y$ in the number field $\var{nf}$. The
result is given in HNF.
\bprog
? K = nfinit(x^2 + 1);
? a = idealadd(K, 2, x + 1) \\ ideal generated by 2 and 1+I
%2 =
[2 1]
[0 1]
? pr = idealprimedec(K, 5)[1]; \\ a prime ideal above 5
? idealadd(K, a, pr) \\ coprime, as expected
%4 =
[1 0]
[0 1]
@eprog\noindent
This function cannot be used to add arbitrary $\Z$-modules, since it assumes
that its arguments are ideals:
\bprog
? b = Mat([1,0]~);
? idealadd(K, b, b) \\ only square t_MATs represent ideals
*** idealadd: nonsquare t_MAT in idealtyp.
? c = [2, 0; 2, 0]; idealadd(K, c, c) \\ nonsense
%6 =
[2 0]
[0 2]
? d = [1, 0; 0, 2]; idealadd(K, d, d) \\ nonsense
%7 =
[1 0]
[0 1]
@eprog\noindent In the last two examples, we get wrong results since the
matrices $c$ and $d$ do not correspond to an ideal: the $\Z$-span of their
columns (as usual interpreted as coordinates with respect to the integer basis
\kbd{K.zk}) is not an $\Z_{K}$-module. To add arbitrary $\Z$-modules generated
by the columns of matrices $A$ and $B$, use \kbd{mathnf(concat(A,B))}.
The library syntax is \fun{GEN}{idealadd}{GEN nf, GEN x, GEN y}.
\subsec{idealaddtoone$(\var{nf},x,\{y\})$}\kbdsidx{idealaddtoone}\label{se:idealaddtoone}
$x$ and $y$ being two co-prime
integral ideals (given in any form), this gives a two-component row vector
$[a,b]$ such that $a\in x$, $b\in y$ and $a+b=1$.
The alternative syntax $\kbd{idealaddtoone}(\var{nf},v)$, is supported, where
$v$ is a $k$-component vector of ideals (given in any form) which sum to
$\Z_{K}$. This outputs a $k$-component vector $e$ such that $e[i]\in x[i]$ for
$1\le i\le k$ and $\sum_{1\le i\le k}e[i]=1$.
The library syntax is \fun{GEN}{idealaddtoone0}{GEN nf, GEN x, GEN y = NULL}.
\subsec{idealappr$(\var{nf},x,\{\fl\})$}\kbdsidx{idealappr}\label{se:idealappr}
If $x$ is a fractional ideal
(given in any form), gives an element $\alpha$ in $\var{nf}$ such that for
all prime ideals $\goth{p}$ such that the valuation of $x$ at $\goth{p}$ is
nonzero, we have $v_{\goth{p}}(\alpha)=v_{\goth{p}}(x)$, and
$v_{\goth{p}}(\alpha)\ge0$ for all other $\goth{p}$.
The argument $x$ may also be given as a prime ideal factorization, as
output by \kbd{idealfactor}, but allowing zero exponents.
This yields an element $\alpha$ such that for all prime ideals $\goth{p}$
occurring in $x$, $v_{\goth{p}}(\alpha) = v_{\goth{p}}(x)$;
for all other prime ideals, $v_{\goth{p}}(\alpha)\ge0$.
$\fl$ is deprecated (ignored), kept for backward compatibility.
The library syntax is \fun{GEN}{idealappr0}{GEN nf, GEN x, long flag}.
Use directly \fun{GEN}{idealappr}{GEN nf, GEN x} since $\fl$ is ignored.
\subsec{idealchinese$(\var{nf},x,\{y\})$}\kbdsidx{idealchinese}\label{se:idealchinese}
$x$ being a prime ideal factorization (i.e.~a 2-columns matrix whose first
column contains prime ideals and the second column contains integral
exponents), $y$ a vector of elements in $\var{nf}$ indexed by the ideals in
$x$, computes an element $b$ such that
$v_{\goth{p}}(b - y_{\goth{p}}) \geq v_{\goth{p}}(x)$ for all prime ideals
in $x$ and $v_{\goth{p}}(b)\geq 0$ for all other $\goth{p}$.
\bprog
? K = nfinit(t^2-2);
? x = idealfactor(K, 2^2*3)
%2 =
[[2, [0, 1]~, 2, 1, [0, 2; 1, 0]] 4]
[ [3, [3, 0]~, 1, 2, 1] 1]
? y = [t,1];
? idealchinese(K, x, y)
%4 = [4, -3]~
@eprog
The argument $x$ may also be of the form $[x, s]$ where the first component
is as above and $s$ is a vector of signs, with $r_{1}$ components
$s_{i}$ in $\{-1,0,1\}$:
if $\sigma_{i}$ denotes the $i$-th real embedding of the number field,
the element $b$ returned satisfies further
$\kbd{sign}(\sigma_{i}(b)) = s_{i}$ for all $i$ such that $s_{i} = \pm1$.
In other words, the sign is fixed to $s_{i}$ at the $i$-th embedding whenever
$s_{i}$ is nonzero.
\bprog
? idealchinese(K, [x, [1,1]], y)
%5 = [16, -3]~
? idealchinese(K, [x, [-1,-1]], y)
%6 = [-20, -3]~
? idealchinese(K, [x, [1,-1]], y)
%7 = [4, -3]~
@eprog
If $y$ is omitted, return a data structure which can be used in
place of $x$ in later calls and allows to solve many chinese remainder
problems for a given $x$ more efficiently. In this case, the right hand side
$y$ is not allowed to have denominators, unless they are coprime to $x$.
\bprog
? C = idealchinese(K, [x, [1,1]]);
? idealchinese(K, C, y) \\ as above
%9 = [16, -3]~
? for(i=1,10^4, idealchinese(K,C,y)) \\ ... but faster !
time = 80 ms.
? for(i=1,10^4, idealchinese(K,[x,[1,1]],y))
time = 224 ms.
@eprog
Finally, this structure is itself allowed in place of $x$, the
new $s$ overriding the one already present in the structure. This allows to
initialize for different sign conditions more efficiently when the underlying
ideal factorization remains the same.
\bprog
? D = idealchinese(K, [C, [1,-1]]); \\ replaces [1,1]
? idealchinese(K, D, y)
%13 = [4, -3]~
? for(i=1,10^4,idealchinese(K,[C,[1,-1]]))
time = 40 ms. \\ faster than starting from scratch
? for(i=1,10^4,idealchinese(K,[x,[1,-1]]))
time = 128 ms.
@eprog
The library syntax is \fun{GEN}{idealchinese}{GEN nf, GEN x, GEN y = NULL}.
Also available is
\fun{GEN}{idealchineseinit}{GEN nf, GEN x} when $y = \kbd{NULL}$.
\subsec{idealcoprime$(\var{nf},x,y)$}\kbdsidx{idealcoprime}\label{se:idealcoprime}
Given two integral ideals $x$ and $y$
in the number field $\var{nf}$, returns a $\beta$ in the field,
such that $\beta\cdot x$ is an integral ideal coprime to $y$. In fact,
$\beta$ is also guaranteed to be integral outside primes dividing $y$.
The library syntax is \fun{GEN}{idealcoprime}{GEN nf, GEN x, GEN y}.
\subsec{idealdiv$(\var{nf},x,y,\{\fl=0\})$}\kbdsidx{idealdiv}\label{se:idealdiv}
Quotient $x\cdot y^{-1}$ of the two ideals $x$ and $y$ in the number
field $\var{nf}$. The result is given in HNF.
If $\fl$ is nonzero, the quotient $x \cdot y^{-1}$ is assumed to be an
integral ideal. This can be much faster when the norm of the quotient is
small even though the norms of $x$ and $y$ are large. More precisely,
the algorithm cheaply removes all maximal ideals above rational
primes such that $v_{p}(Nx) = v_{p}(Ny)$.
The library syntax is \fun{GEN}{idealdiv0}{GEN nf, GEN x, GEN y, long flag}.
Also available are \fun{GEN}{idealdiv}{GEN nf, GEN x, GEN y}
($\fl=0$) and \fun{GEN}{idealdivexact}{GEN nf, GEN x, GEN y} ($\fl=1$).
\subsec{idealdown$(\var{nf},x)$}\kbdsidx{idealdown}\label{se:idealdown}
Let $\var{nf}$ be a number field as output by \kbd{nfinit}, and $x$ a
fractional ideal. This function returns the nonnegative rational generator
of $x \cap \Q$. If $x$ is an extended ideal, the extended part is ignored.
\bprog
? nf = nfinit(y^2+1);
? idealdown(nf, -1/2)
%2 = 1/2
? idealdown(nf, (y+1)/3)
%3 = 2/3
? idealdown(nf, [2, 11]~)
%4 = 125
? x = idealprimedec(nf, 2)[1]; idealdown(nf, x)
%5 = 2
? idealdown(nf, [130, 94; 0, 2])
%6 = 130
@eprog
The library syntax is \fun{GEN}{idealdown}{GEN nf, GEN x}.
\subsec{idealfactor$(\var{nf},x,\{\var{lim}\})$}\kbdsidx{idealfactor}\label{se:idealfactor}
Factors into prime ideal powers the ideal $x$ in the number field
$\var{nf}$. The output format is similar to the \kbd{factor} function, and
the prime ideals are represented in the form output by the
\kbd{idealprimedec} function. If \var{lim} is set, return partial
factorization, including only prime ideals above rational primes
$< \var{lim}$.
\bprog
? nf = nfinit(x^3-2);
? idealfactor(nf, x) \\ a prime ideal above 2
%2 =
[[2, [0, 1, 0]~, 3, 1, ...] 1]
? A = idealhnf(nf, 6*x, 4+2*x+x^2)
%3 =
[6 0 4]
[0 6 2]
[0 0 1]
? idealfactor(nf, A)
%4 =
[[2, [0, 1, 0]~, 3, 1, ...] 2]
[[3, [1, 1, 0]~, 3, 1, ...] 2]
? idealfactor(nf, A, 3) \\ restrict to primes above p < 3
%5 =
[[2, [0, 1, 0]~, 3, 1, ...] 2]
@eprog
The library syntax is \fun{GEN}{gpidealfactor}{GEN nf, GEN x, GEN lim = NULL}.
This function should only be used by the \kbd{gp} interface. Use
directly \fun{GEN}{idealfactor}{GEN nf, GEN x} or
\fun{GEN}{idealfactor_limit}{GEN nf, GEN x, ulong lim}.
\subsec{idealfactorback$(\var{nf},f,\{e\},\{\fl = 0\})$}\kbdsidx{idealfactorback}\label{se:idealfactorback}
Gives back the ideal corresponding to a factorization. The integer $1$
corresponds to the empty factorization.
If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
integral), and the corresponding factorization is the product of the
$f[i]^{e[i]}$.
If not, and $f$ is vector, it is understood as in the preceding case with $e$
a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a
regular factorization, as produced by \kbd{idealfactor}.
\bprog
? nf = nfinit(y^2+1); idealfactor(nf, 4 + 2*y)
%1 =
[[2, [1, 1]~, 2, 1, [1, 1]~] 2]
[[5, [2, 1]~, 1, 1, [-2, 1]~] 1]
? idealfactorback(nf, %)
%2 =
[10 4]
[0 2]
? f = %1[,1]; e = %1[,2]; idealfactorback(nf, f, e)
%3 =
[10 4]
[0 2]
? % == idealhnf(nf, 4 + 2*y)
%4 = 1
@eprog
If $\fl$ is nonzero, perform ideal reductions (\tet{idealred}) along the
way. This is most useful if the ideals involved are all \emph{extended}
ideals (for instance with trivial principal part), so that the principal parts
extracted by \kbd{idealred} are not lost. Here is an example:
\bprog
? f = vector(#f, i, [f[i], [;]]); \\ transform to extended ideals
? idealfactorback(nf, f, e, 1)
%6 = [[1, 0; 0, 1], [2, 1; [2, 1]~, 1]]
? nffactorback(nf, %[2])
%7 = [4, 2]~
@eprog
The extended ideal returned in \kbd{\%6} is the trivial ideal $1$, extended
with a principal generator given in factored form. We use \tet{nffactorback}
to recover it in standard form.
The library syntax is \fun{GEN}{idealfactorback}{GEN nf, GEN f, GEN e = NULL, long flag}.
\subsec{idealfrobenius$(\var{nf},\var{gal},\var{pr})$}\kbdsidx{idealfrobenius}\label{se:idealfrobenius}
Let $K$ be the number field defined by $nf$ and assume $K/\Q$ be a
Galois extension with Galois group given \kbd{gal=galoisinit(nf)},
and that \var{pr} is an unramified prime ideal $\goth{p}$ in \kbd{prid}
format.
This function returns a permutation of \kbd{gal.group} which defines
the Frobenius element $\Frob_{\goth{p}}$ attached to $\goth{p}$.
If $p$ is the unique prime number in $\goth{p}$, then
$\Frob(x)\equiv x^{p}\mod\goth{p}$ for all $x\in\Z_{K}$.
\bprog
? nf = nfinit(polcyclo(31));
? gal = galoisinit(nf);
? pr = idealprimedec(nf,101)[1];
? g = idealfrobenius(nf,gal,pr);
? galoispermtopol(gal,g)
%5 = x^8
@eprog\noindent This is correct since $101\equiv 8\mod{31}$.
The library syntax is \fun{GEN}{idealfrobenius}{GEN nf, GEN gal, GEN pr}.
\subsec{idealhnf$(\var{nf},u,\{v\})$}\kbdsidx{idealhnf}\label{se:idealhnf}
Gives the \idx{Hermite normal form} of the ideal $u\Z_{K}+v\Z_{K}$,
where $u$ and $v$ are elements of the number field $K$ defined by \var{nf}.
\bprog
? nf = nfinit(y^3 - 2);
? idealhnf(nf, 2, y+1)
%2 =
[1 0 0]
[0 1 0]
[0 0 1]
? idealhnf(nf, y/2, [0,0,1/3]~)
%3 =
[1/3 0 0]
[0 1/6 0]
[0 0 1/6]
@eprog
If $v$ is omitted, returns the HNF of the ideal defined by $u$: $u$ may be an
algebraic number (defining a principal ideal), a maximal ideal (as given by
\kbd{idealprimedec} or \kbd{idealfactor}), or a matrix whose columns give
generators for the ideal. This last format is a little complicated, but
useful to reduce general modules to the canonical form once in a while:
\item if strictly less than $N = [K:\Q]$ generators are given, $u$
is the $\Z_{K}$-module they generate,
\item if $N$ or more are given, it is \emph{assumed} that they form a
$\Z$-basis of the ideal, in particular that the matrix has maximal rank $N$.
This acts as \kbd{mathnf} since the $\Z_{K}$-module structure is (taken for
granted hence) not taken into account in this case.
\bprog
? idealhnf(nf, idealprimedec(nf,2)[1])
%4 =
[2 0 0]
[0 1 0]
[0 0 1]
? idealhnf(nf, [1,2;2,3;3,4])
%5 =
[1 0 0]
[0 1 0]
[0 0 1]
@eprog\noindent Finally, when $K$ is quadratic with discriminant $D_{K}$, we
allow $u =$ \kbd{Qfb(a,b,c)}, provided $b^{2} - 4ac = D_{K}$. As usual,
this represents the ideal $a \Z + (1/2)(-b + \sqrt{D_{K}}) \Z$.
\bprog
? K = nfinit(x^2 - 60); K.disc
%1 = 60
? idealhnf(K, qfbprimeform(60,2))
%2 =
[2 1]
[0 1]
? idealhnf(K, Qfb(1,2,3))
*** at top-level: idealhnf(K,Qfb(1,2,3
*** ^--------------------
*** idealhnf: Qfb(1, 2, 3) has discriminant != 60 in idealhnf.
@eprog
The library syntax is \fun{GEN}{idealhnf0}{GEN nf, GEN u, GEN v = NULL}.
Also available is \fun{GEN}{idealhnf}{GEN nf, GEN a}, where \kbd{nf}
is a true \var{nf} structure.
\subsec{idealintersect$(\var{nf},A,B)$}\kbdsidx{idealintersect}\label{se:idealintersect}
Intersection of the two ideals
$A$ and $B$ in the number field $\var{nf}$. The result is given in HNF.
\bprog
? nf = nfinit(x^2+1);
? idealintersect(nf, 2, x+1)
%2 =
[2 0]
[0 2]
@eprog
This function does not apply to general $\Z$-modules, e.g.~orders, since its
arguments are replaced by the ideals they generate. The following script
intersects $\Z$-modules $A$ and $B$ given by matrices of compatible
dimensions with integer coefficients:
\bprog
ZM_intersect(A,B) =
{ my(Ker = matkerint(concat(A,B)));
mathnf( A * Ker[1..#A,] )
}
@eprog
The library syntax is \fun{GEN}{idealintersect}{GEN nf, GEN A, GEN B}.
\subsec{idealinv$(\var{nf},x)$}\kbdsidx{idealinv}\label{se:idealinv}
Inverse of the ideal $x$ in the
number field $\var{nf}$, given in HNF. If $x$ is an extended
ideal\sidx{ideal (extended)}, its principal part is suitably
updated: i.e. inverting $[I,t]$, yields $[I^{-1}, 1/t]$.
The library syntax is \fun{GEN}{idealinv}{GEN nf, GEN x}.
\subsec{idealismaximal$(\var{nf},x)$}\kbdsidx{idealismaximal}\label{se:idealismaximal}
Given \var{nf} a number field as output by \kbd{nfinit} and an ideal
$x$, return $0$ if $x$ is not a maximal ideal. Otherwise return a \kbd{prid}
structure \var{nf} attached to the ideal. This function uses
\kbd{ispseudoprime} and may return a wrong result in case the underlying
rational pseudoprime is not an actual prime number: apply \kbd{isprime(pr.p)}
to guarantee correctness. If $x$ is an extended ideal, the extended part is
ignored.
\bprog
? K = nfinit(y^2 + 1);
? idealismaximal(K, 3) \\ 3 is inert
%2 = [3, [3, 0]~, 1, 2, 1]
? idealismaximal(K, 5) \\ 5 is not
%3 = 0
? pr = idealprimedec(K,5)[1] \\ already a prid
%4 = [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]]
? idealismaximal(K, pr) \\ trivial check
%5 = [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]]
? x = idealhnf(K, pr)
%6 =
[5 3]
[0 1]
? idealismaximal(K, x) \\ converts from matrix form to prid
%7 = [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]]
@eprog\noindent This function is noticeably faster than \kbd{idealfactor}
since it never involves an actually factorization, in particular when $x
\cap \Z$ is not a prime number.
The library syntax is \fun{GEN}{idealismaximal}{GEN nf, GEN x}.
\subsec{idealispower$(\var{nf},A,n,\{\&B\})$}\kbdsidx{idealispower}\label{se:idealispower}
Let \var{nf} be a number field and $n > 0$ be a positive integer.
Return $1$ if the fractional ideal $A = B^{n}$ is an $n$-th power and $0$
otherwise. If the argument $B$ is present, set it to the $n$-th root of $A$,
in HNF.
\bprog
? K = nfinit(x^3 - 2);
? A = [46875, 30966, 9573; 0, 3, 0; 0, 0, 3];
? idealispower(K, A, 3, &B)
%3 = 1
? B
%4 =
[75 22 41]
[ 0 1 0]
[ 0 0 1]
? A = [9375, 2841, 198; 0, 3, 0; 0, 0, 3];
? idealispower(K, A, 3)
%5 = 0
@eprog\noindent
The library syntax is \fun{long}{idealispower}{GEN nf, GEN A, long n, GEN *B = NULL}.
\subsec{ideallist$(\var{nf},\var{bound},\{\fl=4\})$}\kbdsidx{ideallist}\label{se:ideallist}
Computes the list of all ideals of norm less or equal to \var{bound} in
the number field
\var{nf}. The result is a row vector with exactly \var{bound} components.
Each component is itself a row vector containing the information about
ideals of a given norm, in no specific order. The information is inferred
from local data and Chinese remainders and less expensive than computing
than a direct global computation.
The binary digits of $\fl$ mean:
\item 1: if the ideals are given by a \var{bid}, include generators;
otherwise don't.
\item 2: if this bit is set, \var{nf} must be a \var{bnf} with units. Each
component is of the form $[\var{bid},U]$, where \var{bid} is attached to
an ideal $f$ and $U$ is a vector of discrete logarithms of the units in
$(\Z_{K}/f)^{*}$. More precisely, $U$ gives the \kbd{ideallog}s with respect
to \var{bid} of $(\zeta,u_{1},\dots,u_{r})$
where $\zeta$ is the torsion unit generator \kbd{bnf.tu[2]} and $(u_{i})$
are the fundamental units in \kbd{bnf.fu}.
This structure is technical, meant to be used in conjunction with
\tet{bnrclassnolist} or \tet{bnrdisclist}.
\item 4: give only the ideal (in HNF), else a \var{bid}.
\item 8: omit ideals which cannot be conductors, i.e. divisible exactly by
a prime ideal of norm $2$.
\bprog
? nf = nfinit(x^2+1);
? L = ideallist(nf, 100);
? L[1]
%3 = [[1, 0; 0, 1]] \\@com A single ideal of norm 1
? #L[65]
%4 = 4 \\@com There are 4 ideals of norm 65 in $\Z[i]$
@eprog
If one wants more information:
\bprog
? L = ideallist(nf, 100, 0);
? l = L[25]; vector(#l, i, l[i].clgp)
%6 = [[20, [20]], [16, [4, 4]], [20, [20]]]
? l[1].mod
%7 = [[25, 18; 0, 1], []]
? l[2].mod
%8 = [[5, 0; 0, 5], []]
? l[3].mod
%9 = [[25, 7; 0, 1], []]
@eprog\noindent where we ask for the structures of the $(\Z[i]/f)^{*}$ for all
three ideals of norm $25$. In fact, for all moduli with finite part of norm
$25$ and trivial Archimedean part, as the last 3 commands show. See
\tet{ideallistarch} to treat general moduli.
Finally, one can input a negative \kbd{bound}. The function
then returns the ideals of norm $|\kbd{bound}|$, given by their
factorization matrix. The only valid value of \fl\ is then the default.
If needed, one can obtain their HNF using
\kbd{idealfactorback}, and the corresponding \var{bid} structures using
\kbd{idealstar} (which accepts ideals in factored form).
The library syntax is \fun{GEN}{gideallist}{GEN nf, GEN bound, long flag}.
Also available is
\fun{GEN}{ideallist0}{GEN nf,long bound, long flag} for a non-negative
bound.
\subsec{ideallistarch$(\var{nf},\var{list},\var{arch})$}\kbdsidx{ideallistarch}\label{se:ideallistarch}
\var{list} is a vector of vectors of bid's, as output by \tet{ideallist} with
flag $0$ to $3$. Return a vector of vectors with the same number of
components as the original \var{list}. The leaves give information about
moduli whose finite part is as in original list, in the same order, and
Archimedean part is now \var{arch} (it was originally trivial). The
information contained is of the same kind as was present in the input; see
\tet{ideallist}, in particular the meaning of \fl.
\bprog
? bnf = bnfinit(x^2-2);
? bnf.sign
%2 = [2, 0] \\@com two places at infinity
? L = ideallist(bnf, 100, 0);
? l = L[98]; vector(#l, i, l[i].clgp)
%4 = [[42, [42]], [36, [6, 6]], [42, [42]]]
? La = ideallistarch(bnf, L, [1,1]); \\@com add them to the modulus
? l = La[98]; vector(#l, i, l[i].clgp)
%6 = [[168, [42, 2, 2]], [144, [6, 6, 2, 2]], [168, [42, 2, 2]]]
@eprog
Of course, the results above are obvious: adding $t$ places at infinity will
add $t$ copies of $\Z/2\Z$ to $(\Z_{K}/f)^{*}$. The following application
is more typical:
\bprog
? L = ideallist(bnf, 100, 2); \\@com units are required now
? La = ideallistarch(bnf, L, [1,1]);
? H = bnrclassnolist(bnf, La);
? H[98];
%4 = [2, 12, 2]
@eprog
The library syntax is \fun{GEN}{ideallistarch}{GEN nf, GEN list, GEN arch}.
\subsec{ideallog$(\{\var{nf}\},x,\var{bid})$}\kbdsidx{ideallog}\label{se:ideallog}
$\var{nf}$ is a number field,
\var{bid} is as output by \kbd{idealstar(nf, D, \dots)} and $x$ an
element of \var{nf} which must have valuation
equal to 0 at all prime ideals in the support of $\kbd{D}$ and need not be
integral. This function
computes the discrete logarithm of $x$ on the generators given in
\kbd{\var{bid}.gen}. In other words, if $g_{i}$ are these generators, of orders
$d_{i}$ respectively, the result is a column vector of integers $(x_{i})$ such
that $0\le x_{i}<d_{i}$ and
$$x \equiv \prod_{i} g_{i}^{x_{i}} \pmod{\ ^{*}D}\enspace.$$
Note that when the support of \kbd{D} contains places at infinity, this
congruence implies also sign conditions on the attached real embeddings.
See \tet{znlog} for the limitations of the underlying discrete log algorithms.
When \var{nf} is omitted, take it to be the rational number field. In that
case, $x$ must be a \typ{INT} and \var{bid} must have been initialized by
\kbd{znstar(N,1)}.
The library syntax is \fun{GEN}{ideallog}{GEN nf = NULL, GEN x, GEN bid}.
Also available are
\fun{GEN}{Zideallog}{GEN bid, GEN x} when \kbd{nf} is \kbd{NULL},
and \fun{GEN}{ideallogmod}{GEN nf, GEN x, GEN bid, GEN mod}
that returns the discrete logarithm of~$x$ modulo the~\typ{INT}
\kbd{mod}; the value~$\kbd{mod = NULL}$ is treated as~$0$ (full discrete
logarithm), but~$\kbd{nf=NULL}$ is not implemented with nonzero~\kbd{mod}.
\subsec{idealmin$(\var{nf},\var{ix},\{\var{vdir}\})$}\kbdsidx{idealmin}\label{se:idealmin}
\emph{This function is useless and kept for backward compatibility only,
use \kbd{idealred}}. Computes a pseudo-minimum of the ideal $x$ in the
direction \var{vdir} in the number field \var{nf}.
The library syntax is \fun{GEN}{idealmin}{GEN nf, GEN ix, GEN vdir = NULL}.
\subsec{idealmul$(\var{nf},x,y,\{\fl=0\})$}\kbdsidx{idealmul}\label{se:idealmul}
Ideal multiplication of the ideals $x$ and $y$ in the number field
\var{nf}; the result is the ideal product in HNF. If either $x$ or $y$
are extended ideals\sidx{ideal (extended)}, their principal part is suitably
updated: i.e. multiplying $[I,t]$, $[J,u]$ yields $[IJ, tu]$; multiplying
$I$ and $[J, u]$ yields $[IJ, u]$.
\bprog
? nf = nfinit(x^2 + 1);
? idealmul(nf, 2, x+1)
%2 =
[4 2]
[0 2]
? idealmul(nf, [2, x], x+1) \\ extended ideal * ideal
%3 = [[4, 2; 0, 2], x]
? idealmul(nf, [2, x], [x+1, x]) \\ two extended ideals
%4 = [[4, 2; 0, 2], [-1, 0]~]
@eprog\noindent
If $\fl$ is nonzero, reduce the result using \kbd{idealred}.
The library syntax is \fun{GEN}{idealmul0}{GEN nf, GEN x, GEN y, long flag}.
\noindent See also
\fun{GEN}{idealmul}{GEN nf, GEN x, GEN y} ($\fl=0$) and
\fun{GEN}{idealmulred}{GEN nf, GEN x, GEN y} ($\fl\neq0$).
\subsec{idealnorm$(\var{nf},x)$}\kbdsidx{idealnorm}\label{se:idealnorm}
Computes the norm of the ideal~$x$ in the number field~$\var{nf}$.
The library syntax is \fun{GEN}{idealnorm}{GEN nf, GEN x}.
\subsec{idealnumden$(\var{nf},x)$}\kbdsidx{idealnumden}\label{se:idealnumden}
Returns $[A,B]$, where $A,B$ are coprime integer ideals
such that $x = A/B$, in the number field $\var{nf}$.
\bprog
? nf = nfinit(x^2+1);
? idealnumden(nf, (x+1)/2)
%2 = [[1, 0; 0, 1], [2, 1; 0, 1]]
@eprog
The library syntax is \fun{GEN}{idealnumden}{GEN nf, GEN x}.
\subsec{idealpow$(\var{nf},x,k,\{\fl=0\})$}\kbdsidx{idealpow}\label{se:idealpow}
Computes the $k$-th power of
the ideal $x$ in the number field $\var{nf}$; $k\in\Z$.
If $x$ is an extended
ideal\sidx{ideal (extended)}, its principal part is suitably
updated: i.e. raising $[I,t]$ to the $k$-th power, yields $[I^{k}, t^{k}]$.
If $\fl$ is nonzero, reduce the result using \kbd{idealred}, \emph{throughout
the (binary) powering process}; in particular, this is \emph{not} the same
as $\kbd{idealpow}(\var{nf},x,k)$ followed by reduction.
The library syntax is \fun{GEN}{idealpow0}{GEN nf, GEN x, GEN k, long flag}.
\noindent See also
\fun{GEN}{idealpow}{GEN nf, GEN x, GEN k} and
\fun{GEN}{idealpows}{GEN nf, GEN x, long k} ($\fl = 0$).
Corresponding to $\fl=1$ is \fun{GEN}{idealpowred}{GEN nf, GEN vp, GEN k}.
\subsec{idealprimedec$(\var{nf},p,\{f=0\})$}\kbdsidx{idealprimedec}\label{se:idealprimedec}
Computes the prime ideal
decomposition of the (positive) prime number $p$ in the number field $K$
represented by \var{nf}. If a nonprime $p$ is given the result is undefined.
If $f$ is present and nonzero, restrict the result to primes of residue
degree $\leq f$.
The result is a vector of \tev{prid} structures, each representing one of the
prime ideals above $p$ in the number field $\var{nf}$. The representation
$\kbd{pr}=[p,a,e,f,\var{mb}]$ of a prime ideal means the following: $a$
is an algebraic integer in the maximal order $\Z_{K}$ and the prime ideal is
equal to $\goth{p} = p\Z_{K} + a\Z_{K}$;
$e$ is the ramification index; $f$ is the residual index;
finally, \var{mb} is the multiplication table attached to an algebraic
integer $b$ such that $\goth{p}^{-1}=\Z_{K}+ b/ p\Z_{K}$, which is used
internally to compute valuations. In other words if $p$ is inert,
then \var{mb} is the integer $1$, and otherwise it is a square \typ{MAT}
whose $j$-th column is $b \cdot \kbd{nf.zk[j]}$.
The algebraic number $a$ is guaranteed to have a
valuation equal to 1 at the prime ideal (this is automatic if $e>1$).
The components of \kbd{pr} should be accessed by member functions: \kbd{pr.p},
\kbd{pr.e}, \kbd{pr.f}, and \kbd{pr.gen} (returns the vector $[p,a]$):
\bprog
? K = nfinit(x^3-2);
? P = idealprimedec(K, 5);
? #P \\ 2 primes above 5 in Q(2^(1/3))
%3 = 2
? [p1,p2] = P;
? [p1.e, p1.f] \\ the first is unramified of degree 1
%5 = [1, 1]
? [p2.e, p2.f] \\ the second is unramified of degree 2
%6 = [1, 2]
? p1.gen
%7 = [5, [2, 1, 0]~]
? nfbasistoalg(K, %[2]) \\ a uniformizer for p1
%8 = Mod(x + 2, x^3 - 2)
? #idealprimedec(K, 5, 1) \\ restrict to f = 1
%9 = 1 \\ now only p1
@eprog
The library syntax is \fun{GEN}{idealprimedec_limit_f}{GEN nf, GEN p, long f}.
\subsec{idealprincipalunits$(\var{nf},\var{pr},k)$}\kbdsidx{idealprincipalunits}\label{se:idealprincipalunits}
Given a prime ideal in \tet{idealprimedec} format,
returns the multiplicative group $(1 + \var{pr}) / (1 + \var{pr}^{k})$ as an
abelian group. This function is much faster than \tet{idealstar} when the
norm of \var{pr} is large, since it avoids (useless) work in the
multiplicative group of the residue field.
\bprog
? K = nfinit(y^2+1);
? P = idealprimedec(K,2)[1];
? G = idealprincipalunits(K, P, 20);
? G.cyc
%4 = [512, 256, 4] \\ Z/512 x Z/256 x Z/4
? G.gen
%5 = [[-1, -2]~, 1021, [0, -1]~] \\ minimal generators of given order
@eprog
The library syntax is \fun{GEN}{idealprincipalunits}{GEN nf, GEN pr, long k}.
\subsec{idealramgroups$(\var{nf},\var{gal},\var{pr})$}\kbdsidx{idealramgroups}\label{se:idealramgroups}
Let $K$ be the number field defined by \var{nf} and assume that $K/\Q$ is
Galois with Galois group $G$ given by \kbd{gal=galoisinit(nf)}.
Let \var{pr} be the prime ideal $\goth{P}$ in prid format.
This function returns a vector $g$ of subgroups of \kbd{gal}
as follows:
\item \kbd{g[1]} is the decomposition group of $\goth{P}$,
\item \kbd{g[2]} is $G_{0}(\goth{P})$, the inertia group of $\goth{P}$,
and for $i\geq 2$,
\item \kbd{g[i]} is $G_{i-2}(\goth{P})$, the $i-2$-th
\idx{ramification group} of $\goth{P}$.
\noindent The length of $g$ is the number of nontrivial groups in the
sequence, thus is $0$ if $e=1$ and $f=1$, and $1$ if $f>1$ and $e=1$.
The following function computes the cardinality of a subgroup of $G$,
as given by the components of $g$:
\bprog
card(H) =my(o=H[2]); prod(i=1,#o,o[i]);
@eprog
\bprog
? nf=nfinit(x^6+3); gal=galoisinit(nf); pr=idealprimedec(nf,3)[1];
? g = idealramgroups(nf, gal, pr);
? apply(card,g)
%3 = [6, 6, 3, 3, 3] \\ cardinalities of the G_i
@eprog
\bprog
? nf=nfinit(x^6+108); gal=galoisinit(nf); pr=idealprimedec(nf,2)[1];
? iso=idealramgroups(nf,gal,pr)[2]
%5 = [[Vecsmall([2, 3, 1, 5, 6, 4])], Vecsmall([3])]
? nfdisc(galoisfixedfield(gal,iso,1))
%6 = -3
@eprog\noindent The field fixed by the inertia group of $2$ is not ramified at
$2$.
The library syntax is \fun{GEN}{idealramgroups}{GEN nf, GEN gal, GEN pr}.
\subsec{idealred$(\var{nf},I,\{v=0\})$}\kbdsidx{idealred}\label{se:idealred}
\idx{LLL} reduction of
the ideal $I$ in the number field $K$ attached to \var{nf}, along the
direction $v$. The $v$ parameter is best left omitted, but if it is present,
it must be an $\kbd{nf.r1} + \kbd{nf.r2}$-component vector of
\emph{nonnegative} integers. (What counts is the relative magnitude of the
entries: if all entries are equal, the effect is the same as if the vector
had been omitted.)
This function finds an $a\in K^{*}$ such that $J = (a)I$ is
``small'' and integral (see the end for technical details).
The result is the Hermite normal form of
the ``reduced'' ideal $J$.
\bprog
? K = nfinit(y^2+1);
? P = idealprimedec(K,5)[1];
? idealred(K, P)
%3 =
[1 0]
[0 1]
@eprog\noindent More often than not, a \idx{principal ideal} yields the unit
ideal as above. This is a quick and dirty way to check if ideals are principal,
but it is not a necessary condition: a nontrivial result does not prove that
the ideal is nonprincipal. For guaranteed results, see \kbd{bnfisprincipal},
which requires the computation of a full \kbd{bnf} structure.
If the input is an extended ideal $[I,s]$, the output is $[J, sa]$; in
this way, one keeps track of the principal ideal part:
\bprog
? idealred(K, [P, 1])
%5 = [[1, 0; 0, 1], [2, -1]~]
@eprog\noindent
meaning that $P$ is generated by $[2, -1]~$. The number field element in the
extended part is an algebraic number in any form \emph{or} a factorization
matrix (in terms of number field elements, not ideals!). In the latter case,
elements stay in factored form, which is a convenient way to avoid
coefficient explosion; see also \tet{idealpow}.
\misctitle{Technical note} The routine computes an LLL-reduced
basis for the lattice $I^{-1}$ equipped with the quadratic
form
$$|| x ||_{v}^{2} = \sum_{i=1}^{r_{1}+r_{2}}
2^{v_{i}}\varepsilon_{i}|\sigma_{i}(x)|^{2},$$
where as usual the $\sigma_{i}$ are the (real and) complex embeddings and
$\varepsilon_{i} = 1$, resp.~$2$, for a real, resp.~complex place. The element
$a$ is simply the first vector in the LLL basis. The only reason you may want
to try to change some directions and set some $v_{i}\neq 0$ is to randomize
the elements found for a fixed ideal, which is heuristically useful in index
calculus algorithms like \tet{bnfinit} and \tet{bnfisprincipal}.
\misctitle{Even more technical note} In fact, the above is a white lie.
We do not use $||\cdot||_{v}$ exactly but a rescaled rounded variant which
gets us faster and simpler LLLs. There's no harm since we are not using any
theoretical property of $a$ after all, except that it belongs to $I^{-1}$
and that $a I$ is ``expected to be small''.
The library syntax is \fun{GEN}{idealred0}{GEN nf, GEN I, GEN v = NULL}.
\subsec{idealredmodpower$(\var{nf},x,n,\{B=\var{factorlimit}\})$}\kbdsidx{idealredmodpower}\label{se:idealredmodpower}
Let \var{nf} be a number field, $x$ an ideal in \var{nf} and $n > 0$ be a
positive integer. Return a number field element $b$ such that $x b^{n} = v$
is small. If $x$ is integral, then $v$ is also integral.
More precisely, \kbd{idealnumden} reduces the problem to $x$ integral. Then,
factoring out the prime ideals dividing a rational prime $p \leq B$,
we rewrite $x = I J^{n}$ where the ideals $I$ and $J$ are both integral and
$I$ is $B$-smooth. Then we return a small element $b$ in $J^{-1}$.
The bound $B$ avoids a costly complete factorization of $x$; as soon as the
$n$-core of $x$ is $B$-smooth (i.e., as soon as $I$ is $n$-power free),
then $J$ is as large as possible and so is the expected reduction.
\bprog
? T = x^6+108; nf = nfinit(T); a = Mod(x,T);
? setrand(1); u = (2*a^2+a+3)*random(2^1000*x^6)^6;
? sizebyte(u)
%3 = 4864
? b = idealredmodpower(nf,u,2);
? v2 = nfeltmul(nf,u, nfeltpow(nf,b,2))
%5 = [34, 47, 15, 35, 9, 3]~
? b = idealredmodpower(nf,u,6);
? v6 = nfeltmul(nf,u, nfeltpow(nf,b,6))
%7 = [3, 0, 2, 6, -7, 1]~
@eprog\noindent The last element \kbd{v6}, obtained by reducing
modulo $6$-th powers instead of squares, looks smaller than \kbd{v2}
but its norm is actually a little larger:
\bprog
? idealnorm(nf,v2)
%8 = 81309
? idealnorm(nf,v6)
%9 = 731781
@eprog
The library syntax is \fun{GEN}{idealredmodpower}{GEN nf, GEN x, ulong n, ulong B}.
\subsec{idealstar$(\{\var{nf}\},N,\{\fl=1\},\{\var{cycmod}\})$}\kbdsidx{idealstar}\label{se:idealstar}
Outputs a \kbd{bid} structure,
necessary for computing in the finite abelian group $G = (\Z_{K}/N)^{*}$. Here,
\var{nf} is a number field and $N$ is a \var{modulus}: either an ideal in any
form, or a row vector whose first component is an ideal and whose second
component is a row vector of $r_{1}$ 0 or 1. Ideals can also be given
by a factorization into prime ideals, as produced by \tet{idealfactor}.
If the positive integer \kbd{cycmod} is present, only compute the group
modulo \kbd{cycmod}-th powers, which may save a lot of time when some
maximal ideals in the modulus have a huge residue field. Whereas you might
only be interested in quadratic or cubic residuosity; see also \kbd{bnrinit}
for applications in class field theory.
This \var{bid} is used in \tet{ideallog} to compute discrete logarithms. It
also contains useful information which can be conveniently retrieved as
\kbd{\var{bid}.mod} (the modulus),
\kbd{\var{bid}.clgp} ($G$ as a finite abelian group),
\kbd{\var{bid}.no} (the cardinality of $G$),
\kbd{\var{bid}.cyc} (elementary divisors) and
\kbd{\var{bid}.gen} (generators).
If $\fl=1$ (default), the result is a \kbd{bid} structure without
generators: they are well defined but not explicitly computed, which saves
time.
If $\fl=2$, as $\fl=1$, but including generators.
If $\fl=0$, only outputs $(\Z_{K}/N)^{*}$ as an abelian group,
i.e as a 3-component vector $[h,d,g]$: $h$ is the order, $d$ is the vector of
SNF\sidx{Smith normal form} cyclic components and $g$ the corresponding
generators.
If \var{nf} is omitted, we take it to be the rational number fields, $N$ must
be an integer and we return the structure of $(\Z/N\Z)^{*}$. In other words
\kbd{idealstar(, N, flag)} is short for
\bprog
idealstar(nfinit(x), N, flag)
@eprog\noindent but faster. The alternative syntax \kbd{znstar(N, flag)}
is also available for an analogous effect but, due to an unfortunate
historical oversight, the default value of $\fl$ is different in
the two functions (\kbd{znstar} does not initialize by default, you probably
want \kbd{znstar(N,1)}).
The library syntax is \fun{GEN}{idealstarmod}{GEN nf = NULL, GEN N, long flag, GEN cycmod = NULL}.
Instead the above hardcoded numerical flags, one should rather use
\fun{GEN}{Idealstarmod}{GEN nf, GEN ideal, long flag, GEN cycmod} or
\fun{GEN}{Idealstar}{GEN nf, GEN ideal, long flag} (\kbd{cycmod} is
\kbd{NULL}), where $\fl$ is
an or-ed combination of \tet{nf_GEN} (include generators) and \tet{nf_INIT}
(return a full \kbd{bid}, not a group), possibly $0$. This offers
one more combination: gen, but no init. The \kbd{nf} argument must be a true
\var{nf} structure.
\subsec{idealtwoelt$(\var{nf},x,\{a\})$}\kbdsidx{idealtwoelt}\label{se:idealtwoelt}
Computes a two-element representation of the ideal $x$ in the number
field $\var{nf}$, combining a random search and an approximation theorem; $x$
is an ideal in any form (possibly an extended ideal, whose principal part is
ignored)
\item When called as \kbd{idealtwoelt(nf,x)}, the result is a row vector
$[a,\alpha]$ with two components such that $x=a\Z_{K}+\alpha\Z_{K}$ and $a$ is
chosen to be the positive generator of $x\cap\Z$, unless $x$ was given as a
principal ideal in which case we may choose $a = 0$. The algorithm
uses a fast lazy factorization of $x\cap \Z$ and runs in randomized
polynomial time.
\bprog
? K = nfinit(t^5-23);
? x = idealhnf(K, t^2*(t+1), t^3*(t+1))
%2 = \\ some random ideal of norm 552*23
[552 23 23 529 23]
[ 0 23 0 0 0]
[ 0 0 1 0 0]
[ 0 0 0 1 0]
[ 0 0 0 0 1]
? [a,alpha] = idealtwoelt(K, x)
%3 = [552, [23, 0, 1, 0, 0]~]
? nfbasistoalg(K, alpha)
%4 = Mod(t^2 + 23, t^5 - 23)
@eprog
\item When called as \kbd{idealtwoelt(nf,x,a)} with an explicit nonzero $a$
supplied as third argument, the function assumes that $a \in x$ and returns
$\alpha\in x$ such that $x = a\Z_{K} + \alpha\Z_{K}$. Note that we must factor
$a$ in this case, and the algorithm is generally slower than the
default variant and gives larger generators:
\bprog
? alpha2 = idealtwoelt(K, x, 552)
%5 = [-161, -161, -183, -207, 0]~
? idealhnf(K, 552, alpha2) == x
%6 = 1
@eprog\noindent Note that, in both cases, the return value is \emph{not}
recognized as an ideal by GP functions; one must use \kbd{idealhnf} as
above to recover a valid ideal structure from the two-element representation.
The library syntax is \fun{GEN}{idealtwoelt0}{GEN nf, GEN x, GEN a = NULL}.
Also available are
\fun{GEN}{idealtwoelt}{GEN nf, GEN x} and
\fun{GEN}{idealtwoelt2}{GEN nf, GEN x, GEN a}.
\subsec{idealval$(\var{nf},x,\var{pr})$}\kbdsidx{idealval}\label{se:idealval}
Gives the valuation of the ideal $x$ at the prime ideal \var{pr} in the
number field $\var{nf}$, where \var{pr} is in \kbd{idealprimedec} format.
The valuation of the $0$ ideal is \kbd{+oo}.
The library syntax is \fun{GEN}{gpidealval}{GEN nf, GEN x, GEN pr}.
Also available is
\fun{long}{idealval}{GEN nf, GEN x, GEN pr}, which returns
\tet{LONG_MAX} if $x = 0$ and the valuation as a \kbd{long} integer.
\subsec{matalgtobasis$(\var{nf},x)$}\kbdsidx{matalgtobasis}\label{se:matalgtobasis}
This function is deprecated, use \kbd{apply}.
$\var{nf}$ being a number field in \kbd{nfinit} format, and $x$ a
(row or column) vector or matrix, apply \tet{nfalgtobasis} to each entry
of $x$.
The library syntax is \fun{GEN}{matalgtobasis}{GEN nf, GEN x}.
\subsec{matbasistoalg$(\var{nf},x)$}\kbdsidx{matbasistoalg}\label{se:matbasistoalg}
This function is deprecated, use \kbd{apply}.
$\var{nf}$ being a number field in \kbd{nfinit} format, and $x$ a
(row or column) vector or matrix, apply \tet{nfbasistoalg} to each entry
of $x$.
The library syntax is \fun{GEN}{matbasistoalg}{GEN nf, GEN x}.
\subsec{modreverse$(z)$}\kbdsidx{modreverse}\label{se:modreverse}
Let $z = \kbd{Mod(A, T)}$ be a polmod, and $Q$ be its minimal
polynomial, which must satisfy $\text{deg}(Q) = \text{deg}(T)$.
Returns a ``reverse polmod'' \kbd{Mod(B, Q)}, which is a root of $T$.
This is quite useful when one changes the generating element in algebraic
extensions:
\bprog
? u = Mod(x, x^3 - x -1); v = u^5;
? w = modreverse(v)
%2 = Mod(x^2 - 4*x + 1, x^3 - 5*x^2 + 4*x - 1)
@eprog\noindent
which means that $x^{3} - 5x^{2} + 4x -1$ is another defining polynomial
for the cubic field
$$\Q(u) = \Q[x]/(x^{3} - x - 1) = \Q[x]/(x^{3} - 5x^{2} + 4x - 1) = \Q(v),$$
and that $u \to v^{2} - 4v + 1$ gives an explicit isomorphism. From this, it is
easy to convert elements between the $A(u)\in \Q(u)$ and $B(v)\in \Q(v)$
representations:
\bprog
? A = u^2 + 2*u + 3; subst(lift(A), 'x, w)
%3 = Mod(x^2 - 3*x + 3, x^3 - 5*x^2 + 4*x - 1)
? B = v^2 + v + 1; subst(lift(B), 'x, v)
%4 = Mod(26*x^2 + 31*x + 26, x^3 - x - 1)
@eprog
If the minimal polynomial of $z$ has lower degree than expected, the routine
fails
\bprog
? u = Mod(-x^3 + 9*x, x^4 - 10*x^2 + 1)
? modreverse(u)
*** modreverse: domain error in modreverse: deg(minpoly(z)) < 4
*** Break loop: type 'break' to go back to GP prompt
break> Vec( dbg_err() ) \\ ask for more info
["e_DOMAIN", "modreverse", "deg(minpoly(z))", "<", 4,
Mod(-x^3 + 9*x, x^4 - 10*x^2 + 1)]
break> minpoly(u)
x^2 - 8
@eprog
The library syntax is \fun{GEN}{modreverse}{GEN z}.
\subsec{newtonpoly$(x,p)$}\kbdsidx{newtonpoly}\label{se:newtonpoly}
Gives the vector of the slopes of the Newton
polygon of the polynomial $x$ with respect to the prime number $p$. The $n$
components of the vector are in decreasing order, where $n$ is equal to the
degree of $x$. Vertical slopes occur iff the constant coefficient of $x$ is
zero and are denoted by \kbd{+oo}.
The library syntax is \fun{GEN}{newtonpoly}{GEN x, GEN p}.
\subsec{nfalgtobasis$(\var{nf},x)$}\kbdsidx{nfalgtobasis}\label{se:nfalgtobasis}
Given an algebraic number $x$ in the number field $\var{nf}$,
transforms it to a column vector on the integral basis \kbd{\var{nf}.zk}.
\bprog
? nf = nfinit(y^2 + 4);
? nf.zk
%2 = [1, 1/2*y]
? nfalgtobasis(nf, [1,1]~)
%3 = [1, 1]~
? nfalgtobasis(nf, y)
%4 = [0, 2]~
? nfalgtobasis(nf, Mod(y, y^2+4))
%5 = [0, 2]~
@eprog
This is the inverse function of \kbd{nfbasistoalg}.
The library syntax is \fun{GEN}{algtobasis}{GEN nf, GEN x}.
\subsec{nfbasis$(T,\{\&\var{dK}\})$}\kbdsidx{nfbasis}\label{se:nfbasis}
Let $T(X)$ be an irreducible polynomial with integral coefficients. This
function returns an \idx{integral basis} of the number field defined by $T$,
that is a $\Z$-basis of its maximal order. If present, \kbd{dK} is set
to the discriminant of the returned order. The basis elements are given as
elements in $K = \Q[X]/(T)$, in Hermite normal form with respect to the
$\Q$-basis $(1,X,\dots,X^{\deg T-1})$ of $K$, lifted to $\Q[X]$.
In particular its first element is always $1$ and its $i$-th element is a
polynomial of degree $i-1$ whose leading coefficient is the inverse of an
integer: the product of those integers is the index of $\Z[X]/(T)$ in the
maximal order $\Z_{K}$:
\bprog
? nfbasis(x^2 + 4) \\ Z[X]/(T) has index 2 in Z_K
%1 = [1, x/2]
? nfbasis(x^2 + 4, &D)
%2 = [1, x/2]
? D
%3 = -4
@eprog
This function uses a modified version of the \idx{round 4} algorithm,
due to David \idx{Ford}, Sebastian \idx{Pauli} and Xavier \idx{Roblot}.
\misctitle{Local basis, orders maximal at certain primes}
Obtaining the maximal order is hard: it requires factoring the discriminant
$D$ of $T$. Obtaining an order which is maximal at a finite explicit set of
primes is easy, but it may then be a strict suborder of the maximal order. To
specify that we are interested in a given set of places only, we can replace
the argument $T$ by an argument $[T,\var{listP}]$, where \var{listP} encodes
the primes we are interested in: it must be a factorization matrix, a vector
of integers or a single integer.
\item Vector: we assume that it contains distinct \emph{prime} numbers.
\item Matrix: we assume that it is a two-column matrix of a
(partial) factorization of $D$; namely the first column contains
distinct \emph{primes} and the second one the valuation of $D$ at each of
these primes.
\item Integer $B$: this is replaced by the vector of primes up to $B$. Note
that the function will use at least $O(B)$ time: a small value, about
$10^{5}$, should be enough for most applications. Values larger than $2^{32}$
are not supported.
In all these cases, the primes may or may not divide the discriminant $D$
of $T$. The function then returns a $\Z$-basis of an order whose index is
not divisible by any of these prime numbers. The result may actually be
a global integral basis, in particular if all the prime divisors of the
\emph{field} discriminant are included, but this is not guaranteed!
Note that \kbd{nfinit} has built-in support for such a check:
\bprog
? K = nfinit([T, listP]);
? nfcertify(K) \\ we computed an actual maximal order
%2 = [];
@eprog\noindent The first line initializes a number field structure
incorporating \kbd{nfbasis([T, listP]} in place of a proven integral basis.
The second line certifies that the resulting structure is correct. This
allows to create an \kbd{nf} structure attached to the number field $K =
\Q[X]/(T)$, when the discriminant of $T$ cannot be factored completely,
whereas the prime divisors of $\disc K$ are known. If present, the argument
\kbd{dK} is set to the discriminant of the returned order, and is
equal to the field discriminant if and only if the order is maximal.
Of course, if \var{listP} contains a single prime number $p$,
the function returns a local integral basis for $\Z_{p}[X]/(T)$:
\bprog
? nfbasis(x^2+x-1001)
%1 = [1, 1/3*x - 1/3]
? nfbasis( [x^2+x-1001, [2]] )
%2 = [1, x]
@eprog\noindent The following function computes the index $i_{T}$
of $\Z[X]/(T)$ in the order generated by the $\Z$-basis $B$:
\bprog
nfbasisindex(T, B) = vecprod([denominator(pollead(Q)) | Q <- B]);
@eprog\noindent In particular, $B$ is a basis of the maximal order
if and only if $\kbd{poldisc}(T) / i_{T}^{2}$ is equal to the field
discriminant. More generally, this formula gives the square of index of the
order given by $B$ in $\Z_{K}$. For instance, assume that $P$ is a vector
of prime numbers containing (at least) all prime divisors of the field
discriminant, then the following construct allows to provably compute the
field discriminant and to check whether the returned basis is actually
a basis of the maximal order
\bprog
? B = nfbasis([T, P], &D);
? dK = sign(D) * vecprod([p^valuation(D,p) | p<-P]);
? dK * nfbasisindex(T, B)^2 == poldisc(T)
@eprog\noindent The variable \kbd{dK} contains the field discriminant and
the last command returns $1$ if and only if $B$ is a $\Z$-basis of the
maximal order. Of course, the \kbd{nfinit} / \kbd{nfcertify} approach is
simpler, but it is also more costly.
\misctitle{The Buchmann-Lenstra algorithm}
We now complicate the picture: it is in fact allowed to include
\emph{composite} numbers instead of primes
in \kbd{listP} (Vector or Matrix case), provided they are pairwise coprime.
The result may still be a correct integral basis if
the field discriminant factors completely over the actual primes in the
list; again, this is not guaranteed. Adding a composite $C$ such that $C^{2}$
\emph{divides} $D$ may help because when we consider $C$ as a prime and run
the algorithm, two good things can happen: either we succeed in proving that
no prime dividing $C$ can divide the index (without actually needing to find
those primes), or the computation exhibits a nontrivial zero divisor,
thereby factoring $C$ and we go on with the refined factorization. (Note that
including a $C$ such that $C^{2}$ does not divide $D$ is useless.) If neither
happen, then the computed basis need not generate the maximal order. Here is
an example:
\bprog
? B = 10^5;
? listP = factor(poldisc(T), B); \\ primes <= B dividing D + cofactor
? basis = nfbasis([T, listP], &D)
@eprog\noindent If the computed discriminant $D$ factors completely
over the primes less than $B$ (together with the primes contained in the
\tet{addprimes} table), then everything is certified: $D$ is the field
discriminant and \kbd{basis} generates the maximal order.
This can be tested as follows:
\bprog
F = factor(D, B); P = F[,1]; E = F[,2];
for (i = 1, #P,
if (P[i] > B && !isprime(P[i]), warning("nf may be incorrect")));
@eprog\noindent
This is a sufficient but not a necessary condition, hence the warning,
instead of an error.
The function \tet{nfcertify} speeds up and automates the above process:
\bprog
? B = 10^5;
? nf = nfinit([T, B]);
? nfcertify(nf)
%3 = [] \\ nf is unconditionally correct
? [basis, disc] = [nf.zk, nf.disc];
@eprog
The library syntax is \fun{GEN}{nfbasis}{GEN T, GEN *dK = NULL}.
\subsec{nfbasistoalg$(\var{nf},x)$}\kbdsidx{nfbasistoalg}\label{se:nfbasistoalg}
Given an algebraic number $x$ in the number field \var{nf}, transforms it
into \typ{POLMOD} form.
\bprog
? nf = nfinit(y^2 + 4);
? nf.zk
%2 = [1, 1/2*y]
? nfbasistoalg(nf, [1,1]~)
%3 = Mod(1/2*y + 1, y^2 + 4)
? nfbasistoalg(nf, y)
%4 = Mod(y, y^2 + 4)
? nfbasistoalg(nf, Mod(y, y^2+4))
%5 = Mod(y, y^2 + 4)
@eprog
This is the inverse function of \kbd{nfalgtobasis}.
The library syntax is \fun{GEN}{basistoalg}{GEN nf, GEN x}.
\subsec{nfcertify$(\var{nf})$}\kbdsidx{nfcertify}\label{se:nfcertify}
$\var{nf}$ being as output by
\kbd{nfinit}, checks whether the integer basis is known unconditionally.
This is in particular useful when the argument to \kbd{nfinit} was of the
form $[T, \kbd{listP}]$, specifying a finite list of primes when
$p$-maximality had to be proven, or a list of coprime integers to which
Buchmann-Lenstra algorithm was to be applied.
The function returns a vector of coprime composite integers. If this vector
is empty, then \kbd{nf.zk} and \kbd{nf.disc} are correct. Otherwise, the
result is dubious. In order to obtain a certified result, one must completely
factor each of the given integers, then \kbd{addprime} each of their prime
factors, then check whether \kbd{nfdisc(nf.pol)} is equal to \kbd{nf.disc}.
The library syntax is \fun{GEN}{nfcertify}{GEN nf}.
\subsec{nfcompositum$(\var{nf},P,Q,\{\fl=0\})$}\kbdsidx{nfcompositum}\label{se:nfcompositum}
Let \var{nf} be a number field structure attached to the field $K$
and let \sidx{compositum} $P$ and $Q$
be squarefree polynomials in $K[X]$ in the same variable. Outputs
the simple factors of the \'etale $K$-algebra $A = K[X, Y] / (P(X), Q(Y))$.
The factors are given by a list of polynomials $R$ in $K[X]$, attached to
the number field $K[X]/ (R)$, and sorted by increasing degree (with respect
to lexicographic ordering for factors of equal degrees). Returns an error if
one of the polynomials is not squarefree.
Note that it is more efficient to reduce to the case where $P$ and $Q$ are
irreducible first. The routine will not perform this for you, since it may be
expensive, and the inputs are irreducible in most applications anyway. In
this case, there will be a single factor $R$ if and only if the number
fields defined by $P$ and $Q$ are linearly disjoint (their intersection is
$K$).
The binary digits of $\fl$ mean
1: outputs a vector of 4-component vectors $[R,a,b,k]$, where $R$
ranges through the list of all possible compositums as above, and $a$
(resp. $b$) expresses the root of $P$ (resp. $Q$) as an element of
$K[X]/(R)$. Finally, $k$ is a small integer such that $b + ka = X$ modulo
$R$.
2: assume that $P$ and $Q$ define number fields that are linearly disjoint:
both polynomials are irreducible and the corresponding number fields
have no common subfield besides $K$. This allows to save a costly
factorization over $K$. In this case return the single simple factor
instead of a vector with one element.
A compositum is often defined by a complicated polynomial, which it is
advisable to reduce before further work. Here is an example involving
the field $K(\zeta_{5}, 5^{1/10})$, $K=\Q(\sqrt{5})$:
\bprog
? K = nfinit(y^2-5);
? L = nfcompositum(K, x^5 - y, polcyclo(5), 1); \\@com list of $[R,a,b,k]$
? [R, a] = L[1]; \\@com pick the single factor, extract $R,a$ (ignore $b,k$)
? lift(R) \\@com defines the compositum
%4 = x^10 + (-5/2*y + 5/2)*x^9 + (-5*y + 20)*x^8 + (-20*y + 30)*x^7 + \
(-45/2*y + 145/2)*x^6 + (-71/2*y + 121/2)*x^5 + (-20*y + 60)*x^4 + \
(-25*y + 5)*x^3 + 45*x^2 + (-5*y + 15)*x + (-2*y + 6)
? a^5 - y \\@com a fifth root of $y$
%5 = 0
? [T, X] = rnfpolredbest(K, R, 1);
? lift(T) \\@com simpler defining polynomial for $K[x]/(R)$
%7 = x^10 + (-11/2*y + 25/2)
? liftall(X) \\ @com root of $R$ in $K[x]/(T(x))$
%8 = (3/4*y + 7/4)*x^7 + (-1/2*y - 1)*x^5 + 1/2*x^2 + (1/4*y - 1/4)
? a = subst(a.pol, 'x, X); \\@com \kbd{a} in the new coordinates
? liftall(a)
%10 = (-3/4*y - 7/4)*x^7 - 1/2*x^2
? a^5 - y
%11 = 0
@eprog
The main variables of $P$ and $Q$ must be the same and have higher priority
than that of \var{nf} (see~\kbd{varhigher} and~\kbd{varlower}).
The library syntax is \fun{GEN}{nfcompositum}{GEN nf, GEN P, GEN Q, long flag}.
\subsec{nfdetint$(\var{nf},x)$}\kbdsidx{nfdetint}\label{se:nfdetint}
Given a pseudo-matrix $x$, computes a
nonzero ideal contained in (i.e.~multiple of) the determinant of $x$. This
is particularly useful in conjunction with \kbd{nfhnfmod}.
The library syntax is \fun{GEN}{nfdetint}{GEN nf, GEN x}.
\subsec{nfdisc$(T)$}\kbdsidx{nfdisc}\label{se:nfdisc}
\idx{field discriminant} of the number field defined by the integral,
preferably monic, irreducible polynomial $T(X)$. Returns the discriminant of
the number field $\Q[X]/(T)$, using the Round $4$ algorithm.
\misctitle{Local discriminants, valuations at certain primes}
As in \kbd{nfbasis}, the argument $T$ can be replaced by $[T,\var{listP}]$,
where \kbd{listP} is as in \kbd{nfbasis}: a vector of pairwise coprime
integers (usually distinct primes), a factorization matrix, or a single
integer. In that case, the function returns the discriminant of an order
whose basis is given by \kbd{nfbasis(T,listP)}, which need not be the maximal
order, and whose valuation at a prime entry in \kbd{listP} is the same as the
valuation of the field discriminant.
In particular, if \kbd{listP} is $[p]$ for a prime $p$, we can
return the $p$-adic discriminant of the maximal order of $\Z_{p}[X]/(T)$,
as a power of $p$, as follows:
\bprog
? padicdisc(T,p) = p^valuation(nfdisc([T,[p]]), p);
? nfdisc(x^2 + 6)
%2 = -24
? padicdisc(x^2 + 6, 2)
%3 = 8
? padicdisc(x^2 + 6, 3)
%4 = 3
@eprog\noindent The following function computes the discriminant of the
maximal order under the assumption that $P$ is a vector of prime numbers
containing (at least) all prime divisors of the field discriminant:
\bprog
globaldisc(T, P) =
{ my (D = nfdisc([T, P]));
sign(D) * vecprod([p^valuation(D,p) | p <-P]);
}
? globaldisc(x^2 + 6, [2, 3, 5])
%1 = -24
@eprog
\synt{nfdisc}{GEN T}. Also available is \fun{GEN}{nfbasis}{GEN T, GEN *d},
which returns the order basis, and where \kbd{*d} receives the order
discriminant.
\subsec{nfdiscfactors$(T)$}\kbdsidx{nfdiscfactors}\label{se:nfdiscfactors}
Given a polynomial $T$ with integer coefficients, return
$[D, \var{faD}]$ where $D$ is \kbd{nfdisc}$(T)$ and
\var{faD} is the factorization of $|D|$. All the variants \kbd{[T,listP]}
are allowed (see \kbd{??nfdisc}), in which case \var{faD} is the
factorization of the discriminant underlying order (which need not be maximal
at the primes not specified by \kbd{listP}) and the factorization may
contain large composites.
\bprog
? T = x^3 - 6021021*x^2 + 12072210077769*x - 8092423140177664432;
? [D,faD] = nfdiscfactors(T); print(faD); D
[3, 3; 500009, 2]
%2 = -6750243002187]
? T = x^3 + 9*x^2 + 27*x - 125014250689643346789780229390526092263790263725;
? [D,faD] = nfdiscfactors(T); print(faD); D
[3, 3; 1000003, 2]
%4 = -27000162000243
? [D,faD] = nfdiscfactors([T, 10^3]); print(faD)
[3, 3; 125007125141751093502187, 2]
@eprog\noindent In the final example, we only get a partial factorization,
which is only guaranteed correct at primes $\leq 10^{3}$.
The function also accept number field structures, for instance as output by
\kbd{nfinit}, and returns the field discriminant and its factorization:
\bprog
? T = x^3 + 9*x^2 + 27*x - 125014250689643346789780229390526092263790263725;
? nf = nfinit(T); [D,faD] = nfdiscfactors(T); print(faD); D
%2 = -27000162000243
? nf.disc
%3 = -27000162000243
@eprog
The library syntax is \fun{GEN}{nfdiscfactors}{GEN T}.
\subsec{nfeltadd$(\var{nf},x,y)$}\kbdsidx{nfeltadd}\label{se:nfeltadd}
Given two elements $x$ and $y$ in
\var{nf}, computes their sum $x+y$ in the number field $\var{nf}$.
\bprog
? nf = nfinit(1+x^2);
? nfeltadd(nf, 1, x) \\ 1 + I
%2 = [1, 1]~
@eprog
The library syntax is \fun{GEN}{nfadd}{GEN nf, GEN x, GEN y}.
\subsec{nfeltdiv$(\var{nf},x,y)$}\kbdsidx{nfeltdiv}\label{se:nfeltdiv}
Given two elements $x$ and $y$ in
\var{nf}, computes their quotient $x/y$ in the number field $\var{nf}$.
The library syntax is \fun{GEN}{nfdiv}{GEN nf, GEN x, GEN y}.
\subsec{nfeltdiveuc$(\var{nf},x,y)$}\kbdsidx{nfeltdiveuc}\label{se:nfeltdiveuc}
Given two elements $x$ and $y$ in
\var{nf}, computes an algebraic integer $q$ in the number field $\var{nf}$
such that the components of $x-qy$ are reasonably small. In fact, this is
functionally identical to \kbd{round(nfdiv(\var{nf},x,y))}.
The library syntax is \fun{GEN}{nfdiveuc}{GEN nf, GEN x, GEN y}.
\subsec{nfeltdivmodpr$(\var{nf},x,y,\var{pr})$}\kbdsidx{nfeltdivmodpr}\label{se:nfeltdivmodpr}
This function is obsolete, use \kbd{nfmodpr}.
Given two elements $x$
and $y$ in \var{nf} and \var{pr} a prime ideal in \kbd{modpr} format (see
\tet{nfmodprinit}), computes their quotient $x / y$ modulo the prime ideal
\var{pr}.
The library syntax is \fun{GEN}{nfdivmodpr}{GEN nf, GEN x, GEN y, GEN pr}.
This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.
\subsec{nfeltdivrem$(\var{nf},x,y)$}\kbdsidx{nfeltdivrem}\label{se:nfeltdivrem}
Given two elements $x$ and $y$ in
\var{nf}, gives a two-element row vector $[q,r]$ such that $x=qy+r$, $q$ is
an algebraic integer in $\var{nf}$, and the components of $r$ are
reasonably small.
The library syntax is \fun{GEN}{nfdivrem}{GEN nf, GEN x, GEN y}.
\subsec{nfeltembed$(\var{nf},x,\{\var{pl}\})$}\kbdsidx{nfeltembed}\label{se:nfeltembed}
Given an element $x$ in the number field \var{nf}, return
the (real or) complex embeddings of $x$ specified by optional argument
\var{pl}, at the current \kbd{realprecision}:
\item \var{pl} omitted: return the vector of embeddings at all $r_{1}+r_{2}$
places;
\item \var{pl} an integer between $1$ and $r_{1}+r_{2}$: return the
$i$-th embedding of $x$, attached to the $i$-th root of \kbd{nf.pol},
i.e. \kbd{nf.roots$[i]$};
\item \var{pl} a vector or \typ{VECSMALL}: return the vector of embeddings; the $i$-th
entry gives the embedding at the place attached to the $\var{pl}[i]$-th real
root of \kbd{nf.pol}.
\bprog
? nf = nfinit('y^3 - 2);
? nf.sign
%2 = [1, 1]
? nfeltembed(nf, 'y)
%3 = [1.25992[...], -0.62996[...] + 1.09112[...]*I]]
? nfeltembed(nf, 'y, 1)
%4 = 1.25992[...]
? nfeltembed(nf, 'y, 3) \\ there are only 2 arch. places
*** at top-level: nfeltembed(nf,'y,3)
*** ^-----------------
*** nfeltembed: domain error in nfeltembed: index > 2
@eprog
The library syntax is \fun{GEN}{nfeltembed}{GEN nf, GEN x, GEN pl = NULL, long prec}.
\subsec{nfeltispower$(\var{nf},x,n,\{\&y\})$}\kbdsidx{nfeltispower}\label{se:nfeltispower}
Returns $1$ if $x$ is an $n$-th power in the number field \kbd{nf} (and sets $y$ to an $n$-th root if the
argument is present), else returns 0.
\bprog
? nf = nfinit(1+x^2);
? nfeltispower(nf, -4, 4, &y)
%2 = 1
? y
%3 = [-1, -1]~
@eprog
The library syntax is \fun{long}{nfispower}{GEN nf, GEN x, long n, GEN *y = NULL}.
\subsec{nfeltissquare$(\var{nf},x,\{\&y\})$}\kbdsidx{nfeltissquare}\label{se:nfeltissquare}
Returns $1$ if $x$ is a square in \kbd{nf} (and sets $y$ to a square root if the
argument is present), else returns 0.
\bprog
? nf = nfinit(1+x^2);
? nfeltissquare(nf, -1, &y)
%2 = 1
? y
%3 = [0, -1]~
@eprog
The library syntax is \fun{long}{nfissquare}{GEN nf, GEN x, GEN *y = NULL}.
\subsec{nfeltmod$(\var{nf},x,y)$}\kbdsidx{nfeltmod}\label{se:nfeltmod}
Given two elements $x$ and $y$ in
\var{nf}, computes an element $r$ of $\var{nf}$ of the form $r=x-qy$ with
$q$ and algebraic integer, and such that $r$ is small. This is functionally
identical to
$$\kbd{x - nfmul(\var{nf},round(nfdiv(\var{nf},x,y)),y)}.$$
The library syntax is \fun{GEN}{nfmod}{GEN nf, GEN x, GEN y}.
\subsec{nfeltmul$(\var{nf},x,y)$}\kbdsidx{nfeltmul}\label{se:nfeltmul}
Given two elements $x$ and $y$ in \var{nf}, computes their product $x*y$
in the number field $\var{nf}$.
The library syntax is \fun{GEN}{nfmul}{GEN nf, GEN x, GEN y}.
\subsec{nfeltmulmodpr$(\var{nf},x,y,\var{pr})$}\kbdsidx{nfeltmulmodpr}\label{se:nfeltmulmodpr}
This function is obsolete, use \kbd{nfmodpr}.
Given two elements $x$ and
$y$ in \var{nf} and \var{pr} a prime ideal in \kbd{modpr} format (see
\tet{nfmodprinit}), computes their product $x*y$ modulo the prime ideal
\var{pr}.
The library syntax is \fun{GEN}{nfmulmodpr}{GEN nf, GEN x, GEN y, GEN pr}.
This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.
\subsec{nfeltnorm$(\var{nf},x)$}\kbdsidx{nfeltnorm}\label{se:nfeltnorm}
Returns the absolute norm of $x$.
The library syntax is \fun{GEN}{nfnorm}{GEN nf, GEN x}.
\subsec{nfeltpow$(\var{nf},x,k)$}\kbdsidx{nfeltpow}\label{se:nfeltpow}
Given an element $x$ in \var{nf}, and a positive or negative integer $k$,
computes $x^{k}$ in the number field $\var{nf}$.
The library syntax is \fun{GEN}{nfpow}{GEN nf, GEN x, GEN k}.
\fun{GEN}{nfinv}{GEN nf, GEN x} correspond to $k = -1$, and
\fun{GEN}{nfsqr}{GEN nf,GEN x} to $k = 2$.
\subsec{nfeltpowmodpr$(\var{nf},x,k,\var{pr})$}\kbdsidx{nfeltpowmodpr}\label{se:nfeltpowmodpr}
This function is obsolete, use \kbd{nfmodpr}.
Given an element $x$ in \var{nf}, an integer $k$ and a prime ideal
\var{pr} in \kbd{modpr} format
(see \tet{nfmodprinit}), computes $x^{k}$ modulo the prime ideal \var{pr}.
The library syntax is \fun{GEN}{nfpowmodpr}{GEN nf, GEN x, GEN k, GEN pr}.
This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.
\subsec{nfeltreduce$(\var{nf},a,\var{id})$}\kbdsidx{nfeltreduce}\label{se:nfeltreduce}
Given an ideal \var{id} in
Hermite normal form and an element $a$ of the number field $\var{nf}$,
finds an element $r$ in $\var{nf}$ such that $a-r$ belongs to the ideal
and $r$ is small.
The library syntax is \fun{GEN}{nfreduce}{GEN nf, GEN a, GEN id}.
\subsec{nfeltreducemodpr$(\var{nf},x,\var{pr})$}\kbdsidx{nfeltreducemodpr}\label{se:nfeltreducemodpr}
This function is obsolete, use \kbd{nfmodpr}.
Given an element $x$ of the number field $\var{nf}$ and a prime ideal
\var{pr} in \kbd{modpr} format compute a canonical representative for the
class of $x$ modulo \var{pr}.
The library syntax is \fun{GEN}{nfreducemodpr}{GEN nf, GEN x, GEN pr}.
This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.
\subsec{nfeltsign$(\var{nf},x,\{\var{pl}\})$}\kbdsidx{nfeltsign}\label{se:nfeltsign}
Given an element $x$ in the number field \var{nf}, returns the signs of
the real embeddings of $x$ specified by optional argument \var{pl}:
\item \var{pl} omitted: return the vector of signs at all $r_{1}$ real places;
\item \var{pl} an integer between $1$ and $r_{1}$: return the sign of the
$i$-th embedding of $x$, attached to the $i$-th real root of \kbd{nf.pol},
i.e. \kbd{nf.roots$[i]$};
\item \var{pl} a vector or \typ{VECSMALL}: return the vector of signs; the $i$-th
entry gives the sign at the real place attached to the $\var{pl}[i]$-th real
root of \kbd{nf.pol}.
\bprog
? nf = nfinit(polsubcyclo(11,5,'y)); \\ Q(cos(2 pi/11))
? nf.sign
%2 = [5, 0]
? x = Mod('y, nf.pol);
? nfeltsign(nf, x)
%4 = [-1, -1, -1, 1, 1]
? nfeltsign(nf, x, 1)
%5 = -1
? nfeltsign(nf, x, [1..4])
%6 = [-1, -1, -1, 1]
? nfeltsign(nf, x, 6) \\ there are only 5 real embeddings
*** at top-level: nfeltsign(nf,x,6)
*** ^-----------------
*** nfeltsign: domain error in nfeltsign: index > 5
@eprog
The library syntax is \fun{GEN}{nfeltsign}{GEN nf, GEN x, GEN pl = NULL}.
\subsec{nfelttrace$(\var{nf},x)$}\kbdsidx{nfelttrace}\label{se:nfelttrace}
Returns the absolute trace of $x$.
The library syntax is \fun{GEN}{nftrace}{GEN nf, GEN x}.
\subsec{nfeltval$(\var{nf},x,\var{pr},\{\&y\})$}\kbdsidx{nfeltval}\label{se:nfeltval}
Given an element $x$ in
\var{nf} and a prime ideal \var{pr} in the format output by
\kbd{idealprimedec}, computes the valuation $v$ at \var{pr} of the
element $x$. The valuation of $0$ is \kbd{+oo}.
\bprog
? nf = nfinit(x^2 + 1);
? P = idealprimedec(nf, 2)[1];
? nfeltval(nf, x+1, P)
%3 = 1
@eprog\noindent
This particular valuation can also be obtained using
\kbd{idealval(\var{nf},x,\var{pr})}, since $x$ is then converted to a
principal ideal.
If the $y$ argument is present, sets $y = x \tau^{v}$, where $\tau$ is a
fixed ``anti-uniformizer'' for \var{pr}: its valuation at \var{pr} is $-1$;
its valuation is $0$ at other prime ideals dividing \kbd{\var{pr}.p} and
nonnegative at all other primes. In other words $y$ is the part of $x$
coprime to \var{pr}. If $x$ is an algebraic integer, so is $y$.
\bprog
? nfeltval(nf, x+1, P, &y); y
%4 = [0, 1]~
@eprog
For instance if $x = \prod_{i} x_{i}^{e_{i}}$ is known to be coprime to
\var{pr}, where the $x_{i}$ are algebraic integers and $e_{i}\in\Z$ then,
if $v_{i} = \kbd{nfeltval}(\var{nf}, x_{i}, \var{pr}, \&y_{i})$, we still
have $x = \prod_{i} y_{i}^{e_{i}}$, where the $y_{i}$ are still algebraic
integers but now all of them are coprime to \var{pr}. They can then be
mapped to the residue field of \var{pr} more efficiently than if the product
had been expanded beforehand: we can reduce mod \var{pr} after each ring
operation.
The library syntax is \fun{GEN}{gpnfvalrem}{GEN nf, GEN x, GEN pr, GEN *y = NULL}.
Also available are
\fun{long}{nfvalrem}{GEN nf, GEN x, GEN pr, GEN *y = NULL}, which returns
\tet{LONG_MAX} if $x = 0$ and the valuation as a \kbd{long} integer,
and \fun{long}{nfval}{GEN nf, GEN x, GEN pr}, which only returns the
valuation ($y = \kbd{NULL}$).
\subsec{nffactor$(\var{nf},T)$}\kbdsidx{nffactor}\label{se:nffactor}
Factorization of the univariate
polynomial (or rational function) $T$ over the number field $\var{nf}$ given
by \kbd{nfinit}; $T$ has coefficients in $\var{nf}$ (i.e.~either scalar,
polmod, polynomial or column vector). The factors are sorted by increasing
degree.
The main variable of $\var{nf}$ must be of \emph{lower}
priority than that of $T$, see \secref{se:priority}. However if
the polynomial defining the number field occurs explicitly in the
coefficients of $T$ as modulus of a \typ{POLMOD} or as a \typ{POL}
coefficient, its main variable must be \emph{the same} as the main variable
of $T$. For example,
\bprog
? nf = nfinit(y^2 + 1);
? nffactor(nf, x^2 + y); \\@com OK
? nffactor(nf, x^2 + Mod(y, y^2+1)); \\ @com OK
? nffactor(nf, x^2 + Mod(z, z^2+1)); \\ @com WRONG
@eprog
It is possible to input a defining polynomial for \var{nf}
instead, but this is in general less efficient since parts of an \kbd{nf}
structure will then be computed internally. This is useful in two
situations: when you do not need the \kbd{nf} elsewhere, or when you cannot
initialize an \kbd{nf} due to integer factorization difficulties when
attempting to compute the field discriminant and maximal order. In all
cases, the function runs in polynomial time using Belabas's variant
of \idx{van Hoeij}'s algorithm, which copes with hundreds of modular factors.
\misctitle{Caveat} \kbd{nfinit([T, listP])} allows to compute in polynomial
time a conditional \var{nf} structure, which sets \kbd{nf.zk} to an order
which is not guaranteed to be maximal at all primes. Always either use
\kbd{nfcertify} first (which may not run in polynomial time) or make sure
to input \kbd{nf.pol} instead of the conditional \var{nf}: \kbd{nffactor} is
able to recover in polynomial time in this case, instead of potentially
missing a factor.
The library syntax is \fun{GEN}{nffactor}{GEN nf, GEN T}.
\subsec{nffactorback$(\var{nf},f,\{e\})$}\kbdsidx{nffactorback}\label{se:nffactorback}
Gives back the \var{nf} element corresponding to a factorization.
The integer $1$ corresponds to the empty factorization.
If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
integral), and the corresponding factorization is the product of the
$f[i]^{e[i]}$.
If not, and $f$ is vector, it is understood as in the preceding case with $e$
a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a
regular factorization matrix.
\bprog
? nf = nfinit(y^2+1);
? nffactorback(nf, [3, y+1, [1,2]~], [1, 2, 3])
%2 = [12, -66]~
? 3 * (I+1)^2 * (1+2*I)^3
%3 = 12 - 66*I
@eprog
The library syntax is \fun{GEN}{nffactorback}{GEN nf, GEN f, GEN e = NULL}.
\subsec{nffactormod$(\var{nf},Q,\var{pr})$}\kbdsidx{nffactormod}\label{se:nffactormod}
This routine is obsolete, use \kbd{nfmodpr} and \kbd{factormod}.
Factors the univariate polynomial $Q$ modulo the prime ideal \var{pr} in
the number field $\var{nf}$. The coefficients of $Q$ belong to the number
field (scalar, polmod, polynomial, even column vector) and the main variable
of $\var{nf}$ must be of lower priority than that of $Q$ (see
\secref{se:priority}). The prime ideal \var{pr} is either in
\tet{idealprimedec} or (preferred) \tet{modprinit} format. The coefficients
of the polynomial factors are lifted to elements of \var{nf}:
\bprog
? K = nfinit(y^2+1);
? P = idealprimedec(K, 3)[1];
? nffactormod(K, x^2 + y*x + 18*y+1, P)
%3 =
[x + (2*y + 1) 1]
[x + (2*y + 2) 1]
? P = nfmodprinit(K, P); \\ convert to nfmodprinit format
? nffactormod(K, x^2 + y*x + 18*y+1)
%5 =
[x + (2*y + 1) 1]
[x + (2*y + 2) 1]
@eprog\noindent Same result, of course, here about 10\% faster due to the
precomputation.
The library syntax is \fun{GEN}{nffactormod}{GEN nf, GEN Q, GEN pr}.
\subsec{nfgaloisapply$(\var{nf},\var{aut},x)$}\kbdsidx{nfgaloisapply}\label{se:nfgaloisapply}
Let $\var{nf}$ be a
number field as output by \kbd{nfinit}, and let \var{aut} be a \idx{Galois}
automorphism of $\var{nf}$ expressed by its image on the field generator
(such automorphisms can be found using \kbd{nfgaloisconj}). The function
computes the action of the automorphism \var{aut} on the object $x$ in the
number field; $x$ can be a number field element, or an ideal (possibly
extended). Because of possible confusion with elements and ideals, other
vector or matrix arguments are forbidden.
\bprog
? nf = nfinit(x^2+1);
? L = nfgaloisconj(nf)
%2 = [-x, x]~
? aut = L[1]; /* the nontrivial automorphism */
? nfgaloisapply(nf, aut, x)
%4 = Mod(-x, x^2 + 1)
? P = idealprimedec(nf,5); /* prime ideals above 5 */
? nfgaloisapply(nf, aut, P[2]) == P[1]
%6 = 0 \\ !!!!
? idealval(nf, nfgaloisapply(nf, aut, P[2]), P[1])
%7 = 1
@eprog\noindent The surprising failure of the equality test (\kbd{\%7}) is
due to the fact that although the corresponding prime ideals are equal, their
representations are not. (A prime ideal is specified by a uniformizer, and
there is no guarantee that applying automorphisms yields the same elements
as a direct \kbd{idealprimedec} call.)
The automorphism can also be given as a column vector, representing the
image of \kbd{Mod(x, nf.pol)} as an algebraic number. This last
representation is more efficient and should be preferred if a given
automorphism must be used in many such calls.
\bprog
? nf = nfinit(x^3 - 37*x^2 + 74*x - 37);
? aut = nfgaloisconj(nf)[2]; \\ @com an automorphism in basistoalg form
%2 = -31/11*x^2 + 1109/11*x - 925/11
? AUT = nfalgtobasis(nf, aut); \\ @com same in algtobasis form
%3 = [16, -6, 5]~
? v = [1, 2, 3]~; nfgaloisapply(nf, aut, v) == nfgaloisapply(nf, AUT, v)
%4 = 1 \\ @com same result...
? for (i=1,10^5, nfgaloisapply(nf, aut, v))
time = 463 ms.
? for (i=1,10^5, nfgaloisapply(nf, AUT, v))
time = 343 ms. \\ @com but the latter is faster
@eprog
The library syntax is \fun{GEN}{galoisapply}{GEN nf, GEN aut, GEN x}.
\subsec{nfgaloisconj$(\var{nf},\{\fl=0\},\{d\})$}\kbdsidx{nfgaloisconj}\label{se:nfgaloisconj}
$\var{nf}$ being a number field as output by \kbd{nfinit}, computes the
conjugates of a root $r$ of the nonconstant polynomial $x=\var{nf}[1]$
expressed as polynomials in $r$. This also makes sense when the number field
is not \idx{Galois} since some conjugates may lie in the field.
$\var{nf}$ can simply be a polynomial.
If no flags or $\fl=0$, use a combination of flag $4$ and $1$ and the result
is always complete. There is no point whatsoever in using the other flags.
If $\fl=1$, use \kbd{nfroots}: a little slow, but guaranteed to work in
polynomial time.
If $\fl=4$, use \kbd{galoisinit}: very fast, but only applies to (most)
Galois fields. If the field is Galois with weakly super-solvable Galois
group (see \tet{galoisinit}), return the complete list of automorphisms, else
only the identity element. If present, $d$ is assumed to be a multiple of the
least common denominator of the conjugates expressed as polynomial in a root
of \var{pol}.
This routine can only compute $\Q$-automorphisms, but it may be used to get
$K$-automorphism for any base field $K$ as follows:
\bprog
rnfgaloisconj(nfK, R) = \\ K-automorphisms of L = K[X] / (R)
{
my(polabs, N,al,S, ala,k, vR);
R *= Mod(1, nfK.pol); \\ convert coeffs to polmod elts of K
vR = variable(R);
al = Mod(variable(nfK.pol),nfK.pol);
[polabs,ala,k] = rnfequation(nfK, R, 1);
Rt = if(k==0,R,subst(R,vR,vR-al*k));
N = nfgaloisconj(polabs) % Rt; \\ Q-automorphisms of L
S = select(s->subst(Rt, vR, Mod(s,Rt)) == 0, N);
if (k==0, S, apply(s->subst(s,vR,vR+k*al)-k*al,S));
}
K = nfinit(y^2 + 7);
rnfgaloisconj(K, x^4 - y*x^3 - 3*x^2 + y*x + 1) \\ K-automorphisms of L
@eprog
The library syntax is \fun{GEN}{galoisconj0}{GEN nf, long flag, GEN d = NULL, long prec}.
Use directly
\fun{GEN}{galoisconj}{GEN nf, GEN d}, corresponding to $\fl = 0$, the others
only have historical interest.
\subsec{nfgrunwaldwang$(\var{nf},\var{Lpr},\var{Ld},\var{pl},\{v=\kbd{'}x\})$}\kbdsidx{nfgrunwaldwang}\label{se:nfgrunwaldwang}
Given \var{nf} a number field in \var{nf} or \var{bnf} format,
a \typ{VEC} \var{Lpr} of primes of \var{nf} and a \typ{VEC} \var{Ld} of
positive integers of the same length, a \typ{VECSMALL} \var{pl} of length
$r_{1}$ the number of real places of \var{nf}, computes a polynomial with
coefficients in \var{nf} defining a cyclic extension of \var{nf} of
minimal degree satisfying certain local conditions:
\item at the prime~$Lpr[i]$, the extension has local degree a multiple
of~$Ld[i]$;
\item at the $i$-th real place of \var{nf}, it is complex if $pl[i]=-1$
(no condition if $pl[i]=0$).
The extension has degree the LCM of the local degrees. Currently, the degree
is restricted to be a prime power for the search, and to be prime for the
construction because of the \kbd{rnfkummer} restrictions.
When \var{nf} is $\Q$, prime integers are accepted instead of \kbd{prid}
structures. However, their primality is not checked and the behavior is
undefined if you provide a composite number.
\misctitle{Warning} If the number field \var{nf} does not contain the $n$-th
roots of unity where $n$ is the degree of the extension to be computed,
the function triggers the computation of the \var{bnf} of $nf(\zeta_{n})$,
which may be costly.
\bprog
? nf = nfinit(y^2-5);
? pr = idealprimedec(nf,13)[1];
? pol = nfgrunwaldwang(nf, [pr], [2], [0,-1], 'x)
%3 = x^2 + Mod(3/2*y + 13/2, y^2 - 5)
@eprog
The library syntax is \fun{GEN}{nfgrunwaldwang}{GEN nf, GEN Lpr, GEN Ld, GEN pl, long v = -1} where \kbd{v} is a variable number.
\subsec{nfhilbert$(\var{nf},a,b,\{\var{pr}\})$}\kbdsidx{nfhilbert}\label{se:nfhilbert}
If \var{pr} is omitted,
compute the global quadratic \idx{Hilbert symbol} $(a,b)$ in $\var{nf}$, that
is $1$ if $x^{2} - a y^{2} - b z^{2}$ has a non trivial solution $(x,y,z)$ in
$\var{nf}$, and $-1$ otherwise. Otherwise compute the local symbol modulo
the prime ideal \var{pr}, as output by \kbd{idealprimedec}.
The library syntax is \fun{long}{nfhilbert0}{GEN nf, GEN a, GEN b, GEN pr = NULL}.
Also available is \fun{long}{nfhilbert}{GEN nf,GEN a,GEN b} (global
quadratic Hilbert symbol), where \kbd{nf} is a true \var{nf} structure.
\subsec{nfhnf$(\var{nf},x,\{\fl=0\})$}\kbdsidx{nfhnf}\label{se:nfhnf}
Given a pseudo-matrix $(A,I)$, finds a
pseudo-basis $(B,J)$ in \idx{Hermite normal form} of the module it generates.
If $\fl$ is nonzero, also return the transformation matrix $U$ such that
$AU = [0|B]$.
The library syntax is \fun{GEN}{nfhnf0}{GEN nf, GEN x, long flag}.
Also available:
\fun{GEN}{nfhnf}{GEN nf, GEN x} ($\fl = 0$).
\fun{GEN}{rnfsimplifybasis}{GEN bnf, GEN x} simplifies the pseudo-basis
$x = (A,I)$, returning a pseudo-basis $(B,J)$. The ideals in the list $J$
are integral, primitive and either trivial (equal to the full ring of
integer) or nonprincipal.
\subsec{nfhnfmod$(\var{nf},x,\var{detx})$}\kbdsidx{nfhnfmod}\label{se:nfhnfmod}
Given a pseudo-matrix $(A,I)$
and an ideal \var{detx} which is contained in (read integral multiple of) the
determinant of $(A,I)$, finds a pseudo-basis in \idx{Hermite normal form}
of the module generated by $(A,I)$. This avoids coefficient explosion.
\var{detx} can be computed using the function \kbd{nfdetint}.
The library syntax is \fun{GEN}{nfhnfmod}{GEN nf, GEN x, GEN detx}.
\subsec{nfinit$(\var{pol},\{\fl=0\})$}\kbdsidx{nfinit}\label{se:nfinit}
\var{pol} being a nonconstant irreducible polynomial in $\Q[X]$,
preferably monic and integral, initializes a
\emph{number field} (or \var{nf}) structure attached to the field $K$ defined
by \var{pol}. As such, it's a technical object passed as the first argument
to most \kbd{nf}\var{xxx} functions, but it contains some information which
may be directly useful. Access to this information via \emph{member
functions} is preferred since the specific data organization given below
may change in the future. Currently, \kbd{nf} is a row vector with 9
components:
$\var{nf}[1]$ contains the polynomial \var{pol} (\kbd{\var{nf}.pol}).
$\var{nf}[2]$ contains $[r1,r2]$ (\kbd{\var{nf}.sign}, \kbd{\var{nf}.r1},
\kbd{\var{nf}.r2}), the number of real and complex places of $K$.
$\var{nf}[3]$ contains the discriminant $d(K)$ (\kbd{\var{nf}.disc}) of $K$.
$\var{nf}[4]$ contains the index of $\var{nf}[1]$ (\kbd{\var{nf}.index}),
i.e.~$[\Z_{K} : \Z[\theta]]$, where $\theta$ is any root of $\var{nf}[1]$.
$\var{nf}[5]$ is a vector containing 7 matrices $M$, $G$, \var{roundG}, $T$,
\var{MD}, \var{TI}, \var{MDI} and a vector \var{vP} defined as follows:
\quad\item $M$ is the $(r1+r2)\times n$ matrix whose columns represent
the numerical values of the conjugates of the elements of the integral
basis.
\quad\item $G$ is an $n\times n$ matrix such that $T2 = {}^{t} G G$,
where $T2$ is the quadratic form $T_{2}(x) = \sum |\sigma(x)|^{2}$, $\sigma$
running over the embeddings of $K$ into $\C$.
\quad\item \var{roundG} is a rescaled copy of $G$, rounded to nearest
integers.
\quad\item $T$ is the $n\times n$ matrix whose coefficients are
$\text{Tr}(\omega_{i}\omega_{j})$ where the $\omega_{i}$ are the elements of
the integral basis. Note also that $\det(T)$ is equal to the discriminant of
the field $K$. Also, when understood as an ideal, the matrix $T^{-1}$
generates the codifferent ideal.
\quad\item The columns of $MD$ (\kbd{\var{nf}.diff}) express a $\Z$-basis
of the different of $K$ on the integral basis.
\quad\item \var{TI} is equal to the primitive part of $T^{-1}$, which has
integral coefficients.
\quad\item \var{MDI} is a two-element representation (for faster
ideal product) of $d(K)$ times the codifferent ideal
(\kbd{\var{nf}.disc$*$\var{nf}.codiff}, which is an integral ideal). This is
used in \tet{idealinv}.
\quad\item \var{vP} is the list of prime divisors of the field discriminant,
i.e, the ramified primes (\kbd{\var{nf}.p}); \kbd{nfdiscfactors(nf)} is the
preferred way to access that information.
$\var{nf}[6]$ is the vector containing the $r1+r2$ roots
(\kbd{\var{nf}.roots}) of $\var{nf}[1]$ corresponding to the $r1+r2$
embeddings of the number field into $\C$ (the first $r1$ components are real,
the next $r2$ have positive imaginary part).
$\var{nf}[7]$ is a $\Z$-basis for $d\Z_{K}$, where $d = [\Z_{K}:\Z(\theta)]$,
expressed on the powers of $\theta$. The multiplication by
$d$ ensures that all polynomials have integral coefficients
and $\var{nf}[7] / d$ (\kbd{\var{nf}.zk}) is an integral basis for $\Z_{K}$.
Its first element is guaranteed to be $1$. This basis is LLL-reduced with
respect to $T_{2}$ (strictly speaking, it is a permutation of such a basis,
due to the condition that the first element be $1$).
$\var{nf}[8]$ is the $n\times n$ integral matrix expressing the power
basis in terms of the integral basis, and finally
$\var{nf}[9]$ is the $n\times n^{2}$ matrix giving the multiplication table
of the integral basis.
If a non monic or non integral polynomial is input, \kbd{nfinit} will
transform it, and return a structure attached to the new (monic integral)
polynomial together with the attached change of variables, see $\fl=3$.
It is allowed, though not very useful given the existence of
\tet{nfnewprec}, to input a \var{nf} or a \var{bnf} instead of a polynomial.
It is also allowed to input a \var{rnf}, in which case an \kbd{nf} structure
attached to the absolute defining polynomial \kbd{polabs} is returned (\fl is
then ignored).
\bprog
? nf = nfinit(x^3 - 12); \\ initialize number field Q[X] / (X^3 - 12)
? nf.pol \\ defining polynomial
%2 = x^3 - 12
? nf.disc \\ field discriminant
%3 = -972
? nf.index \\ index of power basis order in maximal order
%4 = 2
? nf.zk \\ integer basis, lifted to Q[X]
%5 = [1, x, 1/2*x^2]
? nf.sign \\ signature
%6 = [1, 1]
? factor(abs(nf.disc )) \\ determines ramified primes
%7 =
[2 2]
[3 5]
? idealfactor(nf, 2)
%8 =
[[2, [0, 0, -1]~, 3, 1, [0, 1, 0]~] 3] \\ @com $\goth{p}_{2}^{3}$
@eprog
\misctitle{Huge discriminants, helping nfdisc}
In case \var{pol} has a huge discriminant which is difficult to factor,
it is hard to compute from scratch the maximal order. The following
special input formats are also accepted:
\item $[\var{pol}, B]$ where \var{pol} is a monic integral polynomial and
$B$ is the lift of an integer basis, as would be computed by \tet{nfbasis}:
a vector of polynomials with first element $1$ (implicitly modulo \var{pol}).
This is useful if the maximal order is known in advance.
\item $[\var{pol}, B, P]$ where \var{pol} and $B$ are as above
(a monic integral polynomial and the lift of an integer basis), and $P$ is
the list of ramified primes in the extension.
\item $[\var{pol}, \kbd{listP}]$ where \var{pol} is a rational polynomial and
\kbd{listP} specifies a list of primes as in \tet{nfbasis}. Instead of the
maximal order, \kbd{nfinit} then computes
an order which is maximal at these particular primes as well as the primes
contained in the private prime table, see \tet{addprimes}. The result has
a good chance of being correct when the discriminant \kbd{nf.disc} factors
completely over this set of primes but this is not guaranteed. The function
\tet{nfcertify} automates this:
\bprog
? pol = polcompositum(x^5 - 101, polcyclo(7))[1];
? nf = nfinit( [pol, 10^3] );
? nfcertify(nf)
%3 = []
@eprog\noindent A priori, \kbd{nf.zk} defines an order which is only known
to be maximal at all primes $\leq 10^{3}$ (no prime $\leq 10^{3}$ divides
\kbd{nf.index}). The certification step proves the correctness of the
computation. Had it failed, that particular \kbd{nf} structure could
not have been trusted and may have caused routines using it to fail randomly.
One particular function that remains trustworthy in all cases is
\kbd{idealprimedec} when applied to a prime included in the above list
of primes or, more generally, a prime not dividing any entry in
\kbd{nfcertify} output.
\medskip
In order to explain the meaning of $\fl$, let $P =
\kbd{polredbest}(\var{pol})$, a polynomial defining the same number field
obtained using the LLL algorithm on the lattice $(\Z_{K}, T_{2})$, which may be
equal to \var{pol} but is usually different and simpler. Binary digits of
$\fl$ mean:
\item $1$: return $[\var{nf},\kbd{Mod}(a,P)]$, where $\var{nf}$ is
\kbd{nfinit}$(P)$ and $\kbd{Mod}(a,P)=\kbd{Mod}(x,\var{pol})$ gives the
change of variables. If only this bit is set, the behaviour is useless since
we have $P = \var{pol}$.
\item $2$: return \kbd{nfinit}$(P)$.
Both flags are set automatically when \var{pol} is not monic or not
integral: first a linear change of variables is performed, to get a monic
integral polynomial, then \kbd{polredbest}.
\item $4$: do not LLL-reduce \kbd{nf.zk}, which saves time in large degrees,
you may expect to gain a factor $2$ or so in degree $n\geq 100$ or more, at
the expense of \emph{possibly} slowing down later uses of the \var{nf}
structure. Use this flag if you only need basic arithmetic
(the \kbd{nfelt*}, \kbd{nfmodpr*} and \kbd{ideal*} functions); or if you
expect the natural basis of the maximal order to contain small elements, this
will be the case for cyclotomic fields for instance. On the other hand,
functions involving LLL reduction of rank
$n$ lattices should be avoided since each call will be about as costly as the
initial LLL reduction that the flag prevents and may become more costly
because of this missing initial reduction. In particular it is silly to use
this flag in addition to the first two, although GP will not protest.
\bprog
? T = polcyclo(307);
? K = nfinit(T);
time = 19,390 ms.
? a = idealhnf(K,1-x);
time = 477ms
? idealfactor(K, a)
time = 294ms
? Kno = nfinit(T, 4);
time = 11,256 ms.
? ano = idealhnf(Kno,1-x); \\ no slowdown, even sligthly faster
time = 460ms
? idealfactor(Kno, ano)
time = 264ms
? nfinit(T, 2); \\ polredbest is very slow in high degree
time = 4min, 34,870 ms.
? norml2(%.pol) == norml2(T) \\ and gains nothing here
%9 = 1
@eprog
The library syntax is \fun{GEN}{nfinit0}{GEN pol, long flag, long prec}.
Also available are
\fun{GEN}{nfinit}{GEN x, long prec} ($\fl = 0$),
\fun{GEN}{nfinitred}{GEN x, long prec} ($\fl = 2$),
\fun{GEN}{nfinitred2}{GEN x, long prec} ($\fl = 3$).
Instead of the above hardcoded numerical flags in \kbd{nfinit0}, one should
rather use an or-ed combination of
\item \tet{nf_RED}: find a simpler defining polynomial,
\item \tet{nf_ORIG}: also return the change of variable,
\item \tet{nf_NOLLL}: do not LLL-reduce the maximal order $\Z$-basis.
\subsec{nfisideal$(\var{nf},x)$}\kbdsidx{nfisideal}\label{se:nfisideal}
Returns 1 if $x$ is an ideal in the number field $\var{nf}$, 0 otherwise.
The library syntax is \fun{long}{isideal}{GEN nf, GEN x}.
\subsec{nfisincl$(f,g,\{\fl=0\})$}\kbdsidx{nfisincl}\label{se:nfisincl}
Let $f$ and $g$ define number fields, where $f$ and $g$ are irreducible
polynomials in $\Q[X]$ and \var{nf} structures as output by \kbd{nfinit}.
If either $f$ or $g$ is not irreducible, the result is undefined.
Tests whether the number field $f$ is conjugate to a subfield of the field
$g$. If not, the output is the integer 0; if it is, the output depends on
the value of $\fl$:
\item $\fl = 0$ (default): return a vector of polynomials
$[a_{1},\dots,a_{n}]$
with rational coefficients, representing all distinct embeddings: we have
$g\mid f\circ a_{i}$ for all $i$.
\item $\fl = 1$: return a single polynomial $a$ representing a single
embedding; this can be $n$ times faster than the default when the
embeddings have huge coefficients.
\item $\fl = 2$: return a vector of rational functions $[r_{1},\dots,r_{n}]$
whose denominators are coprime to $g$ and such that $r_{i} \% g$ is the
polynomial $a_{i}$ from $\fl = 0$. This variant is always faster than $\fl = 0$
but produces results which are harder to use. If the denominators are hard to
invert in $\Q[X]/(g)$, this may be even faster than $\fl = 1$.
\bprog
? T = x^6 + 3*x^4 - 6*x^3 + 3*x^2 + 18*x + 10;
? U = x^3 + 3*x^2 + 3*x - 2
? nfisincl(U, T)
%3 = [24/179*x^5-27/179*x^4+80/179*x^3-234/179*x^2+380/179*x+94/179]
? a = nfisincl(U, T, 1)
%4 = 24/179*x^5-27/179*x^4+80/179*x^3-234/179*x^2+380/179*x+94/179
? subst(U, x, Mod(a,T))
%5 = Mod(0, x^6 + 3*x^4 - 6*x^3 + 3*x^2 + 18*x + 10)
? nfisincl(U, T, 2) \\ a as a t_RFRAC
%6 = [(2*x^3 - 3*x^2 + 2*x + 4)/(3*x^2 - 1)]
? (a - %[1]) % T
%7 = 0
? #nfisincl(x^2+1, T) \\ two embeddings
%8 = 2
\\ same result with nf structures
? L = nfinit(T); K = nfinit(U); v = [a];
? nfisincl(U, L) == v
%10 = 1
? nfisincl(K, T) == v
%11 = 1
? nfisincl(K, L) == v
%12 = 1
\\ comparative bench: an nf is a little faster, esp. for the subfield
? B = 2000;
? for (i=1, B, nfisincl(U,T))
time = 1,364 ms.
? for (i=1, B, nfisincl(K,T))
time = 988 ms.
? for (i=1, B, nfisincl(U,L))
time = 1,341 ms.
? for (i=1, B, nfisincl(K,L))
time = 880 ms.
@eprog\noindent Using an \var{nf} structure for the tentative subfield is
faster if the structure is already available. On the other hand, the gain in
\kbd{nfisincl} is usually not sufficient to make it worthwhile to initialize
only for that purpose.
\bprog
? for (i=1, B, nfinit(U))
time = 590 ms.
@eprog\noindent A final more complicated example
\bprog
? f = x^8 - 72*x^6 + 1944*x^4 - 30228*x^2 - 62100*x - 34749;
? g = nfsplitting(f); poldegree(g)
%2 = 96
? #nfisincl(f, g)
time = 559 ms.
%3 = 8
? nfisincl(f,g,1);
time = 172 ms.
? v = nfisincl(f,g,2);
time = 199 ms.
? apply(x->poldegree(denominator(x)), v)
%6 = [81, 81, 81, 81, 81, 81, 80, 81]
? v % g;
time = 407 ms.
@eprog\noindent This final example shows that mapping rational functions to
$\Q[X]/(g)$ can be more costly than that the rest of the algorithm. Note that
\kbd{nfsplitting} also admits a $\fl$ yielding an embedding.
The library syntax is \fun{GEN}{nfisincl0}{GEN f, GEN g, long flag}.
Also available is
\fun{GEN}{nfisisom}{GEN a, GEN b} ($\fl = 0$).
\subsec{nfisisom$(f,g)$}\kbdsidx{nfisisom}\label{se:nfisisom}
As \tet{nfisincl}, but tests for isomorphism. More efficient if
$f$ or $g$ is a number field structure.
\bprog
? f = x^6 + 30*x^5 + 495*x^4 + 1870*x^3 + 16317*x^2 - 22560*x + 59648;
? g = x^6 + 42*x^5 + 999*x^4 + 8966*x^3 + 36117*x^2 + 21768*x + 159332;
? h = x^6 + 30*x^5 + 351*x^4 + 2240*x^3 + 10311*x^2 + 35466*x + 58321;
? #nfisisom(f,g) \\ two isomorphisms
%3 = 2
? nfisisom(f,h) \\ not isomorphic
%4 = 0
\\ comparative bench
? K = nfinit(f); L = nfinit(g); B = 10^3;
? for (i=1, B, nfisisom(f,g))
time = 6,124 ms.
? for (i=1, B, nfisisom(K,g))
time = 3,356 ms.
? for (i=1, B, nfisisom(f,L))
time = 3,204 ms.
? for (i=1, B, nfisisom(K,L))
time = 3,173 ms.
@eprog\noindent
The function is usually very fast when the fields are nonisomorphic,
whenever the fields can be distinguished via a simple invariant such as
degree, signature or discriminant. It may be slower when the fields
share all invariants, but still faster than computing actual isomorphisms:
\bprog
\\ usually very fast when the answer is 'no':
? for (i=1, B, nfisisom(f,h))
time = 32 ms.
\\ but not always
? u = x^6 + 12*x^5 + 6*x^4 - 377*x^3 - 714*x^2 + 5304*x + 15379
? v = x^6 + 12*x^5 + 60*x^4 + 166*x^3 + 708*x^2 + 6600*x + 23353
? nfisisom(u,v)
%13 = 0
? polsturm(u) == polsturm(v)
%14 = 1
? nfdisc(u) == nfdisc(v)
%15 = 1
? for(i=1,B, nfisisom(u,v))
time = 1,821 ms.
? K = nfinit(u); L = nfinit(v);
? for(i=1,B, nfisisom(K,v))
time = 232 ms.
@eprog
The library syntax is \fun{GEN}{nfisisom}{GEN f, GEN g}.
\subsec{nfislocalpower$(\var{nf},\var{pr},a,n)$}\kbdsidx{nfislocalpower}\label{se:nfislocalpower}
Let \var{nf} be a \var{nf} structure attached to a number field $K$,
let $a \in K$ and let \var{pr} be a \var{prid} structure attached to a
maximal ideal $v$. Return $1$ if $a$ is an $n$-th power in the completed
local field $K_{v}$, and $0$ otherwise.
\bprog
? K = nfinit(y^2+1);
? P = idealprimedec(K,2)[1]; \\ the ramified prime above 2
? nfislocalpower(K,P,-1, 2) \\ -1 is a square
%3 = 1
? nfislocalpower(K,P,-1, 4) \\ ... but not a 4-th power
%4 = 0
? nfislocalpower(K,P,2, 2) \\ 2 is not a square
%5 = 0
? Q = idealprimedec(K,5)[1]; \\ a prime above 5
? nfislocalpower(K,Q, [0, 32]~, 30) \\ 32*I is locally a 30-th power
%7 = 1
@eprog
The library syntax is \fun{long}{nfislocalpower}{GEN nf, GEN pr, GEN a, GEN n}.
\subsec{nfkermodpr$(\var{nf},x,\var{pr})$}\kbdsidx{nfkermodpr}\label{se:nfkermodpr}
This function is obsolete, use \kbd{nfmodpr}.
Kernel of the matrix $a$ in $\Z_{K}/\var{pr}$, where \var{pr} is in
\key{modpr} format (see \kbd{nfmodprinit}).
The library syntax is \fun{GEN}{nfkermodpr}{GEN nf, GEN x, GEN pr}.
This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nfM\_to\_FqM}, then work there.
\subsec{nflist$(G,\{N\},\{s=-1\},\{F\})$}\kbdsidx{nflist}\label{se:nflist}
Finds number fields (up to isomorphism) with Galois group of Galois
closure isomorphic to $G$ with $s$ complex places. The number fields are
given by polynomials. This function supports the following groups:
\item degree $2$: $C_{2}=2T1$;
\item degree $3$: $C_{3}=3T1$ and $S_{3}=3T2$;
\item degree $4$: $C_{4}=4T1$, $V_{4}=4T2$, $D_{4}=4T3$, $A_{4}=4T4$
and $S_{4}=4T5$;
\item degree $5$: $C_{5}=5T1$, $D_{5}=5T2$, $F_{5} = M_{{}20}=5T3$
and $A_{5}=5T4$;
\item degree $6$: $C_{6}=6T1$, $S_{3}(6) = D_{6}(6)=6T2$, $D_{6}(12)=6T3$,
$A_{4}(6)=6T4$, $S_{3}\times C_{3}=6T5$, $A_{4}(6)\times C_{2}=6T6$,
$S_{4}(6)^{+}=6T7$, $S_{4}(6)^{-}=6T8$, $S_{3}^{2}=6T9$,
$C_{3}^{2}:C_{4}=6T10$, $S_{4}(6)\times C_{2}=6T11$,
$A_{5}(6)=PSL_{2}(5)=6T12$ and $C_{3}^{2}:D_{4}=6T13$;
\item degree $7$: $C_{7}=7T1$, $D_{7}=7T2$, $M_{{}21}=7T3$ and $M_{{}42}=7T4$;
\item degree $9$: $C_{9}=9T1$, $C_{3}\times C_{3}=9T2$ and $D_{9}=9T3$;
\item degree $\ell$ with $\ell$ prime: $C_{\ell}=\ell T1$ and
$D_{\ell}=\ell T2$.
The groups $A_{5}$ and $A_{5}(6)$ require the optional package
\kbd{nflistdata}.
In addition, if $N$ is a polynomial, all transitive subgroups of $S_{n}$
with $n\le 15$, as well as alternating groups $A_{n}$ and the full symmetric
group $S_{n}$ for all $n$ (see below for details and explanations).
The groups are coded as $[n,k]$ using the \kbd{nTk} format where $n$ is the
degree and $k$ is the $T$-number, the index in the classification of
transitive subgroups of $S_{n}$.
Alternatively, the groups $C_{n}$, $D_{n}$, $A_{n}$, $S_{n}$,
$V_{4}$, $F_{5} = M_{20}$, $M_{21}$ and $M_{42}$ can be input as
character strings exactly as written, lifting subscripts; for instance
\kbd{"S4"} or \kbd{"M21"}. If the group is not recognized or is
unsupported the function raises an exception.
The number fields are computed on the fly (and not from a preexisting table)
using a variety of algorithms, with the exception of $A_{5}$ and $A_{5}(6)$
which are obtained by table lookup.
The algorithms are recursive and use the following ingredients: build
distinguished subfields (or resolvent fields in Galois closures) of smaller
degrees, use class field theory to build abelian extensions over a known
base, select subfields using Galois theory. Because of our use of class
field theory, and ultimately \kbd{bnfinit}, all results depend on the GRH in
degree $n > 3$.
To avoid wasting time, the output polynomials defining the number fields are
usually not the simplest possible, use \kbd{polredbest} or \kbd{polredabs}
to reduce them.
The non-negative integer $s$ specifies the number of complex places, between
$0$ and $n/2$. Additional supported values are:
\item $s = -1$ (default) all signatures;
\item $s = -2$ all signatures, given by increasing number of complex
places; in degree $n$, this means a vector with $1 + \text{floor}(n/2)$
components: the $i$-th entry corresponds to $s = i - 1$.
If the irreducible monic polynomial $F\in \Z[X]$ is specified, gives only
number fields having $\Q[X]/(F)$ as a subfield, or in the case of
$S_{3}$, $D_{\ell}$, $A_{4}$, $S_{4}$, $F_{5}$, $M_{21}$ and $M_{42}$,
as a resolvent field (see also the function \kbd{nfresolvent} for these cases).
The parameter $N$ can be the following:
\item a positive integer: finds all fields with absolute discriminant $N$
(recall that the discriminant over $\Q$ is $(-1)^{s} N$).
\item a pair of non-negative real numbers $[a,b]$ specifying a real interval:
finds all fields with absolute value of discriminant between $a$ and $b$.
For most Galois groups, this is faster than iterating on individual $N$.
\item omitted (default): a few fields of small discriminant (not always
those with smallest absolute discriminant) are output with given $G$
and $s$; usually about 10, less if too difficult to find. The parameter
$F$ is ignored.
\item a polynomial with main variable, say $t$, of priority lower than $x$.
The program outputs a \emph{regular} polynomial in $\Q(t)[x]$ (in fact in
$\Z[x,t]$) with the given Galois group. By Hilbert irreducibility, almost all
specializations of $t$ will give suitable polynomials. The parameters $s$ and
$F$ are ignored. This is implemented for all transitive subgroups of
$S_{n}$ with $n\le15$ as well as for the alternating and symmetric groups
$A_{n}$ and $S_{n}$ for all $n$.
Polynomials for $A_{n}$ were inspired by J.-F.~Mestre, a few polynomials in
degree $\leq 8$ come from G.~W.~Smith, ``Some polynomials over $\Q(t)$ and
their Galois groups'', \emph{Math. Comp.}, {\bf 69} (230), 1999, pp.~775--796
most others in degree $\leq 11$ were provided by J.~Kl\"uners and G.~Malle
(see G.~Malle and B.~H.~Matzat, \emph{Inverse Galois Theory}, Springer,
1999) and T.~Dokchitser completed the list up to degree~$15$. But for
$A_{n}$ and $S_{n}$, subgroups of $S_{n}$ for $n > 7$ require the optional
\kbd{nflistdata} package.
\misctitle{Complexity} : For a positive integer $N$, the complexity is
subexponential in $\log N$ (and involves factoring $N$). For an interval
$[a,b]$, the complexity is roughly as follows, ignoring terms which are
subexponential in $\log b$. It is usually linear in the output size.
\item $C_{n}$: $O(b^{1/\phi(n)})$ for $n = 2, 4, 6, 9$ or any odd prime;
\item $D_{n}$: $O(b^{2/\phi(n)})$ for $n = 4$ or any odd prime;
\item $V_{4}$, $A_{4}$: $O(b^{1/2})$, $S_{4}$: $O(b)$;
N.B. The subexponential terms are expensive for $A_{4}$ and $S_{4}$.
\item $M_{20}$: $O(b)$.
\item $S_{4}(6)^{-}$, $S_{4}(6)^{+}$ $A_{4}(6)\times C_{2}$,
$S_{3}\times S_{3}$, $S_{4}(6)\times C_{2}$ : $O(b)$,
$D_{6}(12)$, $A_{4}(6)$, $S_{3}(6)$, $S_{3}\times C_{3}$, $C_{3}^{2}:C_{4}$:
$O(b^{1/2})$.
\item $M_{21}$, $M_{42}$: $O(b)$.
\item $C_{3}\times C_{3}$: $O(b^{1/3})$, $D_{9}$: $O(b^{5/12})$.
\bprog
? #nflist("S3", [1, 10^5]) \\ S3 cubic fields
%1 = 21794
? #nflist("S3", [1, 10^5], 0) \\ real S3 cubic fields (0 complex place)
%2 = 4753
? #nflist("S3", [1, 10^5], 1) \\ complex cubic fields (1 complex place)
%3 = 17041
? v = nflist("S3", [1, 10^5], -2); apply(length,v)
%4 = [4753, 17041]
? nflist("S4") \\ a few S4 fields
%5 = [x^4 + 12*x^2 - 8*x + 16, x^4 - 2*x^2 - 8*x + 25, ...]
? nflist("S4",,0) \\ a few real S4 fields
%6 = [x^4 - 52*x^2 - 56*x + 48, x^4 - 26*x^2 - 8*x + 1, ...]
? nflist("S4",,-2) \\ a few real S4 fields, by signature
%7 = [[x^4 - 52*x^2 - 56*x + 48, ...],
[x^4 - 8*x - 16, ... ],
[x^4 + 138*x^2 - 8*x + 4541, ...]]
? nflist("S3",,,x^2+23) \\ a few cubic fields with resolvent Q(sqrt(-23))
%8 = [x^3 + x + 1, x^3 + 2*x + 1, ...]
? nflist("C3", 3969) \\ C3 fields of given discriminant
%9 = [x^3 - 21*x + 28, x^3 - 21*x - 35]
? nflist([3,1], 3969) \\ C3 fields, using nTt label
%10 = [x^3 - 21*x + 28, x^3 - 21*x - 35]
? P = nflist([8,12],t) \\ geometric 8T12 polynomial
%11 = x^8 + (-t^2 - 803)*x^6 + (264*t^2 + 165528)*x^4
+ (-2064*t^2 - 1724976)*x^2 + 4096*t^2
? polgalois(subst(P, t, 11))
%12 = [24, 1, 12, "2A_4(8)=[2]A(4)=SL(2,3)"]
? nflist("S11")
*** at top-level: nflist("S11")
*** ^-------------
*** nflist: unsupported group (S11). Use one of
"C1"=[1,1];
"C2"=[2,1];
"C3"=[3,1], "S3"=[3,2];
"C4"=[4,1], "V4"=[4,2], "D4"=[4,3], "A4"=[4,4], "S4"=[4,5];
"C5"=[5,1], "D5"=[5,2], "F5"="M20"=[5,3], "A5"=[5,4];
"C6"=[6,1], "D6"=[6,2], [6,3], ..., [6,13];
"C7"=[7,1], "D7"=[7,2], "M21"=[7,3], "M42"=[7,4];
"C9"=[9,1], [9,2], "D9"=[9,3]."
Also supported are "Cp"=[p,1] and "Dp"=[p,2] for any odd prime p.
? nflist("S25", 't)
%13 = x^25 + x*t + 1
@eprog
The library syntax is \fun{GEN}{nflist}{GEN G, GEN N = NULL, long s, GEN F = NULL}.
\subsec{nfmodpr$(\var{nf},x,\var{pr})$}\kbdsidx{nfmodpr}\label{se:nfmodpr}
Map $x$ to a \typ{FFELT} in the residue field modulo \var{pr}.
The argument \var{pr} is either a maximal ideal in \kbd{idealprimedec}
format or, preferably, a \var{modpr} structure from \tet{nfmodprinit}. The
function \tet{nfmodprlift} allows to lift back to $\Z_{K}$.
Note that the function applies to number field elements and not to
vector / matrices / polynomials of such. Use \kbd{apply} to convert
recursive structures.
\bprog
? K = nfinit(y^3-250);
? P = idealprimedec(K, 5)[2];
? modP = nfmodprinit(K, P, 't);
? K.zk
%4 = [1, 1/5*y, 1/25*y^2]
? apply(t->nfmodpr(K,t,modP), K.zk)
%5 = [1, t, 2*t + 1]
? %[1].mod
%6 = t^2 + 3*t + 4
? K.index
%7 = 125
@eprog\noindent For clarity, we represent elements in the residue
field $\F_{5}[t]/(T)$ as polynomials in the variable $t$. Whenever the
underlying rational prime does not divide \kbd{K.index}, it is actually
the case that $t$ is the reduction of $y$ in $\Q[y]/(\kbd{K.pol})$
modulo an irreducible factor of \kbd{K.pol} over $\F_{p}$. In the above
example, $5$ divides the index and $t$ is actually the reduction of $y/5$.
The library syntax is \fun{GEN}{nfmodpr}{GEN nf, GEN x, GEN pr}.
\subsec{nfmodprinit$(\var{nf},\var{pr},\{v=\var{variable}(\var{nf}.\var{pol})\})$}\kbdsidx{nfmodprinit}\label{se:nfmodprinit}
Transforms the prime ideal \var{pr} into \tet{modpr} format necessary
for all operations modulo \var{pr} in the number field \var{nf}.
The functions \tet{nfmodpr} and \tet{nfmodprlift} allow to project
to and lift from the residue field. The variable $v$ is used to display
finite field elements (see \kbd{ffgen}).
\bprog
? K = nfinit(y^3-250);
? P = idealprimedec(K, 5)[2];
? modP = nfmodprinit(K, P, 't);
? K.zk
%4 = [1, 1/5*y, 1/25*y^2]
? apply(t->nfmodpr(K,t,modP), K.zk)
%5 = [1, t, 2*t + 1]
? %[1].mod
%6 = t^2 + 3*t + 4
? K.index
%7 = 125
@eprog\noindent For clarity, we represent elements in the residue
field $\F_{5}[t]/(T)$ as polynomials in the variable $t$. Whenever the
underlying rational prime does not divide \kbd{K.index}, it is actually
the case that $t$ is the reduction of $y$ in $\Q[y]/(\kbd{K.pol})$
modulo an irreducible factor of \kbd{K.pol} over $\F_{p}$. In the above
example, $5$ divides the index and $t$ is actually the reduction of $y/5$.
The library syntax is \fun{GEN}{nfmodprinit0}{GEN nf, GEN pr, long v) = -1} where \kbd{v)} is a variable number.
\subsec{nfmodprlift$(\var{nf},x,\var{pr})$}\kbdsidx{nfmodprlift}\label{se:nfmodprlift}
Lift the \typ{FFELT} $x$ (from \tet{nfmodpr}) in the residue field
modulo \var{pr} to the ring of integers. Vectors and matrices are also
supported. For polynomials, use \kbd{apply} and the present function.
The argument \var{pr} is either a maximal ideal in \kbd{idealprimedec}
format or, preferably, a \var{modpr} structure from \tet{nfmodprinit}.
There are no compatibility checks to try and decide whether $x$ is attached
the same residue field as defined by \var{pr}: the result is undefined
if not.
The function \tet{nfmodpr} allows to reduce to the residue field.
\bprog
? K = nfinit(y^3-250);
? P = idealprimedec(K, 5)[2];
? modP = nfmodprinit(K,P);
? K.zk
%4 = [1, 1/5*y, 1/25*y^2]
? apply(t->nfmodpr(K,t,modP), K.zk)
%5 = [1, y, 2*y + 1]
? nfmodprlift(K, %, modP)
%6 = [1, 1/5*y, 2/5*y + 1]
? nfeltval(K, %[3] - K.zk[3], P)
%7 = 1
@eprog
The library syntax is \fun{GEN}{nfmodprlift}{GEN nf, GEN x, GEN pr}.
\subsec{nfnewprec$(\var{nf})$}\kbdsidx{nfnewprec}\label{se:nfnewprec}
Transforms the number field $\var{nf}$
into the corresponding data using current (usually larger) precision. This
function works as expected if \var{nf} is in fact a \var{bnf}, a \var{bnr}
or a \var{rnf} (update structure to current precision). \emph{If} the original
\var{bnf} structure was \emph{not} computed by \kbd{bnfinit(,1)}, then
this may be quite slow and even fail: many
generators of principal ideals have to be computed and the algorithm may
fail because the accuracy is not sufficient to bootstrap the
required generators and fundamental units.
The library syntax is \fun{GEN}{nfnewprec}{GEN nf, long prec}.
See also \fun{GEN}{bnfnewprec}{GEN bnf, long prec} and
\fun{GEN}{bnrnewprec}{GEN bnr, long prec}.
\subsec{nfpolsturm$(\var{nf},T,\{\var{pl}\})$}\kbdsidx{nfpolsturm}\label{se:nfpolsturm}
Given a polynomial $T$ with coefficients in the number field \var{nf},
returns the number of real roots of the $s(T)$ where $s$ runs through
the real embeddings of the field specified by optional argument \var{pl}:
\item \var{pl} omitted: all $r_{1}$ real places;
\item \var{pl} an integer between $1$ and $r_{1}$: the embedding attached to
the $i$-th real root of \kbd{nf.pol}, i.e. \kbd{nf.roots$[i]$};
\item \var{pl} a vector or \typ{VECSMALL}: the embeddings
attached to the $\var{pl}[i]$-th real roots of \kbd{nf.pol}.
\bprog
? nf = nfinit('y^2 - 2);
? nf.sign
%2 = [2, 0]
? nf.roots
%3 = [-1.414..., 1.414...]
? T = x^2 + 'y;
? nfpolsturm(nf, T, 1) \\ subst(T,y,sqrt(2)) has two real roots
%5 = 2
? nfpolsturm(nf, T, 2) \\ subst(T,y,-sqrt(2)) has no real root
%6 = 0
? nfpolsturm(nf, T) \\ all embeddings together
%7 = [2, 0]
? nfpolsturm(nf, T, [2,1]) \\ second then first embedding
%8 = [0, 2]
? nfpolsturm(nf, x^3) \\ number of distinct roots !
%9 = [1, 1]
? nfpolsturm(nf, x, 6) \\ there are only 2 real embeddings !
*** at top-level: nfpolsturm(nf,x,6)
*** ^-----------------
*** nfpolsturm: domain error in nfpolsturm: index > 2
@eprog
The library syntax is \fun{GEN}{nfpolsturm}{GEN nf, GEN T, GEN pl = NULL}.
\subsec{nfresolvent$(\var{pol},\{\fl=0\})$}\kbdsidx{nfresolvent}\label{se:nfresolvent}
Let \kbd{pol} be an irreducible integral polynomial defining a number
field $K$ with Galois closure $\tilde{K}$. This function is limited to the
Galois groups supported by \kbd{nflist}; in the following $\ell$ denotes an
odd prime. If $\text{Gal}(\tilde{K}/\Q)$ is $D_{\ell}$, $A_{4}$, $S_{4}$,
$F_{5}$ ($M_{20}$), $A_{5}$, $M_{21}$ or $M_{42}$,
returns a polynomial $R$ defining the corresponding resolvent field (quadratic
for $D_{\ell}$, cyclic cubic for $A_{4}$ and $M_{21}$, noncyclic cubic for
$S_{4}$, cyclic quartic for $F_{5}$, $A_{5}(6)$ sextic for $A_{5}$, and cyclic
sextic for $M_{42}$). In the $A_{5}(6)$ case, returns the $A_{5}$ field of
which it is the resolvent. Otherwise, gives a ``canonical'' subfield, or $0$
if the Galois group is not supported.
The binary digits of \fl\ correspond to 1: returns a pair $[R,f]$ where $f$
is a ``conductor'' whose definition is specific to each group and given
below; 2: returns all ``canonical'' subfields.
Let $D$ be the discriminant of the resolvent field \kbd{nfdisc}$(R)$:
\item In cases $C_{\ell}$, $D_{\ell}$, $A_{4}$, or $S_{4}$, $\text{disc}(K)
=(Df^{2})^{m}$ with $m=(\ell-1)/2$ in the first two cases, and $1$ in the last
two.
\item In cases where $K$ is abelian over the resolvent subfield, the conductor
of the relative extension.
\item In case $F_{5}$, $\text{disc}(K)=Df^{4}$ if $f>0$ or $5^{2}Df^{4}$
if $f<0$.
\item In cases $M_{21}$ or $M_{42}$, $\text{disc}(K)=D^{m}f^{6}$ if $f>0$ or
$7^{3}D^{m}f^{6}$ if $f<0$, where $m=2$ for $M_{21}$ and $m=1$ for $M_{42}$.
\item In cases $A_{5}$ and $A_{5}(6)$, $\fl$ is currently ignored.
\bprog
? pol = x^6-3*x^5+7*x^4-9*x^3+7*x^2-3*x+1; \\ Galois closure D_6
? nfresolvent(pol)
%2 = x^3 + x - 1
? nfresolvent(pol,1)
%3 = [x^3 + x - 1, [[31, 21, 3; 0, 1, 0; 0, 0, 1], [1]]]
@eprog
The library syntax is \fun{GEN}{nfresolvent}{GEN pol, long flag}.
\subsec{nfroots$(\{\var{nf}\},x)$}\kbdsidx{nfroots}\label{se:nfroots}
Roots of the polynomial $x$ in the
number field $\var{nf}$ given by \kbd{nfinit} without multiplicity (in $\Q$
if $\var{nf}$ is omitted). $x$ has coefficients in the number field (scalar,
polmod, polynomial, column vector). The main variable of $\var{nf}$ must be
of lower priority than that of $x$ (see \secref{se:priority}). However if the
coefficients of the number field occur explicitly (as polmods) as
coefficients of $x$, the variable of these polmods \emph{must} be the same as
the main variable of $t$ (see \kbd{nffactor}).
It is possible to input a defining polynomial for \var{nf}
instead, but this is in general less efficient since parts of an \kbd{nf}
structure will then be computed internally. This is useful in two
situations: when you do not need the \kbd{nf} elsewhere, or when you cannot
initialize an \kbd{nf} due to integer factorization difficulties when
attempting to compute the field discriminant and maximal order.
\misctitle{Caveat} \kbd{nfinit([T, listP])} allows to compute in polynomial
time a conditional \var{nf} structure, which sets \kbd{nf.zk} to an order
which is not guaranteed to be maximal at all primes. Always either use
\kbd{nfcertify} first (which may not run in polynomial time) or make sure
to input \kbd{nf.pol} instead of the conditional \var{nf}: \kbd{nfroots} is
able to recover in polynomial time in this case, instead of potentially
missing a factor.
The library syntax is \fun{GEN}{nfroots}{GEN nf = NULL, GEN x}.
See also \fun{GEN}{nfrootsQ}{GEN x},
corresponding to $\kbd{nf} = \kbd{NULL}$.
\subsec{nfrootsof1$(\var{nf})$}\kbdsidx{nfrootsof1}\label{se:nfrootsof1}
Returns a two-component vector $[w,z]$ where $w$ is the number of roots of
unity in the number field \var{nf}, and $z$ is a primitive $w$-th root
of unity. It is possible to input a defining polynomial for \var{nf}
instead.
\bprog
? K = nfinit(polcyclo(11));
? nfrootsof1(K)
%2 = [22, [0, 0, 0, 0, 0, -1, 0, 0, 0, 0]~]
? z = nfbasistoalg(K, %[2]) \\ in algebraic form
%3 = Mod(-x^5, x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
? [lift(z^11), lift(z^2)] \\ proves that the order of z is 22
%4 = [-1, -x^9 - x^8 - x^7 - x^6 - x^5 - x^4 - x^3 - x^2 - x - 1]
@eprog
This function guesses the number $w$ as the gcd of the $\#k(v)^{*}$ for
unramified $v$ above odd primes, then computes the roots in \var{nf}
of the $w$-th cyclotomic polynomial. The algorithm is polynomial time with
respect to the field degree and the bitsize of the multiplication table in
\var{nf} (both of them polynomially bounded in terms of the size of the
discriminant). Fields of degree up to $100$ or so should require less than
one minute.
The library syntax is \fun{GEN}{nfrootsof1}{GEN nf}.
\subsec{nfsnf$(\var{nf},x,\{\fl=0\})$}\kbdsidx{nfsnf}\label{se:nfsnf}
Given a torsion $\Z_{K}$-module $x$ attached to the square integral
invertible pseudo-matrix $(A,I,J)$, returns an ideal list
$D=[d_{1},\dots,d_{n}]$ which is the \idx{Smith normal form} of $x$. In other
words, $x$ is isomorphic to $\Z_{K}/d_{1}\oplus\cdots\oplus\Z_{K}/d_{n}$
and $d_{i}$
divides $d_{i-1}$ for $i\ge2$. If $\fl$ is nonzero return $[D,U,V]$, where
$UAV$ is the identity.
See \secref{se:ZKmodules} for the definition of integral pseudo-matrix;
briefly, it is input as a 3-component row vector $[A,I,J]$ where
$I = [b_{1},\dots,b_{n}]$ and $J = [a_{1},\dots,a_{n}]$ are two ideal lists,
and $A$ is a square $n\times n$ matrix with columns $(A_{1},\dots,A_{n})$,
seen as elements in $K^{n}$ (with canonical basis $(e_{1},\dots,e_{n})$).
This data defines the $\Z_{K}$ module $x$ given by
$$ (b_{1}e_{1}\oplus\cdots\oplus b_{n}e_{n})
/ (a_{1}A_{1}\oplus\cdots\oplus a_{n}A_{n}) \enspace, $$
The integrality condition is $a_{i,j} \in b_{i} a_{j}^{-1}$ for all $i,j$.
If it
is not satisfied, then the $d_{i}$ will not be integral. Note that every
finitely generated torsion module is isomorphic to a module of this form and
even with $b_{i}=Z_{K}$ for all $i$.
The library syntax is \fun{GEN}{nfsnf0}{GEN nf, GEN x, long flag}.
Also available:
\fun{GEN}{nfsnf}{GEN nf, GEN x} ($\fl = 0$).
\subsec{nfsolvemodpr$(\var{nf},a,b,P)$}\kbdsidx{nfsolvemodpr}\label{se:nfsolvemodpr}
This function is obsolete, use \kbd{nfmodpr}.
Let $P$ be a prime ideal in \key{modpr} format (see \kbd{nfmodprinit}),
let $a$ be a matrix, invertible over the residue field, and let $b$ be
a column vector or matrix. This function returns a solution of $a\cdot x =
b$; the coefficients of $x$ are lifted to \var{nf} elements.
\bprog
? K = nfinit(y^2+1);
? P = idealprimedec(K, 3)[1];
? P = nfmodprinit(K, P);
? a = [y+1, y; y, 0]; b = [1, y]~
? nfsolvemodpr(K, a,b, P)
%5 = [1, 2]~
@eprog
The library syntax is \fun{GEN}{nfsolvemodpr}{GEN nf, GEN a, GEN b, GEN P}.
This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nfM\_to\_FqM}, then work there.
\subsec{nfsplitting$(P,\{d\},\{\var{fl}\})$}\kbdsidx{nfsplitting}\label{se:nfsplitting}
Defining polynomial $S$ over~$\Q$ for the splitting field of
$\var{P} \in \Q[x]$, that is the smallest field over which $P$ is totally
split. If irreducible, the polynomial $P$ can also be given by a~\kbd{nf}
structure, which is more efficient. If $d$ is given, it must be a multiple of
the splitting field degree. Note that if $P$ is reducible the splitting field
degree can be smaller than the degree of $P$.
If $\fl$ is non-zero, we assume $P$ to be monic, integral and irreducible and
the return value depends on $\fl$:
\item $\fl = 1$: return $[S,C]$ where $S$ is as before and $C$ is an
embedding of $\Q[x]/(P)$ in its splitting field given by a polynomial
(implicitly modulo $S$, as in \kbd{nfisincl}).
\item $\fl = 2$: return $[S,C]$ where $C$ is vector of rational functions
whose image in $\Q[x]/(S)$ yields the embedding; this avoids inverting the
denominator, which is costly. when the degree of the splitting field is huge.
\item $\fl = 3$: return $[S, v, p]$ a data structure allowing to quickly
compute the Galois group of the splitting field, which is used by
\kbd{galoissplittinginit}; more precisely, $p$ is a prime splitting
completely in the splitting field and $v$ is a vector with $\deg S$
elements describing the automorphisms of $S$ acting on the roots
of $S$ modulo $p$.
\bprog
? K = nfinit(x^3 - 2);
? nfsplitting(K)
%2 = x^6 + 108
? nfsplitting(x^8 - 2)
%3 = x^16 + 272*x^8 + 64
? S = nfsplitting(x^6 - 8) \\ reducible
%4 = x^4 + 2*x^2 + 4
? lift(nfroots(subst(S,x,a),x^6-8))
%5 = [-a, a, -1/2*a^3 - a, -1/2*a^3, 1/2*a^3, 1/2*a^3 + a]
? P = x^8-2;
? [S,C] = nfsplitting(P,,1)
%7 = [x^16 + 272*x^8 + 64, -7/768*x^13 - 239/96*x^5 + 1/2*x]
? subst(P, x, Mod(C,S))
%8 = Mod(0, x^16 + 272*x^8 + 64)
@eprog\noindent
Specifying the degree $d$ of the splitting field can make the computation
faster; if $d$ is not a multiple of the true degree, it will be ignored with
a warning.
\bprog
? nfsplitting(x^17-123);
time = 3,607 ms.
? poldegree(%)
%2 = 272
? nfsplitting(x^17-123,272);
time = 150 ms.
? nfsplitting(x^17-123,273);
*** nfsplitting: Warning: ignoring incorrect degree bound 273
time = 3,611 ms.
@eprog
\noindent
The complexity of the algorithm is polynomial in the degree $d$ of the
splitting field and the bitsize of $T$; if $d$ is large the result will
likely be unusable, e.g. \kbd{nfinit} will not be an option:
\bprog
? nfsplitting(x^6-x-1)
[... degree 720 polynomial deleted ...]
time = 11,020 ms.
@eprog
Variant: Also available is
\fun{GEN}{nfsplitting}{GEN T, GEN D} for $\fl = 0$.
The library syntax is \fun{GEN}{nfsplitting0}{GEN P, GEN d = NULL, long fl}.
\subsec{nfsubfields$(\var{pol},\{d=0\},\{\fl=0\})$}\kbdsidx{nfsubfields}\label{se:nfsubfields}
Finds all subfields of degree
$d$ of the number field defined by the (monic, integral) polynomial
\var{pol} (all subfields if $d$ is null or omitted). The result is a vector
of subfields, each being given by $[g,h]$ (default) or simply $g$ ($\fl=1$),
where $g$ is an absolute equation
and $h$ expresses one of the roots of $g$ in terms of the root $x$ of the
polynomial defining $\var{nf}$. This routine uses
\item Allombert's \tet{galoissubfields} when \var{nf} is Galois (with weakly
supersolvable Galois group).\sidx{Galois}\sidx{subfield}
\item Kl\"uners's or van Hoeij--Kl\"uners--Novocin algorithm
in the general case. The latter runs in polynomial time and is generally
superior unless there exists a small unramified prime $p$ such that \var{pol}
has few irreducible factors modulo $p$.
An input of the form~\kbd{[nf, fa]} is also allowed, where~\kbd{fa} is the
factorisation of~\var{nf.pol} over~\var{nf}, expressed as a famat of
polynomials with coefficients in the variable of~\kbd{nf}, in which case the
van Hoeij--Kl\"uners--Novocin algorithm is used.
\bprog
? pol = x^4 - x^3 - x^2 + x + 1;
? nfsubfields(pol)
%2 = [[x, 0], [x^2 - x + 1, x^3 - x^2 + 1], [x^4 - x^3 - x^2 + x + 1, x]]
? nfsubfields(pol,,1)
%2 = [x, x^2 - x + 1, x^4 - x^3 - x^2 + x + 1]
? y=varhigher("y"); fa = nffactor(pol,subst(pol,x,y));
? #nfsubfields([pol,fa])
%5 = 3
@eprog
The library syntax is \fun{GEN}{nfsubfields0}{GEN pol, long d, long flag}.
Also available is \fun{GEN}{nfsubfields}{GEN nf, long d}, corresponding
to $\fl = 0$.
\subsec{nfsubfieldscm$(\var{nf},\{\fl=0\})$}\kbdsidx{nfsubfieldscm}\label{se:nfsubfieldscm}
Computes the maximal CM subfield of \var{nf}. Returns $0$ if \var{nf} does
not have a CM subfield, otherwise returns~$[g,h]$ (default) or $g$ ($\fl=1$)
where~$g$ is an absolute equation and~$h$ expresses a root of $g$ in terms of
the generator of~\var{nf}.
Moreover, the CM involution is given by $X\bmod g(X) \mapsto -X\bmod g(X)$,
i.e. $X\bmod g(X)$ is a totally imaginary element.
An input of the form~\kbd{[nf, fa]} is also allowed, where~\kbd{fa} is the
factorisation of~\var{nf.pol} over~\var{nf}, and~\var{nf} is also allowed to
be a monic defining polynomial for the number field.
\bprog
? nf = nfinit(x^8 + 20*x^6 + 10*x^4 - 4*x^2 + 9);
? nfsubfieldscm(nf)
%2 = [x^4 + 4480*x^2 + 3612672, 3*x^5 + 58*x^3 + 5*x]
? pol = y^16-8*y^14+29*y^12-60*y^10+74*y^8-48*y^6+8*y^4+4*y^2+1;
? fa = nffactor(pol, subst(pol,y,x));
? nfsubfieldscm([pol,fa])
%5 = [y^8 + ... , ...]
@eprog
The library syntax is \fun{GEN}{nfsubfieldscm}{GEN nf, long flag}.
\subsec{nfsubfieldsmax$(\var{nf},\{\fl=0\})$}\kbdsidx{nfsubfieldsmax}\label{se:nfsubfieldsmax}
Computes the list of maximal subfields of \var{nf}. The result is a vector
as in \tet{nfsubfields}.
An input of the form~\kbd{[nf, fa]} is also allowed, where~\kbd{fa} is the
factorisation of~\var{nf.pol} over~\var{nf}, and~\var{nf} is also allowed to
be a monic defining polynomial for the number field.
The library syntax is \fun{GEN}{nfsubfieldsmax}{GEN nf, long flag}.
\subsec{nfweilheight$(\var{nf}, v)$}\kbdsidx{nfweilheight}\label{se:nfweilheight}
Let \var{nf} be attached to a number field $K$, let $v$ be a vector of
elements of $K$, not all of them $0$, seen as element of the projective
space of dimension \kbd{\#v - 1}. Return the absolute logarithmic Weil height
of that element, which does not depend on the number field used to compute it.
When the entries of $v$ are rational, the height is
\kbd{log(normlp(v / content(v), oo))}.
\bprog
? v = [1, 2, -3, 101]; Q = nfinit(x); Qi = nfinit(x^2 + 1);
? exponent(nfweilheight(Q, v) - log(101))
%2 = -125
? exponent(nfweilheight(Qi, v) - log(101))
%3 = -125
@eprog
The library syntax is \fun{GEN}{nfweilheight}{GEN nf, GEN v, long prec}.
\subsec{polcompositum$(P,Q,\{\fl=0\})$}\kbdsidx{polcompositum}\label{se:polcompositum}
\sidx{compositum} $P$ and $Q$
being squarefree polynomials in $\Z[X]$ in the same variable, outputs
the simple factors of the \'etale $\Q$-algebra $A = \Q(X, Y) / (P(X), Q(Y))$.
The factors are given by a list of polynomials $R$ in $\Z[X]$, attached to
the number field $\Q(X)/ (R)$, and sorted by increasing degree (with respect
to lexicographic ordering for factors of equal degrees). Returns an error if
one of the polynomials is not squarefree.
Note that it is more efficient to reduce to the case where $P$ and $Q$ are
irreducible first. The routine will not perform this for you, since it may be
expensive, and the inputs are irreducible in most applications anyway. In
this case, there will be a single factor $R$ if and only if the number
fields defined by $P$ and $Q$ are linearly disjoint (their intersection is
$\Q$).
Assuming $P$ is irreducible (of smaller degree than $Q$ for efficiency), it
is in general much faster to proceed as follows
\bprog
nf = nfinit(P); L = nffactor(nf, Q)[,1];
vector(#L, i, rnfequation(nf, L[i]))
@eprog\noindent
to obtain the same result. If you are only interested in the degrees of the
simple factors, the \kbd{rnfequation} instruction can be replaced by a
trivial \kbd{poldegree(P) * poldegree(L[i])}.
The binary digits of $\fl$ mean
1: outputs a vector of 4-component vectors $[R,a,b,k]$, where $R$
ranges through the list of all possible compositums as above, and $a$
(resp. $b$) expresses the root of $P$ (resp. $Q$) as an element of
$\Q(X)/(R)$. Finally, $k$ is a small integer such that $b + ka = X$ modulo
$R$.
2: assume that $P$ and $Q$ define number fields which are linearly disjoint:
both polynomials are irreducible and the corresponding number fields
have no common subfield besides $\Q$. This allows to save a costly
factorization over $\Q$. In this case return the single simple factor
instead of a vector with one element.
A compositum is often defined by a complicated polynomial, which it is
advisable to reduce before further work. Here is an example involving
the field $\Q(\zeta_{5}, 5^{1/5})$:
\bprog
? L = polcompositum(x^5 - 5, polcyclo(5), 1); \\@com list of $[R,a,b,k]$
? [R, a] = L[1]; \\@com pick the single factor, extract $R,a$ (ignore $b,k$)
? R \\@com defines the compositum
%3 = x^20 + 5*x^19 + 15*x^18 + 35*x^17 + 70*x^16 + 141*x^15 + 260*x^14\
+ 355*x^13 + 95*x^12 - 1460*x^11 - 3279*x^10 - 3660*x^9 - 2005*x^8 \
+ 705*x^7 + 9210*x^6 + 13506*x^5 + 7145*x^4 - 2740*x^3 + 1040*x^2 \
- 320*x + 256
? a^5 - 5 \\@com a fifth root of $5$
%4 = 0
? [T, X] = polredbest(R, 1);
? T \\@com simpler defining polynomial for $\Q[x]/(R)$
%6 = x^20 + 25*x^10 + 5
? X \\ @com root of $R$ in $\Q[y]/(T(y))$
%7 = Mod(-1/11*x^15 - 1/11*x^14 + 1/22*x^10 - 47/22*x^5 - 29/11*x^4 + 7/22,\
x^20 + 25*x^10 + 5)
? a = subst(a.pol, 'x, X) \\@com \kbd{a} in the new coordinates
%8 = Mod(1/11*x^14 + 29/11*x^4, x^20 + 25*x^10 + 5)
? a^5 - 5
%9 = 0
@eprog\noindent In the above example, $x^{5}-5$ and the $5$-th cyclotomic
polynomial are irreducible over $\Q$; they have coprime degrees so
define linearly disjoint extensions and we could have started by
\bprog
? [R,a] = polcompositum(x^5 - 5, polcyclo(5), 3); \\@com $[R,a,b,k]$
@eprog
The library syntax is \fun{GEN}{polcompositum0}{GEN P, GEN Q, long flag}.
Also available are
\fun{GEN}{compositum}{GEN P, GEN Q} ($\fl = 0$) and
\fun{GEN}{compositum2}{GEN P, GEN Q} ($\fl = 1$).
\subsec{polgalois$(T)$}\kbdsidx{polgalois}\label{se:polgalois}
\idx{Galois} group of the nonconstant
polynomial $T\in\Q[X]$. In the present version \vers, $T$ must be irreducible
and the degree $d$ of $T$ must be less than or equal to 7. If the
\tet{galdata} package has been installed, degrees 8, 9, 10 and 11 are also
implemented. By definition, if $K = \Q[x]/(T)$, this computes the action of
the Galois group of the Galois closure of $K$ on the $d$ distinct roots of
$T$, up to conjugacy (corresponding to different root orderings).
The output is a 4-component vector $[n,s,k,name]$ with the
following meaning: $n$ is the cardinality of the group, $s$ is its signature
($s=1$ if the group is a subgroup of the alternating group $A_{d}$, $s=-1$
otherwise) and name is a character string containing name of the transitive
group according to the GAP 4 transitive groups library by Alexander Hulpke.
$k$ is more arbitrary and the choice made up to version~2.2.3 of PARI is rather
unfortunate: for $d > 7$, $k$ is the numbering of the group among all
transitive subgroups of $S_{d}$, as given in ``The transitive groups of
degree up to eleven'', G.~Butler and J.~McKay,
\emph{Communications in Algebra}, vol.~11, 1983,
pp.~863--911 (group $k$ is denoted $T_{k}$ there). And for $d \leq 7$, it was
ad hoc, so as to ensure that a given triple would denote a unique group.
Specifically, for polynomials of degree $d\leq 7$, the groups are coded as
follows, using standard notations
\smallskip
In degree 1: $S_{1}=[1,1,1]$.
\smallskip
In degree 2: $S_{2}=[2,-1,1]$.
\smallskip
In degree 3: $A_{3}=C_{3}=[3,1,1]$, $S_{3}=[6,-1,1]$.
\smallskip
In degree 4: $C_{4}=[4,-1,1]$, $V_{4}=[4,1,1]$, $D_{4}=[8,-1,1]$, $A_{4}=[12,1,1]$,
$S_{4}=[24,-1,1]$.
\smallskip
In degree 5: $C_{5}=[5,1,1]$, $D_{5}=[10,1,1]$, $M_{20}=[20,-1,1]$,
$A_{5}=[60,1,1]$, $S_{5}=[120,-1,1]$.
\smallskip
In degree 6: $C_{6}=[6,-1,1]$, $S_{3}=[6,-1,2]$, $D_{6}=[12,-1,1]$, $A_{4}=[12,1,1]$,
$G_{18}=[18,-1,1]$, $S_{4}^{-}=[24,-1,1]$, $A_{4}\times C_{2}=[24,-1,2]$,
$S_{4}^{+}=[24,1,1]$, $G_{36}^{-}=[36,-1,1]$, $G_{36}^{+}=[36,1,1]$,
$S_{4}\times C_{2}=[48,-1,1]$, $A_{5}=PSL_{2}(5)=[60,1,1]$, $G_{72}=[72,-1,1]$,
$S_{5}=PGL_{2}(5)=[120,-1,1]$, $A_{6}=[360,1,1]$, $S_{6}=[720,-1,1]$.
\smallskip
In degree 7: $C_{7}=[7,1,1]$, $D_{7}=[14,-1,1]$, $M_{21}=[21,1,1]$,
$M_{42}=[42,-1,1]$, $PSL_{2}(7)=PSL_{3}(2)=[168,1,1]$, $A_{7}=[2520,1,1]$,
$S_{7}=[5040,-1,1]$.
\smallskip
This is deprecated and obsolete, but for reasons of backward compatibility,
we cannot change this behavior yet. So you can use the default
\tet{new_galois_format} to switch to a consistent naming scheme, namely $k$ is
always the standard numbering of the group among all transitive subgroups of
$S_{n}$. If this default is in effect, the above groups will be coded as:
\smallskip
In degree 1: $S_{1}=[1,1,1]$.
\smallskip
In degree 2: $S_{2}=[2,-1,1]$.
\smallskip
In degree 3: $A_{3}=C_{3}=[3,1,1]$, $S_{3}=[6,-1,2]$.
\smallskip
In degree 4: $C_{4}=[4,-1,1]$, $V_{4}=[4,1,2]$, $D_{4}=[8,-1,3]$, $A_{4}=[12,1,4]$,
$S_{4}=[24,-1,5]$.
\smallskip
In degree 5: $C_{5}=[5,1,1]$, $D_{5}=[10,1,2]$, $M_{20}=[20,-1,3]$,
$A_{5}=[60,1,4]$, $S_{5}=[120,-1,5]$.
\smallskip
In degree 6: $C_{6}=[6,-1,1]$, $S_{3}=[6,-1,2]$, $D_{6}=[12,-1,3]$, $A_{4}=[12,1,4]$,
$G_{18}=[18,-1,5]$, $A_{4}\times C_{2}=[24,-1,6]$, $S_{4}^{+}=[24,1,7]$,
$S_{4}^{-}=[24,-1,8]$, $G_{36}^{-}=[36,-1,9]$, $G_{36}^{+}=[36,1,10]$,
$S_{4}\times C_{2}=[48,-1,11]$, $A_{5}=PSL_{2}(5)=[60,1,12]$, $G_{72}=[72,-1,13]$,
$S_{5}=PGL_{2}(5)=[120,-1,14]$, $A_{6}=[360,1,15]$, $S_{6}=[720,-1,16]$.
\smallskip
In degree 7: $C_{7}=[7,1,1]$, $D_{7}=[14,-1,2]$, $M_{21}=[21,1,3]$,
$M_{42}=[42,-1,4]$, $PSL_{2}(7)=PSL_{3}(2)=[168,1,5]$, $A_{7}=[2520,1,6]$,
$S_{7}=[5040,-1,7]$.
\smallskip
\misctitle{Warning} The method used is that of resolvent polynomials and is
sensitive to the current precision. The precision is updated internally but,
in very rare cases, a wrong result may be returned if the initial precision
was not sufficient.
The library syntax is \fun{GEN}{polgalois}{GEN T, long prec}.
To enable the new format in library mode,
set the global variable \tet{new_galois_format} to $1$.
\subsec{polred$(T,\{\fl=0\})$}\kbdsidx{polred}\label{se:polred}
This function is \emph{deprecated}, use \tet{polredbest} instead.
Finds polynomials with reasonably small coefficients defining subfields of
the number field defined by $T$. One of the polynomials always defines $\Q$
(hence has degree $1$), and another always defines the same number field
as $T$ if $T$ is irreducible.
All $T$ accepted by \tet{nfinit} are also allowed here;
in particular, the format \kbd{[T, listP]} is recommended, e.g. with
$\kbd{listP} = 10^{5}$ or a vector containing all ramified primes. Otherwise,
the maximal order of $\Q[x]/(T)$ must be computed.
The following binary digits of $\fl$ are significant:
1: Possibly use a suborder of the maximal order. The
primes dividing the index of the order chosen are larger than
\tet{primelimit} or divide integers stored in the \tet{addprimes} table.
This flag is \emph{deprecated}, the \kbd{[T, listP]} format is more
flexible.
2: gives also elements. The result is a two-column matrix, the first column
giving primitive elements defining these subfields, the second giving the
corresponding minimal polynomials.
\bprog
? M = polred(x^4 + 8, 2)
%1 =
[ 1 x - 1]
[ 1/2*x^2 + 1 x^2 - 2*x + 3]
[-1/2*x^2 + 1 x^2 - 2*x + 3]
[ 1/2*x^2 x^2 + 2]
[ 1/4*x^3 x^4 + 2]
? minpoly(Mod(M[4,1], x^4+8))
%2 = x^2 + 2
@eprog
\synt{polred}{GEN T} ($\fl = 0$). Also available is
\fun{GEN}{polred2}{GEN T} ($\fl = 2$). The function \kbd{polred0} is
deprecated, provided for backward compatibility.
\subsec{polredabs$(T,\{\fl=0\})$}\kbdsidx{polredabs}\label{se:polredabs}
Returns a canonical defining polynomial $P$ for the number field
$\Q[X]/(T)$ defined by $T$, such that the sum of the squares of the modulus
of the roots (i.e.~the $T_{2}$-norm) is minimal. Different $T$ defining
isomorphic number fields will yield the same $P$. All $T$ accepted by
\tet{nfinit} are also allowed here, e.g. nonmonic polynomials, or pairs
\kbd{[T, listP]} specifying that a nonmaximal order may be used. For
convenience, any number field structure (\var{nf}, \var{bnf},\dots) can also
be used instead of $T$.
\bprog
? polredabs(x^2 + 16)
%1 = x^2 + 1
? K = bnfinit(x^2 + 16); polredabs(K)
%2 = x^2 + 1
@eprog
\misctitle{Warning 1} Using a \typ{POL} $T$ requires computing
and fully factoring the discriminant $d_{K}$ of the maximal order which may be
very hard. You can use the format \kbd{[T, listP]}, where \kbd{listP}
encodes a list of known coprime divisors of $\disc(T)$ (see \kbd{??nfbasis}),
to help the routine, thereby replacing this part of the algorithm by a
polynomial time computation But this may only compute a suborder of the
maximal order, when the divisors are not squarefree or do not include all
primes dividing $d_{K}$. The routine attempts to certify the result
independently of this order computation as per \tet{nfcertify}: we try to
prove that the computed order is maximal. If the certification fails,
the routine then fully factors the integers returned by \kbd{nfcertify}.
You can also use \tet{polredbest} to avoid this factorization step; in this
case, the result is small but no longer canonical.
\misctitle{Warning 2} Apart from the factorization of the discriminant of
$T$, this routine runs in polynomial time for a \emph{fixed} degree.
But the complexity is exponential in the degree: this routine
may be exceedingly slow when the number field has many subfields, hence a
lot of elements of small $T_{2}$-norm. If you do not need a canonical
polynomial, the function \tet{polredbest} is in general much faster (it runs
in polynomial time), and tends to return polynomials with smaller
discriminants.
The binary digits of $\fl$ mean
1: outputs a two-component row vector $[P,a]$, where $P$ is the default
output and \kbd{Mod(a, P)} is a root of the original $T$.
4: gives \emph{all} polynomials of minimal $T_{2}$ norm; of the two polynomials
$P(x)$ and $\pm P(-x)$, only one is given.
16: (OBSOLETE) Possibly use a suborder of the maximal order, \emph{without}
attempting to certify the result as in Warning 1. This makes \kbd{polredabs}
behave like \kbd{polredbest}. Just use the latter.
\bprog
? T = x^16 - 136*x^14 + 6476*x^12 - 141912*x^10 + 1513334*x^8 \
- 7453176*x^6 + 13950764*x^4 - 5596840*x^2 + 46225
? T1 = polredabs(T); T2 = polredbest(T);
? [ norml2(polroots(T1)), norml2(polroots(T2)) ]
%3 = [88.0000000, 120.000000]
? [ sizedigit(poldisc(T1)), sizedigit(poldisc(T2)) ]
%4 = [75, 67]
@eprog
The precise definition of the output of \tet{polredabs} is as follows.
\item Consider the finite list of characteristic polynomials of primitive
elements of~$K$ that are in~$\Z_{K}$ and minimal for the~$T_{2}$ norm;
now remove from the list the polynomials whose discriminant do not have
minimal absolute value. Note that this condition is restricted to the
original list of polynomials with minimal $T_{2}$ norm and does not imply that
the defining polynomial for the field with smallest discriminant belongs to
the list !
\item To a polynomial $P(x) = x^{n} + \dots + a_{n} \in \R[x]$ we attach
the sequence $S(P)$ given by $|a_{1}|, a_{1}, \dots, |a_{n}|, a_{n}$.
Order the polynomials $P$ by the lexicographic order on the coefficient
vectors $S(P)$. Then the output of \tet{polredabs} is the smallest
polynomial in the above list for that order. In other words, the monic
polynomial which is lexicographically smallest with respect to the absolute
values of coefficients, favouring negative coefficients to break ties, i.e.
choosing $x^{3}-2$ rather than $x^{3}+2$.
The library syntax is \fun{GEN}{polredabs0}{GEN T, long flag}.
Instead of the above hardcoded numerical flags, one should use an
or-ed combination of
\item \tet{nf_PARTIALFACT} (OBSOLETE): possibly use a suborder of the maximal
order, \emph{without} attempting to certify the result.
\item \tet{nf_ORIG}: return $[P, a]$, where \kbd{Mod(a, P)} is a root of $T$.
\item \tet{nf_RAW}: return $[P, b]$, where \kbd{Mod(b, T)} is a root of $P$.
The algebraic integer $b$ is the raw result produced by the small vectors
enumeration in the maximal order; $P$ was computed as the characteristic
polynomial of \kbd{Mod(b, T)}. \kbd{Mod(a, P)} as in \tet{nf_ORIG}
is obtained with \tet{modreverse}.
\item \tet{nf_ADDZK}: if $r$ is the result produced with some of the above
flags (of the form $P$ or $[P,c]$), return \kbd{[r,zk]}, where \kbd{zk} is a
$\Z$-basis for the maximal order of $\Q[X]/(P)$.
\item \tet{nf_ALL}: return a vector of results of the above form, for all
polynomials of minimal $T_{2}$-norm.
\subsec{polredbest$(T,\{\fl=0\})$}\kbdsidx{polredbest}\label{se:polredbest}
Finds a polynomial with reasonably
small coefficients defining the same number field as $T$.
All $T$ accepted by \tet{nfinit} are also allowed here (e.g. nonmonic
polynomials, \kbd{nf}, \kbd{bnf}, \kbd{[T,Z\_K\_basis]}). Contrary to
\tet{polredabs}, this routine runs in polynomial time, but it offers no
guarantee as to the minimality of its result.
This routine computes an LLL-reduced basis for an order in $\Q[X]/(T)$, then
examines small linear combinations of the basis vectors, computing their
characteristic polynomials. It returns the \emph{separable} polynomial $P$ of
smallest discriminant, the one with lexicographically smallest
\kbd{abs(Vec(P))} in case of ties. This is a good candidate for subsequent
number field computations since it guarantees that the denominators of
algebraic integers, when expressed in the power basis, are reasonably small.
With no claim of minimality, though.
It can happen that iterating this functions yields better and better
polynomials, until it stabilizes:
\bprog
? \p5
? P = X^12+8*X^8-50*X^6+16*X^4-3069*X^2+625;
? poldisc(P)*1.
%2 = 1.2622 E55
? P = polredbest(P);
? poldisc(P)*1.
%4 = 2.9012 E51
? P = polredbest(P);
? poldisc(P)*1.
%6 = 8.8704 E44
@eprog\noindent In this example, the initial polynomial $P$ is the one
returned by \tet{polredabs}, and the last one is stable.
If $\fl = 1$: outputs a two-component row vector $[P,a]$, where $P$ is the
default output and \kbd{a}, a \typ{POLMOD} modulo~\kbd{P}, is a root of the
original $T$.
\bprog
? [P,a] = polredbest(x^4 + 8, 1)
%1 = [x^4 + 2, Mod(x^3, x^4 + 2)]
? charpoly(a)
%2 = x^4 + 8
@eprog\noindent In particular, the map $\Q[x]/(T) \to \Q[x]/(P)$,
$x\mapsto \kbd{a}$ defines an isomorphism of number fields, which can
be computed as
\bprog
subst(lift(Q), 'x, a)
@eprog\noindent if $Q$ is a \typ{POLMOD} modulo $T$; \kbd{b = modreverse(a)}
returns a \typ{POLMOD} giving the inverse of the above map (which should be
useless since $\Q[x]/(P)$ is a priori a better representation for the number
field and its elements).
The library syntax is \fun{GEN}{polredbest}{GEN T, long flag}.
\subsec{polredord$(x)$}\kbdsidx{polredord}\label{se:polredord}
This function is obsolete, use polredbest.
The library syntax is \fun{GEN}{polredord}{GEN x}.
\subsec{poltschirnhaus$(x)$}\kbdsidx{poltschirnhaus}\label{se:poltschirnhaus}
Applies a random Tschirnhausen
transformation to the polynomial $x$, which is assumed to be nonconstant
and separable, so as to obtain a new equation for the \'etale algebra
defined by $x$. This is for instance useful when computing resolvents,
hence is used by the \kbd{polgalois} function.
The library syntax is \fun{GEN}{tschirnhaus}{GEN x}.
\subsec{rnfalgtobasis$(\var{rnf},x)$}\kbdsidx{rnfalgtobasis}\label{se:rnfalgtobasis}
Expresses $x$ on the relative
integral basis. Here, $\var{rnf}$ is a relative number field extension $L/K$
as output by \kbd{rnfinit}, and $x$ an element of $L$ in absolute form, i.e.
expressed as a polynomial or polmod with polmod coefficients, \emph{not} on
the relative integral basis.
The library syntax is \fun{GEN}{rnfalgtobasis}{GEN rnf, GEN x}.
\subsec{rnfbasis$(\var{bnf},M)$}\kbdsidx{rnfbasis}\label{se:rnfbasis}
Let $K$ the field represented by
\var{bnf}, as output by \kbd{bnfinit}. $M$ is a projective $\Z_{K}$-module
of rank $n$ ($M\otimes K$ is an $n$-dimensional $K$-vector space), given by a
pseudo-basis of size $n$. The routine returns either a true $\Z_{K}$-basis of
$M$ (of size $n$) if it exists, or an $n+1$-element generating set of $M$ if
not.
It is allowed to use a monic irreducible polynomial $P$ in $K[X]$ instead of
$M$, in which case, $M$ is defined as the ring of integers of $K[X]/(P)$,
viewed as a $\Z_{K}$-module.
\misctitle{Huge discriminants, helping rnfdisc} The format $[T,B]$ is
also accepted instead of $T$ and computes an order which is maximal at all
maximal ideals specified by $B$, see \kbd{??rnfinit}: the valuation of $D$ is
then correct at all such maximal ideals but may be incorrect at other primes.
The library syntax is \fun{GEN}{rnfbasis}{GEN bnf, GEN M}.
\subsec{rnfbasistoalg$(\var{rnf},x)$}\kbdsidx{rnfbasistoalg}\label{se:rnfbasistoalg}
Computes the representation of $x$
as a polmod with polmods coefficients. Here, $\var{rnf}$ is a relative number
field extension $L/K$ as output by \kbd{rnfinit}, and $x$ an element of
$L$ expressed on the relative integral basis.
The library syntax is \fun{GEN}{rnfbasistoalg}{GEN rnf, GEN x}.
\subsec{rnfcharpoly$(\var{nf},T,a,\{\var{var}=\kbd{'}x\})$}\kbdsidx{rnfcharpoly}\label{se:rnfcharpoly}
Characteristic polynomial of
$a$ over $\var{nf}$, where $a$ belongs to the algebra defined by $T$ over
$\var{nf}$, i.e.~$\var{nf}[X]/(T)$. Returns a polynomial in variable $v$
($x$ by default).
\bprog
? nf = nfinit(y^2+1);
? rnfcharpoly(nf, x^2+y*x+1, x+y)
%2 = x^2 + Mod(-y, y^2 + 1)*x + 1
@eprog
The library syntax is \fun{GEN}{rnfcharpoly}{GEN nf, GEN T, GEN a, long var = -1} where \kbd{var} is a variable number.
\subsec{rnfconductor$(\var{bnf},T,\{\fl=0\})$}\kbdsidx{rnfconductor}\label{se:rnfconductor}
Given a \var{bnf} structure attached to a number field $K$, as produced
by \kbd{bnfinit}, and $T$ an irreducible polynomial in $K[x]$
defining an \idx{Abelian extension} $L = K[x]/(T)$, computes the class field
theory conductor of this Abelian extension. If $T$ does not define an Abelian
extension over $K$, the result is undefined; it may be the integer $0$ (in
which case the extension is definitely not Abelian) or a wrong result.
The result is a 3-component vector $[f,\var{bnr},H]$, where $f$ is the
conductor of the extension given as a 2-component row vector
$[f_{0},f_{\infty}]$,
\var{bnr} is the attached \kbd{bnr} structure and $H$ is a matrix in HNF
defining the subgroup of the ray class group on the ray class group generators
\kbd{bnr.gen}; in particular, it is a left divisor of the diagonal matrix
attached to \kbd{bnr.cyc} and $|\det H| = N = \deg T$.
\item If \fl\ is $1$, return $[f,\var{bnrmod}, H]$, where
\kbd{bnrmod} is now attached to $\text{Cl}_{f} / \text{Cl}_{f}^{N}$,
and $H$ is as
before since it contains the $N$-th powers. This is useful when $f$ contains
a maximal ideal with huge residue field, since the corresponding tough
discrete logarithms are trivialized: in the quotient group, all elements have
small order dividing $N$. This allows to work in $\text{Cl}_{f}/H$ but no
longer in $\text{Cl}_{f}$.
\item If \fl\ is $2$, only return $[f, \kbd{fa}]$ where \kbd{fa} is the
factorization of the conductor finite part ($=f[1]$).
\misctitle{Huge discriminants, helping rnfdisc} The format $[T,B]$ is
also accepted instead of $T$ and computes the conductor of the extension
provided it factors completely over the maximal ideals specified by $B$,
see \kbd{??rnfinit}: the valuation of $f_{0}$ is then correct at all such
maximal ideals but may be incorrect at other primes.
The library syntax is \fun{GEN}{rnfconductor0}{GEN bnf, GEN T, long flag}.
Also available is \fun{GEN}{rnfconductor}{GEN bnf, GEN T} when $\fl =
0$.
\subsec{rnfdedekind$(\var{nf},\var{pol},\{\var{pr}\},\{\fl=0\})$}\kbdsidx{rnfdedekind}\label{se:rnfdedekind}
Given a number field $K$ coded by $\var{nf}$ and a monic
polynomial $P\in \Z_{K}[X]$, irreducible over $K$ and thus defining a relative
extension $L$ of $K$, applies \idx{Dedekind}'s criterion to the order
$\Z_{K}[X]/(P)$, at the prime ideal \var{pr}. It is possible to set \var{pr}
to a vector of prime ideals (test maximality at all primes in the vector),
or to omit altogether, in which case maximality at \emph{all} primes is tested;
in this situation \fl\ is automatically set to $1$.
The default historic behavior (\fl\ is 0 or omitted and \var{pr} is a
single prime ideal) is not so useful since
\kbd{rnfpseudobasis} gives more information and is generally not that
much slower. It returns a 3-component vector $[\var{max}, \var{basis}, v]$:
\item \var{basis} is a pseudo-basis of an enlarged order $O$ produced by
Dedekind's criterion, containing the original order $\Z_{K}[X]/(P)$
with index a power of \var{pr}. Possibly equal to the original order.
\item \var{max} is a flag equal to 1 if the enlarged order $O$
could be proven to be \var{pr}-maximal and to 0 otherwise; it may still be
maximal in the latter case if \var{pr} is ramified in $L$,
\item $v$ is the valuation at \var{pr} of the order discriminant.
If \fl\ is nonzero, on the other hand, we just return $1$ if the order
$\Z_{K}[X]/(P)$ is \var{pr}-maximal (resp.~maximal at all relevant primes, as
described above), and $0$ if not. This is much faster than the default,
since the enlarged order is not computed.
\bprog
? nf = nfinit(y^2-3); P = x^3 - 2*y;
? pr3 = idealprimedec(nf,3)[1];
? rnfdedekind(nf, P, pr3)
%3 = [1, [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, 1]], 8]
? rnfdedekind(nf, P, pr3, 1)
%4 = 1
@eprog\noindent In this example, \kbd{pr3} is the ramified ideal above $3$,
and the order generated by the cube roots of $y$ is already
\kbd{pr3}-maximal. The order-discriminant has valuation $8$. On the other
hand, the order is not maximal at the prime above 2:
\bprog
? pr2 = idealprimedec(nf,2)[1];
? rnfdedekind(nf, P, pr2, 1)
%6 = 0
? rnfdedekind(nf, P, pr2)
%7 = [0, [[2, 0, 0; 0, 1, 0; 0, 0, 1], [[1, 0; 0, 1], [1, 0; 0, 1],
[1, 1/2; 0, 1/2]]], 2]
@eprog
The enlarged order is not proven to be \kbd{pr2}-maximal yet. In fact, it
is; it is in fact the maximal order:
\bprog
? B = rnfpseudobasis(nf, P)
%8 = [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, [1, 1/2; 0, 1/2]],
[162, 0; 0, 162], -1]
? idealval(nf,B[3], pr2)
%9 = 2
@eprog\noindent
It is possible to use this routine with nonmonic
$P = \sum_{i\leq n} p_{i} X^{i} \in \Z_{K}[X]$ if $\fl = 1$;
in this case, we test maximality of Dedekind's order generated by
$$1, p_{n} \alpha, p_{n}\alpha^{2} + p_{n-1}\alpha, \dots,
p_{n}\alpha^{n-1} + p_{n-1}\alpha^{n-2} + \cdots + p_{1}\alpha.$$
The routine will fail if $P$ vanishes on the projective line over the residue
field $\Z_{K}/\kbd{pr}$ (FIXME).
The library syntax is \fun{GEN}{rnfdedekind}{GEN nf, GEN pol, GEN pr = NULL, long flag}.
\subsec{rnfdet$(\var{nf},M)$}\kbdsidx{rnfdet}\label{se:rnfdet}
Given a pseudo-matrix $M$ over the maximal
order of $\var{nf}$, computes its determinant.
The library syntax is \fun{GEN}{rnfdet}{GEN nf, GEN M}.
\subsec{rnfdisc$(\var{nf},T)$}\kbdsidx{rnfdisc}\label{se:rnfdisc}
Given an \var{nf} structure attached to a number field $K$, as output
by \kbd{nfinit}, and a monic irreducible polynomial $T\in K[x]$ defining a
relative extension $L = K[x]/(T)$, compute the relative discriminant of $L$.
This is a vector $[D,d]$, where $D$ is the relative ideal discriminant and
$d$ is the relative discriminant considered as an element of
$K^{*}/{K^{*}}^{2}$.
The main variable of $\var{nf}$ \emph{must} be of lower priority than that of
$T$, see \secref{se:priority}.
\misctitle{Huge discriminants, helping rnfdisc} The format $[T,B]$ is
also accepted instead of $T$ and computes an order which is maximal at all
maximal ideals specified by $B$, see \kbd{??rnfinit}: the valuation of $D$ is
then correct at all such maximal ideals but may be incorrect at other primes.
The library syntax is \fun{GEN}{rnfdiscf}{GEN nf, GEN T}.
\subsec{rnfeltabstorel$(\var{rnf},x)$}\kbdsidx{rnfeltabstorel}\label{se:rnfeltabstorel}
Let $\var{rnf}$ be a relative number field extension $L/K$ as output by
\kbd{rnfinit} and let $x$ be an
element of $L$ expressed either
\item as a polynomial modulo the absolute equation \kbd{\var{rnf}.polabs},
\item or in terms of the absolute $\Z$-basis for $\Z_{L}$ if \var{rnf}
contains one (as in \kbd{rnfinit(nf,pol,1)}, or after a call to
\kbd{nfinit(rnf)}).
Computes $x$ as an element of the relative extension $L/K$ as a polmod with
polmod coefficients. If $x$ is actually rational, return it as a rational
number:
\bprog
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.polabs
%2 = x^4 + 1
? rnfeltabstorel(L, Mod(x, L.polabs))
%3 = Mod(x, x^2 + Mod(-y, y^2 + 1))
? rnfeltabstorel(L, 1/3)
%4 = 1/3
? rnfeltabstorel(L, Mod(x, x^2-y))
%5 = Mod(x, x^2 + Mod(-y, y^2 + 1))
? rnfeltabstorel(L, [0,0,0,1]~) \\ Z_L not initialized yet
*** at top-level: rnfeltabstorel(L,[0,
*** ^--------------------
*** rnfeltabstorel: incorrect type in rnfeltabstorel, apply nfinit(rnf).
? nfinit(L); \\ initialize now
? rnfeltabstorel(L, [0,0,0,1]~)
%6 = Mod(Mod(y, y^2 + 1)*x, x^2 + Mod(-y, y^2 + 1))
? rnfeltabstorel(L, [1,0,0,0]~)
%7 = 1
@eprog
The library syntax is \fun{GEN}{rnfeltabstorel}{GEN rnf, GEN x}.
\subsec{rnfeltdown$(\var{rnf},x,\{\fl=0\})$}\kbdsidx{rnfeltdown}\label{se:rnfeltdown}
$\var{rnf}$ being a relative number
field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an element of
$L$ expressed as a polynomial or polmod with polmod coefficients (or as a
\typ{COL} on \kbd{nfinit(rnf).zk}), computes
$x$ as an element of $K$ as a \typ{POLMOD} if $\fl = 0$ and as a \typ{COL}
otherwise. If $x$ is not in $K$, a domain error occurs. Note that if $x$
is in fact rational, it is returned as a rational number, ignoring \fl.
\bprog
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.pol
%2 = x^4 + 1
? rnfeltdown(L, Mod(x^2, L.pol))
%3 = Mod(y, y^2 + 1)
? rnfeltdown(L, Mod(x^2, L.pol), 1)
%4 = [0, 1]~
? rnfeltdown(L, Mod(y, x^2-y))
%5 = Mod(y, y^2 + 1)
? rnfeltdown(L, Mod(y,K.pol))
%6 = Mod(y, y^2 + 1)
? rnfeltdown(L, Mod(x, L.pol))
*** at top-level: rnfeltdown(L,Mod(x,x
*** ^--------------------
*** rnfeltdown: domain error in rnfeltdown: element not in the base field
? rnfeltdown(L, Mod(y, x^2-y), 1) \\ as a t_COL
%7 = [0, 1]~
? rnfeltdown(L, [0,0,1,0]~) \\ not allowed without absolute nf struct
*** rnfeltdown: incorrect type in rnfeltdown (t_COL).
? nfinit(L); \\ add absolute nf structure to L
? rnfeltdown(L, [0,0,1,0]~) \\ now OK
%8 = Mod(y, y^2 + 1)
@eprog\noindent If we had started with
\kbd{L = rnfinit(K, x\pow2-y, 1)}, then the final command would have worked
directly.
The library syntax is \fun{GEN}{rnfeltdown0}{GEN rnf, GEN x, long flag}.
Also available is
\fun{GEN}{rnfeltdown}{GEN rnf, GEN x} ($\fl = 0$).
\subsec{rnfeltnorm$(\var{rnf},x)$}\kbdsidx{rnfeltnorm}\label{se:rnfeltnorm}
$\var{rnf}$ being a relative number field extension $L/K$ as output by
\kbd{rnfinit} and $x$ being an element of $L$, returns the relative norm
$N_{L/K}(x)$ as an element of $K$.
\bprog
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? rnfeltnorm(L, Mod(x, L.pol))
%2 = Mod(x, x^2 + Mod(-y, y^2 + 1))
? rnfeltnorm(L, 2)
%3 = 4
@eprog
The library syntax is \fun{GEN}{rnfeltnorm}{GEN rnf, GEN x}.
\subsec{rnfeltreltoabs$(\var{rnf},x)$}\kbdsidx{rnfeltreltoabs}\label{se:rnfeltreltoabs}
$\var{rnf}$ being a relative
number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an
element of $L$ expressed as a polynomial or polmod with polmod
coefficients, computes $x$ as an element of the absolute extension $L/\Q$ as
a polynomial modulo the absolute equation \kbd{\var{rnf}.polabs}.
\bprog
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.polabs
%2 = x^4 + 1
? rnfeltreltoabs(L, Mod(x, L.pol))
%3 = Mod(x, x^4 + 1)
? rnfeltreltoabs(L, Mod(y, x^2-y))
%4 = Mod(x^2, x^4 + 1)
? rnfeltreltoabs(L, Mod(y,K.pol))
%5 = Mod(x^2, x^4 + 1)
@eprog\noindent If the input is actually rational, then \kbd{rnfeltreltoabs}
returns it as a rational number instead of a \typ{POLMOD}:
\bprog
? rnfeltreltoabs(L, Mod(2, K.pol))
%6 = 2
@eprog
The library syntax is \fun{GEN}{rnfeltreltoabs}{GEN rnf, GEN x}.
\subsec{rnfelttrace$(\var{rnf},x)$}\kbdsidx{rnfelttrace}\label{se:rnfelttrace}
$\var{rnf}$ being a relative number field extension $L/K$ as output by
\kbd{rnfinit} and $x$ being an element of $L$, returns the relative trace
$Tr_{L/K}(x)$ as an element of $K$.
\bprog
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? rnfelttrace(L, Mod(x, L.pol))
%2 = 0
? rnfelttrace(L, 2)
%3 = 4
@eprog
The library syntax is \fun{GEN}{rnfelttrace}{GEN rnf, GEN x}.
\subsec{rnfeltup$(\var{rnf},x,\{\fl=0\})$}\kbdsidx{rnfeltup}\label{se:rnfeltup}
$\var{rnf}$ being a relative number field extension $L/K$ as output by
\kbd{rnfinit} and $x$ being an element of $K$, computes $x$ as an element of
the absolute extension $L/\Q$. As a \typ{POLMOD} modulo \kbd{\var{rnf}.pol}
if $\fl = 0$ and as a \typ{COL} on the absolute field integer basis if
$\fl = 1$. Note that if $x$
is in fact rational, it is returned as a rational number, ignoring \fl.
\bprog
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.pol
%2 = x^4 + 1
? rnfeltup(L, Mod(y, K.pol))
%3 = Mod(x^2, x^4 + 1)
? rnfeltup(L, y)
%4 = Mod(x^2, x^4 + 1)
? rnfeltup(L, [1,2]~) \\ in terms of K.zk
%5 = Mod(2*x^2 + 1, x^4 + 1)
? rnfeltup(L, y, 1) \\ in terms of nfinit(L).zk
%6 = [0, 1, 0, 0]~
? rnfeltup(L, [1,2]~, 1)
%7 = [1, 2, 0, 0]~
? rnfeltup(L, [1,0]~) \\ rational
%8 = 1
@eprog
The library syntax is \fun{GEN}{rnfeltup0}{GEN rnf, GEN x, long flag}.
Also available is
\fun{GEN}{rnfeltup}{GEN rnf, GEN x} ($\fl = 0$).
\subsec{rnfequation$(\var{nf},\var{pol},\{\fl=0\})$}\kbdsidx{rnfequation}\label{se:rnfequation}
Given a number field $\var{nf}$ as output by \kbd{nfinit}
(or simply a monic irreducible integral polynomial defining the field)
and a polynomial \var{pol} with coefficients in $\var{nf}$ defining a
relative extension $L$ of $\var{nf}$, computes an absolute equation of $L$
over $\Q$.
The main variable of $\var{nf}$ \emph{must} be of lower priority than that
of \var{pol} (see \secref{se:priority}). Note that for efficiency, this does
not check whether the relative equation is irreducible over $\var{nf}$, but
only if it is squarefree. If it is reducible but squarefree, the result will
be the absolute equation of the \'etale algebra defined by \var{pol}. If
\var{pol} is not squarefree, raise an \kbd{e\_DOMAIN} exception.
\bprog
? rnfequation(y^2+1, x^2 - y)
%1 = x^4 + 1
? T = y^3-2; rnfequation(nfinit(T), (x^3-2)/(x-Mod(y,T)))
%2 = x^6 + 108 \\ Galois closure of Q(2^(1/3))
@eprog
If $\fl$ is nonzero, outputs a 3-component row vector $[z,a,k]$, where
\item $z$ is the absolute equation of $L$ over $\Q$, as in the default
behavior,
\item $a$ expresses as a \typ{POLMOD} modulo $z$ a root $\alpha$ of the
polynomial defining the base field $\var{nf}$,
\item $k$ is a small integer such that $\theta = \beta+k\alpha$
is a root of $z$, where $\beta$ is a root of $\var{pol}$. It is guaranteed
that $k=0$ whenever $\Q(\beta) = L$.
\bprog
? T = y^3-2; pol = x^2 +x*y + y^2;
? [z,a,k] = rnfequation(T, pol, 1);
? z
%3 = x^6 + 108
? subst(T, y, a)
%4 = 0
? alpha= Mod(y, T);
? beta = Mod(x*Mod(1,T), pol);
? subst(z, x, beta + k*alpha)
%7 = 0
@eprog
The library syntax is \fun{GEN}{rnfequation0}{GEN nf, GEN pol, long flag}.
Also available are
\fun{GEN}{rnfequation}{GEN nf, GEN pol} ($\fl = 0$) and
\fun{GEN}{rnfequation2}{GEN nf, GEN pol} ($\fl = 1$).
\subsec{rnfhnfbasis$(\var{bnf},M)$}\kbdsidx{rnfhnfbasis}\label{se:rnfhnfbasis}
Given a \var{bnf} attached to a number field $K$ and a projective
$\Z_{K}$-module $M$ given by a pseudo-matrix, returns either a true HNF basis
of $M$ if one exists, or zero otherwise. If $M$ is a polynomial with
coefficients in $K$, replace it by the pseudo-matrix returned by
\kbd{rnfpseudobasis}.
The library syntax is \fun{GEN}{rnfhnfbasis}{GEN bnf, GEN M}.
\subsec{rnfidealabstorel$(\var{rnf},x)$}\kbdsidx{rnfidealabstorel}\label{se:rnfidealabstorel}
Let $\var{rnf}$ be a relative
number field extension $L/K$ as output by \kbd{rnfinit} and let $x$ be an
ideal of the absolute extension $L/\Q$. Returns the relative pseudo-matrix in
HNF giving the ideal $x$ considered as an ideal of the relative extension
$L/K$, i.e.~as a $\Z_{K}$-module.
Let \kbd{Labs} be an (absolute) \kbd{nf} structure attached to $L$,
obtained via \kbd{Labs = nfinit(rnf))}. Then \kbd{rnf} ``knows'' about
\kbd{Labs} and $x$ may be given in any format
attached to \kbd{Labs}, e.g. a prime ideal or an ideal in HNF wrt.
\kbd{Labs.zk}:
\bprog
? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y); Labs = nfinit(rnf);
? m = idealhnf(Labs, 17, x^3+2); \\ some ideal in HNF wrt. Labs.zk
? B = rnfidealabstorel(rnf, m)
%3 = [[1, 8; 0, 1], [[17, 4; 0, 1], 1]] \\ pseudo-basis for m as Z_K-module
? A = rnfidealreltoabs(rnf, B)
%4 = [17, x^2 + 4, x + 8, x^3 + 8*x^2] \\ Z-basis for m in Q[x]/(rnf.polabs)
? mathnf(matalgtobasis(Labs, A)) == m
%5 = 1
@eprog\noindent If on the other hand, we do not have a \kbd{Labs} at hand,
because it would be too expensive to compute, but we nevertheless have
a $\Z$-basis for $x$, then we can use the function with this basis as
argument. The entries of $x$ may be given either modulo \kbd{rnf.polabs}
(absolute form, possibly lifted) or modulo \kbd{rnf.pol} (relative form as
\typ{POLMOD}s):
\bprog
? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y);
? rnfidealabstorel(rnf, [17, x^2 + 4, x + 8, x^3 + 8*x^2])
%2 = [[1, 8; 0, 1], [[17, 4; 0, 1], 1]]
? rnfidealabstorel(rnf, Mod([17, y + 4, x + 8, y*x + 8*y], x^2-y))
%3 = [[1, 8; 0, 1], [[17, 4; 0, 1], 1]]
@eprog
The library syntax is \fun{GEN}{rnfidealabstorel}{GEN rnf, GEN x}.
\subsec{rnfidealdown$(\var{rnf},x)$}\kbdsidx{rnfidealdown}\label{se:rnfidealdown}
Let $\var{rnf}$ be a relative number
field extension $L/K$ as output by \kbd{rnfinit}, and $x$ an ideal of
$L$, given either in relative form or by a $\Z$-basis of elements of $L$
(see \secref{se:rnfidealabstorel}). This function returns the ideal of $K$
below $x$, i.e.~the intersection of $x$ with $K$.
The library syntax is \fun{GEN}{rnfidealdown}{GEN rnf, GEN x}.
\subsec{rnfidealfactor$(\var{rnf},x)$}\kbdsidx{rnfidealfactor}\label{se:rnfidealfactor}
Factor into prime ideal powers the
ideal $x$ in the attached absolute number field $L = \kbd{nfinit}(\var{rnf})$.
The output format is similar to the \kbd{factor} function, and the prime
ideals are represented in the form output by the \kbd{idealprimedec}
function for $L$.
\bprog
? rnf = rnfinit(nfinit(y^2+1), x^2-y+1);
? rnfidealfactor(rnf, y+1) \\ P_2^2
%2 =
[[2, [0,0,1,0]~, 4, 1, [0,0,0,2;0,0,-2,0;-1,-1,0,0;1,-1,0,0]] 2]
? rnfidealfactor(rnf, x) \\ P_2
%3 =
[[2, [0,0,1,0]~, 4, 1, [0,0,0,2;0,0,-2,0;-1,-1,0,0;1,-1,0,0]] 1]
? L = nfinit(rnf);
? id = idealhnf(L, idealhnf(L, 25, (x+1)^2));
? idealfactor(L, id) == rnfidealfactor(rnf, id)
%6 = 1
@eprog\noindent Note that ideals of the base field $K$ must be explicitly
lifted to $L$ via \kbd{rnfidealup} before they can be factored.
The library syntax is \fun{GEN}{rnfidealfactor}{GEN rnf, GEN x}.
\subsec{rnfidealhnf$(\var{rnf},x)$}\kbdsidx{rnfidealhnf}\label{se:rnfidealhnf}
$\var{rnf}$ being a relative number
field extension $L/K$ as output by \kbd{rnfinit} and $x$ being a relative
ideal (which can be, as in the absolute case, of many different types,
including of course elements), computes the HNF pseudo-matrix attached to
$x$, viewed as a $\Z_{K}$-module.
The library syntax is \fun{GEN}{rnfidealhnf}{GEN rnf, GEN x}.
\subsec{rnfidealmul$(\var{rnf},x,y)$}\kbdsidx{rnfidealmul}\label{se:rnfidealmul}
$\var{rnf}$ being a relative number
field extension $L/K$ as output by \kbd{rnfinit} and $x$ and $y$ being ideals
of the relative extension $L/K$ given by pseudo-matrices, outputs the ideal
product, again as a relative ideal.
The library syntax is \fun{GEN}{rnfidealmul}{GEN rnf, GEN x, GEN y}.
\subsec{rnfidealnormabs$(\var{rnf},x)$}\kbdsidx{rnfidealnormabs}\label{se:rnfidealnormabs}
Let $\var{rnf}$ be a relative
number field extension $L/K$ as output by \kbd{rnfinit} and let $x$ be a
relative ideal (which can be, as in the absolute case, of many different
types, including of course elements). This function computes the norm of the
$x$ considered as an ideal of the absolute extension $L/\Q$. This is
identical to
\bprog
idealnorm(rnf, rnfidealnormrel(rnf,x))
@eprog\noindent but faster.
The library syntax is \fun{GEN}{rnfidealnormabs}{GEN rnf, GEN x}.
\subsec{rnfidealnormrel$(\var{rnf},x)$}\kbdsidx{rnfidealnormrel}\label{se:rnfidealnormrel}
Let $\var{rnf}$ be a relative
number field extension $L/K$ as output by \kbd{rnfinit} and let $x$ be a
relative ideal (which can be, as in the absolute case, of many different
types, including of course elements). This function computes the relative
norm of $x$ as an ideal of $K$ in HNF.
The library syntax is \fun{GEN}{rnfidealnormrel}{GEN rnf, GEN x}.
\subsec{rnfidealprimedec$(\var{rnf},\var{pr})$}\kbdsidx{rnfidealprimedec}\label{se:rnfidealprimedec}
Let \var{rnf} be a relative number
field extension $L/K$ as output by \kbd{rnfinit}, and \var{pr} a maximal
ideal of $K$ (\var{prid}), this function completes the \var{rnf}
with a \var{nf} structure attached to $L$ (see \secref{se:rnfinit})
and returns the vector $S$ of prime ideals of $\Z_{L}$ above \var{pr}.
\bprog
? K = nfinit(y^2+1); rnf = rnfinit(K, x^3+y+1);
? pr = idealprimedec(K, 2)[1];
? S = rnfidealprimedec(rnf, pr);
? #S
%4 = 1
@eprog\noindent The relative ramification indices and residue degrees
can be obtained as \kbd{PR.e / pr.e} and \kbd{PR.f / PR.f}, if \kbd{PR}
is an element of $S$.
The argument \var{pr} is also allowed to be a prime number $p$, in which
case the function returns a pair of vectors \kbd{[SK,SL]}, where \kbd{SK}
contains the primes of $K$ above $p$ and \kbd{SL}$[i]$ is the vector of primes
of $L$ above \kbd{SK}$[i]$.
\bprog
? [SK,SL] = rnfidealprimedec(rnf, 5);
? [#SK, vector(#SL,i,#SL[i])]
%6 = [2, [2, 2]]
@eprog
The library syntax is \fun{GEN}{rnfidealprimedec}{GEN rnf, GEN pr}.
\subsec{rnfidealreltoabs$(\var{rnf},x,\{\fl=0\})$}\kbdsidx{rnfidealreltoabs}\label{se:rnfidealreltoabs}
Let $\var{rnf}$ be a relative
number field extension $L/K$ as output by \kbd{rnfinit} and let $x$ be a
relative ideal, given as a $\Z_{K}$-module by a pseudo matrix $[A,I]$.
This function returns the ideal $x$ as an absolute ideal of $L/\Q$.
If $\fl = 0$, the result is given by a vector of \typ{POLMOD}s modulo
\kbd{rnf.pol} forming a $\Z$-basis; if $\fl = 1$, it is given in HNF in terms
of the fixed $\Z$-basis for $\Z_{L}$, see \secref{se:rnfinit}.
\bprog
? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y);
? P = idealprimedec(K,2)[1];
? P = rnfidealup(rnf, P)
%3 = [2, x^2 + 1, 2*x, x^3 + x]
? Prel = rnfidealhnf(rnf, P)
%4 = [[1, 0; 0, 1], [[2, 1; 0, 1], [2, 1; 0, 1]]]
? rnfidealreltoabs(rnf,Prel)
%5 = [2, x^2 + 1, 2*x, x^3 + x]
? rnfidealreltoabs(rnf,Prel,1)
%6 =
[2 1 0 0]
[0 1 0 0]
[0 0 2 1]
[0 0 0 1]
@eprog
The reason why we do not return by default ($\fl = 0$) the customary HNF in
terms of a fixed $\Z$-basis for $\Z_{L}$ is precisely because
a \var{rnf} does not contain such a basis by default. Completing the
structure so that it contains a \var{nf} structure for $L$ is polynomial
time but costly when the absolute degree is large, thus it is not done by
default. Note that setting $\fl = 1$ will complete the \var{rnf}.
The library syntax is \fun{GEN}{rnfidealreltoabs0}{GEN rnf, GEN x, long flag}.
Also available is
\fun{GEN}{rnfidealreltoabs}{GEN rnf, GEN x} ($\fl = 0$).
\subsec{rnfidealtwoelt$(\var{rnf},x)$}\kbdsidx{rnfidealtwoelt}\label{se:rnfidealtwoelt}
$\var{rnf}$ being a relative
number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an
ideal of the relative extension $L/K$ given by a pseudo-matrix, gives a
vector of two generators of $x$ over $\Z_{L}$ expressed as polmods with polmod
coefficients.
The library syntax is \fun{GEN}{rnfidealtwoelement}{GEN rnf, GEN x}.
\subsec{rnfidealup$(\var{rnf},x,\{\fl=0\})$}\kbdsidx{rnfidealup}\label{se:rnfidealup}
Let $\var{rnf}$ be a relative number
field extension $L/K$ as output by \kbd{rnfinit} and let $x$ be an ideal of
$K$. This function returns the ideal $x\Z_{L}$ as an absolute ideal of $L/\Q$,
in the form of a $\Z$-basis. If $\fl = 0$, the result is given by a vector of
polynomials (modulo \kbd{rnf.pol}); if $\fl = 1$, it is given in HNF in terms
of the fixed $\Z$-basis for $\Z_{L}$, see \secref{se:rnfinit}.
\bprog
? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y);
? P = idealprimedec(K,2)[1];
? rnfidealup(rnf, P)
%3 = [2, x^2 + 1, 2*x, x^3 + x]
? rnfidealup(rnf, P,1)
%4 =
[2 1 0 0]
[0 1 0 0]
[0 0 2 1]
[0 0 0 1]
@eprog
The reason why we do not return by default ($\fl = 0$) the customary HNF in
terms of a fixed $\Z$-basis for $\Z_{L}$ is precisely because
a \var{rnf} does not contain such a basis by default. Completing the
structure so that it contains a \var{nf} structure for $L$ is polynomial
time but costly when the absolute degree is large, thus it is not done by
default. Note that setting $\fl = 1$ will complete the \var{rnf}.
The library syntax is \fun{GEN}{rnfidealup0}{GEN rnf, GEN x, long flag}.
Also available is
\fun{GEN}{rnfidealup}{GEN rnf, GEN x} ($\fl = 0$).
\subsec{rnfinit$(\var{nf},T,\{\fl=0\})$}\kbdsidx{rnfinit}\label{se:rnfinit}
Given an \var{nf} structure attached to a number field $K$, as output by
\kbd{nfinit}, and a monic irreducible polynomial $T$ in $\Z_{K}[x]$ defining a
relative extension $L = K[x]/(T)$, this computes data to work in $L/K$
The main variable of $T$ must be of higher priority
(see \secref{se:priority}) than that of $\var{nf}$, and the coefficients of
$T$ must be in $K$.
The result is a row vector, whose components are technical.
We let $m = [K:\Q]$ the degree of the base field, $n = [L:K]$ the relative
degree, $r_{1}$ and $r_{2}$ the number of real and complex places of $K$. Access
to this information via \emph{member functions} is preferred since the
specific data organization specified below will change in the future.
If $\fl = 1$, add an \var{nf} structure attached to $L$ to \var{rnf}.
This is likely to be very expensive if the absolute degree $mn$ is large,
but fixes an integer basis for $\Z_{L}$ as a $\Z$-module and allows to input
and output elements of $L$ in absolute form: as \typ{COL} for elements,
as \typ{MAT} in HNF for ideals, as \kbd{prid} for prime ideals. Without such
a call, elements of $L$ are represented as \typ{POLMOD}, etc.
Note that a subsequent \kbd{nfinit}$(\var{rnf})$ will also explicitly
add such a component, and so will the following functions \kbd{rnfidealmul},
\kbd{rnfidealtwoelt}, \kbd{rnfidealprimedec}, \kbd{rnfidealup} (with flag 1)
and \kbd{rnfidealreltoabs} (with flag 1). The absolute \var{nf} structure
attached to $L$ can be recovered using \kbd{nfinit(rnf)}.
$\var{rnf}[1]$(\kbd{rnf.pol}) contains the relative polynomial $T$.
$\var{rnf}[2]$ contains the integer basis $[A,d]$ of $K$, as
(integral) elements of $L/\Q$. More precisely, $A$ is a vector of
polynomial with integer coefficients, $d$ is a denominator, and the integer
basis is given by $A/d$.
$\var{rnf}[3]$ (\kbd{rnf.disc}) is a two-component row vector
$[\goth{d}(L/K),s]$ where $\goth{d}(L/K)$ is the relative ideal discriminant
of $L/K$ and $s$ is the discriminant of $L/K$ viewed as an element of
$K^{*}/(K^{*})^{2}$, in other words it is the output of \kbd{rnfdisc}.
$\var{rnf}[4]$(\kbd{rnf.index}) is the ideal index $\goth{f}$, i.e.~such
that $d(T)\Z_{K}=\goth{f}^{2}\goth{d}(L/K)$.
$\var{rnf}[5]$(\kbd{rnf.p}) is the list of rational primes dividing the norm
of the relative discriminant ideal.
$\var{rnf}[7]$ (\kbd{rnf.zk}) is the pseudo-basis $(A,I)$ for the maximal
order $\Z_{L}$ as a $\Z_{K}$-module: $A$ is the relative integral pseudo basis
expressed as polynomials (in the variable of $T$) with polmod coefficients
in $\var{nf}$, and the second component $I$ is the ideal list of the
pseudobasis in HNF.
$\var{rnf}[8]$ is the inverse matrix of the integral basis matrix, with
coefficients polmods in $\var{nf}$.
$\var{rnf}[9]$ is currently unused.
$\var{rnf}[10]$ (\kbd{rnf.nf}) is $\var{nf}$.
$\var{rnf}[11]$ is an extension of \kbd{rnfequation(K, T, 1)}. Namely, a
vector $[P, a, k, \kbd{K.pol}, T]$ describing the \emph{absolute}
extension $L/\Q$: $P$ is an absolute equation, more conveniently obtained
as \kbd{rnf.polabs}; $a$ expresses the generator $\alpha = y \mod \kbd{K.pol}$
of the number field $K$ as an element of $L$, i.e.~a polynomial modulo the
absolute equation $P$;
$k$ is a small integer such that, if $\beta$ is an abstract root of $T$
and $\alpha$ the generator of $K$ given above, then $P(\beta + k\alpha) = 0$.
It is guaranteed that $k = 0$ if $\Q(\beta) = L$.
\misctitle{Caveat} Be careful if $k\neq0$ when dealing simultaneously with
absolute and relative quantities since $L = \Q(\beta + k\alpha) =
K(\alpha)$, and the generator chosen for the absolute extension is not the
same as for the relative one. If this happens, one can of course go on
working, but we advise to change the relative polynomial so that its root
becomes $\beta + k \alpha$. Typical GP instructions would be
\bprog
[P,a,k] = rnfequation(K, T, 1);
if (k, T = subst(T, x, x - k*Mod(y, K.pol)));
L = rnfinit(K, T);
@eprog
$\var{rnf}[12]$ is by default unused and set equal to 0. This field is used
to store further information about the field as it becomes available (which
is rarely needed, hence would be too expensive to compute during the initial
\kbd{rnfinit} call).
\misctitle{Huge discriminants, helping rnfdisc} When $T$ has a
discriminant which is difficult to factor, it is hard to compute
$\Z_{L}$. As in \kbd{nfinit}, the special input format $[T,B]$
is also accepted, where $T$ is a polynomial as above and $B$ specifies a
list of maximal ideals. The following formats are recognized for $B$:
\item an integer: the list of all maximal ideals above a rational
prime $p < B$.
\item a vector of rational primes or prime ideals: the list of all maximal
ideals dividing an element in the list.
Instead of $\Z_{L}$, this produces an order which is maximal at all such
maximal ideals primes. The result may actually be a complete and correct
\var{rnf} structure if the relative ideal discriminant factors completely
over this list of maximal ideals but this is not guaranteed. In general, the
order may not be maximal at primes $\goth{p}$ not in the list such that
$\goth{p}^{2}$ divides the relative ideal discriminant.
The library syntax is \fun{GEN}{rnfinit0}{GEN nf, GEN T, long flag}.
Also available is
\fun{GEN}{rnfinit}{GEN nf,GEN T} ($\fl = 0$).
\subsec{rnfisabelian$(\var{nf},T)$}\kbdsidx{rnfisabelian}\label{se:rnfisabelian}
$T$ being a relative polynomial with coefficients
in \var{nf}, return 1 if it defines an abelian extension, and 0 otherwise.
\bprog
? K = nfinit(y^2 + 23);
? rnfisabelian(K, x^3 - 3*x - y)
%2 = 1
@eprog
The library syntax is \fun{long}{rnfisabelian}{GEN nf, GEN T}.
\subsec{rnfisfree$(\var{bnf},M)$}\kbdsidx{rnfisfree}\label{se:rnfisfree}
Given a $\var{bnf}$ attached to a number field $K$ and
a projective $\Z_{K}$-module $M$ given by a pseudo-matrix, return true (1) if
$M$ is free else return false (0). If $M$ is a polynomial with coefficients
in $K$, replace it by the pseudo-matrix returned by \kbd{rnfpseudobasis}.
The library syntax is \fun{long}{rnfisfree}{GEN bnf, GEN M}.
\subsec{rnfislocalcyclo$(\var{rnf})$}\kbdsidx{rnfislocalcyclo}\label{se:rnfislocalcyclo}
Let \var{rnf} be a relative number field extension $L/K$ as output
by \kbd{rnfinit} whose degree $[L:K]$ is a power of a prime $\ell$.
Return $1$ if the $\ell$-extension is locally cyclotomic (locally contained in
the cyclotomic $\Z_{\ell}$-extension of $K_{v}$ at all places $v | \ell$), and
$0$ if not.
\bprog
? K = nfinit(y^2 + y + 1);
? L = rnfinit(K, x^3 - y); /* = K(zeta_9), globally cyclotomic */
? rnfislocalcyclo(L)
%3 = 1
\\ we expect 3-adic continuity by Krasner's lemma
? vector(5, i, rnfislocalcyclo(rnfinit(K, x^3 - y + 3^i)))
%5 = [0, 1, 1, 1, 1]
@eprog
The library syntax is \fun{long}{rnfislocalcyclo}{GEN rnf}.
\subsec{rnfisnorm$(T,a,\{\fl=0\})$}\kbdsidx{rnfisnorm}\label{se:rnfisnorm}
Similar to
\kbd{bnfisnorm} but in the relative case. $T$ is as output by
\tet{rnfisnorminit} applied to the extension $L/K$. This tries to decide
whether the element $a$ in $K$ is the norm of some $x$ in the extension
$L/K$.
The output is a vector $[x,q]$, where $a = \Norm(x)*q$. The
algorithm looks for a solution $x$ which is an $S$-integer, with $S$ a list
of places of $K$ containing at least the ramified primes, the generators of
the class group of $L$, as well as those primes dividing $a$. If $L/K$ is
Galois, then this is enough but you may want to add more primes to $S$ to
produce different elements, possibly smaller; otherwise, $\fl$ is used to
add more primes to $S$: all the places above the primes $p \leq \fl$
(resp.~$p|\fl$) if $\fl>0$ (resp.~$\fl<0$).
The answer is guaranteed (i.e.~$a$ is a norm iff $q = 1$) if the field is
Galois, or, under \idx{GRH}, if $S$ contains all primes less than
$4\log^{2}\left|\disc(M)\right|$, where $M$ is the normal
closure of $L/K$.
If \tet{rnfisnorminit} has determined (or was told) that $L/K$ is
\idx{Galois}, and $\fl \neq 0$, a Warning is issued (so that you can set
$\fl = 1$ to check whether $L/K$ is known to be Galois, according to $T$).
Example:
\bprog
bnf = bnfinit(y^3 + y^2 - 2*y - 1);
p = x^2 + Mod(y^2 + 2*y + 1, bnf.pol);
T = rnfisnorminit(bnf, p);
rnfisnorm(T, 17)
@eprog\noindent
checks whether $17$ is a norm in the Galois extension $\Q(\beta) /
\Q(\alpha)$, where $\alpha^{3} + \alpha^{2} - 2\alpha - 1 = 0$ and
$\beta^{2} + \alpha^{2} + 2\alpha + 1 = 0$ (it is).
The library syntax is \fun{GEN}{rnfisnorm}{GEN T, GEN a, long flag}.
\subsec{rnfisnorminit$(\var{pol},\var{polrel},\{\fl=2\})$}\kbdsidx{rnfisnorminit}\label{se:rnfisnorminit}
Let $K$ be defined by a root of \var{pol}, and $L/K$ the extension defined
by the polynomial \var{polrel}. As usual, \var{pol} can in fact be an \var{nf},
or \var{bnf}, etc; if \var{pol} has degree $1$ (the base field is $\Q$),
polrel is also allowed to be an \var{nf}, etc. Computes technical data needed
by \tet{rnfisnorm} to solve norm equations $Nx = a$, for $x$ in $L$, and $a$
in $K$.
If $\fl = 0$, do not care whether $L/K$ is Galois or not.
If $\fl = 1$, $L/K$ is assumed to be Galois (unchecked), which speeds up
\tet{rnfisnorm}.
If $\fl = 2$, let the routine determine whether $L/K$ is Galois.
The library syntax is \fun{GEN}{rnfisnorminit}{GEN pol, GEN polrel, long flag}.
\subsec{rnfkummer$(\var{bnr},\{\var{subgp}\})$}\kbdsidx{rnfkummer}\label{se:rnfkummer}
This function is deprecated, use \kbd{bnrclassfield}.
The library syntax is \fun{GEN}{rnfkummer}{GEN bnr, GEN subgp = NULL, long prec}.
\subsec{rnflllgram$(\var{nf},\var{pol},\var{order})$}\kbdsidx{rnflllgram}\label{se:rnflllgram}
Given a polynomial
\var{pol} with coefficients in \var{nf} defining a relative extension $L$ and
a suborder \var{order} of $L$ (of maximal rank), as output by
\kbd{rnfpseudobasis}$(\var{nf},\var{pol})$ or similar, gives
$[[\var{neworder}],U]$, where \var{neworder} is a reduced order and $U$ is
the unimodular transformation matrix.
The library syntax is \fun{GEN}{rnflllgram}{GEN nf, GEN pol, GEN order, long prec}.
\subsec{rnfnormgroup$(\var{bnr},\var{pol})$}\kbdsidx{rnfnormgroup}\label{se:rnfnormgroup}
\var{bnr} being a big ray
class field as output by \kbd{bnrinit} and \var{pol} a relative polynomial
defining an \idx{Abelian extension}, computes the norm group (alias Artin
or Takagi group) corresponding to the Abelian extension of
$\var{bnf}=$\kbd{bnr.bnf}
defined by \var{pol}, where the module corresponding to \var{bnr} is assumed
to be a multiple of the conductor (i.e.~\var{pol} defines a subextension of
bnr). The result is the HNF defining the norm group on the given generators
of \kbd{bnr.gen}. Note that neither the fact that \var{pol} defines an
Abelian extension nor the fact that the module is a multiple of the conductor
is checked. The result is undefined if the assumption is not correct,
but the function will return the empty matrix \kbd{[;]} if it detects a
problem; it may also not detect the problem and return a wrong result.
The library syntax is \fun{GEN}{rnfnormgroup}{GEN bnr, GEN pol}.
\subsec{rnfpolred$(\var{nf},\var{pol})$}\kbdsidx{rnfpolred}\label{se:rnfpolred}
This function is obsolete: use \tet{rnfpolredbest} instead.
Relative version of \kbd{polred}. Given a monic polynomial \var{pol} with
coefficients in $\var{nf}$, finds a list of relative polynomials defining some
subfields, hopefully simpler and containing the original field. In the present
version \vers, this is slower and less efficient than \kbd{rnfpolredbest}.
\misctitle{Remark} This function is based on an incomplete reduction
theory of lattices over number fields, implemented by \kbd{rnflllgram}, which
deserves to be improved.
The library syntax is \fun{GEN}{rnfpolred}{GEN nf, GEN pol, long prec}.
\subsec{rnfpolredabs$(\var{nf},\var{pol},\{\fl=0\})$}\kbdsidx{rnfpolredabs}\label{se:rnfpolredabs}
Relative version of \kbd{polredabs}. Given an irreducible monic polynomial
\var{pol} with coefficients in the maximal order of $\var{nf}$, finds a
canonical relative
polynomial defining the same field, hopefully with small coefficients.
Note that the equation is only canonical for a fixed \var{nf}, using a
different defining polynomial in the \var{nf} structure will produce a
different relative equation.
The binary digits of $\fl$ correspond to $1$: add information to convert
elements to the new representation, $2$: absolute polynomial, instead of
relative, $16$: possibly use a suborder of the maximal order. More precisely:
0: default, return $P$
1: returns $[P,a]$ where $P$ is the default output and $a$,
a \typ{POLMOD} modulo $P$, is a root of \var{pol}.
2: returns \var{Pabs}, an absolute, instead of a relative, polynomial.
This polynomial is canonical and does not depend on the \var{nf} structure.
Same as but faster than
\bprog
polredabs(rnfequation(nf, pol))
@eprog
3: returns $[\var{Pabs},a,b]$, where \var{Pabs} is an absolute polynomial
as above, $a$, $b$ are \typ{POLMOD} modulo \var{Pabs}, roots of \kbd{nf.pol}
and \var{pol} respectively.
16: (OBSOLETE) possibly use a suborder of the maximal order. This makes
\kbd{rnfpolredabs} behave as \kbd{rnfpolredbest}. Just use the latter.
\misctitle{Warning} The complexity of \kbd{rnfpolredabs}
is exponential in the absolute degree. The function \tet{rnfpolredbest} runs
in polynomial time, and tends to return polynomials with smaller
discriminants. It also supports polynomials with arbitrary coefficients in
\var{nf}, neither integral nor necessarily monic.
The library syntax is \fun{GEN}{rnfpolredabs}{GEN nf, GEN pol, long flag}.
\subsec{rnfpolredbest$(\var{nf},\var{pol},\{\fl=0\})$}\kbdsidx{rnfpolredbest}\label{se:rnfpolredbest}
Relative version of \kbd{polredbest}. Given a polynomial \var{pol}
with coefficients in $\var{nf}$, finds a simpler relative polynomial $P$
defining the same field. As opposed to \tet{rnfpolredabs} this function does
not return a \emph{smallest} (canonical) polynomial with respect to some
measure, but it does run in polynomial time.
The binary digits of $\fl$ correspond to $1$: add information to convert
elements to the new representation, $2$: absolute polynomial, instead of
relative. More precisely:
0: default, return $P$
1: returns $[P,a]$ where $P$ is the default output and $a$,
a \typ{POLMOD} modulo $P$, is a root of \var{pol}.
2: returns \var{Pabs}, an absolute, instead of a relative, polynomial.
Same as but faster than
\bprog
rnfequation(nf, rnfpolredbest(nf,pol))
@eprog
3: returns $[\var{Pabs},a,b]$, where \var{Pabs} is an absolute polynomial
as above, $a$, $b$ are \typ{POLMOD} modulo \var{Pabs}, roots of \kbd{nf.pol}
and \var{pol} respectively.
\bprog
? K = nfinit(y^3-2); pol = x^2 +x*y + y^2;
? [P, a] = rnfpolredbest(K,pol,1);
? P
%3 = x^2 - x + Mod(y - 1, y^3 - 2)
? a
%4 = Mod(Mod(2*y^2+3*y+4,y^3-2)*x + Mod(-y^2-2*y-2,y^3-2),
x^2 - x + Mod(y-1,y^3-2))
? subst(K.pol,y,a)
%5 = 0
? [Pabs, a, b] = rnfpolredbest(K,pol,3);
? Pabs
%7 = x^6 - 3*x^5 + 5*x^3 - 3*x + 1
? a
%8 = Mod(-x^2+x+1, x^6-3*x^5+5*x^3-3*x+1)
? b
%9 = Mod(2*x^5-5*x^4-3*x^3+10*x^2+5*x-5, x^6-3*x^5+5*x^3-3*x+1)
? subst(K.pol,y,a)
%10 = 0
? substvec(pol,[x,y],[a,b])
%11 = 0
@eprog
The library syntax is \fun{GEN}{rnfpolredbest}{GEN nf, GEN pol, long flag}.
\subsec{rnfpseudobasis$(\var{nf},T)$}\kbdsidx{rnfpseudobasis}\label{se:rnfpseudobasis}
Given an \var{nf} structure attached to a number field $K$, as output by
\kbd{nfinit}, and a monic irreducible polynomial $T$ in $\Z_{K}[x]$ defining a
relative extension $L = K[x]/(T)$, computes the relative discriminant of $L$
and a pseudo-basis $(A,J)$ for the maximal order $\Z_{L}$ viewed as a
$\Z_{K}$-module. This is output as a vector $[A,J,D,d]$, where $D$ is the
relative ideal discriminant and $d$ is the relative discriminant considered
as an element of $K^{*}/{K^{*}}^{2}$.
\bprog
? K = nfinit(y^2+1);
? [A,J,D,d] = rnfpseudobasis(K, x^2+y);
? A
%3 =
[1 0]
[0 1]
? J
%4 = [1, 1]
? D
%5 = [0, -4]~
? d
%6 = [0, -1]~
@eprog
\misctitle{Huge discriminants, helping rnfdisc} The format $[T,B]$ is
also accepted instead of $T$ and produce an order which is maximal at all
prime ideals specified by $B$, see \kbd{??rnfinit}.
\bprog
? p = 585403248812100232206609398101;
? q = 711171340236468512951957953369;
? T = x^2 + 3*(p*q)^2;
? [A,J,D,d] = V = rnfpseudobasis(K, T); D
time = 22,178 ms.
%10 = 3
? [A,J,D,d] = W = rnfpseudobasis(K, [T,100]); D
time = 5 ms.
%11 = 3
? V == W
%12 = 1
? [A,J,D,d] = W = rnfpseudobasis(K, [T, [3]]); D
%13 = 3
? V == W
%14 = 1
@eprog\noindent In this example, the results are identical since $D \cap \Z$
factors over primes less than $100$ (and in fact, over $3$). Had it not been
the case, the order would have been guaranteed maximal at primes
$\goth{p} | p $ for $p \leq 100$ only (resp.~$\goth{p} | 3$).
And might have been nonmaximal at any other prime ideal $\goth{p}$ such
that $\goth{p}^{2}$ divided $D$.
The library syntax is \fun{GEN}{rnfpseudobasis}{GEN nf, GEN T}.
\subsec{rnfsteinitz$(\var{nf},M)$}\kbdsidx{rnfsteinitz}\label{se:rnfsteinitz}
Given a $\var{nf}$ attached to a number field $K$ and a projective
module $M$ given by a pseudo-matrix, returns a pseudo-basis $(A,I)$
(not in HNF in general) such that all the ideals of $I$ except perhaps the
last one are equal to the ring of integers of $\var{nf}$. If $M$ is a
polynomial with coefficients in $K$, replace it by the pseudo-matrix
returned by \kbd{rnfpseudobasis} and return the four-component row vector
$[A,I,D,d]$ where $(A,I)$ are as before and $(D,d)$ are discriminants
as returned by \kbd{rnfpseudobasis}. The ideal class of the last ideal of
$I$ is well defined; it is the \idx{Steinitz class} of $M$ (its image
in $SK_{0}(\Z_{K})$).
The library syntax is \fun{GEN}{rnfsteinitz}{GEN nf, GEN M}.
\subsec{subcyclohminus$(\var{fH},\{p=0\})$}\kbdsidx{subcyclohminus}\label{se:subcyclohminus}
Let $F$ be the abelian number field contained in $\Q(\zeta_{f})$
corresponding to the subgroup $H$ of $(\Z/f\Z)^{*}$.
Computes the relative class number $h^{-}(F)=h(F)/h(F^{+})$ of $F$.
The argument \kbd{fH} encodes $F$ and the data $[f,H]$ as follows:
\item $\kbd{fH} = [f, H]$, where $H$ is given by a vector of
integral generators,
\item $\kbd{fH} = [\var{bnr}, H]$, where \var{bnr} is attached to
$\Cl_{f}(\Q)$ and $H$ is a congruence subgroup,
\item $\kbd{fH} = [G, H]$, where $G$ is \kbd{idealstar}$(f,1)$, and $H$ is
a subgroup of $(\Z/f\Z)^{\times}$,
\item $\kbd{fH} = f$, where we assume that $H = \{1\}$, i.e., $F =
\Q(\zeta_{f})$,
\item an irreducible integral polynomial defining a primitive element for $F$.
The algorithm is based on an analytic class number formula:
$$h^{-}(F)=Q(F)w(F)\prod_{K\subset F}N_{\Q(\zeta_{d})/\Q}
\Bigl(-B_{1,\chi}/2\Bigr)\;,$$
where $Q(F)$ is the unit index of $F$, $w(F)$ is the number of roots of unity
contained in $F$ and $K$ runs through all imaginary cyclic subfields of $F$.
For each $K$, $d$ is the degree $[K:\Q]$, $\chi$ is an arbitrary injective
character of $G(K/\Q)$ to $\C^{\times}$ and the Bernoulli number is given by
$$B_{1,\chi}=(1/f_{\chi})\sum_{a=1}^{f_{\chi}}a\chi(a)=
-(1/(2-\overline{\chi}(2)) \sum_{1\leq a\leq f_{\chi}/2}\chi(a)\;,$$
where $f_{\chi}$ is the conductor of $\chi$, namely the conductor of $K$.
The unit index $Q\in\{1,2\}$ is difficult to determine in general. If it
could be computed, the function returns $[a, b] = [h^{-}, Q]$; else
it returns $[2h^{-}/Q, 0]$. More precisely, the second component is $0$ unless
we are in one of the following cases:
\item If $f=p^{a}$ with a prime number $p$, then $Q=1$.
\item If $F=\Q(\zeta_{f})$, then $Q=1$ if and only if $f=p^{a}$.
\item If $f=4p^{a}$ or $p^{a}q^{b}$ with odd prime numbers $p,\,q$,
then $Q=1$ if and only if $[\Q(\zeta_{f}):F]$ is even.
Finally, the optional parameter $p$ is an \emph{odd} prime number.
If $p$ is given, then \kbd{subcyclohminus} outputs the valuation at $p$ of
$h^{-}(F)$, in other words the maximal integer $e$ such that
$p^{e}\,|\,h^{-}(F)$ by evaluating $p$-adic valuations of Bernoulli numbers.
Since $p$ is odd and $Q\in \{1,2\}$, the latter can be disregarded and
the result is the same as \kbd{valuation(subcyclohminus(f,H)[1], p)}, but
adding this argument $p$ can be much faster when $p$ does not divide $[F:\Q]$
or if a high power of $p$ divides $[F:\Q]$.
\bprog
? [a,b] = subcyclohminus(22220); b
%1 = 2 \\ = Q
? sizedigit(a)
%2 = 4306 \\ huge...
? valuation(a, 101)
%3 = 41
? subcyclohminus(22220, 101) \\ directly compute the valuation
%4 = 41
@eprog\noindent
shows that $101^{41}$ divides $h^{-}(\Q(\zeta_{22220}))$ exactly.
Let $k_{n}$ be the $n$-th layer of the cyclotomic $\Z_{3}$-extension of
$k=\Q(\sqrt{-1501391})$; the following computes $e_{n}$ for $1 \leq n \leq 3$,
where $3^{e_{n}}$ is the $3$-part of the relative class number $h^{-}(k_{n})$:
\bprog
? d = 1501391;
? subcyclohminus([9*d, [28,10,8]], 3)
%1 = 5
? subcyclohminus([27*d, [28,188,53]], 3)
%2 = 12
? subcyclohminus([81*d, [161,80,242]], 3)
%3 = 26
@eprog\noindent Note that $h^{+}(k_{n})$ is prime to $3$ for all $n\geq 0$.
The following example computes the $3$-part of $h^{-}(F)$, where $F$ is
the subfield of the $7860079$-th cyclotomic field with degree $2\cdot 3^{8}$.
\bprog
? p=7860079; a=znprimroot(p)^(2*3^8);
? valuation(subcyclohminus([p,a])[1], 3)
time = 1min, 47,896 ms.
%2 = 65
? subcyclohminus([p,a], 3)
time = 1,290 ms.
%3 = 65
@eprog\noindent
The library syntax is \fun{GEN}{subcyclohminus}{GEN fH, GEN p = NULL}.
\subsec{subcycloiwasawa$(\var{fH},p,\{n=0\})$}\kbdsidx{subcycloiwasawa}\label{se:subcycloiwasawa}
Let $F$ be the abelian number field contained in $\Q(\zeta_{f})$
corresponding to the subgroup $H$ of $(\Z/f\Z)^{*}$, let $p > 2$ be an odd
prime not dividing $[F:\Q]$, let $F_{\infty}$ be the cyclotomic
$\Z_{p}$-extension of $F$ and let $F_{n}$ by its $n$-th layer.
Computes the minus part of Iwasawa polynomials and
$\lambda$-invariants attached to $F_{\infty}$, using the Stickelberger
elements $\xi_{n}^{\chi}$ belonging to $F_{n}$.
The function is only implemented when $p$, $n$ and $f$ are relatively small:
all of $p^{4}$, $p^{n+1}$ and $f$ must fit into an \kbd{unsigned long} integer.
The argument \kbd{fH} encodes the data $[f,H]$ as follows:
\item $\kbd{fH} = [f, H]$, where $H$ is given by a vector of
integral generators,
\item $\kbd{fH} = [\var{bnr}, H]$, where \var{bnr} is attached to
$\Cl_{f}(\Q)$ and $H$ is a congruence subgroup,
\item $\kbd{fH} = [G, H]$, where $G$ is \kbd{idealstar}$(f,1)$, and $H$ is
a subgroup of $(\Z/f\Z)^{\times}$,
\item $\kbd{fH} = f$, where we assume that $H = \{1\}$, i.e., $F =
\Q(\zeta_{f})$,
\item an irreducible integral polynomial defining a primitive element for $F$.
\noindent If $F$ is quadratic, we also allow $p = 2$ and more data is
output (see below).
For a number field $K$, we write $K_{n}$ for the $n$-th layer of the
cyclotomic $\Z_{p}$-extension of $K$. The algorithm considers all cyclic
subfields $K$ of $F$ and all injective odd characters
$\chi:\text{Gal}(K/\Q)\rightarrow\overline{\Q}_{p}^{\times}$. Let
$\Sigma_{n} =
\text{Gal}(K_{n}/K)$, which is cyclic generated by the Frobenius automorphism
$\sigma$; we write $K_{\chi}=\Q_{p}(\chi)$,
${\cal O}_{\chi}=\Z_{p}[\chi]$ with maximal ideal $\goth{p}$.
The Stickelberger element
$\xi_{n}^{\chi}$ belongs to ${\cal O}_{\chi}[\Sigma_{n}]$;
the polynomial $f_{n}^{\chi}(x)\in{\cal O}_{\chi}[x]$
is constructed from $\xi_{n}^{\chi}$ by the correspondence
$\sigma \mapsto 1+x$. If $n$ is sufficiently large, then
$\goth{p}$ does not divide $f_{n}^{\chi}(x)$ and the distinguished polynomial
$g_{n}^{\chi}(x)\in{\cal O}_{\chi}[x]$ is uniquely determined by the relation
$f_{n}^{\chi}(x)=u(x)g_{n}^{\chi}(x),\,u(x)\in{\cal O}_{\chi}[x]^{\times}$.
Owing to Iwasawa Main Conjecture proved by Mazur-Wiles, we can define
the Iwasawa polynomial
$g_{\chi}(x)=\lim_{n\rightarrow\infty}g_{n}^{\chi}(x)\in{\cal O}_{\chi}[x]$.
If $r$ is the smallest integer satisfying
$\deg g_{n}^{\chi}\leq p^{r}$, then we have
$$g_{\chi}(x)\equiv g_{n}^{\chi}(x)\pmod{\goth{p}^{n+1-r}}\;.$$
Applying the norm from $K_{\chi}$ down to $\Q_{p}$, we obtain polynomials
$G_{\chi}(x), G_{n}^{\chi}(x)\in\Z_{p}[x]$ satisfying the congruence
$$G_{\chi}(x)\equiv G_{n}^{\chi}(x)\pmod{p^{n+1-r}}\;.$$
Note that $\lambda_{p}^{-}(F)=\sum_{K,\chi} \deg G_{\chi}(x)$ is the Iwasawa
$\lambda^{-}$-invariant of $F$, while the $\mu$-invariant $\mu_{p}(F)$ is
known to be zero by the theorem of Ferrero-Washington.
If $n = 0$, the function returns $[\lambda_{p}^{-}(F)]$ (the vector may contain
further useful components, see below); for positive $n$, it returns
all non-constant $G_{n}^{\chi}(x)\bmod{p^{n+1-r}}$ as $(K,\chi)$ vary.
\bprog
? subcycloiwasawa(22220, 41) \\ f = 22220, H = {1}
%1 = [217]
? P = polcompositum(x^2 - 42853, polcyclo(5))[1];
? subcycloiwasawa(P, 5)
%3 = [3]
? subcycloiwasawa(P, 5, 4) \\ the sum of the degrees is indeed 3
%4 = [T + 585, T^2 + 405*T]
@eprog
The first example corresponds to $F = \Q(\zeta_{22220})$ and shows, that
$\lambda_{41}^{-}(F) = 217$. The second one builds $F=\Q(\sqrt{42853},
\zeta_{5})$ then lists the non-constant $G_{4}^{\chi}(x)\bmod{p^{4}}$
for $p=5$.
Note that in this case all degrees are $\leq 5$ hence $r \leq 1$ and
$n+1-r\geq n$; so the above also gives $G_{\chi}$ modulo $p^{4}$.
We henceforth restrict to the quadratic case, where more information is
available, and $p = 2$ is now allowed: we write $F = \Q(\sqrt{d})$
of discriminant $d$ ($\neq 1$) and character $\chi$.
\misctitle{Algorithm and output for $n = 0$, $F = \Q(\sqrt{d})$}
Currently, only the case $d < 0$ ($F$ quadratic imaginary,
i.e.~$\chi(-1)=-1$) is implemented.
\item If $p > 2$, the function returns
$[\lambda, \nu, [e_{0},\dots,e_{k}]]$, where $\lambda=\lambda_{p}^{-}(F)$,
$p^{e_{n}}$ denotes the $p$-part of the class number of $F_{n}$ and $e_{n} =
\lambda n + \nu$ for all $n > k$. We use Gold's theorem
(Acta Arith. vol.26 (1974), pp.~21--32, vol.26 (1975), pp.~233--240).
Then as soon as $e_{n} - e_{n-1} < \varphi(p^{n})$ for some $n \geq 1$, we have
$\lambda_{p}(F)=e_{n}-e_{n-1}$;
if $\chi(p)=1$ we can weaken the hypothesis to $e_{n}-e_{n-1}\leq
\varphi(p^{n})$ for some $n\geq 1$ and obtain the same conclusion.
To compute $e_{n} - e_{n-1}$ we use Bernoulli numbers
(\kbd{subcyclohminus}) if
$\chi(p) = 0$ and a much faster algorithm of Gold
(Pacific J. Math. vol.40 (1972), pp.83--88) otherwise.
\item For $p=2$, we use Kida's formula (Tohoku Math. J. vol. 31 (1979),
pp.~91--96) and only return $[\lambda^{-}]$.
When $d > 1$, \kbd{subcycloiwasawa} should calculate
$\lambda_{p}(F)=\lambda_{p}^{+}(F)$, which is conjectured to be zero.
But this is not yet implemented.
\bprog
? subcycloiwasawa(x^2+11111, 2)
%1 = [5] /*@Ccom $\lambda_{2}(\Q(\sqrt{-11111}))=5$ */
? subcycloiwasawa(x^2+11111, 3)
%2 = [1, 0, []]
? subcycloiwasawa(x^2+11111, 11)
%3 = [0, 0, []]
@eprog\noindent This shows that for $p = 3$, we have $\lambda = 1$,
$\nu = 0$, and $e_{n} = n$ for all $n \geq 0$.
And at $p = 11$, we have $e_{n} = 0$ for all $n \geq 0$.
\bprog
? subcycloiwasawa(x^2+1501391, 3)
time = 23 ms.
%4 = [14, -16, [2, 5]]
@eprog\noindent
computes $e_{n}$ by Gold's algorithm for $F=\Q(\sqrt{-1501391})$.
This shows that at $p = 3$, we have $\lambda=14$, $\nu=-16$, then
$e_{0}=2$, $e_{1}=5$, and $e_{n}=14n-16$ for $n\geq 2$.
\bprog
? subcycloiwasawa(x^2+956238, 3)
time = 141 ms.
%5 = [14, -19, [1, 3]]
@eprog\noindent
computes $e_{n}$ using Bernoulli numbers for $F=\Q(\sqrt{-956238})$.
This shows that $e_{0}=1$, $e_{1}=3$ and $e_{n}=14n-19$ for $n \geq 2$.
\misctitle{Algorithm and output for $n > 0$; $F = \Q(\sqrt{d})$}
\item When $d < 0$ and $n\geq 1$,
\kbd{subcycloiwasawa} computes the Stickelberger element
$\xi_{n} = \xi_{n}^{\chi}\in\Z_{p}[\Sigma_{n}]$ and the Iwasawa polynomial
$g(x) = g_{\chi}(x)\in\Z_{p}[x]$
from the $n$-th layer $F_{n}$ of the cyclotomic $\Z_{p}$-extension of $F$.
Let $q$ be $p$ ($p$ odd) or 4 ($p = 2$) and let
$q_{0}$ be the lcm of $q$ and the discriminant $d$ of $F$, and let
$q_{n}=q_{0}p^{n}$.
Then $\Sigma_{n}=\text{Gal}(\Q_{n}/\Q)=\text{Gal}(F_{n}/F)
=\langle\,s\,\rangle$,
where $s$ is the Frobenius automorphism $(\Q_{n}/\Q,1+q_{0})$ and
$$\xi_{n}=q_{n}^{-1}\sum_{a=1, (a,q_{n})=1}^{q_{n}}
a\chi(a)^{-1}(\Q_{n}/\Q,a)^{-1}$$
is an element of $\Q[\Sigma_{n}]$.
For $(p,d)=(2,-1),(2,-2),(2,-3), (2,-6),(3,-3)$,
we know that $\lambda_{p}(F)=0$ and there is nothing to do.
For the other cases, it is proved that $(1/2)\xi_{n}\in\Z_{p}[\Sigma_{n}]$.
The polynomial $f_{n}(x)\in\Z_{p}[x]$ is constructed from $(1/2)\xi_{n}$
by the
correspondence $s\mapsto 1+x$. If $n$ is sufficiently large, then
$p$ does not divide $f_{n}(x)$ and the distinguished polynomial
$g_{n}(x)\in\Z_{p}[x]$ is uniquely determined by the relation
$f_{n}(x)=u(x)g_{n}(x)$, $u(x)\in\Z_{p}[[x]]^{\times}$. The Iwasawa polynomial
$g(x)$ is defined by $g(x)=\lim_{n\rightarrow\infty}g_{n}(x)$; if $r$ is the
smallest integer satisfying $\deg g=\lambda_{p}(F)\leq p^{r}$, then we have
$g(x)\equiv g_{n}(x)\pmod{\,p^{n+1-r}}$ when $p>2$ and modulo $2^{n-r}$
otherwise.
\noindent Conjecturally, we have further
1. case $q_{0}=p$: $\xi_{n}\in\Z[\Sigma_{n}]$.
2. case $d=-1$ and $\chi(p)=-1$: $\xi_{n}\in\Z[\Sigma_{n}]$.
3. case $d=-3$ and $\chi(p)=-1$: $(3/2)\xi_{n}\in\Z[\Sigma_{n}]$.
4. other cases: $(1/2)\xi_{n}\in\Z[\Sigma_{n}]$.
\noindent Finally, \kbd{subcycloiwasawa} outputs $[g]$ where
$g$ is $g_{n}(x)\bmod{p^{n+1-r}}$ ($p$ odd) or $\bmod{2^{n-r}}$ ($p = 2$).
\bprog
? subcycloiwasawa(x^2+239, 3, 10)
%6 = [x^6 + 18780*x^5 + 14526*x^4 + 18168*x^3 + 3951*x^2 + 1128*x]
@eprog\noindent This is $g(x)\bmod{3^{9}}$. Indeed, $n = 10$,
$\lambda = 6$ (the degree), hence $r = 2$ and $n + 1 - r = 2$.
\item When $d > 1$ and $n\geq 1$, $\xi_{n}^{*}\in\Q[\Sigma_{n}]$ is
constructed from
$\chi^{*}=\chi^{-1}\omega$, where $\chi$ is the character of
$F=\Q(\sqrt{d}\,)$
and $\omega$ is the Teichm\"uller character $\bmod{\,q}$. Next we construct
$f_{n}^{*}(x)\in\Z_{p}[x]$ from $(1/2)\xi_{n}^{*}$ by the correspondence
$s^{-1}\mapsto (1+x)(1+q_{0})^{-1}$ and define the distinguished
polynomial $g_{n}^{*}(x)\in\Z_{p}[x]$ using $f_{n}^{*}(x)$.
Then $g^{*}(x)=\lim_{n\rightarrow\infty}g_{n}^{*}(x)$ is the Iwasawa
polynomial, which has a connection with Greenberg conjecture for $F$.
Let $r$ be the smallest integer satisfying $\deg g^{*}\leq p^{r}$,
then we have $g^{*}(x)\equiv g_{n}^{*}(x)\pmod{\,p^{n+1-r}}$
when $p>2$ and $g^{*}(x)\equiv g_{n}^{*}(x)\pmod{\,2^{n-r}}$ when $p=2$.
Finally, \kbd{subcycloiwasawa} outputs $[g^{*}]$ where
$g^{*}$ is $g_{n}^{*}(x)\bmod{p^{n+1-r}}$ ($p$ odd) or $\bmod{2^{n-r}}$ ($p = 2$).
\bprog
? subcycloiwasawa(x^2-13841, 2, 19)
time = 1min, 17,238 ms.
%7 = [x^3 + 30644*x^2 + 126772*x + 44128]
@eprog
\noindent
This is $g^{*}(x)\bmod{\,2^{17}}$ ($r = 2$), the distinguished polynomial
treated in a paper of T. Fukuda, K. Komatsu, M. Ozaki and T. Tsuji
(Funct. Approx. Comment. Math. vol.54.1, pp.~7--17, 2016).
The library syntax is \fun{GEN}{subcycloiwasawa}{GEN fH, GEN p, long n}.
\subsec{subcyclopclgp$(\var{fH},p,\{\fl=0\})$}\kbdsidx{subcyclopclgp}\label{se:subcyclopclgp}
Let $F$ be the abelian number field contained in $\Q(\zeta_{f})$
corresponding to the subgroup $H$ of $(\Z/f\Z)^{*}$, let $p > 2$ be an odd
prime not dividing $[F:\Q]$. Computes the $p$-Sylow subgroup $A_{F}$ of the
ideal class group using an unconditional algorithm of M.~Aoki and T.~Fukuda
(LNCS. vol.4076, pp.56--71, 2006).
The argument \kbd{fH} encodes the data $[f,H]$ as follows:
\item $\kbd{fH} = [f, H]$, where $H$ is given by a vector of
integral generators,
\item $\kbd{fH} = [\var{bnr}, H]$, where \var{bnr} is attached to
$\Cl_{f}(\Q)$ and $H$ is a congruence subgroup,
\item $\kbd{fH} = [G, H]$, where $G$ is \kbd{idealstar}$(f,1)$, and $H$ is
a subgroup of $(\Z/f\Z)^{\times}$,
\item $\kbd{fH} = f$, where we assume that $H = \{1\}$, i.e., $F =
\Q(\zeta_{f})$,
\item an irreducible integral polynomial defining a primitive element for
$F$.
\noindent The result is a 6-component vector $v$, and components $2$ or $3$
can be left empty or only partially computed to save time (see \fl\ below):
$v[1]$ is $p$.
$v[2]$ contains $[E, [e_{1},\dots,e_{k}]]$ with $E = \sum_{i} e_{i}$,
meaning that
the order of $A_{F}^{+}$ is $p^{E}$ and its cyclic structure is
$\Z/p^{e_{1}}\Z \times \dots \Z/p^{e_{k}}\Z$
$v[3]$ similarly describes the order and the structure of $A_{F}^{-}$.
$v[4]$ contains the structure of $\text{Gal}(F/\Q)$ as a product of cyclic
groups (elementary divisors).
$v[5]$ is the number of cyclic subfields $K$ of $F$ except for $\Q$.
$v[6]$ is the number of $\Q_{p}$-conjugacy classes of injective
characters $\chi:\text{Gal}(K/\Q)\rightarrow\overline{\Q}_{p}^{\times}$.
\noindent A vector of primes $p$ is also accepted and the result is then a
vector of vectors as above, in the same order as the primes.
The group $A_{F}$ is the direct sum of $A_{F}^{+}$ and $A_{F}^{-}$;
each of $A_{F}^{+}$ and $A_{F}^{-}$ is decomposed into $\chi$-parts
$A_{\chi}$. By default, the function computes only $|A_{F}^{-}|$
and an upper bound for $|A_{F}^{+}|$ (expected to be equal to $|A_{F}^{+}|$)
separately with different algorithms. This is expected to be fast.
The behavior is controled by the binary digits of \fl:
1: if $|A_{F}^{+}|$ or $|A_{F}^{-}|$ is computed, also determines its group
structure and guarantees informations about $A_{F}^{+}$.
This last part is usually costly.
2: do not compute quantities related to $A_{F}^{+}$ (the corresponding
$(e_{i})$ in $v[2]$ is replaced with a dummy empty vector).
4: do not compute quantities related to $A_{F}^{-}$ (the corresponding
$(e_{i})$ in $v[3]$ is replaced with a dummy empty vector).
8: ignores proper subfields of $F$. This is motivated by the following kind
of problems: let $\Q(p^{k})$ be the $k$-th layer of the cyclotomic
$\Z_{p}$-extension of $\Q$ and define
$\Q(n)=\Q(p_{1}^{e_{1}})\cdots\Q(p_{r}^{e_{r}})$
when $n$ factors as $n=p_{1}^{e_{1}}\cdots p_{r}^{e_{r}}$,
which is a real cyclic
field of degree $n$ satisfying $\Q(n) \subset \Q(m)$ when $n\mid m$. What are
the prime factors of the class number $h(n)$ of $\Q(n)$ ? The new prime
factors of $h(n)$, not occurring in a lower level, will all be present
when using this \fl.
The other values are technical and only useful when bit 1 (certification and
structure) is set; do not set them unless you run into difficulties with
default parameters.
16: when this bit is set, the function tries to save memory, sacrificing
speed; this typically uses half the memory for a slowdown of a factor $2$.
32: likely to speed up the algorithm when the rank of $A_{\chi}$ is large and
to create a minor slowdown otherwise. Though the effect is restricted, the
$3$-class group of $\Q(\sqrt{15338}, \zeta_{5})$ is computed 4 times faster
when this bit is set (see below).
\misctitle{Examples} With default $\fl=0$, the function (quickly)
determines the exact value of $|A_{F}^{-}|$ and a rigorous upper bound of
$|A_{F}^{+}|$
which is expected to be equal to $|A_{F}^{+}|$; of course, when the upper
bound is $0$, we know for sure that $A_{F}^{+}$ is trivial.
With $\fl=1$ we obtain the
group structure of $A_{F}$ completely and guarantee the informations about
$A_{F}^{+}$ (slow).
\bprog
? subcyclopclgp(22220, 101)
time = 113 ms.
%1 = [101, [0, []], [41, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],
[100, 20, 2, 2], 479, 7999]
@eprog\noindent
This computes the 101-part $A_{F}$ of the ideal class group of
$F=\Q(\zeta_{22220})$.
The output says that $A_{F}^{+}=0$, which is rigorous (since trivial),
and $|A_{F}^{-}|=101^{41}$, more precisely $A_{F}^{-}$ is isomorphic to
$(\Z/101\Z)^{41}$ which is also rigorous
(since the description of $A_{F}^{-}$ is always rigorous). The Galois group
$\text{Gal}(F/\Q)$ is $\Z/100\Z\oplus\Z/20\Z\oplus\Z/2\Z\oplus\Z/2\Z$.
The field $F$ has 479 cyclic subfields different from $\Q$ and
there are 7999 $\Q_{101}$-conjugacy classes of injective characters
$\chi:\text{Gal}(K/\Q)\rightarrow\overline{\Q}_{101}^{\times}$.
\bprog
? subcyclopclgp(22220, 11)
time = 83 ms.
%2 = [11, [2, [1, 1]], [16, []], [100, 20, 2, 2], 479, 1799]
@eprog\noindent
This computes the 11-part $A_{F}$ for the same $F$. The result says that
$|A_{F}^{+}|=11^{2}$, $A_{F}^{+}$ is isomorphic to $(\Z/11\Z)^{2}$
which is not rigorous
and is only an upper bound, and $|A_{F}^{-}|=11^{16}$ which is rigorous. The
group structure of $A_{F}^{-}$ is unknown.
\bprog
? subcyclopclgp(22220, 11, 1)
time = 185 ms.
%3 = [11, [2, [1, 1]], [16, [2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],
[100, 20, 2, 2], 479, 1799]
@eprog\noindent now guarantees that $A_{F}^{+}$ is isomorphic to
$(\Z/11\Z)^{2}$ and determines that $A_{F}^{-}$ is isomorphic to
$\Z/11^{2}\Z\oplus(\Z/11\Z)^{14}$,
at the expense of slightly increasing the running time.
We now try a much harder example: $F=\Q(\sqrt{36322},\zeta_{5})$, which
we could define using $f = 726440$ and $H = [41, 61, 111, 131]$ (prove it!).
We will use a defining polynomial instead:
\bprog
? T = polcompositum(x^2-36322, polcyclo(5), 2);
? subcyclopclgp(T, 5) \\ fast when non rigorous for A^+
time = 82 ms.
%4 = [5, [1, [1]], [4, []], [4, 2], 5, 7]
\\ try to certify; requires about 2GB of memory
? subcyclopclgp(T, 5, 1)
*** subcyclopclgp: the PARI stack overflows !
current stack size: 1000003072 (1907.352 Mbytes)
? default(parisizemax,"2G");
? subcyclopclgp(T, 5, 1) \\ with more memory, we get an answer
time = 36,201 ms.
%6 = [5, [1, [1]], [4, [3, 1]], [4, 2], 5, 7]
\\ trying to reduce memory use does not work (still need 2GB); slower
? subcyclopclgp(T, 5, 1+16)
time = 39,450 ms.
@eprog\noindent This shows that $A_{F}^{+}$ is isomorphic to $\Z/5\Z$ and
$A_{F}^{-}$ is isomorphic to $\Z/5^{3}\Z\oplus\Z/5\Z$ for $p=5$. For this example,
trying to reduce memory use with $\fl = 1+16$ fails: the computation becomes
slower and still needs 2GB; $\fl = 1+16+32$ is a disaster: it requires about
8GB and 9 minutes of computation.
Here's a situation where the technical flags make a difference:
let $F = \Q(\sqrt{15338}, \zeta_{5})$.
\bprog
? T = polcompositum(x^2-15338, polcyclo(5), 2);
? subcyclopclgp(T, 3)
time = 123 ms.
%2 = [3, [1, [1]], [4, []], [4, 2], 5, 5]
? subcyclopclgp(T, 3, 1) \\ requires a stack of 8GB
time = 4min, 47,822 ms.
%3 = [3, [1, [1]], [4, [1, 1, 1, 1]], [4, 2], 5, 5]
? subcyclopclgp(T, 3, 1+16);
time = 7min, 20,876 ms. \\ works with 5GB, but slower
? subcyclopclgp(T, 3, 1+32);
time = 1min, 11,424 ms. \\ also works with 5GB, 4 times faster than original
? subcyclopclgp(T, 3, 1+16+32);
time = 1min, 47,285 ms. \\ now works with 2.5GB
@eprog
Let $F = \Q(106)$ defined as above; namely, $F$ is the composite field
of $\Q(\sqrt{2})$ and the subfield of $\Q(\zeta_{53^{2}})$ with degree 53.
This time we shall build the compositum using class field theory:
\bprog
? Q = bnfinit(y);
? bnr1 = bnrinit(Q, 8); H1 = Mat(2);
? bnr2 = bnrinit(Q, [53^2, [1]]); H2 = Mat(53);
? [bnr,H] = bnrcompositum([bnr1, H1], [bnr2, H2]);
? subcyclopclgp([bnr,H], 107)
time = 10 ms.
%5 = [107, [1, [1]], [0, []], [106], 3, 105]
? subcyclopclgp([bnr,H], 107, 1) \\ requires 2.5GB
time = 15min, 13,537 ms.
%6 = [107, [1, [1]], [0, []], [106], 3, 105]
@eprog\noindent Both results are identical (and they were expected to be),
but only the second is rigorous. Flag bit 32 has a minor impact in this case
(reduces timings by 20 s.)
The library syntax is \fun{GEN}{subcyclopclgp}{GEN fH, GEN p, long flag}.
\subsec{subgrouplist$(\var{cyc},\{\var{bound}\},\{\fl=0\})$}\kbdsidx{subgrouplist}\label{se:subgrouplist}
\var{cyc} being a vector of positive integers giving the cyclic
components for a finite Abelian group $G$ (or any object which has a
\kbd{.cyc} method), outputs the list of subgroups of $G$. Subgroups are
given as HNF left divisors of the SNF matrix corresponding to $G$.
If $\fl=0$ (default) and \var{cyc} is a \var{bnr} structure output by
\kbd{bnrinit}, gives only the subgroups whose conductor is the modulus
\kbd{bnr.mod}. Otherwise, all subgroups are given.
If \var{bound} is present, and is a positive integer, restrict the output to
subgroups of index less than \var{bound}. If \var{bound} is a vector
containing a single positive integer $B$, then only subgroups of index
exactly equal to $B$ are computed. For instance
\bprog
? subgrouplist([6,2])
%1 = [[6, 0; 0, 2], [2, 0; 0, 2], [6, 3; 0, 1], [2, 1; 0, 1], [3, 0; 0, 2],
[1, 0; 0, 2], [6, 0; 0, 1], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
? subgrouplist([6,2],3) \\@com index less than 3
%2 = [[2, 1; 0, 1], [1, 0; 0, 2], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
? subgrouplist([6,2],[3]) \\@com index 3
%3 = [[3, 0; 0, 1]]
? bnr = bnrinit(bnfinit(x), [120,[1]], 1);
? L = subgrouplist(bnr, [8]);
@eprog\noindent
In the last example, $L$ corresponds to the 24 subfields of
$\Q(\zeta_{120})$, of degree $8$ and conductor $120\infty$ (by setting \fl,
we see there are a total of $43$ subgroups of degree $8$).
\bprog
? vector(#L, i, galoissubcyclo(bnr, L[i]))
@eprog\noindent
will produce their equations. (For a general base field, you would
have to rely on \tet{bnrstark}, or \tet{bnrclassfield}.)
\misctitle{Warning} This function requires factoring the exponent of $G$.
If you are only interested in subgroups of index $n$ (or dividing $n$), you
may considerably speed up the function by computing the subgroups of
$G/G^{n}$, whose cyclic components are \kbd{apply(x->gcd(n,x), C)} (where
$C$ gives the cyclic components of $G$). If you want the \var{bnr} variant,
now is a good time to use \kbd{bnrinit(,,, n)} as well, to directly compute
the ray class group modulo $n$-th powers.
The library syntax is \fun{GEN}{subgrouplist0}{GEN cyc, GEN bound = NULL, long flag}.
\section{Associative and central simple algebras}
This section collects functions related to associative algebras and central
simple algebras (CSA) over number fields.
\subsec{Algebra definitions} %GPHELPskip
Let $A$ be a finite-dimensional unital associative algebra over a field $K$.
The algebra $A$ is \emph{central} if its center is $K$ and it is
\emph{simple} if it has no nontrivial two-sided ideals.
We provide functions to handle associative algebras of finite
dimension over~$\Q$ or~$\F_{p}$. We represent them by the left multiplication
table on a basis over the prime subfield; the function \kbd{algtableinit}
creates the object representing an associative algebra. We also provide
functions to handle central simple algebras over a number field $K$. We
represent them either by the left multiplication table on a basis over the
center $K$ or by a cyclic algebra (see below); the function~\kbd{alginit}
creates the object representing a central simple algebra.
The set of elements of an algebra~$A$ that annihilate every simple left
$A$-module is a two-sided ideal, called the \emph{Jacobson radical} of~$A$.
If the Jacobson radical is trivial, the algebra is \emph{semisimple}: it is
isomorphic to a direct product of simple algebras. The
dimension of a CSA over its center $K$ is always a
square $d^{2}$ and the integer $d$ is called the \emph{degree} of the
algebra over~$K$. A CSA over a field~$K$ is always isomorphic to~$M_{k}(D)$
for some integer~$k$ and some central division algebra~$D$ of degree~$e$:
the integer~$e$ is the \emph{index} of the algebra.
Let $L/K$ be a cyclic extension of degree $d$, let $\sigma$ be a
generator of $\text{Gal}(L/K)$ and let $b\in K^{*}$. Then the
\emph{cyclic algebra} $(L/K,\sigma,b)$ is the algebra
$\bigoplus_{i=0}^{d-1}x^{i}L$ with $x^{d}=b$ and $\ell x=x\sigma(\ell)$ for
all~$\ell\in L$. The algebra $(L/K,\sigma,b)$ is a central simple $K$-algebra
of degree~$d$, and it is an $L$-vector space. Left multiplication is
$L$-linear and induces a $K$-algebra isomorphism
$(L/K,\sigma,b)\otimes_{K} L\to M_{d}(L)$.
Let $K$ be a nonarchimedean local field with uniformizer $\pi$, and let
$L/K$ be the unique unramified extension of degree $d$. Then every central
simple algebra $A$ of degree $d$ over $K$ is isomorphic to
$(L/K, \Frob, \pi^{h})$ for some integer $h$. The element $h/d\in
\Q/\Z$ is called the \emph{Hasse invariant} of $A$.
Let ${\bf H}$ be the Hamilton quaternion algebra, that is the 4-dimensional
algebra over $\R$ with basis~$1,i,j,ij$ and multiplication given
by~$i^{2}=j^{2}=-1$ and $ji=-ij$, which is also the cyclic
algebra~$(\C/\R,z\mapsto \bar{z},-1)$.
Every central simple algebra $A$ of degree $d$ over $\R$ is isomorphic
to~$M_{d}(\R)$ or $M_{d/2}({\bf H})$. We define the \emph{Hasse invariant}
of~$A$ to be~$0\in\Q/\Z$ in the first case and~$1/2\in\Q/\Z$ in the second
case.
\subsec{Orders in algebras} %GPHELPskip
Let~$A$ be an algebra of finite dimension over~$\Q$. An \emph{order}
in~$A$ is a finitely generated $\Z$-submodule~${\cal O}$ such
that~$\Q{\cal O} = A$, that is also a subring with unit.
By default the data computed by~\kbd{alginit} contains a~$\Z$-basis of a
maximal order~${\cal O}_{0}$. We define natural
orders in central simple algebras defined by a cyclic algebra or by a
multiplication table over the center. Let~$A = (L/K,\sigma,b) =
\bigoplus_{i=0}^{d-1}x^{i}L$ be a cyclic algebra over a number field~$K$ of
degree~$n$ with ring of integers~$\Z_{K}$. Let~$\Z_{L}$ be the ring of integers
of~$L$, and assume that~$b$ is integral. Then the submodule~${\cal O} =
\bigoplus_{i=0}^{d-1}x^{i}\Z_{L}$ is an order in~$A$, called the
\emph{natural order}. Let~$\omega_{0},\dots,\omega_{nd-1}$ be a~$\Z$-basis
of~$\Z_{L}$. The \emph{natural basis} of~${\cal O}$
is~$b_{0},\dots,b_{nd^{2}-1}$
where~$b_{i} = x^{i/(nd)}\omega_{(i \mod nd)}$. Now let~$A$ be a central simple
algebra of degree~$d$ over a number field~$K$ of degree~$n$ with ring of
integers~$\Z_{K}$. Let~$e_{0},\dots,e_{d^{2}-1}$ be a basis of~$A$ over~$K$ and
assume that the left multiplication table of~$A$ on~$(e_{i})$ is integral. Then
the submodule~${\cal O} = \bigoplus_{i=0}^{d^{2}-1}\Z_{K} e_{i}$ is an order
in~$A$, called the \emph{natural order}. Let~$\omega_{0},\dots,\omega_{n-1}$ be
a~$\Z$-basis of~$\Z_{K}$. The \emph{natural basis} of~${\cal O}$
is~$b_{0},\dots,b_{nd^{2}-1}$ where~$b_{i} = \omega_{(i \mod n)}e_{i/n}$.
\subsec{Lattices in algebras} %GPHELPskip
We also provide functions to handle full lattices in algebras over~$\Q$. A
full lattice~$J\subset A$ is represented by a $2$-component \typ{VEC}~$[I,t]$
representing~$J = tI$, where
\item $I$ is an integral nonsingular upper-triangular matrix representing a
sublattice of~${\cal O}_{0}$ expressed on the integral basis, and
\item $t\in\Q_{>0}$ is a \typ{INT} or \typ{FRAC}.
For the sake of efficiency you should use matrices~$I$ that are primitive and
in Hermite Normal Form; this makes the representation unique. No GP function
uses this property, but all GP functions return lattices in this form. The
prefix for lattice functions is \kbd{alglat}.
\subsec{GP conventions for algebras} %GPHELPskip
As with number fields, we represent elements of central simple algebras
in two ways, called the \emph{algebraic representation} and the \emph{basis
representation}, and you can convert betweeen the two with the functions
\kbd{algalgtobasis} and \kbd{algbasistoalg}. In every central simple algebra
object, we store a~$\Z$-basis of an order~${\cal O}_{0}$, and the basis
representation is simply a \typ{COL} with coefficients in~$\Q$ expressing the
element in that basis. If no maximal order was computed by~\kbd{alginit},
then~${\cal O}_{0}$ is the natural order. If a maximal order was computed,
then~${\cal O}_{0}$ is a maximal order containing the natural order. For a cyclic
algebra~$A = (L/K,\sigma,b)$, the algebraic representation is a \typ{COL} with
coefficients in~$L$ representing the element in the decomposition~$A =
\bigoplus_{i=0}^{d-1}x^{i}L$. For a central simple algebra defined by a
multiplication table over its center~$K$ on a basis~$(e_{i})$, the algebraic
representation is a \typ{COL} with coefficients in~$K$ representing the element
on the basis~$(e_{i})$.
\misctitle{Warning} The coefficients in the decomposition~$A =
\bigoplus_{i=0}^{d-1}x^{i}L$ are not the same as those in the decomposition~$A
= \bigoplus_{i=0}^{d-1}Lx^{i}$! The $i$-th coefficients are related by
conjugating by~$x^{i}$, which on~$L$ amounts to acting by~$\sigma^{i}$.
\misctitle{Warning} For a central simple algebra over $\Q$ defined by a
multiplication table, we cannot distinguish between the basis and the algebraic
representations from the size of the vectors. The behavior is then to always
interpret the column vector as a basis representation if the coefficients are
\typ{INT} or \typ{FRAC}, and as an algebraic representation if the coefficients
are \typ{POL} or \typ{POLMOD}.
An element of the Hamilton quaternion algebra ${\bf H}$ can be represented as a
\typ{REAL}, a \typ{COMPLEX} representing an element of~$\C = \R+\R i\subset
{\bf H}$, or a $4$ components \typ{COL} of \typ{REAL} encoding the coordinates
on the basis~$1,i,j,ij$.
\subsec{algadd$(\{\var{al}\},x,y)$}\kbdsidx{algadd}\label{se:algadd}
Given two elements $x$ and $y$ in \var{al} (Hamilton quaternions if
omitted), computes their sum $x+y$ in the algebra~\var{al}.
\bprog
? A = alginit(nfinit(y),[-1,1]);
? algadd(A,[1,x]~,[1,2,3,4]~)
% = [2, 1, 1, 6]~
? algadd(,sqrt(2+I),[-1,0,1,2]~)
% = [0.4553466902, 0.3435607497, 1, 2]~
@eprog
Also accepts matrices with coefficients in \var{al}.
If~$x$ and~$y$ are given in the same format, then one should simply use \kbd{+}
instead of \kbd{algadd}.
The library syntax is \fun{GEN}{algadd}{GEN al = NULL, GEN x, GEN y}.
\subsec{algalgtobasis$(\var{al},x)$}\kbdsidx{algalgtobasis}\label{se:algalgtobasis}
Given an element \var{x} in the central simple algebra \var{al} output
by \tet{alginit}, transforms it to a column vector on the integral basis of
\var{al}. This is the inverse function of \tet{algbasistoalg}.
\bprog
? A = alginit(nfinit(y^2-5),[2,y]);
? algalgtobasis(A,[y,1]~)
%2 = [0, 2, 0, -1, 2, 0, 0, 0]~
? algbasistoalg(A,algalgtobasis(A,[y,1]~))
%3 = [Mod(Mod(y, y^2 - 5), x^2 - 2), 1]~
@eprog
The library syntax is \fun{GEN}{algalgtobasis}{GEN al, GEN x}.
\subsec{algaut$(\var{al})$}\kbdsidx{algaut}\label{se:algaut}
Given a cyclic algebra $\var{al} = (L/K,\sigma,b)$ output by
\tet{alginit}, returns the automorphism $\sigma$.
\bprog
? nf = nfinit(y);
? p = idealprimedec(nf,7)[1];
? p2 = idealprimedec(nf,11)[1];
? A = alginit(nf,[3,[[p,p2],[1/3,2/3]],[0]]);
? algaut(A)
%5 = -1/3*x^2 + 1/3*x + 26/3
@eprog
The library syntax is \fun{GEN}{algaut}{GEN al}.
\subsec{algb$(\var{al})$}\kbdsidx{algb}\label{se:algb}
Given a cyclic algebra $\var{al} = (L/K,\sigma,b)$ output by
\tet{alginit}, returns the element $b\in K$.
\bprog
nf = nfinit(y);
? p = idealprimedec(nf,7)[1];
? p2 = idealprimedec(nf,11)[1];
? A = alginit(nf,[3,[[p,p2],[1/3,2/3]],[0]]);
? algb(A)
%5 = Mod(-77, y)
@eprog
The library syntax is \fun{GEN}{algb}{GEN al}.
\subsec{algbasis$(\var{al})$}\kbdsidx{algbasis}\label{se:algbasis}
Given a central simple algebra \var{al} output by \tet{alginit}, returns
a $\Z$-basis of the order~${\cal O}_{0}$ stored in \var{al} with respect to the
natural order in \var{al}. It is a maximal order if one has been computed.
\bprog
A = alginit(nfinit(y), [-1,-1]);
? algbasis(A)
%2 =
[1 0 0 1/2]
[0 1 0 1/2]
[0 0 1 1/2]
[0 0 0 1/2]
@eprog
The library syntax is \fun{GEN}{algbasis}{GEN al}.
\subsec{algbasistoalg$(\var{al},x)$}\kbdsidx{algbasistoalg}\label{se:algbasistoalg}
Given an element \var{x} in the central simple algebra \var{al} output
by \tet{alginit}, transforms it to its algebraic representation in \var{al}.
This is the inverse function of \tet{algalgtobasis}.
\bprog
? A = alginit(nfinit(y^2-5),[2,y]);
? z = algbasistoalg(A,[0,1,0,0,2,-3,0,0]~);
? liftall(z)
%3 = [(-1/2*y - 2)*x + (-1/4*y + 5/4), -3/4*y + 7/4]~
? algalgtobasis(A,z)
%4 = [0, 1, 0, 0, 2, -3, 0, 0]~
@eprog
The library syntax is \fun{GEN}{algbasistoalg}{GEN al, GEN x}.
\subsec{algcenter$(\var{al})$}\kbdsidx{algcenter}\label{se:algcenter}
If \var{al} is a table algebra output by \tet{algtableinit}, returns a
basis of the center of the algebra~\var{al} over its prime field ($\Q$ or
$\F_{p}$). If \var{al} is a central simple algebra output by \tet{alginit},
returns the center of~\var{al}, which is stored in \var{al}.
A simple example: the $2\times 2$ upper triangular matrices over $\Q$,
generated by $I_{2}$, $a = \kbd{[0,1;0,0]}$ and $b = \kbd{[0,0;0,1]}$,
such that $a^{2} = 0$, $ab = a$, $ba = 0$, $b^{2} = b$: the diagonal matrices
form the center.
\bprog
? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algcenter(A) \\ = (I_2)
%3 =
[1]
[0]
[0]
@eprog
An example in the central simple case:
\bprog
? nf = nfinit(y^3-y+1);
? A = alginit(nf, [-1,-1]);
? algcenter(A).pol
%3 = y^3 - y + 1
@eprog
The library syntax is \fun{GEN}{algcenter}{GEN al}.
\subsec{algcentralproj$(\var{al},z,\{\var{maps}=0\})$}\kbdsidx{algcentralproj}\label{se:algcentralproj}
Given a table algebra \var{al} output by \tet{algtableinit} and a
\typ{VEC} $\var{z}=[z_{1},\dots,z_{n}]$ of orthogonal central idempotents,
returns a \typ{VEC} $[al_{1},\dots,al_{n}]$ of algebras such that
$al_{i} = z_{i}\, al$. If $\var{maps}=1$, each $al_{i}$ is a \typ{VEC}
$[quo,proj,lift]$ where \var{quo} is the quotient algebra, \var{proj} is a
\typ{MAT} representing the projection onto this quotient and \var{lift} is a
\typ{MAT} representing a lift.
A simple example: $\F_{2}\times \F_{4}$, generated by~$1=(1,1)$, $e=(1,0)$
and~$x$ such that~$x^{2}+x+1=0$. We have~$e^{2}=e$, $x^{2}=x+1$ and~$ex=0$.
\bprog
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? e = [0,1,0]~;
? e2 = algsub(A,[1,0,0]~,e);
? [a,a2] = algcentralproj(A,[e,e2]);
? algdim(a)
%6 = 1
? algdim(a2)
%7 = 2
@eprog
The library syntax is \fun{GEN}{alg_centralproj}{GEN al, GEN z, long maps}.
\subsec{algchar$(\var{al})$}\kbdsidx{algchar}\label{se:algchar}
Given an algebra \var{al} output by \tet{alginit} or \tet{algtableinit},
returns the characteristic of \var{al}.
\bprog
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,13);
? algchar(A)
%3 = 13
@eprog
The library syntax is \fun{GEN}{algchar}{GEN al}.
\subsec{algcharpoly$(\{\var{al}\},b,\{v=\kbd{'}x\},\{\var{abs}=0\})$}\kbdsidx{algcharpoly}\label{se:algcharpoly}
Given an element $b$ in \var{al} (Hamilton quaternions if omitted), returns
its characteristic polynomial as a polynomial in the variable $v$. If \var{al}
is a table algebra output by \tet{algtableinit} or if $abs=1$, returns the
absolute characteristic polynomial of \var{b}, which is an element of
$\F_{p}[v]$, $\Q[v]$ or~$\R[v]$; if \var{al} is omitted or a central simple
algebra output by \tet{alginit} and $abs=0$, returns the reduced characteristic
polynomial of \var{b}, which is an element of~$K[v]$ where~$K$ is the center of
\var{al}.
\bprog
? al = alginit(nfinit(y), [-1,-1]); \\ (-1,-1)_Q
? algcharpoly(al, [0,1]~)
%2 = x^2 + 1
? algcharpoly(al, [0,1]~,,1)
%3 = x^4 + 2*x^2 + 1
? nf = nfinit(y^2-5);
? al = alginit(nf,[-1,y]);
? a = [y,1+x]~*Mod(1,y^2-5)*Mod(1,x^2+1);
? P = lift(algcharpoly(al,a))
%7 = x^2 - 2*y*x + (-2*y + 5)
? algcharpoly(al,a,,1)
%8 = x^8 - 20*x^6 - 80*x^5 + 110*x^4 + 800*x^3 + 1500*x^2 - 400*x + 25
? lift(P*subst(P,y,-y)*Mod(1,y^2-5))^2
%9 = x^8 - 20*x^6 - 80*x^5 + 110*x^4 + 800*x^3 + 1500*x^2 - 400*x + 25
? algcharpoly(,[sqrt(2),-1,0,Pi]~) \\ Hamilton quaternions
%10 = x^2 - 2.8284271247*x + 12.8696044010
@eprog
Also accepts a square matrix with coefficients in \var{al}.
The library syntax is \fun{GEN}{algcharpoly}{GEN al = NULL, GEN b, long v = -1, long abs} where \kbd{v} is a variable number.
\subsec{algdegree$(\var{al})$}\kbdsidx{algdegree}\label{se:algdegree}
Given a central simple algebra \var{al} output by \tet{alginit}, returns
the degree of \var{al}.
\bprog
? nf = nfinit(y^3-y+1);
? A = alginit(nf, [-1,-1]);
? algdegree(A)
%3 = 2
@eprog
The library syntax is \fun{long}{algdegree}{GEN al}.
\subsec{algdim$(\var{al},\{\var{abs}=0\})$}\kbdsidx{algdim}\label{se:algdim}
If \var{al} is a table algebra output by \tet{algtableinit} or if~$abs=1$,
returns the dimension of \var{al} over its prime subfield ($\Q$ or $\F_{p}$) or
over $\R$ for real algebras.
If~\var{al} is a central simple algebra output by \tet{alginit} and~$abs=0$,
returns the dimension of \var{al} over its center.
\bprog
? nf = nfinit(y^3-y+1);
? A = alginit(nf, [-1,-1]);
? algdim(A)
%3 = 4
? algdim(A,1)
%4 = 12
? C = alginit(I,0); \\ complex numbers as a real algebra
? algdim(C,1)
%6 = 2
@eprog
The library syntax is \fun{long}{algdim}{GEN al, long abs}.
\subsec{algdisc$(\var{al})$}\kbdsidx{algdisc}\label{se:algdisc}
Given a central simple algebra \var{al} output by \tet{alginit}, computes
the discriminant of the order ${\cal O}_{0}$ stored in \var{al}, that is the
determinant of the trace form $\rm{Tr} : {\cal O}_{0}\times {\cal O}_{0}
\to \Z$.
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-3,1-y]);
? [PR,h] = alghassef(A)
%3 = [[[2, [2, 0]~, 1, 2, 1], [3, [3, 0]~, 1, 2, 1]], Vecsmall([0, 1])]
? n = algdegree(A);
? D = algdim(A,1);
? h = vector(#h, i, n - gcd(n,h[i]));
? n^D * nf.disc^(n^2) * idealnorm(nf, idealfactorback(nf,PR,h))^n
%4 = 12960000
? algdisc(A)
%5 = 12960000
@eprog
The library syntax is \fun{GEN}{algdisc}{GEN al}.
\subsec{algdivl$(\{\var{al}\},x,y)$}\kbdsidx{algdivl}\label{se:algdivl}
Given two elements $x$ and $y$ in \var{al} (Hamilton quaternions if
omitted), computes their left quotient $x\backslash y$ in the algebra \var{al}:
an element $z$ such that $xz=y$ (such an element is not unique when $x$ is a
zerodivisor). If~$x$ is invertible, this is the same as $x^{-1}y$. Assumes that
$y$ is left divisible by $x$ (i.e. that $z$ exists). Also accepts square
matrices with coefficients in~\var{al}.
\bprog
? A = alginit(nfinit(y),[-1,1]);
? x = [1,1]~; algisinv(A,x)
% = 0
? z = algmul(A,x,algrandom(A,2))
% = [0, 0, 0, 8]~
? algdivl(A,x,z)
% = [4, 4, 0, 0]~
@eprog
The library syntax is \fun{GEN}{algdivl}{GEN al = NULL, GEN x, GEN y}.
\subsec{algdivr$(\{\var{al}\},x,y)$}\kbdsidx{algdivr}\label{se:algdivr}
Given two elements $x$ and $y$ in \var{al} (Hamilton quaternions if
omitted), returns $xy^{-1}$. Also accepts square matrices with coefficients in
\var{al}.
The library syntax is \fun{GEN}{algdivr}{GEN al = NULL, GEN x, GEN y}.
\subsec{alggroup$(\var{gal},\{p=0\})$}\kbdsidx{alggroup}\label{se:alggroup}
Initializes the group algebra~$K[G]$ over~$K=\Q$ ($p$ omitted) or~$\F_{p}$
where~$G$ is the underlying group of the \kbd{galoisinit} structure~\var{gal}.
The input~\var{gal} is also allowed to be a \typ{VEC} of permutations that is
closed under products.
Example:
\bprog
? K = nfsplitting(x^3-x+1);
? gal = galoisinit(K);
? al = alggroup(gal);
? algissemisimple(al)
%4 = 1
? G = [Vecsmall([1,2,3]), Vecsmall([1,3,2])];
? al2 = alggroup(G, 2);
? algissemisimple(al2)
%8 = 0
@eprog
The library syntax is \fun{GEN}{alggroup}{GEN gal, GEN p = NULL}.
\subsec{alggroupcenter$(\var{gal},\{p=0\},\{\&\var{cc}\})$}\kbdsidx{alggroupcenter}\label{se:alggroupcenter}
Initializes the center~$Z(K[G])$ of the group algebra~$K[G]$ over~$K=\Q$
($p = 0$ or omitted) or~$\F_{p}$ where~$G$ is the underlying group of the
\kbd{galoisinit} structure~\var{gal}. The input~\var{gal} is also allowed to
be a \typ{VEC} of permutations that is closed under products.
Sets~\var{cc} to a \typ{VEC}~$[\var{elts},\var{conjclass},\var{rep},\var{flag}]$
where~\var{elts} is a sorted \typ{VEC} containing the list of elements
of~$G$, \var{conjclass} is a \typ{VECSMALL} of the same length as~\var{elts}
containing the index of the conjugacy class of the corresponding element (an
integer between $1$ and the number of conjugacy classes), and~\var{rep} is a
\typ{VECSMALL} of length the number of conjugacy classes giving for each
conjugacy class the index in~\var{elts} of a representative of this conjugacy
class. Finally \var{flag} is $1$ if and only if the permutation
representation of $G$ is transitive, in which case the $i$-th element
of \var{elts} is characterized by $g[1] = i$; this is always the case
when \var{gal} is a \kbd{galoisinit} structure. The basis of~$Z(K[G])$ as
output consists of the indicator functions of the conjugacy classes in the
ordering given by~\var{cc}. Example:
\bprog
? K = nfsplitting(x^4+x+1);
? gal = galoisinit(K); \\ S4
? al = alggroupcenter(gal,,&cc);
? algiscommutative(al)
%4 = 1
? #cc[3] \\ number of conjugacy classes of S4
%5 = 5
? gal = [Vecsmall([1,2,3]),Vecsmall([1,3,2])]; \\ C2
? al = alggroupcenter(gal,,&cc);
? cc[3]
%8 = Vecsmall([1, 2])
? cc[4]
%9 = 0
@eprog
The library syntax is \fun{GEN}{alggroupcenter}{GEN gal, GEN p = NULL, GEN *cc = NULL}.
\subsec{alghasse$(\var{al},\{\var{pl}\})$}\kbdsidx{alghasse}\label{se:alghasse}
Given a central simple algebra \var{al} output by \tet{alginit} and a prime
ideal or an integer between $1$ and $r_{1}+r_{2}$, returns a \typ{FRAC} $h$ : the
local Hasse invariant of \var{al} at the place specified by \var{pl}.
If \var{al} is an algebra over $\R$, returns the Hasse invariant of \var{al}
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? alghasse(A, 1)
%3 = 1/2
? alghasse(A, 2)
%4 = 0
? alghasse(A, idealprimedec(nf,2)[1])
%5 = 1/2
? alghasse(A, idealprimedec(nf,5)[1])
%6 = 0
? H = alginit(1.,1/2); \\ Hamilton quaternion algebra
? alghasse(H)
%8 = 1/2
@eprog
The library syntax is \fun{GEN}{alghasse}{GEN al, GEN pl = NULL}.
\subsec{alghassef$(\var{al})$}\kbdsidx{alghassef}\label{se:alghassef}
Given a central simple algebra \var{al} output by \tet{alginit}, returns
a \typ{VEC} $[\kbd{PR}, h_{f}]$ describing the local Hasse invariants at the
finite places of the center: \kbd{PR} is a \typ{VEC} of primes and $h_{f}$ is a
\typ{VECSMALL} of integers modulo the degree $d$ of \var{al}. The Hasse
invariant of~\var{al} at the primes outside~\kbd{PR} is~$0$, but~\kbd{PR} can
include primes at which the Hasse invariant is~$0$.
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,2*y-1]);
? [PR,hf] = alghassef(A);
? PR
%4 = [[19, [10, 2]~, 1, 1, [-8, 2; 2, -10]], [2, [2, 0]~, 1, 2, 1]]
? hf
%5 = Vecsmall([1, 0])
@eprog
The library syntax is \fun{GEN}{alghassef}{GEN al}.
\subsec{alghassei$(\var{al})$}\kbdsidx{alghassei}\label{se:alghassei}
Given a central simple algebra \var{al} output by \tet{alginit}, returns
a \typ{VECSMALL} $h_{i}$ of $r_{1}$ integers modulo the degree $d$ of \var{al},
where $r_{1}$ is the number of real places of the center: the local Hasse
invariants of \var{al} at infinite places.
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? alghassei(A)
%3 = Vecsmall([1, 0])
@eprog
The library syntax is \fun{GEN}{alghassei}{GEN al}.
\subsec{algindex$(\var{al},\{\var{pl}\})$}\kbdsidx{algindex}\label{se:algindex}
Returns the index of the central simple algebra~$A$ over~$K$ (as output by
alginit), that is the degree~$e$ of the unique central division algebra~$D$
over $K$ such that~$A$ is isomorphic to some matrix algebra~$M_{k}(D)$. If
\var{pl} is set, it should be a prime ideal of~$K$ or an integer between~$1$
and~$r_{1}+r_{2}$, and in that case return the local index at the place
\var{pl} instead.
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algindex(A, 1)
%3 = 2
? algindex(A, 2)
%4 = 1
? algindex(A, idealprimedec(nf,2)[1])
%5 = 2
? algindex(A, idealprimedec(nf,5)[1])
%6 = 1
? algindex(A)
%7 = 2
@eprog
The library syntax is \fun{long}{algindex}{GEN al, GEN pl = NULL}.
\subsec{alginit$(B,C,\{v\},\{\fl=3\})$}\kbdsidx{alginit}\label{se:alginit}
Initializes the central simple algebra defined by data $B$, $C$ and
variable $v$, as follows.
\item (multiplication table) $B$ is the base number field $K$ in \tet{nfinit}
form, $C$ is a ``multiplication table'' over $K$.
As a $K$-vector space, the algebra is generated by a basis
$(e_{1} = 1,\dots, e_{n})$; the table is given as a \typ{VEC} of $n$ matrices
in $M_{n}(K)$, giving the left multiplication by the basis elements~$e_{i}$,
in the given basis.
Assumes that $e_{1}= 1$, that the multiplication table is integral, and that
$(\bigoplus_{i=1}^{n}K e_{i},C)$ describes a central simple algebra over $K$.
\bprog
{ mi = [0,-1,0, 0;
1, 0,0, 0;
0, 0,0,-1;
0, 0,1, 0];
mj = [0, 0,-1,0;
0, 0, 0,1;
1, 0, 0,0;
0,-1, 0,0];
mk = [0, 0, 0, -1;
0, 0,-1, 0;
0, 1, 0, 0;
1, 0, 0, 0];
A = alginit(nfinit(y), [matid(4), mi,mj,mk], , 0); }
@eprog represents (in a complicated way) the quaternion algebra $(-1,-1)_{\Q}$.
See below for a simpler solution.
\item (cyclic algebra) $B$ is an \kbd{rnf} structure attached to a cyclic
number field extension $L/K$ of degree $d$, $C$ is a \typ{VEC}
\kbd{[sigma,b]} with 2 components: \kbd{sigma} is a \typ{POLMOD} representing
an automorphism generating $\text{Gal}(L/K)$, $b$ is an element in $K^{*}$.
This represents the cyclic algebra~$(L/K,\sigma,b)$. Currently the element
$b$ has to be integral.
\bprog
? Q = nfinit(y); T = polcyclo(5, 'x); F = rnfinit(Q, T);
? A = alginit(F, [Mod(x^2,T), 3]);
@eprog defines the cyclic algebra $(L/\Q, \sigma, 3)$, where
$L = \Q(\zeta_{5})$ and $\sigma:\zeta\mapsto\zeta^{2}$ generates
$\text{Gal}(L/\Q)$.
\item (quaternion algebra, special case of the above) $B$ is an \kbd{nf}
structure attached to a number field $K$, $C = [a,b]$ is a vector
containing two elements of $K^{*}$ with $a$ not a square in $K$, returns the
quaternion algebra $(a,b)_{K}$.
The variable $v$ (\kbd{'x} by default) must have higher priority than the
variable of $K$\kbd{.pol} and is used to represent elements in the splitting
field $L = K[x]/(x^{2}-a)$.
\bprog
? Q = nfinit(y); A = alginit(Q, [-1,-1]); \\@com $(-1,-1)_{\Q}$
@eprog
\item (algebra/$K$ defined by local Hasse invariants)
$B$ is an \kbd{nf} structure attached to a number field $K$,
$C = [d, [\kbd{PR},h_{f}], h_{i}]$ is a triple
containing an integer $d > 1$, a pair $[\kbd{PR}, h_{f}]$ describing the
Hasse invariants at finite places, and $h_{i}$ the Hasse invariants
at archimedean (real) places. A local Hasse invariant belongs to $(1/d)\Z/\Z
\subset \Q/\Z$, and is given either as a \typ{FRAC} (lift to $(1/d)\Z$),
a \typ{INT} or \typ{INTMOD} modulo $d$ (lift to $\Z/d\Z$); a whole vector
of local invariants can also be given as a \typ{VECSMALL}, whose
entries are handled as \typ{INT}s. \kbd{PR} is a list of prime ideals
(\kbd{prid} structures), and $h_{f}$ is a vector of the same length giving the
local invariants at those maximal ideals. The invariants at infinite real
places are indexed by the real roots $K$\kbd{.roots}: if the Archimedean
place $v$ is attached to the $j$-th root, the value of
$h_{v}$ is given by $h_{i}[j]$, must be $0$ or $1/2$ (or~$d/2$ modulo~$d$), and
can be nonzero only if~$d$ is even.
By class field theory, provided the local invariants $h_{v}$ sum to $0$, up
to Brauer equivalence, there is a unique central simple algebra over $K$
with given local invariants and trivial invariant elsewhere. In particular,
up to isomorphism, there is a unique such algebra $A$ of degree $d$.
We realize $A$ as a cyclic algebra through class field theory. The variable $v$
(\kbd{'x} by default) must have higher priority than the variable of
$K$\kbd{.pol} and is used to represent elements in the (cyclic) splitting
field extension $L/K$ for $A$.
\bprog
? nf = nfinit(y^2+1);
? PR = idealprimedec(nf,5); #PR
%2 = 2
? hi = [];
? hf = [PR, [1/3,-1/3]];
? A = alginit(nf, [3,hf,hi]);
? algsplittingfield(A).pol
%6 = x^3 - 21*x + 7
@eprog
\item (matrix algebra, toy example) $B$ is an \kbd{nf} structure attached
to a number field $K$, $C = d$ is a positive integer. Returns a cyclic
algebra isomorphic to the matrix algebra $M_{d}(K)$.
\item (algebras over~$\R$) If $B$ is a \typ{REAL} and $C = 1/2$, returns
a structure representing the Hamilton quaternion algebra~${\bf H} =
(-1,-1)_{\R}$. If $B$ is a \typ{REAL} and $C = 0$, returns an algebra structure
representing~$\R$. If $B$ is a \typ{COMPLEX} and $C = 0$, returns an algebra
structure representing~$\C$.
In all cases over a number field, this function factors various discriminants
and computes a maximal order for the algebra by default, which may require a
lot of time. This can be controlled by $\fl$, whose binary digits mean:
\item $1$: compute a maximal order.
\item $2$: fully factor the discriminants instead of using a lazy
factorisation. If this digit of $\fl$ is set to~$0$, the local Hasse invariants
are not computed.
If only a partial factorisation is known, the computed order is only guaranteed
to be maximal at the known prime factors.
The pari object representing such an algebra $A$ is a \typ{VEC} with the
following data:
\item A splitting field $L$ of $A$ of the same degree over $K$ as $A$, in
\kbd{rnfinit} format, accessed with \kbd{algsplittingfield}.
\item The Hasse invariants at the real places of $K$, accessed with
\kbd{alghassei}.
\item The Hasse invariants of $A$ at the finite primes of $K$ that ramify in
the natural order of $A$, accessed with \kbd{alghassef}.
\item A basis of an order ${\cal O}_{0}$ expressed on the basis of the natural
order, accessed with \kbd{algbasis}.
\item A basis of the natural order expressed on the basis of ${\cal O}_{0}$,
accessed with \kbd{alginvbasis}.
\item The left multiplication table of ${\cal O}_{0}$ on the previous basis,
accessed with \kbd{algmultable}.
\item The characteristic of $A$ (always $0$), accessed with \kbd{algchar}.
\item The absolute traces of the elements of the basis of ${\cal O}_{0}$.
\item If $A$ was constructed as a cyclic algebra~$(L/K,\sigma,b)$ of degree
$d$, a \typ{VEC} $[\sigma,\sigma^{2},\dots,\sigma^{d-1}]$. The function
\kbd{algaut} returns $\sigma$.
\item If $A$ was constructed as a cyclic algebra~$(L/K,\sigma,b)$, the
element $b$, accessed with \kbd{algb}.
\item If $A$ was constructed with its multiplication table $mt$ over $K$,
the \typ{VEC} of \typ{MAT} $mt$, accessed with \kbd{algrelmultable}.
\item If $A$ was constructed with its multiplication table $mt$ over $K$,
a \typ{VEC} with three components: a \typ{COL} representing an element of $A$
generating the splitting field $L$ as a maximal subfield of $A$, a \typ{MAT}
representing an $L$-basis ${\cal B}$ of $A$ expressed on the $\Z$-basis of
${\cal O}_{0}$, and a \typ{MAT} representing the $\Z$-basis of ${\cal O}_{0}$
expressed on ${\cal B}$. This data is accessed with \kbd{algsplittingdata}.
The library syntax is \fun{GEN}{alginit}{GEN B, GEN C, long v = -1, long flag} where \kbd{v} is a variable number.
\subsec{alginv$(\{\var{al}\},x)$}\kbdsidx{alginv}\label{se:alginv}
Given an element $x$ in \var{al} (Hamilton quaternions if omitted),
computes its inverse $x^{-1}$ in the algebra \var{al}. Assumes that $x$ is
invertible.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? alginv(A,[1,1,0,0]~)
%2 = [1/2, 1/2, 0, 0]~
? alginv(,[1,0,Pi,sqrt(2)]~) \\ Hamilton quaternions
%3 = [0.0777024661, 0, -0.2441094967, -0.1098878814]~
@eprog
Also accepts square matrices with coefficients in \var{al}.
The library syntax is \fun{GEN}{alginv}{GEN al = NULL, GEN x}.
\subsec{alginvbasis$(\var{al})$}\kbdsidx{alginvbasis}\label{se:alginvbasis}
Given an central simple algebra \var{al} output by \tet{alginit}, returns
a $\Z$-basis of the natural order in \var{al} with respect to the
order~${\cal O}_{0}$ stored in \var{al}.
\bprog
A = alginit(nfinit(y), [-1,-1]);
? alginvbasis(A)
%2 =
[1 0 0 -1]
[0 1 0 -1]
[0 0 1 -1]
[0 0 0 2]
@eprog
The library syntax is \fun{GEN}{alginvbasis}{GEN al}.
\subsec{algisassociative$(\var{mt},p=0)$}\kbdsidx{algisassociative}\label{se:algisassociative}
Returns 1 if the multiplication table \kbd{mt} is suitable for
\kbd{algtableinit(mt,p)}, 0 otherwise. More precisely, \kbd{mt} should be
a \typ{VEC} of $n$ matrices in $M_{n}(K)$, giving the left multiplications
by the basis elements $e_{1}, \dots, e_{n}$ (structure constants).
We check whether the first basis element $e_{1}$ is $1$ and
$e_{i}(e_{j}e_{k}) = (e_{i}e_{j})e_{k}$ for all $i,j,k$.
\bprog
? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? algisassociative(mt)
%2 = 1
@eprog
May be used to check a posteriori an algebra: we also allow \kbd{mt} as
output by \tet{algtableinit} ($p$ is ignored in this case).
The library syntax is \fun{int}{algisassociative}{GEN mt, GEN p}.
\subsec{algiscommutative$(\var{al})$}\kbdsidx{algiscommutative}\label{se:algiscommutative}
\var{al} being a table algebra output by \tet{algtableinit} or a central
simple algebra output by \tet{alginit}, tests whether the algebra \var{al} is
commutative.
\bprog
? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algiscommutative(A)
%3 = 0
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? algiscommutative(A)
%6 = 1
@eprog
The library syntax is \fun{int}{algiscommutative}{GEN al}.
\subsec{algisdivision$(\var{al},\{\var{pl}\})$}\kbdsidx{algisdivision}\label{se:algisdivision}
Given a central simple algebra \var{al} output by \tet{alginit}, tests
whether \var{al} is a division algebra. If \var{pl} is set, it should be a
prime ideal of~$K$ or an integer between~$1$ and~$r_{1}+r_{2}$, and in that
case tests whether \var{al} is locally a division algebra at the place
\var{pl} instead.
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algisdivision(A, 1)
%3 = 1
? algisdivision(A, 2)
%4 = 0
? algisdivision(A, idealprimedec(nf,2)[1])
%5 = 1
? algisdivision(A, idealprimedec(nf,5)[1])
%6 = 0
? algisdivision(A)
%7 = 1
@eprog
The library syntax is \fun{int}{algisdivision}{GEN al, GEN pl = NULL}.
\subsec{algisdivl$(\{\var{al}\},x,y,\{\&z\})$}\kbdsidx{algisdivl}\label{se:algisdivl}
Given two elements $x$ and $y$ in \var{al} (Hamilton quaternions if
omitted), tests whether $y$ is left divisible by $x$, that is whether there
exists~$z$ in \var{al} such that~$xz=y$, and sets $z$ to this element if it
exists.
\bprog
? A = alginit(nfinit(y), [-1,1]);
? algisdivl(A,[x+2,-x-2]~,[x,1]~)
%2 = 0
? algisdivl(A,[x+2,-x-2]~,[-x,x]~,&z)
%3 = 1
? z
%4 = [Mod(-2/5*x - 1/5, x^2 + 1), 0]~
@eprog
Also accepts square matrices with coefficients in \var{al}.
The library syntax is \fun{int}{algisdivl}{GEN al = NULL, GEN x, GEN y, GEN *z = NULL}.
\subsec{algisinv$(\{\var{al}\},x,\{\&\var{ix}\})$}\kbdsidx{algisinv}\label{se:algisinv}
Given an element $x$ in \var{al} (Hamilton quaternions if omitted), tests
whether $x$ is invertible, and sets $ix$ to the inverse of $x$.
\bprog
? A = alginit(nfinit(y), [-1,1]);
? algisinv(A,[-1,1]~)
%2 = 0
? algisinv(A,[1,2]~,&ix)
%3 = 1
? ix
%4 = [Mod(Mod(-1/3, y), x^2 + 1), Mod(Mod(2/3, y), x^2 + 1)]~
@eprog
Also accepts square matrices with coefficients in \var{al}.
The library syntax is \fun{int}{algisinv}{GEN al = NULL, GEN x, GEN *ix = NULL}.
\subsec{algisramified$(\var{al},\{\var{pl}\})$}\kbdsidx{algisramified}\label{se:algisramified}
Given a central simple algebra \var{al} output by \tet{alginit}, tests
whether \var{al} is ramified, i.e. not isomorphic to a matrix algebra over its
center. If \var{pl} is set, it should be a prime ideal of~$K$ or an integer
between~$1$ and~$r_{1}+r_{2}$, and in that case tests whether \var{al} is
locally ramified at the place \var{pl} instead.
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algisramified(A, 1)
%3 = 1
? algisramified(A, 2)
%4 = 0
? algisramified(A, idealprimedec(nf,2)[1])
%5 = 1
? algisramified(A, idealprimedec(nf,5)[1])
%6 = 0
? algisramified(A)
%7 = 1
@eprog
The library syntax is \fun{int}{algisramified}{GEN al, GEN pl = NULL}.
\subsec{algissemisimple$(\var{al})$}\kbdsidx{algissemisimple}\label{se:algissemisimple}
\var{al} being a table algebra output by \tet{algtableinit} or a central
simple algebra output by \tet{alginit}, tests whether the algebra \var{al} is
semisimple.
\bprog
? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algissemisimple(A)
%3 = 0
? m_i=[0,-1,0,0;1,0,0,0;0,0,0,-1;0,0,1,0]; \\ quaternion algebra (-1,-1)
? m_j=[0,0,-1,0;0,0,0,1;1,0,0,0;0,-1,0,0];
? m_k=[0,0,0,-1;0,0,-1,0;0,1,0,0;1,0,0,0];
? mt = [matid(4), m_i, m_j, m_k];
? A = algtableinit(mt);
? algissemisimple(A)
%9 = 1
@eprog
The library syntax is \fun{int}{algissemisimple}{GEN al}.
\subsec{algissimple$(\var{al},\{\var{ss}=0\})$}\kbdsidx{algissimple}\label{se:algissimple}
\var{al} being a table algebra output by \tet{algtableinit} or a central
simple algebra output by \tet{alginit}, tests whether the algebra \var{al} is
simple. If $\var{ss}=1$, assumes that the algebra~\var{al} is semisimple
without testing it.
\bprog
? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt); \\ matrices [*,*; 0,*]
? algissimple(A)
%3 = 0
? algissimple(A,1) \\ incorrectly assume that A is semisimple
%4 = 1
? m_i=[0,-1,0,0;1,0,0,0;0,0,0,-1;0,0,1,0];
? m_j=[0,0,-1,0;0,0,0,1;1,0,0,0;0,-1,0,0];
? m_k=[0,0,0,-1;0,0,b,0;0,1,0,0;1,0,0,0];
? mt = [matid(4), m_i, m_j, m_k];
? A = algtableinit(mt); \\ quaternion algebra (-1,-1)
? algissimple(A)
%10 = 1
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2); \\ direct product F_4 x F_2
? algissimple(A)
%13 = 0
@eprog
The library syntax is \fun{int}{algissimple}{GEN al, long ss}.
\subsec{algissplit$(\var{al},\{\var{pl}\})$}\kbdsidx{algissplit}\label{se:algissplit}
Given a central simple algebra \var{al} output by \tet{alginit}, tests
whether~\var{al} is split, i.e. isomorphic to a matrix algebra over its center.
If \var{pl} is set, it should be a prime ideal of~$K$ or an integer between~$1$
and~$r_{1}+r_{2}$, and in that case tests whether \var{al} is locally split
at the place \var{pl} instead.
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algissplit(A, 1)
%3 = 0
? algissplit(A, 2)
%4 = 1
? algissplit(A, idealprimedec(nf,2)[1])
%5 = 0
? algissplit(A, idealprimedec(nf,5)[1])
%6 = 1
? algissplit(A)
%7 = 0
@eprog
The library syntax is \fun{int}{algissplit}{GEN al, GEN pl = NULL}.
\subsec{alglatadd$(\var{al},\var{lat1},\var{lat2},\{\&\var{ptinter}\})$}\kbdsidx{alglatadd}\label{se:alglatadd}
Given an algebra \var{al} and two lattices \var{lat1} and \var{lat2}
in~\var{al}, computes the sum~$lat1 + lat2$. If \var{ptinter} is
present, set it to the intersection~$lat1 \cap lat2$.
\bprog
? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglathnf(al,[1,1,0,0,0,0,0,0]~);
? lat2 = alglathnf(al,[1,0,1,0,0,0,0,0]~);
? latsum = alglatadd(al,lat1,lat2,&latinter);
? matdet(latsum[1])
%5 = 4
? matdet(latinter[1])
%6 = 64
@eprog
The library syntax is \fun{GEN}{alglatadd}{GEN al, GEN lat1, GEN lat2, GEN *ptinter = NULL}.
\subsec{alglatcontains$(\var{al},\var{lat},x,\{\&\var{ptc}\})$}\kbdsidx{alglatcontains}\label{se:alglatcontains}
Given an algebra \var{al}, a lattice \var{lat} and \var{x} in~\var{al},
tests whether~$x\in lat$. If~\var{ptc} is present, sets it to the~\typ{COL} of
coordinates of~$x$ in the basis of~\var{lat}.
\bprog
? al = alginit(nfinit(y^2+7), [-1,-1]);
? a1 = [1,-1,0,1,2,0,1,2]~;
? lat1 = alglathnf(al,a1);
? alglatcontains(al,lat1,a1,&c)
%4 = 1
? c
%5 = [-1, -2, -1, 1, 2, 0, 1, 1]~
@eprog
The library syntax is \fun{int}{alglatcontains}{GEN al, GEN lat, GEN x, GEN *ptc = NULL}.
\subsec{alglatelement$(\var{al},\var{lat},c)$}\kbdsidx{alglatelement}\label{se:alglatelement}
Given an algebra \var{al}, a lattice \var{lat} and a~\typ{COL}~\var{c},
returns the element of~\var{al} whose coordinates on the \Z-basis of~\var{lat}
are given by~\var{c}.
\bprog
? al = alginit(nfinit(y^2+7), [-1,-1]);
? a1 = [1,-1,0,1,2,0,1,2]~;
? lat1 = alglathnf(al,a1);
? c = [1..8]~;
? elt = alglatelement(al,lat1,c);
? alglatcontains(al,lat1,elt,&c2)
%6 = 1
? c==c2
%7 = 1
@eprog
The library syntax is \fun{GEN}{alglatelement}{GEN al, GEN lat, GEN c}.
\subsec{alglathnf$(\var{al},m,\{d=0\})$}\kbdsidx{alglathnf}\label{se:alglathnf}
Given an algebra \var{al} and a matrix \var{m} with columns representing
elements of \var{al}, returns the lattice $L$ generated by the columns of
\var{m}. If provided, \var{d} must be a rational number such that $L$ contains
\var{d} times the natural basis of~\var{al}. The argument \var{m} is also
allowed to be a \typ{VEC} of \typ{MAT}, in which case \var{m} is replaced by
the concatenation of the matrices, or a \typ{COL}, in which case \var{m} is
replaced by its left multiplication table as an element of \var{al}.
\bprog
? al = alginit(nfinit(y^2+7), [-1,-1]);
? a = [1,1,-1/2,1,1/3,-1,1,1]~;
? mt = algtomatrix(al,a,1);
? lat = alglathnf(al,mt);
? lat[2]
%5 = 1/6
@eprog
The library syntax is \fun{GEN}{alglathnf}{GEN al, GEN m, GEN d}.
\subsec{alglatindex$(\var{al},\var{lat1},\var{lat2})$}\kbdsidx{alglatindex}\label{se:alglatindex}
Given an algebra~\var{al} and two lattices~\var{lat1} and~\var{lat2}
in~\var{al}, computes the generalized index of~\var{lat1} relative
to~\var{lat2}, i.e.~$|lat2/lat1\cap lat2|/|lat1/lat1\cap lat2|$.
\bprog
? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglathnf(al,[1,1,0,0,0,0,0,0]~);
? lat2 = alglathnf(al,[1,0,1,0,0,0,0,0]~);
? alglatindex(al,lat1,lat2)
%4 = 1
? lat1==lat2
%5 = 0
@eprog
The library syntax is \fun{GEN}{alglatindex}{GEN al, GEN lat1, GEN lat2}.
\subsec{alglatinter$(\var{al},\var{lat1},\var{lat2},\{\&\var{ptsum}\})$}\kbdsidx{alglatinter}\label{se:alglatinter}
Given an algebra \var{al} and two lattices \var{lat1} and \var{lat2}
in~\var{al}, computes the intersection~$lat1\cap lat2$. If \var{ptsum} is
present, sets it to the sum~$lat1 + lat2$.
\bprog
? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglathnf(al,[1,1,0,0,0,0,0,0]~);
? lat2 = alglathnf(al,[1,0,1,0,0,0,0,0]~);
? latinter = alglatinter(al,lat1,lat2,&latsum);
? matdet(latsum[1])
%5 = 4
? matdet(latinter[1])
%6 = 64
@eprog
The library syntax is \fun{GEN}{alglatinter}{GEN al, GEN lat1, GEN lat2, GEN *ptsum = NULL}.
\subsec{alglatlefttransporter$(\var{al},\var{lat1},\var{lat2})$}\kbdsidx{alglatlefttransporter}\label{se:alglatlefttransporter}
Given an algebra \var{al} and two lattices \var{lat1} and \var{lat2}
in~\var{al}, computes the left transporter from \var{lat1} to~\var{lat2}, i.e.
the set of~$x\in al$ such that~$x\cdot lat1 \subset lat2$.
\bprog
? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglathnf(al,[1,-1,0,1,2,0,5,2]~);
? lat2 = alglathnf(al,[0,1,-2,-1,0,0,3,1]~);
? tr = alglatlefttransporter(al,lat1,lat2);
? a = alglatelement(al,tr,[0,0,0,0,0,0,1,0]~);
? alglatsubset(al,alglatmul(al,a,lat1),lat2)
%6 = 1
? alglatsubset(al,alglatmul(al,lat1,a),lat2)
%7 = 0
@eprog
The library syntax is \fun{GEN}{alglatlefttransporter}{GEN al, GEN lat1, GEN lat2}.
\subsec{alglatmul$(\var{al},\var{lat1},\var{lat2})$}\kbdsidx{alglatmul}\label{se:alglatmul}
Given an algebra \var{al} and two lattices \var{lat1} and \var{lat2}
in~\var{al}, computes the lattice generated by the products of elements
of~\var{lat1} and~\var{lat2}.
One of \var{lat1} and \var{lat2} is also allowed to be an element of~\var{al};
in this case, computes the product of the element and the lattice.
\bprog
? al = alginit(nfinit(y^2+7), [-1,-1]);
? a1 = [1,-1,0,1,2,0,1,2]~;
? a2 = [0,1,2,-1,0,0,3,1]~;
? lat1 = alglathnf(al,a1);
? lat2 = alglathnf(al,a2);
? lat3 = alglatmul(al,lat1,lat2);
? matdet(lat3[1])
%7 = 29584
? lat3 == alglathnf(al, algmul(al,a1,a2))
%8 = 0
? lat3 == alglatmul(al, lat1, a2)
%9 = 0
? lat3 == alglatmul(al, a1, lat2)
%10 = 0
@eprog
The library syntax is \fun{GEN}{alglatmul}{GEN al, GEN lat1, GEN lat2}.
\subsec{alglatrighttransporter$(\var{al},\var{lat1},\var{lat2})$}\kbdsidx{alglatrighttransporter}\label{se:alglatrighttransporter}
Given an algebra \var{al} and two lattices \var{lat1} and \var{lat2}
in~\var{al}, computes the right transporter from \var{lat1} to~\var{lat2}, i.e.
the set of~$x\in al$ such that~$lat1\cdot x \subset lat2$.
\bprog
? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglathnf(al,matdiagonal([1,3,7,1,2,8,5,2]));
? lat2 = alglathnf(al,matdiagonal([5,3,8,1,9,8,7,1]));
? tr = alglatrighttransporter(al,lat1,lat2);
? a = alglatelement(al,tr,[0,0,0,0,0,0,0,1]~);
? alglatsubset(al,alglatmul(al,lat1,a),lat2)
%6 = 1
? alglatsubset(al,alglatmul(al,a,lat1),lat2)
%7 = 0
@eprog
The library syntax is \fun{GEN}{alglatrighttransporter}{GEN al, GEN lat1, GEN lat2}.
\subsec{alglatsubset$(\var{al},\var{lat1},\var{lat2},\{\&\var{ptindex}\})$}\kbdsidx{alglatsubset}\label{se:alglatsubset}
Given an algebra~\var{al} and two lattices~\var{lat1} and~\var{lat2}
in~\var{al}, tests whether~$lat1\subset lat2$. If it is true and \var{ptindex}
is present, sets it to the index of~\var{lat1} in~\var{lat2}.
\bprog
? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglathnf(al,[1,1,0,0,0,0,0,0]~);
? lat2 = alglathnf(al,[1,0,1,0,0,0,0,0]~);
? alglatsubset(al,lat1,lat2)
%4 = 0
? latsum = alglatadd(al,lat1,lat2);
? alglatsubset(al,lat1,latsum,&index)
%6 = 1
? index
%7 = 4
@eprog
The library syntax is \fun{int}{alglatsubset}{GEN al, GEN lat1, GEN lat2, GEN *ptindex = NULL}.
\subsec{algmakeintegral$(\var{mt},\{\var{maps}=0\})$}\kbdsidx{algmakeintegral}\label{se:algmakeintegral}
\var{mt} being a multiplication table over $\Q$ in the same format as the
input of \tet{algtableinit}, computes an integral multiplication table
\var{mt2} for an isomorphic algebra. When $\var{maps}=1$, returns a \typ{VEC}
$[\var{mt2},\var{S},\var{T}]$ where \var{S} and \var{T} are matrices
respectively representing the map from the algebra defined by \var{mt} to the
one defined by \var{mt2} and its inverse.
\bprog
? mt = [matid(2),[0,-1/4;1,0]];
? algtableinit(mt);
*** at top-level: algtableinit(mt)
*** ^----------------
*** algtableinit: domain error in algtableinit: denominator(mt) != 1
? mt2 = algmakeintegral(mt);
? al = algtableinit(mt2);
? algisassociative(al)
%4 = 1
? [mt2, S, T] = algmakeintegral(mt,1);
? S
%6 =
[1 0]
[0 1/4]
? T
%7 =
[1 0]
[0 4]
? vector(#mt, i, S * (mt * T[,i]) * T) == mt2
%8 = 1
@eprog
The library syntax is \fun{GEN}{algmakeintegral}{GEN mt, long maps}.
\subsec{algmul$(\{\var{al}\},x,y)$}\kbdsidx{algmul}\label{se:algmul}
Given two elements $x$ and $y$ in \var{al} (Hamilton quaternions if
omitted), computes their product $xy$ in the algebra~\var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algmul(A,[1,1,0,0]~,[0,0,2,1]~)
% = [2, 3, 5, -4]~
? algmul(,[1,2,3,4]~,sqrt(I)) \\ Hamilton quaternions
% = [-0.7071067811, 2.1213203435, 4.9497474683, 0.7071067811]~
@eprog
Also accepts matrices with coefficients in \var{al}.
The library syntax is \fun{GEN}{algmul}{GEN al = NULL, GEN x, GEN y}.
\subsec{algmultable$(\var{al})$}\kbdsidx{algmultable}\label{se:algmultable}
Returns a multiplication table of \var{al} over its
prime subfield ($\Q$ or $\F_{p}$) or over~$\R$ for real algebras, as a
\typ{VEC} of \typ{MAT}: the left multiplication tables of basis elements.
If \var{al} was output by \tet{algtableinit}, returns the multiplication
table used to define \var{al}.
If \var{al} was output by \tet{alginit}, returns the multiplication table of
the order~${\cal O}_{0}$ stored in \var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? M = algmultable(A);
? #M
%3 = 4
? M[1] \\ multiplication by e_1 = 1
%4 =
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
? M[2]
%5 =
[0 -1 1 0]
[1 0 1 1]
[0 0 1 1]
[0 0 -2 -1]
? H = alginit(1.,1/2); \\ Hamilton quaternions
? algmultable(H)[3] \\ multiplication by j
%7 =
[0 0 -1 0]
[0 0 0 1]
[1 0 0 0]
[0 -1 0 0]
@eprog
The library syntax is \fun{GEN}{algmultable}{GEN al}.
\subsec{algneg$(\{\var{al}\},x)$}\kbdsidx{algneg}\label{se:algneg}
Given an element $x$ in \var{al}, computes its opposite $-x$ in the
algebra \var{al} (Hamilton quaternions if omitted).
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algneg(A,[1,1,0,0]~)
%2 = [-1, -1, 0, 0]~
@eprog
Also accepts matrices with coefficients in \var{al}.
The library syntax is \fun{GEN}{algneg}{GEN al = NULL, GEN x}.
\subsec{algnorm$(\{\var{al}\},x,\{\var{abs}=0\})$}\kbdsidx{algnorm}\label{se:algnorm}
Given an element \var{x} in \var{al} (Hamilton quaternions if omitted),
computes its norm. If \var{al} is a table algebra output by \tet{algtableinit}
or if $abs=1$, returns the absolute norm of \var{x}, which is an element of
$\F_{p}$, $\Q$ or~$\R$; if \var{al} is omitted or a central simple algebra
output by \tet{alginit} and $abs=0$ (default), returns the reduced norm of
\var{x}, which is an element of the center of \var{al}.
\bprog
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,19);
? algnorm(A,[0,-2,3]~)
%3 = 18
? nf = nfinit(y^2-5);
? B = alginit(nf,[-1,y]);
? b = [x,1]~;
? n = algnorm(B,b)
%7 = Mod(-y + 1, y^2 - 5)
? algnorm(B,b,1)
%8 = 16
? nfeltnorm(nf,n)^algdegree(B)
%9 = 16
? algnorm(,[0,sqrt(3),0,sqrt(2)]~) \\ Hamilton quaternions
%10 = 5.0000000000
@eprog
Also accepts a square matrix with coefficients in \var{al}.
The library syntax is \fun{GEN}{algnorm}{GEN al = NULL, GEN x, long abs}.
\subsec{algpoleval$(\{\var{al}\},T,b)$}\kbdsidx{algpoleval}\label{se:algpoleval}
Given an element $b$ in \var{al} (Hamilton quaternions if omitted) and a
polynomial $T$ in $K[X]$, computes~$T(b)$ in~\var{al}. Here~$K = \Q$ or $\F_p$
for a table algebra (output by \tet{algtableinit}) and $K$ is the center of
\var{al} for a central simple algebra (output by \tet{alginit}).
Also accepts as input a \typ{VEC}~$[b,mb]$ where~$mb$ is the left
multiplication table of~$b$.
\bprog
? nf = nfinit(y^2-5);
? al = alginit(nf,[y,-1]);
? b = [1..8]~;
? pol = algcharpoly(al,b,,1); \\absolute characteristic polynomial
? algpoleval(al,pol,b)==0
%5 = 1
? mb = algtomatrix(al,b,1);
? algpoleval(al,pol,[b,mb])==0
%7 = 1
? pol = algcharpoly(al,b); \\reduced characteristic polynomial
? algpoleval(al,pol,b) == 0
%9 = 1
? algpoleval(,polcyclo(8),[1,0,0,1]~/sqrt(2)) \\ Hamilton quaternions
%10 = [0.E-38, 0, 0, 0.E-38]~
@eprog
The library syntax is \fun{GEN}{algpoleval}{GEN al = NULL, GEN T, GEN b}.
\subsec{algpow$(\{\var{al}\},x,n)$}\kbdsidx{algpow}\label{se:algpow}
Given an element $x$ in \var{al} (Hamilton quaternions if omitted) and an
integer $n$, computes the power $x^{n}$ in the algebra \var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algpow(A,[1,1,0,0]~,7)
%2 = [8, -8, 0, 0]~
? algpow(,[1,2,3,sqrt(3)]~,-3) \\ Hamilton quaternions
% = [-0.0095664563, 0.0052920822, 0.0079381233, 0.0045830776]~
@eprog
Also accepts a square matrix with coefficients in \var{al}.
The library syntax is \fun{GEN}{algpow}{GEN al = NULL, GEN x, GEN n}.
\subsec{algprimesubalg$(\var{al})$}\kbdsidx{algprimesubalg}\label{se:algprimesubalg}
\var{al} being the output of \tet{algtableinit} representing a semisimple
algebra of positive characteristic, returns a basis of the prime subalgebra
of~\var{al}. The prime subalgebra of~\var{al} is the subalgebra fixed by the
Frobenius automorphism of the center of \var{al}. It is abstractly isomorphic
to a product of copies of $\F_{p}$.
\bprog
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? algprimesubalg(A)
%3 =
[1 0]
[0 1]
[0 0]
@eprog
The library syntax is \fun{GEN}{algprimesubalg}{GEN al}.
\subsec{algquotient$(\var{al},I,\{\var{maps}=0\})$}\kbdsidx{algquotient}\label{se:algquotient}
\var{al} being a table algebra output by \tet{algtableinit} and \var{I}
being a basis of a two-sided ideal of \var{al} represented by a matrix,
returns the quotient $\var{al}/\var{I}$. When $\var{maps}=1$, returns a
\typ{VEC} $[\var{al}/\var{I},\var{proj},\var{lift}]$ where \var{proj} and
\var{lift} are matrices respectively representing the projection map and a
section of it.
\bprog
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? AQ = algquotient(A,[0;1;0]);
? algdim(AQ)
%4 = 2
@eprog
The library syntax is \fun{GEN}{alg_quotient}{GEN al, GEN I, long maps}.
\subsec{algradical$(\var{al})$}\kbdsidx{algradical}\label{se:algradical}
\var{al} being a table algebra output by \tet{algtableinit}, returns a
basis of the Jacobson radical of the algebra \var{al} over its prime field
($\Q$ or $\F_{p}$).
Here is an example with $A = \Q[x]/(x^{2})$, with the basis~$(1,x)$:
\bprog
? mt = [matid(2),[0,0;1,0]];
? A = algtableinit(mt);
? algradical(A) \\ = (x)
%3 =
[0]
[1]
@eprog
Another one with $2\times 2$ upper triangular matrices over $\Q$, with basis
$I_{2}$, $a = \kbd{[0,1;0,0]}$ and $b = \kbd{[0,0;0,1]}$, such that $a^{2} =
0$, $ab = a$, $ba = 0$, $b^{2} = b$:
\bprog
? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algradical(A) \\ = (a)
%6 =
[0]
[1]
[0]
@eprog
The library syntax is \fun{GEN}{algradical}{GEN al}.
\subsec{algramifiedplaces$(\var{al})$}\kbdsidx{algramifiedplaces}\label{se:algramifiedplaces}
Given a central simple algebra \var{al} output by \tet{alginit}, returns a
\typ{VEC} containing the list of places of the center of \var{al} that are
ramified in \var{al}. Each place is described as an integer between~$1$
and~$r_{1}$ or as a prime ideal.
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algramifiedplaces(A)
%3 = [1, [2, [2, 0]~, 1, 2, 1]]
@eprog
The library syntax is \fun{GEN}{algramifiedplaces}{GEN al}.
\subsec{algrandom$(\{\var{al}\},b)$}\kbdsidx{algrandom}\label{se:algrandom}
Given an algebra \var{al} and a nonnegative integer \var{b}, returns a
random element in \var{al} with coefficients in~$[-b,b]$.
\bprog
? al = alginit(nfinit(y),[-1,-1]);
? algrandom(al,3)
% = [2, 0, 3, -1]~
@eprog
If~\var{al} is an algebra over $\R$ (Hamilton quaternions if omitted) and
\var{b} is a positive \typ{REAL}, returns a random element of~\var{al} with
coefficients in~$[-b,b]$.
\bprog
? algrandom(,1.)
% = [-0.1806334680, -0.2810504190, 0.5011479961, 0.9498643737]~
@eprog
The library syntax is \fun{GEN}{algrandom}{GEN al = NULL, GEN b}.
\subsec{algrelmultable$(\var{al})$}\kbdsidx{algrelmultable}\label{se:algrelmultable}
Given a central simple algebra \var{al} output by \tet{alginit} defined by a multiplication table over its center (a number field), returns this multiplication table.
\bprog
? nf = nfinit(y^3-5); a = y; b = y^2;
? {m_i = [0,a,0,0;
1,0,0,0;
0,0,0,a;
0,0,1,0];}
? {m_j = [0, 0,b, 0;
0, 0,0,-b;
1, 0,0, 0;
0,-1,0, 0];}
? {m_k = [0, 0,0,-a*b;
0, 0,b, 0;
0,-a,0, 0;
1, 0,0, 0];}
? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nf,mt,'x);
? M = algrelmultable(A);
? M[2] == m_i
%8 = 1
? M[3] == m_j
%9 = 1
? M[4] == m_k
%10 = 1
@eprog
The library syntax is \fun{GEN}{algrelmultable}{GEN al}.
\subsec{algsimpledec$(\var{al},\{\var{maps}=0\})$}\kbdsidx{algsimpledec}\label{se:algsimpledec}
\var{al} being the output of \tet{algtableinit}, returns a \typ{VEC}
$[J,[\var{al}_{1},\dots,\var{al}_{n}]]$ where $J$ is a basis of the
Jacobson radical of \var{al} and~$\var{al}/J$ is isomorphic to the direct
product of the simple algebras~$\var{al}_{i}$. When $\var{maps}=1$,
each~$\var{al}_{i}$ is replaced with a \typ{VEC}
$[\var{al}_{i},\var{proj}_{i},\var{lift}_{i}]$ where $\var{proj}_{i}$
and~$\var{lift}_{i}$
are matrices respectively representing the projection map~$\var{al} \to
\var{al}_{i}$ and a section of it. Modulo~$J$, the images of the
$\var{lift}_{i}$
form a direct sum in~$\var{al}/J$, so that the images of~$1\in\var{al}_{i}$
under~$\var{lift}_{i}$ are central primitive idempotents of~$\var{al}/J$. The
factors are sorted by increasing dimension, then increasing dimension of the
center. This ensures that the ordering of the isomorphism classes of the
factors is deterministic over finite fields, but not necessarily over~$\Q$.
The library syntax is \fun{GEN}{algsimpledec}{GEN al, long maps}.
\subsec{algsplit$(\var{al},\{v=\kbd{'}x\})$}\kbdsidx{algsplit}\label{se:algsplit}
If \var{al} is a table algebra over~$\F_{p}$ output by \tet{algtableinit}
that represents a simple algebra, computes an isomorphism between \var{al} and
a matrix algebra~$M_{d}(\F_{p^{n}})$ where~$N = nd^{2}$ is the dimension
of~\var{al}. Returns a \typ{VEC}~$[map,mapi]$, where:
\item \var{map} is a \typ{VEC} of~$N$ matrices of size~$d\times d$ with
\typ{FFELT} coefficients using the variable~\var{v}, representing the image of
the basis of~\var{al} under the isomorphism.
\item \var{mapi} is an~$N\times N$ matrix with \typ{INT} coefficients,
representing the image in \var{al} by the inverse isomorphism of the
basis~$(b_{i})$ of~$M_{d}(\F_{p}[\alpha])$ (where~$\alpha$ has degree~$n$
over~$\F_{p}$) defined as follows:
let~$E_{i,j}$ be the matrix having all coefficients~$0$ except the~$(i,j)$-th
coefficient equal to~$1$, and define
$$b_{i_{3}+n(i_{2}+di_{1})+1} = E_{i_{1}+1,i_{2}+1} \alpha^{i_{3}},$$
where~$0\le i_{1},i_{2}<d$ and~$0\le i_{3}<n$.
Example:
\bprog
? al0 = alginit(nfinit(y^2+7), [-1,-1]);
? al = algtableinit(algmultable(al0), 3); \\ isomorphic to M_2(F_9)
? [map,mapi] = algsplit(al, 'a);
? x = [1,2,1,0,0,0,0,0]~; fx = map*x
%4 =
[2*a 0]
[ 0 2]
? y = [0,0,0,0,1,0,0,1]~; fy = map*y
%5 =
[1 2*a]
[2 a + 2]
? map*algmul(al,x,y) == fx*fy
%6 = 1
? map*mapi[,6]
%7 =
[0 0]
[a 0]
@eprog
\misctitle{Warning} If~\var{al} is not simple, \kbd{algsplit(al)} can trigger
an error, but can also run into an infinite loop. Example:
\bprog
? al = alginit(nfinit(y),[-1,-1]); \\ ramified at 2
? al2 = algtableinit(algmultable(al),2); \\ maximal order modulo 2
? algsplit(al2); \\ not semisimple, infinite loop
@eprog
The library syntax is \fun{GEN}{algsplit}{GEN al, long v = -1} where \kbd{v} is a variable number.
\subsec{algsplittingdata$(\var{al})$}\kbdsidx{algsplittingdata}\label{se:algsplittingdata}
Given a central simple algebra \var{al} output by \tet{alginit} defined
by a multiplication table over its center~$K$ (a number field), returns data
stored to compute a splitting of \var{al} over an extension. This data is a
\typ{VEC} \kbd{[t,Lbas,Lbasinv]} with $3$ components:
\item an element $t$ of \var{al} such that $L=K(t)$ is a maximal subfield
of \var{al};
\item a matrix \kbd{Lbas} expressing a $L$-basis of \var{al} (given an
$L$-vector space structure by multiplication on the right) on the integral
basis of \var{al};
\item a matrix \kbd{Lbasinv} expressing the integral basis of \var{al} on
the previous $L$-basis.
\bprog
? nf = nfinit(y^3-5); a = y; b = y^2;
? {m_i = [0,a,0,0;
1,0,0,0;
0,0,0,a;
0,0,1,0];}
? {m_j = [0, 0,b, 0;
0, 0,0,-b;
1, 0,0, 0;
0,-1,0, 0];}
? {m_k = [0, 0,0,-a*b;
0, 0,b, 0;
0,-a,0, 0;
1, 0,0, 0];}
? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nf,mt,'x);
? [t,Lb,Lbi] = algsplittingdata(A);
? t
%8 = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]~;
? matsize(Lb)
%9 = [12, 2]
? matsize(Lbi)
%10 = [2, 12]
@eprog
The library syntax is \fun{GEN}{algsplittingdata}{GEN al}.
\subsec{algsplittingfield$(\var{al})$}\kbdsidx{algsplittingfield}\label{se:algsplittingfield}
Given a central simple algebra \var{al} output by \tet{alginit}, returns
an \kbd{rnf} structure: the splitting field of \var{al} that is stored in
\var{al}, as a relative extension of the center.
\bprog
nf = nfinit(y^3-5);
a = y; b = y^2;
{m_i = [0,a,0,0;
1,0,0,0;
0,0,0,a;
0,0,1,0];}
{m_j = [0, 0,b, 0;
0, 0,0,-b;
1, 0,0, 0;
0,-1,0, 0];}
{m_k = [0, 0,0,-a*b;
0, 0,b, 0;
0,-a,0, 0;
1, 0,0, 0];}
mt = [matid(4), m_i, m_j, m_k];
A = alginit(nf,mt,'x);
algsplittingfield(A).pol
%8 = x^2 - y
@eprog
The library syntax is \fun{GEN}{algsplittingfield}{GEN al}.
\subsec{algsqr$(\{\var{al}\},x)$}\kbdsidx{algsqr}\label{se:algsqr}
Given an element $x$ in \var{al} (Hamilton quaternions if omitted),
computes its square $x^{2}$ in the algebra \var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algsqr(A,[1,0,2,0]~)
%2 = [-3, 0, 4, 0]~
? algsqr(,[0,0,0,Pi]~) \\ Hamilton quaternions
%3 = [-9.8696044010, 0, 0, 0]~
@eprog
Also accepts a square matrix with coefficients in \var{al}.
The library syntax is \fun{GEN}{algsqr}{GEN al = NULL, GEN x}.
\subsec{algsub$(\{\var{al}\},x,y)$}\kbdsidx{algsub}\label{se:algsub}
Given two elements $x$ and $y$ in \var{al} (Hamilton quaternions if
omitted), computes their difference $x-y$ in the algebra \var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algsub(A,[1,1,0,0]~,[1,0,1,0]~)
%2 = [0, 1, -1, 0]~
@eprog
Also accepts matrices with coefficients in \var{al}.
If~$x$ and~$y$ are given in the same format, then one should simply use \kbd{-}
instead of \kbd{algsub}.
The library syntax is \fun{GEN}{algsub}{GEN al = NULL, GEN x, GEN y}.
\subsec{algsubalg$(\var{al},B)$}\kbdsidx{algsubalg}\label{se:algsubalg}
\var{al} being a table algebra output by \tet{algtableinit} and \var{B}
being a basis of a subalgebra of~\var{al} represented by a matrix, computes an
algebra~\var{al2} isomorphic to \var{B}.
Returns $[\var{al2},\var{B2}]$ where \var{B2} is a possibly different basis of
the subalgebra \var{al2}, with respect to which the multiplication table of
\var{al2} is defined.
\bprog
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? B = algsubalg(A,[1,0; 0,0; 0,1]);
? algdim(A)
%4 = 3
? algdim(B[1])
%5 = 2
? m = matcompanion(x^4+1);
? mt = [m^i | i <- [0..3]];
? al = algtableinit(mt);
? B = [1,0;0,0;0,1/2;0,0];
? al2 = algsubalg(al,B);
? algdim(al2[1])
? al2[2]
%13 =
[1 0]
[0 0]
[0 1]
[0 0]
@eprog
The library syntax is \fun{GEN}{algsubalg}{GEN al, GEN B}.
\subsec{algtableinit$(\var{mt},\{p=0\})$}\kbdsidx{algtableinit}\label{se:algtableinit}
Initializes the associative algebra over $K = \Q$ ($p$ omitted) or $\F_{p}$
defined by the multiplication table \var{mt}.
As a $K$-vector space, the algebra is generated by a basis
$(e_{1} = 1, e_{2}, \dots, e_{n})$; the table is given as a \typ{VEC} of $n$ matrices in
$M_{n}(K)$, giving the left multiplication by the basis elements $e_{i}$, in the
given basis.
Assumes that $e_{1}=1$, that $K e_{1}\oplus \dots\oplus K e_{n}]$ describes an
associative algebra over $K$, and in the case $K=\Q$ that the multiplication
table is integral. If the algebra is already known to be central
and simple, then the case $K = \F_{p}$ is useless, and one should use
\tet{alginit} directly.
The point of this function is to input a finite dimensional $K$-algebra, so
as to later compute its radical, then to split the quotient algebra as a
product of simple algebras over $K$.
The pari object representing such an algebra $A$ is a \typ{VEC} with the
following data:
\item The characteristic of $A$, accessed with \kbd{algchar}.
\item The multiplication table of $A$, accessed with \kbd{algmultable}.
\item The traces of the elements of the basis.
A simple example: the $2\times 2$ upper triangular matrices over $\Q$,
generated by $I_{2}$, $a = \kbd{[0,1;0,0]}$ and $b = \kbd{[0,0;0,1]}$,
such that $a^{2} = 0$, $ab = a$, $ba = 0$, $b^{2} = b$:
\bprog
? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algradical(A) \\ = (a)
%6 =
[0]
[1]
[0]
? algcenter(A) \\ = (I_2)
%7 =
[1]
[0]
[0]
@eprog
The library syntax is \fun{GEN}{algtableinit}{GEN mt, GEN p = NULL}.
\subsec{algtensor$(\var{al1},\var{al2},\{\fl=3\})$}\kbdsidx{algtensor}\label{se:algtensor}
Given two algebras \var{al1} and \var{al2}, computes their tensor
product. $\fl$ has the same meaning as in \kbd{alginit}.
Currently only implemented for cyclic algebras of coprime degree over the same
center~$K$, and the tensor product is over~$K$.
The library syntax is \fun{GEN}{algtensor}{GEN al1, GEN al2, long flag}.
\subsec{algtomatrix$(\{\var{al}\},x,\{\var{abs}=0\})$}\kbdsidx{algtomatrix}\label{se:algtomatrix}
Given an element \var{x} in \var{al} (Hamilton quaternions if omitted),
returns the image of \var{x} under a homomorphism to a matrix algebra. If
\var{al} is a table algebra output by \kbd{algtableinit} or if~$abs=1$, returns
the left multiplication table on the integral basis; if \var{al} is a central
simple algebra and~$abs=0$, returns~$\phi(x)$ where~$\phi : A\otimes_{K} L \to
M_{d}(L)$ (where $d$ is the degree of the algebra and $L$ is an extension of $L$
with~$[L:K]=d$) is an isomorphism stored in~\var{al}. Also accepts a square
matrix with coefficients in~\var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algtomatrix(A,[0,0,0,2]~)
%2 =
[Mod(x + 1, x^2 + 1) Mod(Mod(1, y)*x + Mod(-1, y), x^2 + 1)]
[Mod(x + 1, x^2 + 1) Mod(-x + 1, x^2 + 1)]
? algtomatrix(A,[0,1,0,0]~,1)
%2 =
[0 -1 1 0]
[1 0 1 1]
[0 0 1 1]
[0 0 -2 -1]
? algtomatrix(A,[0,x]~,1)
%3 =
[-1 0 0 -1]
[-1 0 1 0]
[-1 -1 0 -1]
[ 2 0 0 1]
? algtomatrix(,[1,2,3,4]~) \\ Hamilton quaternions
%4 =
[1 + 2*I -3 - 4*I]
[3 - 4*I 1 - 2*I]
? algtomatrix(,I,1)
%5 =
[0 -1 0 0]
[1 0 0 0]
[0 0 0 -1]
[0 0 1 0]
@eprog
Also accepts matrices with coefficients in \var{al}.
The library syntax is \fun{GEN}{algtomatrix}{GEN al = NULL, GEN x, long abs}.
\subsec{algtrace$(\{\var{al}\},x,\{\var{abs}=0\})$}\kbdsidx{algtrace}\label{se:algtrace}
Given an element \var{x} in \var{al} (Hamilton quaternions if omitted),
computes its trace. If \var{al} is a table algebra output by \tet{algtableinit}
or if $abs=1$, returns the absolute trace of \var{x}, which is an element of
$\F_{p}$, $\Q$ or~$\R$; if \var{al} is omitted or the output of \tet{alginit} and
$abs=0$ (default), returns the reduced trace of \var{x}, which is an element of
the center of \var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algtrace(A,[5,0,0,1]~)
%2 = 11
? algtrace(A,[5,0,0,1]~,1)
%3 = 22
? nf = nfinit(y^2-5);
? A = alginit(nf,[-1,y]);
? a = [1+x+y,2*y]~*Mod(1,y^2-5)*Mod(1,x^2+1);
? t = algtrace(A,a)
%7 = Mod(2*y + 2, y^2 - 5)
? algtrace(A,a,1)
%8 = 8
? algdegree(A)*nfelttrace(nf,t)
%9 = 8
? algtrace(,[1.,2,3,4]~) \\ Hamilton quaternions
%10 = 2.0000000000
? algtrace(,[1.,2,3,4]~,0)
%11 = 4.0000000000
@eprog
Also accepts a square matrix with coefficients in \var{al}.
The library syntax is \fun{GEN}{algtrace}{GEN al = NULL, GEN x, long abs}.
\subsec{algtype$(\var{al})$}\kbdsidx{algtype}\label{se:algtype}
Given an algebra \var{al} output by \tet{alginit} or by \tet{algtableinit}, returns an integer indicating the type of algebra:
\item $0$: not a valid algebra.
\item $1$: table algebra output by \tet{algtableinit}.
\item $2$: central simple algebra output by \tet{alginit} and represented by
a multiplication table over its center.
\item $3$: central simple algebra output by \tet{alginit} and represented by
a cyclic algebra.
\item $4$: division algebra over~$\R$ ($\R$, $\C$ or Hamilton quaternion algebra~${\bf H}$).
\bprog
? algtype([])
%1 = 0
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? algtype(A)
%4 = 1
? nf = nfinit(y^3-5);
? a = y; b = y^2;
? {m_i = [0,a,0,0;
1,0,0,0;
0,0,0,a;
0,0,1,0];}
? {m_j = [0, 0,b, 0;
0, 0,0,-b;
1, 0,0, 0;
0,-1,0, 0];}
? {m_k = [0, 0,0,-a*b;
0, 0,b, 0;
0,-a,0, 0;
1, 0,0, 0];}
? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nf,mt,'x);
? algtype(A)
%12 = 2
? A = alginit(nfinit(y), [-1,-1]);
? algtype(A)
%14 = 3
? H = alginit(1.,1/2);
? algtype(H)
%16 = 4
@eprog
The library syntax is \fun{long}{algtype}{GEN al}.
\section{Elliptic curves}
\subsec{Elliptic curve structures} %GPHELPskip
An elliptic curve is given by a Weierstrass model\sidx{Weierstrass equation}
$$
y^{2} + a_{1} xy + a_{3} y = x^{3} + a_{2} x^{2} + a_{4} x + a_{6},
$$
whose discriminant is nonzero. One can also define an elliptic curve with
a\sidx{short Weierstrass equation}
$$
y^{2} = x^{3} + a_{4} x + a_{6}.
$$
Affine points on \kbd{E} are represented as
two-component vectors \kbd{[x,y]}; the point at infinity, i.e.~the identity
element of the group law, is represented by the one-component vector
\kbd{[0]}.
Given a vector of coefficients $[a_{1},a_{2},a_{3},a_{4},a_{6}]$ or $[a_{4},a_{6}]$, the function
\tet{ellinit} initializes and returns an \tev{ell} structure. An additional
optional argument allows to specify the base field in case it cannot be
inferred from the curve coefficients. This structure contains data needed by
elliptic curve related functions, and is generally passed as a first argument.
Expensive data are skipped on initialization: they will be dynamically
computed when (and if) needed, and then inserted in the structure. The
precise layout of the \tev{ell} structure is left undefined and should never
be used directly. The following \idx{member functions} are available,
depending on the underlying domain.
\misctitle{All domains} %GPHELPskip
\item \tet{a1}, \tet{a2}, \tet{a3}, \tet{a4}, \tet{a6}: coefficients of the
elliptic curve.
\item \tet{b2}, \tet{b4}, \tet{b6}, \tet{b8}: $b$-invariants of the curve; in
characteristic $\neq 2$, for $Y = 2y + a_{1}x + a_{3}$, the curve equation
becomes
$$ Y^{2} = 4 x^{3} + b_{2} x^{2} + 2b_{4} x + b_{6} =: g(x). $$
\item \tet{c4}, \tet{c6}: $c$-invariants of the curve; in characteristic $\neq
2,3$, for $X = x + b_{2}/12$ and $Y = 2y + a_{1}x + a_{3}$, the curve equation
becomes
$$ Y^{2} = 4 X^{3} - (c_{4}/12) X - (c_{6}/216). $$
\item \tet{disc}: discriminant of the curve. This is only required to be
nonzero, not necessarily a unit.
\item \tet{j}: $j$-invariant of the curve.
\noindent These are used as follows:
\bprog
? E = ellinit([0,0,0, a4,a6]);
? E.b4
%2 = 2*a4
? E.disc
%3 = -64*a4^3 - 432*a6^2
@eprog
\misctitle{Curves over $\C$} %GPHELPskip
This in particular includes curves defined over $\Q$. All member functions in
this section return data, as it is currently stored in the structure, if
present; and otherwise compute it to the default accuracy, that was fixed
\emph{at the time of ellinit} (via a \typ{REAL} $D$ domain argument, or
\kbd{realprecision} by default). The function \tet{ellperiods} allows to
recompute (and cache) the following data to \emph{current}
\kbd{realprecision}.
\item \tet{area}: volume of the complex lattice defining $E$.
\item \tet{roots} is a vector whose three components contain the complex
roots of the right hand side $g(x)$ of the attached $b$-model $Y^{2} = g(x)$.
If the roots are all real, they are ordered by decreasing value. If only one
is real, it is the first component.
\item \tet{omega}: $[\omega_{1},\omega_{2}]$, periods forming a basis of the
complex lattice defining $E$. The first component $\omega_{1}$ is the
(positive) real period, in other words the integral of the N\'eron
differential $dx/(2y+a_{1}x+a_{3})$
over the connected component of the identity component of $E(\R)$.
The second component $\omega_{2}$ is a complex period, such that
$\tau = \omega_{1} / \omega_{2}$ belongs to Poincar\'e's
half-plane (positive imaginary part); not necessarily to the standard
fundamental domain. It is normalized so that $\Im(\omega_{2}) < 0$
and either $\Re(\omega_{2}) = 0$, when \kbd{E.disc > 0}
($E(\R)$ has two connected components), or $\Re(\omega_{2}) = \omega_{1}/2$
\item \tet{eta} is a row vector containing the quasi-periods $\eta_{1}$ and
$\eta_{2}$ such that $\eta_{i} = 2\zeta(\omega_{i}/2)$, where $\zeta$ is the
Weierstrass zeta function attached to the period lattice; see
\tet{ellzeta}. In particular, the Legendre relation holds:
$\eta_{2}\omega_{1} - \eta_{1}\omega_{2} = 2\pi i$.
\misctitle{Warning} As for the orientation of the basis of the period lattice,
beware that many sources use the inverse convention where
$\omega_{2}/\omega_{1}$ has positive imaginary part and our $\omega_{2}$ is
the conjugate of theirs. Our convention $\tau = \omega_{1}/\omega_{2}$ ensures
that the action of $\text{PSL}_{2}$ is the natural one:
$$[a,b;c,d]\cdot\tau = (a\tau+b)/(c\tau+d)
= (a \omega_{1} + b\omega_{2})/(c\omega_{1} + d\omega_{2}),$$
instead of a twisted one. (Our $\tau$ is $-1/\tau$ in the above inverse
convention.)
\misctitle{Curves over $\Q_{p}$} %GPHELPskip
We advise to input a model defined over $\Q$ for such curves. In any case,
if you input an approximate model with \typ{PADIC} coefficients, it will be
replaced by a lift to $\Q$ (an exact model ``close'' to the one that was
input) and all quantities will then be computed in terms of this lifted
model.
For the time being only curves with multiplicative reduction (split or
nonsplit), i.e. $v_{p}(j) < 0$, are supported by nontrivial functions. In
this case the curve is analytically isomorphic to $\bar{\Q}_{p}^{*}/q^{\Z} :=
E_{q}(\bar{\Q}_{p})$, for some $p$-adic integer $q$ (the Tate period). In
particular, we have $j(q) = j(E)$.
\item \tet{p} is the residual characteristic
\item \tet{roots} is a vector with a single component, equal to the $p$-adic
root $e_{1}$ of the right hand side $g(x)$ of the attached $b$-model $Y^{2}
= g(x)$. The point $(e_{1},0)$ corresponds to $-1 \in \bar{\Q}_{p}^{*}/q^{\Z}$
under the Tate parametrization.
\item \tet{tate} returns $[u^{2},u,q,[a,b],Ei,L]$ in the notation of
Henniart-Mestre (CRAS t. 308, p.~391--395, 1989): $q$ is as above,
$u\in \Q_{p}(\sqrt{-c_{6}})$ is such that $\phi^{*} dx/(2y + a_{1}x + a_{3})
= u dt/t$, where $\phi: E_{q}\to E$ is an isomorphism
(well defined up to sign) and $dt/t$ is the canonical invariant differential
on the Tate curve; $u^{2}\in\Q_{p}$ does not depend on $\phi$.
(Technicality: if $u\not\in\Q_{p}$, it is stored as a quadratic \typ{POLMOD}.)
The parameters $[a,b]$ satisfy $4u^{2} b \cdot \text{agm}(\sqrt{a/b},1)^{2}
= 1$ as in Theorem~2 (\emph{loc.~cit.}).
\kbd{Ei} describes the sequence of 2-isogenous curves (with kernel generated
by $[0,0]$) $E_{i}: y^{2}=x(x+A_{i})(x+A_{i}-B_{i})$ converging quadratically
towards the singular curve $E_{\infty}$. Finally, $L$ is
Mazur-Tate-Teitelbaum's ${\cal L}$-invariant, equal to $\log_{p} q / v_{p}(q)$.
\misctitle{Curves over $\F_{q}$} %GPHELPskip
\item \tet{p} is the characteristic of $\F_{q}$.
\item \tet{no} is $\#E(\F_{q})$.
\item \tet{cyc} gives the cycle structure of $E(\F_{q})$.
\item \tet{gen} returns the generators of $E(\F_{q})$.
\item \tet{group} returns $[\kbd{no},\kbd{cyc},\kbd{gen}]$, i.e. $E(\F_{q})$
as an abelian group structure.
\misctitle{Curves over $\Q$} %GPHELPskip
All functions should return a correct result, whether the model is minimal or
not, but it is a good idea to stick to minimal models whenever
$\gcd(c_{4},c_{6})$ is easy to factor (minor speed-up). The construction
\bprog
E = ellminimalmodel(E0, &v)
@eprog\noindent replaces the original model $E_{0}$ by a minimal model $E$,
and the variable change $v$ allows to go between the two models:
\bprog
ellchangepoint(P0, v)
ellchangepointinv(P, v)
@eprog\noindent respectively map the point $P_{0}$ on $E_{0}$ to its image on
$E$, and the point $P$ on $E$ to its pre-image on $E_{0}$.
A few routines --- namely \tet{ellgenerators}, \tet{ellidentify},
\tet{ellsearch}, \tet{forell} --- require the optional package \tet{elldata}
(John Cremona's database) to be installed. In that case, the function
\tet{ellinit} will allow alternative inputs, e.g.~\kbd{ellinit("11a1")}.
Functions using this package need to load chunks of a large database in
memory and require at least 2MB stack to avoid stack overflows.
\item \tet{gen} returns the generators of $E(\Q)$, if known (from John
Cremona's database)
\misctitle{Curves over number fields} %GPHELPskip
\item \tet{nf} return the \var{nf} structure attached to the number field
over which $E$ is defined.
\item \tet{bnf} return the \var{bnf} structure attached to the number field
over which $E$ is defined or raise an error (if only an \var{nf} is available).
\item \tet{omega}, \tet{eta}, \tet{area}: vectors of complex periods,
quasi-periods and lattice areas attached to the complex embeddings of $E$,
in the same order as \kbd{E.nf.roots}.
\subsec{Reduction} %GPHELPskip
Let $E$ be a curve defined over $\Q_{p}$ given by a $p$-integral model;
if the curve has good reduction at $p$, we may define its reduction
$\tilde{E}$ over the finite field $\F_{p}$:
\bprog
? E = ellinit([-3,1], O(5^10)); \\ @com $E/\Q_{5}$
? Et = ellinit(E, 5)
? ellcard(Et) \\ @com $\tilde{E}/\F_{5}$ has 7 points
%3 = 7
? ellinit(E, 7)
*** at top-level: ellinit(E,7)
*** ^------------
*** ellinit: inconsistent moduli in ellinit: 5 != 7
@eprog\noindent
Likewise, if a curve is defined over a number field $K$ and $\goth{p}$ is a
maximal ideal with finite residue field $\F_{q}$, we define the reduction
$\tilde{E}/\F_{q}$ provided $E$ has good reduction at $\goth{p}$.
$E/\Q$ is an important special case:
\bprog
? E = ellinit([-3,1]);
? factor(E.disc)
%2 =
[2 4]
[3 4]
? Et = ellinit(E, 5);
? ellcard(Et) \\ @com $\tilde{E} / \F_{5}$ has 7 points
%4 = 7
? ellinit(E, 3) \\ bad reduction at 3
%5 = []
@eprog\noindent General number fields are similar:
\bprog
? K = nfinit(x^2+1); E = ellinit([x,x+1], K);
? idealfactor(K, E.disc) \\ three primes of bad reduction
%2 =
[ [2, [1, 1]~, 2, 1, [1, -1; 1, 1]] 10]
[ [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]] 2]
[[5, [2, 1]~, 1, 1, [-2, -1; 1, -2]] 2]
? P = idealprimedec(K, 3); \\ a prime of good reduction
? idealnorm(K, P)
%4 = 9
? Et = ellinit(E, P);
? ellcard(Et) \\ @com $\tilde{E} / \F_{9}$ has 4 points
%6 = 4
@eprog\noindent
If the model is not locally minimal at $\goth{p}$, the above will fail:
\kbd{elllocalred} and \kbd{ellchangecurve} allow to reduce to that case.
Some functions such as \kbd{ellap}, \kbd{ellcard}, \kbd{ellgroup} and
\kbd{ellissupersingular} even implicitly replace the given equation by
a local minimal model and consider the group of nonsingular points
$\tilde{E}^{ns}$ so they make sense even when the curve has bad reduction.
\subsec{ell2cover$(E)$}\kbdsidx{ell2cover}\label{se:ell2cover}
If $E$ is an elliptic curve over $\Q$, returns a basis of the set of
everywhere locally soluble $2$-covers of the curve $E$.
For each cover a pair $[R,P]$ is returned where $y^{2}-R(x)$ is a quartic curve
and $P$ is a point on $E(k)$, where $k = \Q(x)[y] / (y^{2}-R(x))$.
$E$ can also be given as the output of \kbd{ellrankinit(E)},
or as a pair $[e, f]$, where $e$ is an elliptic curve given by
\kbd{ellrankinit} and $f$ is a quadratic twist of $e$. We then look for
points on $f$.
\bprog
? E = ellinit([-25,4]);
? C = ell2cover(E); #C
%2 = 2
? [R,P] = C[1]; R
%3 = 64*x^4+480*x^2-128*x+100
? P[1]
%4 = -320/y^2*x^4 + 256/y^2*x^3 + 800/y^2*x^2 - 320/y^2*x - 436/y^2
? ellisoncurve(E, Mod(P, y^2-R))
%5 = 1
? H = hyperellratpoints(R,10)
%6 = [[0,10], [0,-10], [1/5,242/25], [1/5,-242/25], [2/5,282/25],
[2/5,-282/25]]
? A = substvec(P,[x,y],H[1])
%7 = [-109/25, 686/125]
@eprog
The library syntax is \fun{GEN}{ell2cover}{GEN E, long prec}.
\subsec{ellL1$(E,\{r=0\})$}\kbdsidx{ellL1}\label{se:ellL1}
Returns the value at $s=1$ of the derivative of order $r$ of the
$L$-function of the elliptic curve $E/\Q$.
\bprog
? E = ellinit("11a1"); \\ order of vanishing is 0
? ellL1(E)
%2 = 0.2538418608559106843377589233
? E = ellinit("389a1"); \\ order of vanishing is 2
? ellL1(E)
%4 = -5.384067311837218089235032414 E-29
? ellL1(E, 1)
%5 = 0
? ellL1(E, 2)
%6 = 1.518633000576853540460385214
@eprog\noindent
The main use of this function, after computing at \emph{low} accuracy the
order of vanishing using \tet{ellanalyticrank}, is to compute the
leading term at \emph{high} accuracy to check (or use) the Birch and
Swinnerton-Dyer conjecture:
\bprog
? \p18
realprecision = 18 significant digits
? E = ellinit("5077a1"); ellanalyticrank(E)
time = 8 ms.
%1 = [3, 10.3910994007158041]
? \p200
realprecision = 202 significant digits (200 digits displayed)
? ellL1(E, 3)
time = 104 ms.
%3 = 10.3910994007158041387518505103609170697263563756570092797@com$[\dots]$
@eprog\noindent Analogous and more general functionalities for $E$
defined over general number fields are available through \kbd{lfun}.
The library syntax is \fun{GEN}{ellL1}{GEN E, long r, long bitprec}.
\subsec{elladd$(E,\var{z1},\var{z2})$}\kbdsidx{elladd}\label{se:elladd}
Sum of the points $z1$ and $z2$ on the
elliptic curve corresponding to $E$.
The library syntax is \fun{GEN}{elladd}{GEN E, GEN z1, GEN z2}.
\subsec{ellak$(E,n)$}\kbdsidx{ellak}\label{se:ellak}
Computes the coefficient $a_{n}$ of the $L$-function of the elliptic curve
$E/\Q$, i.e.~coefficients of a newform of weight 2 by the modularity theorem
(\idx{Taniyama-Shimura-Weil conjecture}). $E$ must be an \kbd{ell} structure
over $\Q$ as output by \kbd{ellinit}. $E$ must be given by an integral model,
not necessarily minimal, although a minimal model will make the function
faster.
\bprog
? E = ellinit([1,-1,0,4,3]);
? ellak(E, 10)
%2 = -3
? e = ellchangecurve(E, [1/5,0,0,0]); \\ made not minimal at 5
? ellak(e, 10) \\ wasteful but works
%3 = -3
? E = ellminimalmodel(e); \\ now minimal
? ellak(E, 5)
%5 = -3
@eprog\noindent If the model is not minimal at a number of bad primes, then
the function will be slower on those $n$ divisible by the bad primes.
The speed should be comparable for other $n$:
\bprog
? for(i=1,10^6, ellak(E,5))
time = 699 ms.
? for(i=1,10^6, ellak(e,5)) \\ 5 is bad, markedly slower
time = 1,079 ms.
? for(i=1,10^5,ellak(E,5*i))
time = 1,477 ms.
? for(i=1,10^5,ellak(e,5*i)) \\ still slower but not so much on average
time = 1,569 ms.
@eprog
The library syntax is \fun{GEN}{akell}{GEN E, GEN n}.
\subsec{ellan$(E,n)$}\kbdsidx{ellan}\label{se:ellan}
Computes the vector of the first $n$ Fourier coefficients $a_{k}$
corresponding to the elliptic curve $E$ defined over a number field.
If $E$ is defined over $\Q$, the curve may be given by an
arbitrary model, not necessarily minimal,
although a minimal model will make the function faster. Over a more general
number field, the model must be locally minimal at all primes above $2$
and $3$.
The library syntax is \fun{GEN}{ellan}{GEN E, long n}.
Also available is \fun{GEN}{ellanQ_zv}{GEN e, long n}, which
returns a \typ{VECSMALL} instead of a \typ{VEC}, saving on memory.
\subsec{ellanalyticrank$(E,\{\var{eps}\})$}\kbdsidx{ellanalyticrank}\label{se:ellanalyticrank}
Returns the order of vanishing at $s=1$ of the $L$-function of the
elliptic curve $E/\Q$ and the value of the first nonzero derivative. To
determine this order, it is assumed that any value less than \kbd{eps} is
zero. If \kbd{eps} is omitted, $2^{-b/2}$ is used, where $b$
is the current bit precision.
\bprog
? E = ellinit("11a1"); \\ rank 0
? ellanalyticrank(E)
%2 = [0, 0.2538418608559106843377589233]
? E = ellinit("37a1"); \\ rank 1
? ellanalyticrank(E)
%4 = [1, 0.3059997738340523018204836835]
? E = ellinit("389a1"); \\ rank 2
? ellanalyticrank(E)
%6 = [2, 1.518633000576853540460385214]
? E = ellinit("5077a1"); \\ rank 3
? ellanalyticrank(E)
%8 = [3, 10.39109940071580413875185035]
@eprog\noindent Analogous and more general functionalities for $E$
defined over general number fields are available through \kbd{lfun}
and \kbd{lfunorderzero}.
The library syntax is \fun{GEN}{ellanalyticrank}{GEN E, GEN eps = NULL, long bitprec}.
\subsec{ellap$(E,\{p\})$}\kbdsidx{ellap}\label{se:ellap}
Let \kbd{E} be an \kbd{ell} structure as output by \kbd{ellinit}, attached
to an elliptic curve $E/K$. If the field $K = \F_{q}$ is finite, return the
trace of Frobenius $t$, defined by the equation $\#E(\F_{q}) = q+1 - t$.
For other fields of definition and $p$ defining a finite residue field
$\F_{q}$, return the trace of Frobenius for the reduction of $E$: the argument
$p$ is best left omitted if $K = \Q_{\ell}$ (else we must have $p = \ell$) and
must be a prime number ($K = \Q$) or prime ideal ($K$ a general number field)
with residue field $\F_{q}$ otherwise. The equation need not be minimal
or even integral at $p$; of course, a minimal model will be more efficient.
For a number field $K$, the trace of Frobenius is the $a_{p}$
coefficient in the Euler product defining the curve $L$-series, whence
the function name:
$$L(E/K,s) = \prod_{\text{bad}\ p} (1-a_{p} (Np)^{-s})^{-1}
\prod_{\text{good}\ p} (1-a_{p} (Np)^{-s} + (Np)^{1-2s})^{-1}. $$
When the characteristic of the finite field is large, the availability of
the \kbd{seadata} package will speed up the computation.
\bprog
? E = ellinit([0,1]); \\ y^2 = x^3 + 0.x + 1, defined over Q
? ellap(E, 7) \\ 7 necessary here
%2 = -4 \\ #E(F_7) = 7+1-(-4) = 12
? ellcard(E, 7)
%3 = 12 \\ OK
? E = ellinit([0,1], 11); \\ defined over F_11
? ellap(E) \\ no need to repeat 11
%4 = 0
? ellap(E, 11) \\ ... but it also works
%5 = 0
? ellgroup(E, 13) \\ ouch, inconsistent input!
*** at top-level: ellap(E,13)
*** ^-----------
*** ellap: inconsistent moduli in Rg_to_Fp:
11
13
? a = ffgen(ffinit(11,3), 'a); \\ defines F_q := F_{11^3}
? E = ellinit([a+1,a]); \\ y^2 = x^3 + (a+1)x + a, defined over F_q
? ellap(E)
%8 = -3
@eprog
If the curve is defined over a more general number field than $\Q$,
the maximal ideal $p$ must be explicitly given in \kbd{idealprimedec}
format. There is no assumption of local minimality at $p$.
\bprog
? K = nfinit(a^2+1); E = ellinit([1+a,0,1,0,0], K);
? fa = idealfactor(K, E.disc)
%2 =
[ [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]] 1]
[[13, [5, 1]~, 1, 1, [-5, -1; 1, -5]] 2]
? ellap(E, fa[1,1])
%3 = -1 \\ nonsplit multiplicative reduction
? ellap(E, fa[2,1])
%4 = 1 \\ split multiplicative reduction
? P17 = idealprimedec(K,17)[1];
? ellap(E, P17)
%6 = 6 \\ good reduction
? E2 = ellchangecurve(E, [17,0,0,0]);
? ellap(E2, P17)
%8 = 6 \\ same, starting from a nonminimal model
? P3 = idealprimedec(K,3)[1];
? ellap(E, P3) \\ OK: E is minimal at P3
%10 = -2
? E3 = ellchangecurve(E, [3,0,0,0]);
? ellap(E3, P3) \\ not integral at P3
*** at top-level: ellap(E3,P3)
*** ^------------
*** ellap: impossible inverse in Rg_to_ff: Mod(0, 3).
@eprog
\misctitle{Algorithms used} If $E/\F_{q}$ has CM by a principal imaginary
quadratic order we use a fast explicit formula (involving essentially
Kronecker symbols and Cornacchia's algorithm), in $O(\log q)^{2}$ bit
operations.
Otherwise, we use Shanks-Mestre's baby-step/giant-step method, which runs in
time $\tilde{O}(q^{1/4})$ using $\tilde{O}(q^{1/4})$ storage, hence becomes
unreasonable when $q$ has about 30~digits. Above this range, the \tet{SEA}
algorithm becomes available, heuristically in $\tilde{O}(\log q)^{4}$, and
primes of the order of 200~digits become feasible. In small
characteristic we use Mestre's (p=2), Kohel's (p=3,5,7,13), Satoh-Harley
(all in $\tilde{O}(p^{2}\*n^{2})$) or Kedlaya's (in $\tilde{O}(p\*n^{3})$)
algorithms.
The library syntax is \fun{GEN}{ellap}{GEN E, GEN p = NULL}.
\subsec{ellbil$(E,\var{z1},\var{z2})$}\kbdsidx{ellbil}\label{se:ellbil}
Deprecated alias for \kbd{ellheight(E,P,Q)}.
The library syntax is \fun{GEN}{bilhell}{GEN E, GEN z1, GEN z2, long prec}.
\subsec{ellbsd$(E)$}\kbdsidx{ellbsd}\label{se:ellbsd}
$E$ being an elliptic curve over a number field, returns a real
number $c$ such that the Birch and Swinnerton-Dyer conjecture predicts that
$L_{E}^{(r)}(1)/r!{} = c\*R\*S$, where $r$ is the rank, $R$ the regulator and
$S$ the cardinal of the Tate-Shafarevich group.
\bprog
? e = ellinit([0,-1,1,-10,-20]); \\ rank 0
? ellbsd(e)
%2 = 0.25384186085591068433775892335090946105
? lfun(e,1)
%3 = 0.25384186085591068433775892335090946104
? e = ellinit([0,0,1,-1,0]); \\ rank 1
? P = ellheegner(e);
? ellbsd(e)*ellheight(e,P)
%6 = 0.30599977383405230182048368332167647445
? lfun(e,1,1)
%7 = 0.30599977383405230182048368332167647445
? e = ellinit([1+a,0,1,0,0],nfinit(a^2+1)); \\ rank 0
? ellbsd(e)
%9 = 0.42521832235345764503001271536611593310
? lfun(e,1)
%10 = 0.42521832235345764503001271536611593309
@eprog
The library syntax is \fun{GEN}{ellbsd}{GEN E, long prec}.
\subsec{ellcard$(E,\{p\})$}\kbdsidx{ellcard}\label{se:ellcard}
Let \kbd{E} be an \kbd{ell} structure as output by \kbd{ellinit}, attached
to an elliptic curve $E/K$. If $K = \F_{q}$ is finite, return the order of the
group $E(\F_{q})$.
\bprog
? E = ellinit([-3,1], 5); ellcard(E)
%1 = 7
? t = ffgen([3,5],'t); E = ellinit([t,t^2+1]); ellcard(E)
%2 = 217
@eprog\noindent
For other fields of definition and $p$ defining a finite residue field
$\F_{q}$, return the order of the reduction of $E$: the argument $p$ is best
left omitted if $K = \Q_{\ell}$ (else we must have $p = \ell$) and must be a
prime number ($K = \Q$) or prime ideal ($K$ a general number field) with
residue field $\F_{q}$ otherwise. The equation need not be minimal
or even integral at $p$; of course, a minimal model will be more efficient.
The function considers the group of nonsingular points of the reduction
of a minimal model of the curve at $p$, so also makes sense when the curve
has bad reduction.
\bprog
? E = ellinit([-3,1]);
? factor(E.disc)
%2 =
[2 4]
[3 4]
? ellcard(E, 5) \\ as above !
%3 = 7
? ellcard(E, 2) \\ additive reduction
%4 = 2
@eprog
When the characteristic of the finite field is large, the availability of
the \kbd{seadata} package will speed the computation. See also \tet{ellap}
for the list of implemented algorithms.
The library syntax is \fun{GEN}{ellcard}{GEN E, GEN p = NULL}.
Also available is \fun{GEN}{ellcard}{GEN E, GEN p} where $p$ is not
\kbd{NULL}.
\subsec{ellchangecurve$(E,v)$}\kbdsidx{ellchangecurve}\label{se:ellchangecurve}
Changes the data for the elliptic curve $E$
by changing the coordinates using the vector \kbd{v=[u,r,s,t]}, i.e.~if $x'$
and $y'$ are the new coordinates, then $x=u^{2}x'+r$, $y=u^{3}y'+su^{2}x'+t$.
$E$ must be an \kbd{ell} structure as output by \kbd{ellinit}. The special
case $v = 1$ is also used instead of $[1,0,0,0]$ to denote the
trivial coordinate change.
The library syntax is \fun{GEN}{ellchangecurve}{GEN E, GEN v}.
\subsec{ellchangepoint$(x,v)$}\kbdsidx{ellchangepoint}\label{se:ellchangepoint}
Changes the coordinates of the point or
vector of points $x$ using the vector \kbd{v=[u,r,s,t]}, i.e.~if $x'$ and
$y'$ are the new coordinates, then $x=u^{2}x'+r$, $y=u^{3}y'+su^{2}x'+t$
(see also \kbd{ellchangecurve}).
\bprog
? E0 = ellinit([1,1]); P0 = [0,1]; v = [1,2,3,4];
? E = ellchangecurve(E0, v);
? P = ellchangepoint(P0,v)
%3 = [-2, 3]
? ellisoncurve(E, P)
%4 = 1
? ellchangepointinv(P,v)
%5 = [0, 1]
@eprog
The library syntax is \fun{GEN}{ellchangepoint}{GEN x, GEN v}.
The reciprocal function \fun{GEN}{ellchangepointinv}{GEN x, GEN ch}
inverts the coordinate change.
\subsec{ellchangepointinv$(x,v)$}\kbdsidx{ellchangepointinv}\label{se:ellchangepointinv}
Changes the coordinates of the point or vector of points $x$ using
the inverse of the isomorphism attached to \kbd{v=[u,r,s,t]},
i.e.~if $x'$ and $y'$ are the old coordinates, then $x=u^{2}x'+r$,
$y=u^{3}y'+su^{2}x'+t$ (inverse of \kbd{ellchangepoint}).
\bprog
? E0 = ellinit([1,1]); P0 = [0,1]; v = [1,2,3,4];
? E = ellchangecurve(E0, v);
? P = ellchangepoint(P0,v)
%3 = [-2, 3]
? ellisoncurve(E, P)
%4 = 1
? ellchangepointinv(P,v)
%5 = [0, 1] \\ we get back P0
@eprog
The library syntax is \fun{GEN}{ellchangepointinv}{GEN x, GEN v}.
\subsec{ellconvertname$(\var{name})$}\kbdsidx{ellconvertname}\label{se:ellconvertname}
Converts an elliptic curve name, as found in the \tet{elldata} database,
from a string to a triplet $[\var{conductor}, \var{isogeny class},
\var{index}]$. It will also convert a triplet back to a curve name.
Examples:
\bprog
? ellconvertname("123b1")
%1 = [123, 1, 1]
? ellconvertname(%)
%2 = "123b1"
@eprog
The library syntax is \fun{GEN}{ellconvertname}{GEN name}.
\subsec{elldivpol$(E,n,\{v=\kbd{'}x\})$}\kbdsidx{elldivpol}\label{se:elldivpol}
$n$-division polynomial $f_{n}$ for the curve $E$ in the
variable $v$. In standard notation, for any affine point $P = (X,Y)$ on the
curve and any integer $n \geq 0$, we have
$$[n]P = (\phi_{n}(P)\psi_{n}(P) : \omega_{n}(P) : \psi_{n}(P)^{3})$$
for some polynomials $\phi_{n},\omega_{n},\psi_{n}$ in
$\Z[a_{1},a_{2},a_{3},a_{4},a_{6}][X,Y]$. We have $f_{n}(X) = \psi_{n}(X)$
for $n$ odd, and
$f_{n}(X) = \psi_{n}(X,Y) (2Y + a_{1}X+a_{3})$ for $n$ even. We have
$$ f_{0} = 0,\quad f_{1} = 1,\quad
f_{2} = 4X^{3} + b_{2}X^{2} + 2b_{4} X + b_{6}, \quad
f_{3} = 3 X^{4} + b_{2} X^{3} + 3b_{4} X^{2} + 3 b_{6} X + b8, $$
$$ f_{4} = f_{2}(2X^{6} + b_{2} X^{5} + 5b_{4} X^{4} + 10 b_{6} X^{3}
+ 10 b_{8} X^{2} + (b_{2}b_{8}-b_{4}b_{6})X + (b_{8}b_{4} - b_{6}^{2})),
\dots $$
When $n$ is odd, the roots of $f_{n}$ are the $X$-coordinates of the affine
points in the $n$-torsion subgroup $E[n]$; when $n$ is even, the roots
of $f_{n}$ are the $X$-coordinates of the affine points in $E[n]\setminus
E[2]$ when $n > 2$, resp.~in $E[2]$ when $n = 2$.
For $n < 0$, we define $f_{n} := - f_{-n}$.
The library syntax is \fun{GEN}{elldivpol}{GEN E, long n, long v = -1} where \kbd{v} is a variable number.
\subsec{elleisnum$(w,k,\{\fl=0\})$}\kbdsidx{elleisnum}\label{se:elleisnum}
$k$ being an even positive integer, computes the numerical value of the
Eisenstein series of weight $k$ at the lattice $w$, as given by
\tet{ellperiods}, namely
$$
(2i \pi/\omega_{2})^{k}
\Big(1 + 2/\zeta(1-k) \sum_{n\geq 1} n^{k-1}q^{n} / (1-q^{n})\Big),
$$
where $q = \exp(2i\pi \tau)$ and $\tau:=\omega_{1}/\omega_{2}$ belongs to the
complex upper half-plane. It is also possible to directly input $w =
[\omega_{1},\omega_{2}]$, or an elliptic curve $E$ as given by \kbd{ellinit}.
\bprog
? w = ellperiods([1,I]);
? elleisnum(w, 4)
%2 = 2268.8726415508062275167367584190557607
? elleisnum(w, 6)
%3 = -3.977978632282564763 E-33
? E = ellinit([1, 0]);
? elleisnum(E, 4)
%5 = -48.000000000000000000000000000000000000
@eprog
When \fl\ is nonzero and $k=4$ or 6, returns the elliptic invariants $g_{2}$
or $g_{3}$, such that
$$y^{2} = 4x^{3} - g_{2} x - g_{3}$$
is a Weierstrass equation for $E$.
\bprog
? g2 = elleisnum(E, 4, 1)
%6 = -4.0000000000000000000000000000000000000
? g3 = elleisnum(E, 6, 1) \\ ~ 0
%7 = 0.E-114 - 3.909948178422242682 E-57*I
@eprog
The library syntax is \fun{GEN}{elleisnum}{GEN w, long k, long flag, long prec}.
\subsec{elleta$(w)$}\kbdsidx{elleta}\label{se:elleta}
Returns the quasi-periods $[\eta_{1},\eta_{2}]$
attached to the lattice basis $\var{w} = [\omega_{1}, \omega_{2}]$.
Alternatively, \var{w} can be an elliptic curve $E$ as output by
\kbd{ellinit}, in which case, the quasi periods attached to the period
lattice basis \kbd{$E$.omega} (namely, \kbd{$E$.eta}) are returned.
\bprog
? elleta([1, I])
%1 = [3.141592653589793238462643383, 9.424777960769379715387930149*I]
@eprog
The library syntax is \fun{GEN}{elleta}{GEN w, long prec}.
\subsec{ellformaldifferential$(E,\{n=\var{seriesprecision}\},\{t=\kbd{'}x\})$}\kbdsidx{ellformaldifferential}\label{se:ellformaldifferential}
Let $\omega := dx / (2y+a_{1}x+a_{3})$ be the invariant differential form
attached to the model $E$ of some elliptic curve (\kbd{ellinit} form),
and $\eta := x(t)\omega$. Return $n$ terms (\tet{seriesprecision} by default)
of $f(t),g(t)$ two power series in the formal parameter $t=-x/y$ such that
$\omega = f(t) dt$, $\eta = g(t) dt$:
$$f(t) = 1+a_{1} t + (a_{1}^{2} + a_{2}) t^{2} + \dots,\quad
g(t) = t^{-2} +\dots $$
\bprog
? E = ellinit([-1,1/4]); [f,g] = ellformaldifferential(E,7,'t);
? f
%2 = 1 - 2*t^4 + 3/4*t^6 + O(t^7)
? g
%3 = t^-2 - t^2 + 1/2*t^4 + O(t^5)
@eprog
The library syntax is \fun{GEN}{ellformaldifferential}{GEN E, long precdl, long n = -1} where \kbd{n} is a variable number.
\subsec{ellformalexp$(E,\{n=\var{seriesprecision}\},\{z=\kbd{'}x\})$}\kbdsidx{ellformalexp}\label{se:ellformalexp}
The elliptic formal exponential \kbd{Exp} attached to $E$ is the
isomorphism from the formal additive law to the formal group of $E$. It is
normalized so as to be the inverse of the elliptic logarithm (see
\tet{ellformallog}): $\kbd{Exp} \circ L = \Id$. Return $n$ terms of this
power series:
\bprog
? E=ellinit([-1,1/4]); Exp = ellformalexp(E,10,'z)
%1 = z + 2/5*z^5 - 3/28*z^7 + 2/15*z^9 + O(z^11)
? L = ellformallog(E,10,'t);
? subst(Exp,z,L)
%3 = t + O(t^11)
@eprog
The library syntax is \fun{GEN}{ellformalexp}{GEN E, long precdl, long n = -1} where \kbd{n} is a variable number.
\subsec{ellformallog$(E,\{n=\var{seriesprecision}\},\{v=\kbd{'}x\})$}\kbdsidx{ellformallog}\label{se:ellformallog}
The formal elliptic logarithm is a series $L$ in $t K[[t]]$
such that $d L = \omega = dx / (2y + a_{1}x + a_{3})$, the canonical invariant
differential attached to the model $E$. It gives an isomorphism
from the formal group of $E$ to the additive formal group.
\bprog
? E = ellinit([-1,1/4]); L = ellformallog(E, 9, 't)
%1 = t - 2/5*t^5 + 3/28*t^7 + 2/3*t^9 + O(t^10)
? [f,g] = ellformaldifferential(E,8,'t);
? L' - f
%3 = O(t^8)
@eprog
The library syntax is \fun{GEN}{ellformallog}{GEN E, long precdl, long n = -1} where \kbd{n} is a variable number.
\subsec{ellformalpoint$(E,\{n=\var{seriesprecision}\},\{v=\kbd{'}x\})$}\kbdsidx{ellformalpoint}\label{se:ellformalpoint}
If $E$ is an elliptic curve, return the coordinates $x(t), y(t)$ in the
formal group of the elliptic curve $E$ in the formal parameter $t = -x/y$
at $\infty$:
$$ x = t^{-2} -a_{1} t^{-1} - a_{2} - a_{3} t + \dots $$
$$ y = - t^{-3} -a_{1} t^{-2} - a_{2}t^{-1} -a_{3} + \dots $$
Return $n$ terms (\tet{seriesprecision} by default) of these two power
series, whose coefficients are in $\Z[a_{1},a_{2},a_{3},a_{4},a_{6}]$.
\bprog
? E = ellinit([0,0,1,-1,0]); [x,y] = ellformalpoint(E,8,'t);
? x
%2 = t^-2 - t + t^2 - t^4 + 2*t^5 + O(t^6)
? y
%3 = -t^-3 + 1 - t + t^3 - 2*t^4 + O(t^5)
? E = ellinit([0,1/2]); ellformalpoint(E,7)
%4 = [x^-2 - 1/2*x^4 + O(x^5), -x^-3 + 1/2*x^3 + O(x^4)]
@eprog
The library syntax is \fun{GEN}{ellformalpoint}{GEN E, long precdl, long n = -1} where \kbd{n} is a variable number.
\subsec{ellformalw$(E,\{n=\var{seriesprecision}\},\{t=\kbd{'}x\})$}\kbdsidx{ellformalw}\label{se:ellformalw}
Return the formal power series $w$ attached to the elliptic curve $E$,
in the variable $t$:
$$ w(t) = t^{3}(1 + a_{1} t + (a_{2} + a_{1}^{2}) t^{2} + \cdots + O(t^{n})),$$
which is the formal expansion of $-1/y$ in the formal parameter $t := -x/y$
at $\infty$ (take $n = \tet{seriesprecision}$ if $n$ is omitted). The
coefficients of $w$ belong to $\Z[a_{1},a_{2},a_{3},a_{4},a_{6}]$.
\bprog
? E=ellinit([3,2,-4,-2,5]); ellformalw(E, 5, 't)
%1 = t^3 + 3*t^4 + 11*t^5 + 35*t^6 + 101*t^7 + O(t^8)
@eprog
The library syntax is \fun{GEN}{ellformalw}{GEN E, long precdl, long n = -1} where \kbd{n} is a variable number.
\subsec{ellfromeqn$(P)$}\kbdsidx{ellfromeqn}\label{se:ellfromeqn}
Given a genus $1$ plane curve, defined by the affine equation $f(x,y) = 0$,
return the coefficients $[a_{1},a_{2},a_{3},a_{4},a_{6}]$ of a Weierstrass
equation for its Jacobian. This allows to recover a Weierstrass model for an
elliptic curve given by a general plane cubic or by a binary quartic or
biquadratic model. The function implements the $f \mapsto f^{*}$ formulae of
Artin, Tate and Villegas (Advances in Math. 198 (2005), pp. 366--382).
In the example below, the function is used to convert between twisted Edwards
coordinates and Weierstrass coordinates.
\bprog
? e = ellfromeqn(a*x^2+y^2 - (1+d*x^2*y^2))
%1 = [0, -a - d, 0, -4*d*a, 4*d*a^2 + 4*d^2*a]
? E = ellinit(ellfromeqn(y^2-x^2 - 1 +(121665/121666*x^2*y^2)),2^255-19);
? isprime(ellcard(E) / 8)
%3 = 1
@eprog
The elliptic curve attached to the sum of two cubes is given by
\bprog
? ellfromeqn(x^3+y^3 - a)
%1 = [0, 0, -9*a, 0, -27*a^2]
@eprog
\misctitle{Congruent number problem}
Let $n$ be an integer, if $a^{2}+b^{2}=c^{2}$ and $a\*b=2\*n$,
then by substituting $b$ by $2\*n/a$ in the first equation,
we get $((a^{2}+(2\*n/a)^{2})-c^{2})\*a^{2} = 0$.
We set $x=a$, $y=a\*c$.
\bprog
? En = ellfromeqn((x^2 + (2*n/x)^2 - (y/x)^2)*x^2)
%1 = [0, 0, 0, -16*n^2, 0]
@eprog
For example $23$ is congruent since the curve has a point of infinite order,
namely:
\bprog
? ellheegner( ellinit(subst(En, n, 23)) )
%2 = [168100/289, 68053440/4913]
@eprog
The library syntax is \fun{GEN}{ellfromeqn}{GEN P}.
\subsec{ellfromj$(j)$}\kbdsidx{ellfromj}\label{se:ellfromj}
Returns the coefficients $[a_{1},a_{2},a_{3},a_{4},a_{6}]$ of a fixed
elliptic curve
with $j$-invariant $j$. The given model is arbitrary; for instance, over the
rationals, it is in general not minimal nor even integral.
\bprog
? v = ellfromj(1/2)
%1 = [0, 0, 0, 10365/4, 11937025/4]
? E = ellminimalmodel(ellinit(v)); E[1..5]
%2 = [0, 0, 0, 41460, 190992400]
? F = ellminimalmodel(elltwist(E, 24)); F[1..5]
%3 = [1, 0, 0, 72, 13822]
? [E.disc, F.disc]
%4 = [-15763098924417024000, -82484842750]
@eprog\noindent For rational $j$, the following program returns the integral
curve of minimal discriminant and given $j$ invariant:
\bprog
ellfromjminimal(j)=
{ my(E = ellinit(ellfromj(j)));
my(D = ellminimaltwist(E));
ellminimalmodel(elltwist(E,D));
}
? e = ellfromjminimal(1/2); e.disc
%1 = -82484842750
@eprog Using $\fl = 1$ in \kbd{ellminimaltwist} would instead return the
curve of minimal conductor. For instance, if $j = 1728$, this would return a
different curve (of conductor $32$ instead of $64$).
The library syntax is \fun{GEN}{ellfromj}{GEN j}.
\subsec{ellgenerators$(E)$}\kbdsidx{ellgenerators}\label{se:ellgenerators}
If $E$ is an elliptic curve over the rationals, return a $\Z$-basis of the
free part of the \idx{Mordell-Weil group} attached to $E$. This relies on
the \tet{elldata} database being installed and referencing the curve, and so
is only available for curves over $\Z$ of small conductors.
If $E$ is an elliptic curve over a finite field $\F_{q}$ as output by
\tet{ellinit}, return a minimal set of generators for the group $E(\F_{q})$.
\misctitle{Caution} When the group is not cyclic, of shape $\Z/d_{1}\Z \times
\Z/d_{2}\Z$ with $d_{2}\mid d_{1}$, the points $[P,Q]$ returned by
ellgenerators need not have order $d_{1}$ and $d_{2}$: it is true that
$P$ has order $d_{1}$, but we only know that $Q$ is a generator of
$E(\F_{q})/<P>$ and that the Weil pairing $w(P,Q)$ has order $d_{2}$,
see \kbd{??ellgroup}.
If you need generators $[P,R]$ with $R$ of order $d_{2}$, find
$x$ such that $R = Q-[x]P$ has order $d_{2}$ by solving
the discrete logarithm problem $[d_{2}]Q = [x]([d_{2}]P)$ in a cyclic group of
order $d_{1}/d_{2}$. This will be very expensive if $d_{1}/d_{2}$ has a large
prime factor.
The library syntax is \fun{GEN}{ellgenerators}{GEN E}.
\subsec{ellglobalred$(E)$}\kbdsidx{ellglobalred}\label{se:ellglobalred}
Let $E$ be an \kbd{ell} structure as output by \kbd{ellinit} attached
to an elliptic curve defined over a number field. This function calculates
the arithmetic conductor and the global \idx{Tamagawa number} $c$.
The result $[N,v,c,F,L]$ is slightly different if $E$ is defined
over $\Q$ (domain $D = 1$ in \kbd{ellinit}) or over a number field
(domain $D$ is a number field structure, including \kbd{nfinit(x)}
representing $\Q$ !):
\item $N$ is the arithmetic conductor of the curve,
\item $v$ is an obsolete field, left in place for backward compatibility.
If $E$ is defined over $\Q$, $v$ gives the coordinate change for $E$ to the
standard minimal integral model (\tet{ellminimalmodel} provides it in a
cheaper way); if $E$ is defined over another number field, $v$ gives a
coordinate change to an integral model (\tet{ellintegralmodel} provides it
in a cheaper way).
\item $c$ is the product of the local Tamagawa numbers $c_{p}$, a quantity
which enters in the \idx{Birch and Swinnerton-Dyer conjecture},
\item $F$ is the factorization of $N$,
\item $L$ is a vector, whose $i$-th entry contains the local data
at the $i$-th prime ideal divisor of $N$, i.e.
\kbd{L[i] = elllocalred(E,F[i,1])}. If $E$ is defined over $\Q$, the local
coordinate change has been deleted and replaced by a 0; if $E$ is defined
over another number field the local coordinate change to a local minimal
model is given relative to the integral model afforded by $v$ (so either
start from an integral model so that $v$ be trivial, or apply $v$ first).
The library syntax is \fun{GEN}{ellglobalred}{GEN E}.
\subsec{ellgroup$(E,\{p\},\{\fl\})$}\kbdsidx{ellgroup}\label{se:ellgroup}
Let \kbd{E} be an \kbd{ell} structure as output by \kbd{ellinit}, attached
to an elliptic curve $E/K$. We first describe the function when the field
$K = \F_{q}$ is finite, it computes the structure of the finite abelian group
$E(\F_{q})$:
\item if $\fl = 0$, returns the structure $[]$ (trivial group) or $[d_{1}]$
(nontrivial cyclic group) or $[d_{1},d_{2}]$ (noncyclic group) of
$E(\F_{q}) \sim \Z/d_{1}\Z \times \Z/d_{2}\Z$, with $d_{2}\mid d_{1}$.
\item if $\fl = 1$, returns a triple $[h,\var{cyc},\var{gen}]$, where
$h$ is the curve cardinality, \var{cyc} gives the group structure as a
product of cyclic groups (as per $\fl = 0$). More precisely, if $d_{2} > 1$,
the output is $[d_{1}d_{2}, [d_{1},d_{2}], [P,Q]]$ where $P$ is
of order $d_{1}$ and $[P,Q]$ generates the curve.
\misctitle{Caution} It is not guaranteed that $Q$ has order $d_{2}$, which in
the worst case requires an expensive discrete log computation. Only that
\kbd{ellweilpairing}$(E, P, Q, d_{1})$ has order $d_{2}$.
For other fields of definition and $p$ defining a finite residue field
$\F_{q}$, returns the structure of the reduction of $E$: the argument
$p$ is best left omitted if $K = \Q_{\ell}$ (else we must have $p = \ell$) and
must be a prime number ($K = \Q$) or prime ideal ($K$ a general number field)
with residue field $\F_{q}$ otherwise. The curve is allowed to have bad
reduction at $p$ and in this case we consider the (cyclic) group of
nonsingular points for the reduction of a minimal model at $p$.
If $\fl = 0$, the equation need not be minimal or even integral at $p$; of
course, a minimal model will be more efficient.
If $\fl = 1$, the requested generators depend on the model, which must then
be minimal at $p$, otherwise an exception is thrown. Use
\kbd{ellintegralmodel} and/or \kbd{ellocalred} first to reduce to this case.
\bprog
? E = ellinit([0,1]); \\ y^2 = x^3 + 0.x + 1, defined over Q
? ellgroup(E, 7)
%2 = [6, 2] \\ Z/6 x Z/2, noncyclic
? E = ellinit([0,1] * Mod(1,11)); \\ defined over F_11
? ellgroup(E) \\ no need to repeat 11
%4 = [12]
? ellgroup(E, 11) \\ ... but it also works
%5 = [12]
? ellgroup(E, 13) \\ ouch, inconsistent input!
*** at top-level: ellgroup(E,13)
*** ^--------------
*** ellgroup: inconsistent moduli in Rg_to_Fp:
11
13
? ellgroup(E, 7, 1)
%6 = [12, [6, 2], [[Mod(2, 7), Mod(4, 7)], [Mod(4, 7), Mod(4, 7)]]]
@eprog\noindent
Let us now consider curves of bad reduction, in this case we return the
structure of the (cyclic) group of nonsingular points, satisfying
$\#E_{ns}(\F_{p}) = p - a_{p}$:
\bprog
? E = ellinit([0,5]);
? ellgroup(E, 5, 1)
%2 = [5, [5], [[Mod(4, 5), Mod(2, 5)]]]
? ellap(E, 5)
%3 = 0 \\ additive reduction at 5
? E = ellinit([0,-1,0,35,0]);
? ellgroup(E, 5, 1)
%5 = [4, [4], [[Mod(2, 5), Mod(2, 5)]]]
? ellap(E, 5)
%6 = 1 \\ split multiplicative reduction at 5
? ellgroup(E, 7, 1)
%7 = [8, [8], [[Mod(3, 7), Mod(5, 7)]]]
? ellap(E, 7)
%8 = -1 \\ nonsplit multiplicative reduction at 7
@eprog
The library syntax is \fun{GEN}{ellgroup0}{GEN E, GEN p = NULL, long flag}.
Also available is \fun{GEN}{ellgroup}{GEN E, GEN p}, corresponding
to $\fl = 0$.
\subsec{ellheegner$(E)$}\kbdsidx{ellheegner}\label{se:ellheegner}
Let $E$ be an elliptic curve over the rationals, assumed to be of
(analytic) rank $1$. This returns a nontorsion rational point on the curve,
whose canonical height is equal to the product of the elliptic regulator by the
analytic Sha.
This uses the Heegner point method, described in Cohen GTM 239; the complexity
is proportional to the product of the square root of the conductor and the
height of the point (thus, it is preferable to apply it to strong Weil curves).
\bprog
? E = ellinit([-157^2,0]);
? u = ellheegner(E); print(u[1], "\n", u[2])
69648970982596494254458225/166136231668185267540804
538962435089604615078004307258785218335/67716816556077455999228495435742408
? ellheegner(ellinit([0,1])) \\ E has rank 0 !
*** at top-level: ellheegner(E=ellinit
*** ^--------------------
*** ellheegner: The curve has even analytic rank.
@eprog
The library syntax is \fun{GEN}{ellheegner}{GEN E}.
\subsec{ellheight$(E,\{P\},\{Q\})$}\kbdsidx{ellheight}\label{se:ellheight}
Let $E$ be an elliptic curve defined over $K = \Q$ or a number field,
as output by \kbd{ellinit}; it need not be given by a minimal model
although the computation will be faster if it is.
\item Without arguments $P,Q$, returns the Faltings height of the curve $E$
using Deligne normalization. For a rational curve, the normalization is such
that the function returns \kbd{-(1/2)*log(ellminimalmodel(E).area)}.
\item If the argument $P \in E(K)$ is present, returns the global
N\'eron-Tate height $h(P)$ of the point, using the normalization in
Cremona's \emph{Algorithms for modular elliptic curves}.
\item If the argument $Q \in E(K)$ is also present, computes the value of
the bilinear form $(h(P+Q)-h(P-Q)) / 4$.
The canonical height is equal to the N\'eron-Tate height
divided by the degree of the number field.
For a curve over a number field, it is
\kbd{ellheight(E,P$\{,Q\}$)/\#E.nf.zk}.
The library syntax is \fun{GEN}{ellheight0}{GEN E, GEN P = NULL, GEN Q = NULL, long prec}.
Also available is \fun{GEN}{ellheight}{GEN E, GEN P, long prec}
($Q$ omitted).
\subsec{ellheightmatrix$(E,x)$}\kbdsidx{ellheightmatrix}\label{se:ellheightmatrix}
$x$ being a vector of points, this
function outputs the Gram matrix of $x$ with respect to the N\'eron-Tate
height, in other words, the $(i,j)$ component of the matrix is equal to
\kbd{ellheight($E$,x[$i$],x[$j$])}. The rank of this matrix, at least in some
approximate sense, gives the rank of the set of points, and if $x$ is a
basis of the \idx{Mordell-Weil group} of $E$, its determinant is equal to
the regulator of $E$. Note our height normalization follows Cremona's
\emph{Algorithms for modular elliptic curves}: this matrix should be divided
by 2 to be in accordance with, e.g., Silverman's normalizations.
The library syntax is \fun{GEN}{ellheightmatrix}{GEN E, GEN x, long prec}.
\subsec{ellidentify$(E)$}\kbdsidx{ellidentify}\label{se:ellidentify}
Look up the elliptic curve $E$, defined by an arbitrary model over $\Q$,
in the \tet{elldata} database.
Return \kbd{[[N, M, G], C]} where $N$ is the curve name in Cremona's
elliptic curve database, $M$ is the minimal model, $G$ is a $\Z$-basis of
the free part of the \idx{Mordell-Weil group} $E(\Q)$ and $C$ is the
change of coordinates from $E$ to $M$, suitable for \kbd{ellchangecurve}.
The library syntax is \fun{GEN}{ellidentify}{GEN E}.
\subsec{ellinit$(x,\{D=1\})$}\kbdsidx{ellinit}\label{se:ellinit}
Initialize an \tet{ell} structure, attached to the elliptic curve $E$.
$E$ is either
\item a $5$-component vector $[a_{1},a_{2},a_{3},a_{4},a_{6}]$ defining the elliptic
curve with Weierstrass equation
$$ Y^{2} + a_{1} XY + a_{3} Y = X^{3} + a_{2} X^{2} + a_{4} X + a_{6}, $$
\item a $2$-component vector $[a_{4},a_{6}]$ defining the elliptic
curve with short Weierstrass equation
$$ Y^{2} = X^{3} + a_{4} X + a_{6}, $$
\item a single-component vector $[j]$ giving the $j$-invariant for the curve,
with the same coefficients as given by \kbd{ellfromj}.
\item a character string in Cremona's notation, e.g. \kbd{"11a1"}, in which
case the curve is retrieved from the \tet{elldata} database if available.
The optional argument $D$ describes the domain over which the curve is
defined:
\item the \typ{INT} $1$ (default): the field of rational numbers $\Q$.
\item a \typ{INT} $p$, where $p$ is a prime number: the prime finite field
$\F_{p}$.
\item an \typ{INTMOD} \kbd{Mod(a, p)}, where $p$ is a prime number: the
prime finite field $\F_{p}$.
\item a \typ{FFELT}, as returned by \tet{ffgen}: the corresponding finite
field $\F_{q}$.
\item a \typ{PADIC}, $O(p^{n})$: the field $\Q_{p}$, where $p$-adic quantities
will be computed to a relative accuracy of $n$ digits. We advise to input a
model defined over $\Q$ for such curves. In any case, if you input an
approximate model with \typ{PADIC} coefficients, it will be replaced by a lift
to $\Q$ (an exact model ``close'' to the one that was input) and all quantities
will then be computed in terms of this lifted model, at the given accuracy.
\item a \typ{REAL} $x$: the field $\C$ of complex numbers, where floating
point quantities are by default computed to a relative accuracy of
\kbd{precision}$(x)$. If no such argument is given, the value of
\kbd{realprecision} at the time \kbd{ellinit} is called will be used.
\item a number field $K$, given by a \kbd{nf} or \kbd{bnf} structure; a
\kbd{bnf} is required for \kbd{ellminimalmodel}.
\item a prime ideal $\goth{p}$, given by a \kbd{prid} structure; valid if
$x$ is a curve defined over a number field $K$ and the equation is integral
and minimal at $\goth{p}$.
This argument $D$ is indicative: the curve coefficients are checked for
compatibility, possibly changing $D$; for instance if $D = 1$ and
an \typ{INTMOD} is found. If inconsistencies are detected, an error is
raised:
\bprog
? ellinit([1 + O(5), 1], O(7));
*** at top-level: ellinit([1+O(5),1],O
*** ^--------------------
*** ellinit: inconsistent moduli in ellinit: 7 != 5
@eprog\noindent If the curve coefficients are too general to fit any of the
above domain categories, only basic operations, such as point addition, will
be supported later.
If the curve (seen over the domain $D$) is singular, fail and return an
empty vector $[]$.
\bprog
? E = ellinit([0,0,0,0,1]); \\ y^2 = x^3 + 1, over Q
? E = ellinit([0,1]); \\ the same curve, short form
? E = ellinit("36a1"); \\ sill the same curve, Cremona's notations
? E = ellinit([0]); \\ a curve of j-invariant 0
? E = ellinit([0,1], 2) \\ over F2: singular curve
%4 = []
? E = ellinit(['a4,'a6] * Mod(1,5)); \\ over F_5[a4,a6], basic support !
@eprog\noindent Note that the given curve of $j$-invariant $0$ happens
to be \kbd{36a1} but a priori any model for an arbitrary twist could have
been returned. See \kbd{ellfromj}.
The result of \tet{ellinit} is an \tev{ell} structure. It contains at least
the following information in its components:
%
$$ a_{1},a_{2},a_{3},a_{4},a_{6},b_{2},b_{4},b_{6},b_{8},c_{4},c_{6},
\Delta,j.$$
%
All are accessible via member functions. In particular, the discriminant is
\kbd{$E$.disc}, and the $j$-invariant is \kbd{$E$.j}.
\bprog
? E = ellinit([a4, a6]);
? E.disc
%2 = -64*a4^3 - 432*a6^2
? E.j
%3 = -6912*a4^3/(-4*a4^3 - 27*a6^2)
@eprog
Further components contain domain-specific data, which are in general dynamic:
only computed when needed, and then cached in the structure.
\bprog
? E = ellinit([2,3], 10^60+7); \\ E over F_p, p large
? ellap(E)
time = 4,440 ms.
%2 = -1376268269510579884904540406082
? ellcard(E); \\ now instantaneous !
time = 0 ms.
? ellgenerators(E);
time = 5,965 ms.
? ellgenerators(E); \\ second time instantaneous
time = 0 ms.
@eprog
See the description of member functions related to elliptic curves at the
beginning of this section.
The library syntax is \fun{GEN}{ellinit}{GEN x, GEN D = NULL, long prec}.
\subsec{ellintegralmodel$(E,\{\&v\})$}\kbdsidx{ellintegralmodel}\label{se:ellintegralmodel}
Let $E$ be an \kbd{ell} structure over a number field $K$ or $\Q_{p}$.
This function returns an integral model. If $v$ is present, sets
$v = [u,0,0,0]$ to the corresponding change of variable: the return value is
identical to that of \kbd{ellchangecurve(E, v)}.
\bprog
? e = ellinit([1/17,1/42]);
? e = ellintegralmodel(e,&v);
? e[1..5]
%3 = [0, 0, 0, 15287762448, 3154568630095008]
? v
%4 = [1/714, 0, 0, 0]
@eprog
The library syntax is \fun{GEN}{ellintegralmodel}{GEN E, GEN *v = NULL}.
\subsec{elliscm$(E)$}\kbdsidx{elliscm}\label{se:elliscm}
Let $E$ an elliptic curve over a number field.
Return $0$ if $E$ is not CM, otherwise return the discriminant of its
endomorphism ring.
\bprog
? E = ellinit([0,0,-5,-750,7900]);
? D = elliscm(E)
%2 = -27
? w = quadgen(D, 'w);
? P = ellheegner(E)
%4 = [10,40]
? Q = ellmul(E,P,w)
%5 = [110/7-5/49*w,85/49-225/343*w]
@eprog
An example over a number field:
\bprog
? nf=nfinit(a^2-5);
? E = ellinit([261526980*a-584793000,-3440201839360*a+7692525148000],nf);
? elliscm(E)
%3 = -20
? ellisomat(E)[2]
%4 = [1,2,5,10;2,1,10,5;5,10,1,2;10,5,2,1]
@eprog
The library syntax is \fun{long}{elliscm}{GEN E}.
\subsec{ellisdivisible$(E,P,n,\{\&Q\})$}\kbdsidx{ellisdivisible}\label{se:ellisdivisible}
Given $E/K$ a number field and $P$ in $E(K)$
return $1$ if $P = [n]R$ for some $R$ in $E(K)$ and set $Q$ to one such $R$;
and return $0$ otherwise.
\bprog
? K = nfinit(polcyclo(11,t));
? E = ellinit([0,-1,1,0,0], K);
? P = [0,0];
? ellorder(E,P)
%4 = 5
? ellisdivisible(E,P,5, &Q)
%5 = 1
? lift(Q)
%6 = [-t^7-t^6-t^5-t^4+1, -t^9-2*t^8-2*t^7-3*t^6-3*t^5-2*t^4-2*t^3-t^2-1]
? ellorder(E, Q)
%7 = 25
@eprog\noindent We use a fast multimodular algorithm over $\Q$ whose
complexity is essentially independent of $n$ (polynomial in $\log n$).
Over number fields, we compute roots of division polynomials and the
algebraic complexity of the underlying algorithm is in $O(p^{4})$, where $p$ is
the largest prime divisor of $n$. The integer $n \geq 0$ may be given as
\kbd{ellxn(E,n)}, if many points need to be tested; this provides a modest
speedup over number fields but is likely to slow down the algorithm over
$\Q$.
The library syntax is \fun{long}{ellisdivisible}{GEN E, GEN P, GEN n, GEN *Q = NULL}.
\subsec{ellisisom$(E,F)$}\kbdsidx{ellisisom}\label{se:ellisisom}
Return $0$ if the elliptic curves $E$ and $F$ defined over the same number
field are not isomorphic, otherwise return \kbd{[u,r,s,t]} suitable for
\kbd{ellchangecurve}, mapping $E$ to $F$.
\bprog
? E = ellinit([1,2]);
? ellisisom(E, ellinit([1,3]))
%2 = 0
? F = ellchangecurve(E, [-1,1,3,2]);
? ellisisom(E,F)
%4 = [1, 1, -3, -2]
@eprog
\bprog
? nf = nfinit(a^3-2); E = ellinit([a^2+1,2*a-5], nf);
? F = ellchangecurve(E,Mod([a, a+1, a^2, a^2+a-3], nf.pol));
? v = ellisisom(E,F)
%3 = [Mod(-a, a^3 - 2), Mod(a + 1, a^3 - 2), Mod(-a^2, a^3 - 2),
Mod(-a^2 - a + 3, a^3 - 2)]
? ellchangecurve(E,v) == F
%4 = 1
@eprog
The library syntax is \fun{GEN}{ellisisom}{GEN E, GEN F}.
\subsec{ellisogeny$(E,G,\{\var{only\_image}=0\},\{x=\kbd{'}x\},\{y=\kbd{'}y\})$}\kbdsidx{ellisogeny}\label{se:ellisogeny}
Given an elliptic curve $E$, a finite subgroup $G$ of $E$ is given either
as a generating point $P$ (for a cyclic $G$) or as a polynomial whose roots
vanish on the $x$-coordinates of the nonzero elements of $G$ (general case
and more efficient if available). This function returns the
$[a_{1},a_{2},a_{3},a_{4},a_{6}]$ invariants of the quotient elliptic curve
$E/G$ and (if \var{only\_image} is zero (the default)) a vector of rational
functions $[f, g, h]$ such that the isogeny $E \to E/G$ is given by $(x,y)
\mapsto (f(x)/h(x)^{2}, g(x,y)/h(x)^{3})$.
\bprog
? E = ellinit([0,1]);
? elltors(E)
%2 = [6, [6], [[2, 3]]]
? ellisogeny(E, [2,3], 1) \\ Weierstrass model for E/<P>
%3 = [0, 0, 0, -135, -594]
? ellisogeny(E,[-1,0])
%4 = [[0,0,0,-15,22], [x^3+2*x^2+4*x+3, y*x^3+3*y*x^2-2*y, x+1]]
@eprog
The library syntax is \fun{GEN}{ellisogeny}{GEN E, GEN G, long only_image, long x = -1, long y = -1} where \kbd{x}, \kbd{y} are variable numbers.
\subsec{ellisogenyapply$(f,g)$}\kbdsidx{ellisogenyapply}\label{se:ellisogenyapply}
Given an isogeny of elliptic curves $f:E'\to E$ (being the result of a call
to \tet{ellisogeny}), apply $f$ to $g$:
\item if $g$ is a point $P$ in the domain of $f$, return the image $f(P)$;
\item if $g:E''\to E'$ is a compatible isogeny, return the composite
isogeny $f \circ g: E''\to E$.
\bprog
? one = ffgen(101, 't)^0;
? E = ellinit([6, 53, 85, 32, 34] * one);
? P = [84, 71] * one;
? ellorder(E, P)
%4 = 5
? [F, f] = ellisogeny(E, P); \\ f: E->F = E/<P>
? ellisogenyapply(f, P)
%6 = [0]
? F = ellinit(F);
? Q = [89, 44] * one;
? ellorder(F, Q)
%9 = 2
? [G, g] = ellisogeny(F, Q); \\ g: F->G = F/<Q>
? gof = ellisogenyapply(g, f); \\ gof: E -> G
@eprog
The library syntax is \fun{GEN}{ellisogenyapply}{GEN f, GEN g}.
\subsec{ellisomat$(E,\{p=0\},\{\fl=0\})$}\kbdsidx{ellisomat}\label{se:ellisomat}
Given an elliptic curve $E$ defined over a number field~$K$, computes
representatives of the set of isomorphism classes of elliptic curves defined
over~$K$ and $K$-isogenous to $E$, assuming it is finite (see below).
For any such curve $E_{i}$, let $f_{i}: E \to E_{i}$ be a rational isogeny
of minimal degree and let $g_{i}: E_{i} \to E$ be the dual isogeny; and let
$M$ be the matrix such that $M_{i,j}$ is the minimal degree for an isogeny
$E_{i} \to E_{j}$.
The function returns a vector $[L,M]$ where $L$ is a list of triples
$[E_{i}, f_{i}, g_{i}]$ ($\fl = 0$), or simply the list of $E_{i}$ ($\fl = 1$,
which saves time). The curves $E_{i}$ are given in $[a_{4},a_{6}]$ form and
the first curve $E_{1}$ is isomorphic to $E$ by $f_{1}$.
The set of isomorphism classes is finite except when $E$ has CM over a
quadratic order contained in $K$. In that case the function only returns the
discriminant of the quadratic order.
If $p$ is set, it must be a prime number; in this which case only isogenies of
degree a power of $p$ are considered.
Over a number field, the possible isogeny degrees are determined by
Billerey's algorithm.
\bprog
? E = ellinit("14a1");
? [L,M] = ellisomat(E);
? LE = apply(x->x[1], L) \\ list of curves
%3 = [[215/48,-5291/864],[-675/16,6831/32],[-8185/48,-742643/864],
[-1705/48,-57707/864],[-13635/16,306207/32],[-131065/48,-47449331/864]]
? L[2][2] \\ isogeny f_2
%4 = [x^3+3/4*x^2+19/2*x-311/12,
1/2*x^4+(y+1)*x^3+(y-4)*x^2+(-9*y+23)*x+(55*y+55/2),x+1/3]
? L[2][3] \\ dual isogeny g_2
%5 = [1/9*x^3-1/4*x^2-141/16*x+5613/64,
-1/18*x^4+(1/27*y-1/3)*x^3+(-1/12*y+87/16)*x^2+(49/16*y-48)*x
+(-3601/64*y+16947/512),x-3/4]
? apply(E->ellidentify(ellinit(E))[1][1], LE)
%6 = ["14a1","14a4","14a3","14a2","14a6","14a5"]
? M
%7 =
[1 3 3 2 6 6]
[3 1 9 6 2 18]
[3 9 1 6 18 2]
[2 6 6 1 3 3]
[6 2 18 3 1 9]
[6 18 2 3 9 1]
@eprog
The library syntax is \fun{GEN}{ellisomat}{GEN E, long p, long flag}.
\subsec{ellisoncurve$(E,z)$}\kbdsidx{ellisoncurve}\label{se:ellisoncurve}
Gives 1 (i.e.~true) if the point $z$ is on the elliptic curve $E$, 0
otherwise. If $E$ or $z$ have imprecise coefficients, an attempt is made to
take this into account, i.e.~an imprecise equality is checked, not a precise
one. It is allowed for $z$ to be a vector of points in which case a vector
(of the same type) is returned.
The library syntax is \fun{GEN}{ellisoncurve}{GEN E, GEN z}.
Also available is \fun{int}{oncurve}{GEN E, GEN z} which does not
accept vectors of points.
\subsec{ellisotree$(E)$}\kbdsidx{ellisotree}\label{se:ellisotree}
Given an elliptic curve $E$ defined over $\Q$ or a set of
$\Q$-isogenous curves as given by \kbd{ellisomat}, return a pair $[L,M]$ where
\item $L$ lists the minimal models of the isomorphism classes of elliptic
curves $\Q$-isogenous to $E$ (or in the set of isogenous curves),
\item $M$ is the adjacency matrix of the prime degree isogenies tree:
there is an edge from $E_{i}$ to $E_{j}$ if there is an isogeny $E_{i} \to
E_{j}$ of prime degree such that the N\'eron differential forms are
preserved.
\bprog
? E = ellinit("14a1");
? [L,M] = ellisotree(E);
? M
%3 =
[0 0 3 2 0 0]
[3 0 0 0 2 0]
[0 0 0 0 0 2]
[0 0 0 0 0 3]
[0 0 0 3 0 0]
[0 0 0 0 0 0]
? [L2,M2] = ellisotree(ellisomat(E,2,1));
%4 =
[0 2]
[0 0]
? [L3,M3] = ellisotree(ellisomat(E,3,1));
? M3
%6 =
[0 0 3]
[3 0 0]
[0 0 0]
@eprog\noindent Compare with the result of \kbd{ellisomat}.
\bprog
? [L,M]=ellisomat(E,,1);
? M
%7 =
[1 3 3 2 6 6]
[3 1 9 6 2 18]
[3 9 1 6 18 2]
[2 6 6 1 3 3]
[6 2 18 3 1 9]
[6 18 2 3 9 1]
@eprog
The library syntax is \fun{GEN}{ellisotree}{GEN E}.
\subsec{ellissupersingular$(E,\{p\})$}\kbdsidx{ellissupersingular}\label{se:ellissupersingular}
Return 1 if the elliptic curve $E$ defined over a number field, $\Q_{p}$
or a finite field is supersingular at $p$, and $0$ otherwise.
If the curve is defined over $\Q$ or a number field, $p$ must be explicitly
given, and must be a prime number, resp.~a maximal ideal; we return $1$ if and
only if $E$ has supersingular good reduction at $p$.
Alternatively, $E$ can be given by its $j$-invariant in a finite field. In
this case $p$ must be omitted.
\bprog
? g = ffprimroot(ffgen([7,5]))
%1 = 4*x^4+5*x^3+6*x^2+5*x+6
? [g^n | n <- [1 .. 7^5 - 1], ellissupersingular(g^n)]
%2 = [6]
? j = ellsupersingularj(2^31-1)
%3 = 1618591527*w+1497042960
? ellissupersingular(j)
%4 = 1
? K = nfinit(y^3-2); P = idealprimedec(K, 2)[1];
? E = ellinit([y,1], K);
? ellissupersingular(E, P)
%7 = 1
? Q = idealprimedec(K,5)[1];
? ellissupersingular(E, Q)
%9 = 0
@eprog
The library syntax is \fun{int}{ellissupersingular}{GEN E, GEN p = NULL}.
Also available is
\fun{int}{elljissupersingular}{GEN j} where $j$ is a $j$-invariant of a curve
over a finite field.
\subsec{ellj$(x)$}\kbdsidx{ellj}\label{se:ellj}
Elliptic $j$-invariant. $x$ must be a complex number
with positive imaginary part, or convertible into a power series or a
$p$-adic number with positive valuation.
The library syntax is \fun{GEN}{jell}{GEN x, long prec}.
\subsec{elllocalred$(E,\{p\})$}\kbdsidx{elllocalred}\label{se:elllocalred}
Calculates the \idx{Kodaira} type of the local fiber of the elliptic curve
$E$ at $p$. $E$ must be an \kbd{ell} structure as output by
\kbd{ellinit}, over $\Q_{\ell}$ ($p$ better left omitted, else equal to $\ell$)
over $\Q$ ($p$ a rational prime) or a number field $K$ ($p$
a maximal ideal given by a \kbd{prid} structure).
The result is a 4-component vector $[f,kod,v,c]$. Here $f$ is the exponent of
$p$ in the arithmetic conductor of $E$, and $kod$ is the Kodaira type which
is coded as follows:
1 means good reduction (type I$_{0}$), 2, 3 and 4 mean types II, III and IV
respectively, $4+\nu$ with $\nu>0$ means type I$_{\nu}$;
finally the opposite values $-1$, $-2$, etc.~refer to the starred types
I$_{0}^{*}$, II$^{*}$, etc. The third component $v$ is itself a vector $[u,r,s,t]$
giving the coordinate changes done during the local reduction;
$u = 1$ if and only if the given equation was already minimal at $p$.
Finally, the last component $c$ is the local \idx{Tamagawa number} $c_{p}$.
The library syntax is \fun{GEN}{elllocalred}{GEN E, GEN p = NULL}.
\subsec{elllog$(E,P,G,\{o\})$}\kbdsidx{elllog}\label{se:elllog}
Given two points $P$ and $G$ on the elliptic curve $E/\F_{q}$, returns the
discrete logarithm of $P$ in base $G$, i.e. the smallest nonnegative
integer $n$ such that $P = [n]G$.
See \tet{znlog} for the limitations of the underlying discrete log algorithms.
If present, $o$ represents the order of $G$, see \secref{se:DLfun};
the preferred format for this parameter is \kbd{[N, factor(N)]}, where $N$
is the order of $G$.
If no $o$ is given, assume that $G$ generates the curve.
The function also assumes that $P$ is a multiple of $G$.
\bprog
? a = ffgen(ffinit(2,8),'a);
? E = ellinit([a,1,0,0,1]); \\ over F_{2^8}
? x = a^3; y = ellordinate(E,x)[1];
? P = [x,y]; G = ellmul(E, P, 113);
? ord = [242, factor(242)]; \\ P generates a group of order 242. Initialize.
? ellorder(E, G, ord)
%4 = 242
? e = elllog(E, P, G, ord)
%5 = 15
? ellmul(E,G,e) == P
%6 = 1
@eprog
The library syntax is \fun{GEN}{elllog}{GEN E, GEN P, GEN G, GEN o = NULL}.
\subsec{elllseries$(E,s,\{A=1\})$}\kbdsidx{elllseries}\label{se:elllseries}
This function is deprecated, use \kbd{lfun(E,s)} instead.
$E$ being an elliptic curve, given by an arbitrary model over $\Q$ as output
by \kbd{ellinit}, this function computes the value of the $L$-series of $E$ at
the (complex) point $s$. This function uses an $O(N^{1/2})$ algorithm, where
$N$ is the conductor.
The optional parameter $A$ fixes a cutoff point for the integral and is best
left omitted; the result must be independent of $A$, up to
\kbd{realprecision}, so this allows to check the function's accuracy.
The library syntax is \fun{GEN}{elllseries}{GEN E, GEN s, GEN A = NULL, long prec}.
\subsec{ellmaninconstant$(E)$}\kbdsidx{ellmaninconstant}\label{se:ellmaninconstant}
Let $E$ be an elliptic curve over $Q$ given by
\kbd{ellinit} or a rational isogeny class given by ellisomat. Return the
Manin constant of the curve, see \kbd{ellweilcurve}.
The algorithm is slow but unconditional.
The function also accepts the output of \kbd{ellisomat} and returns the list
of Manin constants for all the isogeny class.
\bprog
? E = ellinit("11a3");
? ellmaninconstant(E)
%2 = 5
? L=ellisomat(E,,1);
? ellmaninconstant(L)
%4 = [5,1,1]
@eprog
The library syntax is \fun{GEN}{ellmaninconstant}{GEN E}.
\subsec{ellminimaldisc$(E)$}\kbdsidx{ellminimaldisc}\label{se:ellminimaldisc}
$E$ being an elliptic curve defined over a number field output by
\kbd{ellinit}, return the minimal discriminant ideal of E.
The library syntax is \fun{GEN}{ellminimaldisc}{GEN E}.
\subsec{ellminimalmodel$(E,\{\&v\})$}\kbdsidx{ellminimalmodel}\label{se:ellminimalmodel}
Let $E$ be an \kbd{ell} structure over a number field $K$. This function
determines whether $E$ admits a global minimal integral model. If so, it
returns it and sets $v = [u,r,s,t]$ to the corresponding change of variable:
the return value is identical to that of \kbd{ellchangecurve(E, v)}.
Else return the (nonprincipal) Weierstrass class of $E$, i.e. the class of
$\prod \goth{p}^{(v_{\goth{p}}{\Delta} - \delta_{\goth{p}}) / 12}$ where
$\Delta = \kbd{E.disc}$ is the model's discriminant and
$\goth{p}^{\delta_{\goth{p}}}$ is the local minimal discriminant.
This function requires either that $E$ be defined
over the rational field $\Q$ (with domain $D = 1$ in \kbd{ellinit}),
in which case a global minimal model always exists, or over a number
field given by a \var{bnf} structure. The Weierstrass class is given in
\kbd{bnfisprincipal} format, i.e. in terms of the \kbd{K.gen} generators.
The resulting model has integral coefficients and is everywhere minimal, the
coefficients $a_{1}$ and $a_{3}$ are reduced modulo $2$ (in terms of the fixed
integral basis \kbd{K.zk}) and $a_{2}$ is reduced modulo $3$. Over $\Q$, we
further require that $a_{1}$ and $a_{3}$ be $0$ or $1$, that $a_{2}$
be $0$ or $\pm 1$ and that $u > 0$ in the change of variable: both the model
and the change of variable $v$ are then unique.\sidx{minimal model}
\bprog
? e = ellinit([6,6,12,55,233]); \\ over Q
? E = ellminimalmodel(e, &v);
? E[1..5]
%3 = [0, 0, 0, 1, 1]
? v
%4 = [2, -5, -3, 9]
@eprog
\bprog
? K = bnfinit(a^2-65); \\ over a nonprincipal number field
? K.cyc
%2 = [2]
? u = Mod(8+a, K.pol);
? E = ellinit([1,40*u+1,0,25*u^2,0], K);
? ellminimalmodel(E) \\ no global minimal model exists over Z_K
%6 = [1]~
@eprog
The library syntax is \fun{GEN}{ellminimalmodel}{GEN E, GEN *v = NULL}.
\subsec{ellminimaltwist$(E,\{\fl=0\})$}\kbdsidx{ellminimaltwist}\label{se:ellminimaltwist}
Let $E$ be an elliptic curve defined over $\Q$, return
a discriminant $D$ such that the twist of $E$ by $D$ is minimal among all
possible quadratic twists, i.e. if $\fl=0$, its minimal model has minimal
discriminant, or if $\fl=1$, it has minimal conductor.
In the example below, we find a curve with $j$-invariant $3$ and minimal
conductor.
\bprog
? E = ellminimalmodel(ellinit(ellfromj(3)));
? ellglobalred(E)[1]
%2 = 357075
? D = ellminimaltwist(E,1)
%3 = -15
? E2 = ellminimalmodel(elltwist(E,D));
? ellglobalred(E2)[1]
%5 = 14283
@eprog
In the example below, $\fl=0$ and $\fl=1$ give different results.
\bprog
? E = ellinit([1,0]);
? D0 = ellminimaltwist(E,0)
%7 = 1
? D1 = ellminimaltwist(E,1)
%8 = 8
? E0 = ellminimalmodel(elltwist(E,D0));
? [E0.disc, ellglobalred(E0)[1]]
%10 = [-64, 64]
? E1 = ellminimalmodel(elltwist(E,D1));
? [E1.disc, ellglobalred(E1)[1]]
%12 = [-4096, 32]
@eprog
The library syntax is \fun{GEN}{ellminimaltwist0}{GEN E, long flag}.
Also available are
\fun{GEN}{ellminimaltwist}{E} for $\fl=0$, and
\fun{GEN}{ellminimaltwistcond}{E} for $\fl=1$.
\subsec{ellmoddegree$(e)$}\kbdsidx{ellmoddegree}\label{se:ellmoddegree}
$e$ being an elliptic curve defined over $\Q$ output by \kbd{ellinit},
compute the modular degree of $e$ divided by the square of
the Manin constant $c$. It is conjectured that $c = 1$ for the strong Weil
curve in the isogeny class (optimal quotient of $J_{0}(N)$) and this can be
proven using \kbd{ellweilcurve} when the conductor $N$ is moderate.
\bprog
? E = ellinit("11a1"); \\ from Cremona table: strong Weil curve and c = 1
? [v,smith] = ellweilcurve(E); smith \\ proof of the above
%2 = [[1, 1], [5, 1], [1, 1/5]]
? ellmoddegree(E)
%3 = 1
? [ellidentify(e)[1][1] | e<-v]
%4 = ["11a1", "11a2", "11a3"]
? ellmoddegree(ellinit("11a2"))
%5 = 5
? ellmoddegree(ellinit("11a3"))
%6 = 1/5
@eprog\noindent The modular degree of \kbd{11a1} is $1$ (because
\kbd{ellweilcurve} or Cremona's table prove that the Manin constant
is $1$ for this curve); the output of \kbd{ellweilcurve} also proves
that the Manin constants of \kbd{11a2} and \kbd{11a3} are 1 and 5
respectively, so the actual modular degree of both \kbd{11a2} and \kbd{11a3}
is 5.
The library syntax is \fun{GEN}{ellmoddegree}{GEN e}.
\subsec{ellmodulareqn$(N,\{x\},\{y\})$}\kbdsidx{ellmodulareqn}\label{se:ellmodulareqn}
Given a prime $N < 500$, return a vector $[P,t]$ where $P(x,y)$
is a modular equation of level $N$, i.e.~a bivariate polynomial with integer
coefficients; $t$ indicates the type of this equation: either
\emph{canonical} ($t = 0$) or \emph{Atkin} ($t = 1$). This function requires
the \kbd{seadata} package and its only use is to give access to the package
contents. See \tet{polmodular} for a more general and more flexible function.
Let $j$ be the $j$-invariant function. The polynomial $P$ satisfies
the functional equation,
$$ P(f,j) = P(f \mid W_{N}, j \mid W_{N}) = 0 $$
for some modular function $f = f_{N}$ (hand-picked for each fixed $N$ to
minimize its size, see below), where $W_{N}(\tau) = -1 / (N\*\tau)$ is the
Atkin-Lehner involution. These two equations allow to compute the values of
the classical modular polynomial $\Phi_{N}$, such that $\Phi_{N}(j(\tau),
j(N\tau)) = 0$, while being much smaller than the latter. More precisely, we
have $j(W_{N}(\tau)) = j(N\*\tau)$; the function $f$ is invariant under
$\Gamma_{0}(N)$ and also satisfies
\item for Atkin type: $f \mid W_{N} = f$;
\item for canonical type: let $s = 12/\gcd(12,N-1)$, then
$f \mid W_{N} = N^{s} / f$. In this case, $f$ has a simple definition:
$f(\tau) = N^{s} \* \big(\eta(N\*\tau) / \eta(\tau) \big)^{2\*s}$,
where $\eta$ is Dedekind's eta function.
The following GP function returns values of the classical modular polynomial
by eliminating $f_{N}(\tau)$ in the above functional equation,
for $N\leq 31$ or $N\in\{41,47,59,71\}$.
\bprog
classicaleqn(N, X='X, Y='Y)=
{
my([P,t] = ellmodulareqn(N), Q, d);
if (poldegree(P,'y) > 2, error("level unavailable in classicaleqn"));
if (t == 0, \\ Canonical
my(s = 12/gcd(12,N-1));
Q = 'x^(N+1) * substvec(P,['x,'y],[N^s/'x,Y]);
d = N^(s*(2*N+1)) * (-1)^(N+1);
, \\ Atkin
Q = subst(P,'y,Y);
d = (X-Y)^(N+1));
polresultant(subst(P,'y,X), Q) / d;
}
@eprog
The library syntax is \fun{GEN}{ellmodulareqn}{long N, long x = -1, long y = -1} where \kbd{x}, \kbd{y} are variable numbers.
\subsec{ellmul$(E,z,n)$}\kbdsidx{ellmul}\label{se:ellmul}
Computes $[n]z$, where $z$ is a point on the elliptic curve $E$. The
exponent $n$ is in $\Z$, or may be a complex quadratic integer if the curve $E$
has complex multiplication by $n$ (if not, an error message is issued).
\bprog
? Ei = ellinit([1,0]); z = [0,0];
? ellmul(Ei, z, 10)
%2 = [0] \\ unsurprising: z has order 2
? ellmul(Ei, z, I)
%3 = [0, 0] \\ Ei has complex multiplication by Z[i]
? ellmul(Ei, z, quadgen(-4))
%4 = [0, 0] \\ an alternative syntax for the same query
? Ej = ellinit([0,1]); z = [-1,0];
? ellmul(Ej, z, I)
*** at top-level: ellmul(Ej,z,I)
*** ^--------------
*** ellmul: not a complex multiplication in ellmul.
? ellmul(Ej, z, 1+quadgen(-3))
%6 = [1 - w, 0]
@eprog
The simple-minded algorithm for the CM case assumes that we are in
characteristic $0$, and that the quadratic order to which $n$ belongs has
small discriminant.
The library syntax is \fun{GEN}{ellmul}{GEN E, GEN z, GEN n}.
\subsec{ellneg$(E,z)$}\kbdsidx{ellneg}\label{se:ellneg}
Opposite of the point $z$ on elliptic curve $E$.
The library syntax is \fun{GEN}{ellneg}{GEN E, GEN z}.
\subsec{ellnonsingularmultiple$(E,P)$}\kbdsidx{ellnonsingularmultiple}\label{se:ellnonsingularmultiple}
Given an elliptic curve $E/\Q$ (more precisely, a model defined over $\Q$
of a curve) and a rational point $P \in E(\Q)$, returns the pair $[R,n]$,
where $n$ is the least positive integer such that $R := [n]P$ has good
reduction at every prime. More precisely, its image in a minimal model is
everywhere nonsingular.
\bprog
? e = ellinit("57a1"); P = [2,-2];
? ellnonsingularmultiple(e, P)
%2 = [[1, -1], 2]
? e = ellinit("396b2"); P = [35, -198];
? [R,n] = ellnonsingularmultiple(e, P);
? n
%5 = 12
@eprog
The library syntax is \fun{GEN}{ellnonsingularmultiple}{GEN E, GEN P}.
\subsec{ellorder$(E,z,\{o\})$}\kbdsidx{ellorder}\label{se:ellorder}
Gives the order of the point $z$ on the elliptic
curve $E$, defined over a finite field or a number field.
Return (the impossible value) zero if the point has infinite order.
\bprog
? E = ellinit([-157^2,0]); \\ the "157-is-congruent" curve
? P = [0,0]; ellorder(E, P)
%2 = 2
? P = ellheegner(E); ellorder(E, P) \\ infinite order
%3 = 0
? K = nfinit(polcyclo(11,t)); E=ellinit("11a3", K); T = elltors(E);
? ellorder(E, T.gen[1])
%5 = 25
? E = ellinit(ellfromj(ffgen(5^10)));
? ellcard(E)
%7 = 9767025
? P = random(E); ellorder(E, P)
%8 = 1953405
? p = 2^160+7; E = ellinit([1,2], p);
? N = ellcard(E)
%9 = 1461501637330902918203686560289225285992592471152
? o = [N, factor(N)];
? for(i=1,100, ellorder(E,random(E)))
time = 260 ms.
@eprog
The parameter $o$, is now mostly useless, and kept for backward
compatibility. If present, it represents a nonzero multiple of the order
of $z$, see \secref{se:DLfun}; the preferred format for this parameter is
\kbd{[ord, factor(ord)]}, where \kbd{ord} is the cardinality of the curve.
It is no longer needed since PARI is now able to compute it over large
finite fields (was restricted to small prime fields at the time this feature
was introduced), \emph{and} caches the result in $E$ so that it is computed
and factored only once. Modifying the last example, we see that including
this extra parameter provides no improvement:
\bprog
? o = [N, factor(N)];
? for(i=1,100, ellorder(E,random(E),o))
time = 260 ms.
@eprog
The library syntax is \fun{GEN}{ellorder}{GEN E, GEN z, GEN o = NULL}.
The obsolete form \fun{GEN}{orderell}{GEN e, GEN z} should no longer be
used.
\subsec{ellordinate$(E,x)$}\kbdsidx{ellordinate}\label{se:ellordinate}
Gives a 0, 1 or 2-component vector containing
the $y$-coordinates of the points of the curve $E$ having $x$ as
$x$-coordinate.
The library syntax is \fun{GEN}{ellordinate}{GEN E, GEN x, long prec}.
\subsec{ellpadicL$(E,p,n,\{s=0\},\{r=0\},\{D=1\})$}\kbdsidx{ellpadicL}\label{se:ellpadicL}
Returns the value (or $r$-th derivative) on a character $\chi^{s}$ of
$\Z_{p}^{*}$ of the $p$-adic $L$-function of the elliptic curve $E/\Q$, twisted by
$D$, given modulo $p^{n}$.
\misctitle{Characters} The set of continuous characters of
$\text{Gal}(\Q(\mu_{p^{\infty}})/ \Q)$ is identified to $\Z_{p}^{*}$ via the
cyclotomic character $\chi$ with values in $\overline{\Q_{p}}^{*}$. Denote by
$\tau:\Z_{p}^{*}\to\Z_{p}^{*}$ the Teichm\"uller character, with values
in the $(p-1)$-th roots of $1$ for $p\neq 2$, and $\{-1,1\}$ for $p = 2$;
finally, let
$\langle\chi\rangle =\chi \tau^{-1}$, with values in $1 + 2p\Z_{p}$.
In GP, the continuous character of
$\text{Gal}(\Q(\mu_{p^{\infty}})/ \Q)$ given by $\langle\chi\rangle^{s_{1}}
\tau^{s_{2}}$ is represented by the pair of integers $s=(s_{1},s_{2})$,
with $s_{1} \in \Z_{p}$ and $s_{2} \bmod p-1$ for $p > 2$,
(resp. mod $2$ for $p = 2$); $s$
may be also an integer, representing $(s,s)$ or $\chi^{s}$.
\misctitle{The $p$-adic $L$ function}
The $p$-adic $L$ function $L_{p}$ is defined on the set of continuous
characters of $\text{Gal}(\Q(\mu_{p^{\infty}})/ \Q)$, as $\int_{\Z_{p}^{*}}
\chi^{s} d \mu$ for a certain $p$-adic distribution $\mu$ on $\Z_{p}^{*}$. The
derivative is given by
$$L_{p}^{(r)}(E, \chi^{s}) = \int_{\Z_{p}^{*}} \log_{p}^{r}(a) \chi^{s}(a)
d\mu(a).$$
More precisely:
\item When $E$ has good supersingular reduction, $L_{p}$ takes its
values in $D := H^{1}_{dR}(E/\Q)\otimes_{\Q} \Q_{p}$ and satisfies
$$(1-p^{-1} F)^{-2} L_{p}(E, \chi^{0})= (L(E,1) / \Omega) \cdot \omega$$
where $F$ is the Frobenius, $L(E,1)$ is the value of the complex $L$
function at $1$, $\omega$ is the N\'eron differential
and $\Omega$ the attached period on $E(\R)$. Here, $\chi^{0}$ represents
the trivial character.
The function returns the components of $L_{p}^{(r)}(E,\chi^{s})$ in
the basis $(\omega, F \omega)$.
\item When $E$ has ordinary good reduction, this method only defines
the projection of $L_{p}(E,\chi^{s})$ on the $\alpha$-eigenspace,
where $\alpha$ is the unit eigenvalue for $F$. This is what the function
returns. We have
$$(1- \alpha^{-1})^{-2} L_{p,\alpha}(E,\chi^{0})= L(E,1) / \Omega.$$
Two supersingular examples:
\bprog
? cxL(e) = bestappr( ellL1(e) / e.omega[1] );
? e = ellinit("17a1"); p=3; \\ supersingular, a3 = 0
? L = ellpadicL(e,p,4);
? F = [0,-p;1,ellap(e,p)]; \\ Frobenius matrix in the basis (omega,F(omega))
? (1-p^(-1)*F)^-2 * L / cxL(e)
%5 = [1 + O(3^5), O(3^5)]~ \\ [1,0]~
? e = ellinit("116a1"); p=3; \\ supersingular, a3 != 0~
? L = ellpadicL(e,p,4);
? F = [0,-p; 1,ellap(e,p)];
? (1-p^(-1)*F)^-2*L~ / cxL(e)
%9 = [1 + O(3^4), O(3^5)]~
@eprog
Good ordinary reduction:
\bprog
? e = ellinit("17a1"); p=5; ap = ellap(e,p)
%1 = -2 \\ ordinary
? L = ellpadicL(e,p,4)
%2 = 4 + 3*5 + 4*5^2 + 2*5^3 + O(5^4)
? al = padicappr(x^2 - ap*x + p, ap + O(p^7))[1];
? (1-al^(-1))^(-2) * L / cxL(e)
%4 = 1 + O(5^4)
@eprog
Twist and Teichm\"uller:
\bprog
? e = ellinit("17a1"); p=5; \\ ordinary
\\ 2nd derivative at tau^1, twist by -7
? ellpadicL(e, p, 4, [0,1], 2, -7)
%2 = 2*5^2 + 5^3 + O(5^4)
@eprog
We give an example of non split multiplicative reduction (see
\tet{ellpadicbsd} for more examples).
\bprog
? e=ellinit("15a1"); p=3; n=5;
? L = ellpadicL(e,p,n)
%2 = 2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5)
? (1 - ellap(e,p))^(-1) * L / cxL(e)
%3 = 1 + O(3^5)
@eprog
This function is a special case of \tet{mspadicL} and it also appears
as the first term of \tet{mspadicseries}:
\bprog
? e = ellinit("17a1"); p=5;
? L = ellpadicL(e,p,4)
%2 = 4 + 3*5 + 4*5^2 + 2*5^3 + O(5^4)
? [M,phi] = msfromell(e, 1);
? Mp = mspadicinit(M, p, 4);
? mu = mspadicmoments(Mp, phi);
? mspadicL(mu)
%6 = 4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + O(5^6)
? mspadicseries(mu)
%7 = (4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + O(5^6))
+ (3 + 3*5 + 5^2 + 5^3 + O(5^4))*x
+ (2 + 3*5 + 5^2 + O(5^3))*x^2
+ (3 + 4*5 + 4*5^2 + O(5^3))*x^3
+ (3 + 2*5 + O(5^2))*x^4 + O(x^5)
@eprog\noindent These are more cumbersome than \kbd{ellpadicL} but allow to
compute at different characters, or successive derivatives, or to
twist by a quadratic character essentially for the cost of a single call to
\kbd{ellpadicL} due to precomputations.
The library syntax is \fun{GEN}{ellpadicL}{GEN E, GEN p, long n, GEN s = NULL, long r, GEN D = NULL}.
\subsec{ellpadicbsd$(E,p,n,\{D=1\})$}\kbdsidx{ellpadicbsd}\label{se:ellpadicbsd}
Given an elliptic curve $E$ over $\Q$, its quadratic twist $E_{D}$
and a prime number $p$, this function is a $p$-adic analog of the complex
functions \tet{ellanalyticrank} and \tet{ellbsd}. It calls \kbd{ellpadicL}
with initial accuracy $p^{n}$ and may increase it internally;
it returns a vector $[r, L_{p}]$ where
\item $L_{p}$ is a $p$-adic number (resp. a pair of $p$-adic numbers if
$E$ has good supersingular reduction) defined modulo $p^{N}$, conjecturally
equal to $R_{p} S$, where $R_{p}$ is the $p$-adic regulator as given by
\tet{ellpadicregulator} (in the basis $(\omega, F \omega)$) and $S$ is the
cardinal of the Tate-Shafarevich group for the quadratic twist $E_{D}$.
\item $r$ is an upper bound for the analytic rank of the $p$-adic
$L$-function attached to $E_{D}$: we know for sure that the $i$-th
derivative of $L_{p}(E_{D},.)$ at $\chi^{0}$ is $O(p^{N})$ for all $i < r$
and that its $r$-th derivative is nonzero; it is expected that the true
analytic rank is equal to the rank of the Mordell-Weil group $E_{D}(\Q)$,
plus $1$ if the reduction of $E_{D}$ at $p$ is split multiplicative;
if $r = 0$, then both the analytic rank and the Mordell-Weil rank are
unconditionnally $0$.
Recall that the $p$-adic BSD conjecture (Mazur, Tate, Teitelbaum, Bernardi,
Perrin-Riou) predicts an explicit link between $R_{p} S$ and
$$(1-p^{-1} F)^{-2} \cdot L_{p}^{(r)}(E_{D}, \chi^{0}) / r! $$
where $r$ is the analytic rank of the $p$-adic $L$-function attached to
$E_{D}$ and $F$ is the Frobenius on $H^{1}_{dR}$; see \tet{ellpadicL}
for definitions.
\bprog
? E = ellinit("11a1"); p = 7; n = 5; \\ good ordinary
? ellpadicbsd(E, 7, 5) \\ rank 0,
%2 = [0, 1 + O(7^5)]
? E = ellinit("91a1"); p = 7; n = 5; \\ non split multiplicative
? [r,Lp] = ellpadicbsd(E, p, n)
%5 = [1, 2*7 + 6*7^2 + 3*7^3 + 7^4 + O(7^5)]
? R = ellpadicregulator(E, p, n, E.gen)
%6 = 2*7 + 6*7^2 + 3*7^3 + 7^4 + 5*7^5 + O(7^6)
? sha = Lp/R
%7 = 1 + O(7^4)
? E = ellinit("91b1"); p = 7; n = 5; \\ split multiplicative
? [r,Lp] = ellpadicbsd(E, p, n)
%9 = [2, 2*7 + 7^2 + 5*7^3 + O(7^4)]
? ellpadicregulator(E, p, n, E.gen)
%10 = 2*7 + 7^2 + 5*7^3 + 6*7^4 + 2*7^5 + O(7^6)
? [rC, LC] = ellanalyticrank(E);
? [r, rC]
%12 = [2, 1] \\ r = rC+1 because of split multiplicative reduction
? E = ellinit("53a1"); p = 5; n = 5; \\ supersingular
? [r, Lp] = ellpadicbsd(E, p, n);
? r
%15 = 1
? Lp
%16 = [3*5 + 2*5^2 + 2*5^5 + O(5^6), \
5 + 3*5^2 + 4*5^3 + 2*5^4 + 5^5 + O(5^6)]
? R = ellpadicregulator(E, p, n, E.gen)
%17 = [3*5 + 2*5^2 + 2*5^5 + O(5^6), 5 + 3*5^2 + 4*5^3 + 2*5^4 + O(5^5)]
\\ expect Lp = R*#Sha, hence (conjecturally) #Sha = 1
? E = ellinit("84a1"); p = 11; n = 6; D = -443;
? [r,Lp] = ellpadicbsd(E, 11, 6, D) \\ Mordell-Weil rank 0, no regulator
%19 = [0, 3 + 2*11 + O(11^6)]
? lift(Lp) \\ expected cardinal for Sha is 5^2
%20 = 25
? ellpadicbsd(E, 3, 12, D) \\ at 3
%21 = [1, 1 + 2*3 + 2*3^2 + O(3^8)]
? ellpadicbsd(E, 7, 8, D) \\ and at 7
%22 = [0, 4 + 3*7 + O(7^8)]
@eprog
The library syntax is \fun{GEN}{ellpadicbsd}{GEN E, GEN p, long n, GEN D = NULL}.
\subsec{ellpadicfrobenius$(E,p,n)$}\kbdsidx{ellpadicfrobenius}\label{se:ellpadicfrobenius}
If $p>2$ is a prime and $E$ is an elliptic curve on $\Q$ with good
reduction at $p$, return the matrix of the Frobenius endomorphism $\varphi$
on the crystalline module $D_{p}(E)= \Q_{p} \otimes H^{1}_{dR}(E/\Q)$ with
respect to the basis of the given model $(\omega, \eta=x\*\omega)$, where
$\omega = dx/(2\*y+a_{1}\*x+a_{3})$ is the invariant differential.
The characteristic polynomial of $\varphi$ is $x^{2} - a_{p}\*x + p$.
The matrix is computed to absolute $p$-adic precision $p^{n}$.
\bprog
? E = ellinit([1,-1,1,0,0]);
? F = ellpadicfrobenius(E,5,3);
? lift(F)
%3 =
[120 29]
[ 55 5]
? charpoly(F)
%4 = x^2 + O(5^3)*x + (5 + O(5^3))
? ellap(E, 5)
%5 = 0
@eprog
The library syntax is \fun{GEN}{ellpadicfrobenius}{GEN E, ulong p, long n}.
\subsec{ellpadicheight$(E,p,n,P,\{Q\})$}\kbdsidx{ellpadicheight}\label{se:ellpadicheight}
Cyclotomic $p$-adic height of the rational point $P$ on the elliptic curve
$E$ (defined over $\Q$), given to $n$ $p$-adic digits.
If the argument $Q$ is present, computes the value of the bilinear
form $(h(P+Q)-h(P-Q)) / 4$.
Let $D := H^{1}_{dR}(E) \otimes_{\Q} \Q_{p}$ be the $\Q_{p}$ vector space
spanned by $\omega$
(invariant differential $dx/(2y+a_{1}x+a_{3})$ related to the given model) and
$\eta = x \omega$. Then the cyclotomic $p$-adic height $h_{E}$ associates to
$P\in E(\Q)$ an element $f \omega + g \eta$ in $D$.
This routine returns the vector $[f, g]$ to $n$ $p$-adic digits.
If $P\in E(\Q)$ is in the kernel of reduction mod $p$ and if its reduction
at all finite places is non singular, then $g = -(\log_{E} P)^{2}$, where
$\log_{E}$ is the logarithm for the formal group of $E$ at $p$.
If furthermore the model is of the form $Y^{2} = X^{3} + a X + b$
and $P = (x,y)$, then
$$ f = \log_{p}(\kbd{denominator}(x)) - 2 \log_{p}(\sigma(P))$$
where $\sigma(P)$ is given by \kbd{ellsigma}$(E,P)$.
Recall (\emph{Advanced topics in the arithmetic of elliptic
curves}, Theorem~3.2) that the local height function over the complex numbers
is of the form
$$ \lambda(z) = -\log (|\kbd{E.disc}|) / 6 + \Re(z \eta(z)) - 2 \log(
\sigma(z)). $$
(N.B. our normalization for local and global heights is twice that of
Silverman's).
\bprog
? E = ellinit([1,-1,1,0,0]); P = [0,0];
? ellpadicheight(E,5,3, P)
%2 = [3*5 + 5^2 + 2*5^3 + O(5^4), 5^2 + 4*5^4 + O(5^5)]
? E = ellinit("11a1"); P = [5,5]; \\ torsion point
? ellpadicheight(E,19,6, P)
%4 = [0, 0]
? E = ellinit([0,0,1,-4,2]); P = [-2,1];
? ellpadicheight(E,3,3, P)
%6 = [2*3^2 + 2*3^3 + 3^4 + O(3^5), 2*3^2 + 3^4 + O(3^5)]
? ellpadicheight(E,3,5, P, elladd(E,P,P))
%7 = [3^2 + 2*3^3 + O(3^7), 3^2 + 3^3 + 2*3^4 + 3^5 + O(3^7)]
@eprog
\item When $E$ has good ordinary reduction at $p$ or non split multiplicative
reduction, the ``canonical'' $p$-adic height is given by
\bprog
s2 = ellpadics2(E,p,n);
ellpadicheight(E, p, n, P) * [1,-s2]~
@eprog\noindent Since $s_{2}$ does not depend on $P$, it is preferable to
compute it only once:
\bprog
? E = ellinit("5077a1"); p = 5; n = 7; \\ rank 3
? s2 = ellpadics2(E,p,n);
? M = ellpadicheightmatrix(E,p, n, E.gen) * [1,-s2]~;
? matdet(M) \\ p-adic regulator on the points in E.gen
%4 = 5 + 5^2 + 4*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + O(5^7)
@eprog
\item When $E$ has split multiplicative reduction at $p$ (Tate curve),
the ``canonical'' $p$-adic height is given by
\bprog
Ep = ellinit(E[1..5], O(p^(n))); \\ E seen as a Tate curve over Qp
[u2,u,q] = Ep.tate;
ellpadicheight(E, p, n, P) * [1,-s2 + 1/log(q)/u2]]~
@eprog\noindent where $s_{2}$ is as above. For example,
\bprog
? E = ellinit("91b1"); P =[-1, 3]; p = 7; n = 5;
? Ep = ellinit(E[1..5], O(p^(n)));
? s2 = ellpadics2(E,p,n);
? [u2,u,q] = Ep.tate;
? H = ellpadicheight(E,p, n, P) * [1,-s2 + 1/log(q)/u2]~
%5 = 2*7 + 7^2 + 5*7^3 + 6*7^4 + 2*7^5 + O(7^6)
@eprog These normalizations are chosen so that $p$-adic BSD conjectures
are easy to state, see \tet{ellpadicbsd}.
The library syntax is \fun{GEN}{ellpadicheight0}{GEN E, GEN p, long n, GEN P, GEN Q = NULL}.
\subsec{ellpadicheightmatrix$(E,p,n,Q)$}\kbdsidx{ellpadicheightmatrix}\label{se:ellpadicheightmatrix}
$Q$ being a vector of points, this function returns the ``Gram matrix''
$[F,G]$ of the cyclotomic $p$-adic height $h_{E}$ with respect to
the basis $(\omega, \eta)$ of $D=H^{1}_{dR}(E) \otimes_{\Q} \Q_{p}$
given to $n$ $p$-adic digits. In other words, if
\kbd{ellpadicheight}$(E,p,n, Q[i],Q[j]) = [f,g]$, corresponding to
$f \omega + g \eta$ in $D$, then $F[i,j] = f$ and $G[i,j] = g$.
\bprog
? E = ellinit([0,0,1,-7,6]); Q = [[-2,3],[-1,3]]; p = 5; n = 5;
? [F,G] = ellpadicheightmatrix(E,p,n,Q);
? lift(F) \\ p-adic entries, integral approximation for readability
%3 =
[2364 3100]
[3100 3119]
? G
%4 =
[25225 46975]
[46975 61850]
? [F,G] * [1,-ellpadics2(E,p,n)]~
%5 =
[4 + 2*5 + 4*5^2 + 3*5^3 + O(5^5) 4*5^2 + 4*5^3 + 5^4 + O(5^5)]
[ 4*5^2 + 4*5^3 + 5^4 + O(5^5) 4 + 3*5 + 4*5^2 + 4*5^3 + 5^4 + O(5^5)]
@eprog
The library syntax is \fun{GEN}{ellpadicheightmatrix}{GEN E, GEN p, long n, GEN Q}.
\subsec{ellpadiclambdamu$(E,p,\{D=1\},\{i=0\})$}\kbdsidx{ellpadiclambdamu}\label{se:ellpadiclambdamu}
Let $p$ be a prime number and let $E/\Q$ be a rational elliptic curve
with good or bad multiplicative reduction at $p$.
Return the Iwasawa invariants $\lambda$ and $\mu$ for the $p$-adic $L$
function $L_{p}(E)$, twisted by $(D/.)$ and the $i$-th power of the
Teichm\"uller character $\tau$, see \kbd{ellpadicL} for details about
$L_{p}(E)$.
Let $\chi$ be the cyclotomic character and choose $\gamma$
in $\text{Gal}(\Q_{p}(\mu_{p^{\infty}})/\Q_{p})$ such that $\chi(\gamma)=1+2p$.
Let $\hat{L}^{(i), D} \in \Q_{p}[[X]]\otimes D_{cris}$ such that
$$ (<\chi>^{s} \tau^{i}) (\hat{L}^{(i), D}(\gamma-1))
= L_{p}\big(E, <\chi>^{s}\tau^{i} (D/.)\big).$$
\item When $E$ has good ordinary or bad multiplicative reduction at $p$.
By Weierstrass's preparation theorem the series $\hat{L}^{(i), D}$ can be
written $p^{\mu} (X^{\lambda} + p G(X))$ up to a $p$-adic unit, where
$G(X)\in \Z_{p}[X]$. The function returns $[\lambda,\mu]$.
\item When $E$ has good supersingular reduction, we define a sequence
of polynomials $P_{n}$ in $\Q_{p}[X]$ of degree $< p^{n}$ (and bounded
denominators), such that
$$\hat{L}^{(i), D} \equiv P_{n} \varphi^{n+1}\omega_{E} -
\xi_{n} P_{n-1}\varphi^{n+2}\omega_{E} \bmod \big((1+X)^{p^{n}}-1\big)
\Q_{p}[X]\otimes D_{cris},$$
where $\xi_{n} = \kbd{polcyclo}(p^{n}, 1+X)$.
Let $\lambda_{n},\mu_{n}$ be the invariants of $P_{n}$. We find that
\item $\mu_{n}$ is nonnegative and decreasing for $n$ of given parity hence
$\mu_{2n}$ tends to a limit $\mu^{+}$ and $\mu_{2n+1}$ tends to a limit
$\mu^{-}$ (both conjecturally $0$).
\item there exists integers $\lambda^{+}$, $\lambda^{-}$
in $\Z$ (denoted with a $\til$ in the reference below) such that
$$ \lim_{n\to\infty} \lambda_{2n} + 1/(p+1) = \lambda^{+}
\quad \text{and} \quad
\lim_{n\to\infty} \lambda_{2n+1} + p/(p+1) = \lambda^{-}.$$
The function returns $[[\lambda^{+}, \lambda^{-}], [\mu^{+},\mu^{-}]]$.
\noindent Reference: B. Perrin-Riou, Arithm\'etique des courbes elliptiques
\`a r\'eduction supersinguli\`ere en $p$, \emph{Experimental Mathematics},
{\bf 12}, 2003, pp. 155-186.
The library syntax is \fun{GEN}{ellpadiclambdamu}{GEN E, long p, long D, long i}.
\subsec{ellpadiclog$(E,p,n,P)$}\kbdsidx{ellpadiclog}\label{se:ellpadiclog}
Given $E$ defined over $K = \Q$ or $\Q_{p}$ and $P = [x,y]$ on $E(K)$ in the
kernel of reduction mod $p$, let $t(P) = -x/y$ be the formal group
parameter; this function returns $L(t)$ to relative $p$-adic precision
$p^{n}$, where $L$ denotes the formal logarithm (mapping the formal group
of $E$ to the additive formal group) attached to the canonical invariant
differential: $dL = dx/(2y + a_{1}x + a_{3})$.
\bprog
? E = ellinit([0,0,1,-4,2]); P = [-2,1];
? ellpadiclog(E,2,10,P)
%2 = 2 + 2^3 + 2^8 + 2^9 + 2^10 + O(2^11)
? E = ellinit([17,42]);
? p=3; Ep = ellinit(E,p); \\ E mod p
? P=[114,1218]; ellorder(Ep,P) \\ the order of P on (E mod p) is 2
%5 = 2
? Q = ellmul(E,P,2) \\ we need a point of the form 2*P
%6 = [200257/7056, 90637343/592704]
? ellpadiclog(E,3,10,Q)
%7 = 3 + 2*3^2 + 3^3 + 3^4 + 3^5 + 3^6 + 2*3^8 + 3^9 + 2*3^10 + O(3^11)
@eprog
The library syntax is \fun{GEN}{ellpadiclog}{GEN E, GEN p, long n, GEN P}.
\subsec{ellpadicregulator$(E,p,n,S)$}\kbdsidx{ellpadicregulator}\label{se:ellpadicregulator}
Let $E/\Q$ be an elliptic curve. Return the determinant of the Gram
matrix of the vector of points $S=(S_{1},\cdots, S_{r})$ with respect to the
``canonical'' cyclotomic $p$-adic height on $E$, given to $n$ ($p$-adic)
digits.
When $E$ has ordinary reduction at $p$, this is the expected Gram
deteterminant in $\Q_{p}$.
In the case of supersingular reduction of $E$ at $p$, the definition
requires care: the regulator $R$ is an element of
$D := H^{1}_{dR}(E) \otimes_{\Q} \Q_{p}$, which is a two-dimensional
$\Q_{p}$-vector space spanned by $\omega$ and $\eta = x \omega$
(which are defined over $\Q$) or equivalently but now over $\Q_{p}$
by $\omega$ and $F\omega$ where $F$ is the Frobenius endomorphism on $D$
as defined in \kbd{ellpadicfrobenius}. On $D$ we
define the cyclotomic height $h_{E} = f \omega + g \eta$
(see \tet{ellpadicheight}) and a canonical alternating bilinear form
$[.,.]_{D}$ such that $[\omega, \eta]_{D} = 1$.
For any $\nu \in D$, we can define a height $h_{\nu} := [ h_{E}, \nu ]_{D}$
from $E(\Q)$ to $\Q_{p}$ and $\langle \cdot, \cdot \rangle_{\nu}$ the attached
bilinear form. In particular, if $h_{E} = f \omega + g\eta$, then
$h_{\eta} = [ h_{E}, \eta ]_{D}$ = f and $h_{\omega} = [ h_{E}, \omega ]_{D}
= - g$ hence $h_{E} = h_{\eta} \omega - h_{\omega} \eta$.
Then, $R$ is the unique element of $D$ such that
$$[\omega,\nu]_{D}^{r-1} [R, \nu]_{D} = \det(\langle S_{i}, S_{j} \rangle_{\nu})$$
for all $\nu \in D$ not in $\Q_{p} \omega$. The \kbd{ellpadicregulator}
function returns $R$ in the basis $(\omega, F\omega)$, which was chosen
so that $p$-adic BSD conjectures are easy to state, see \kbd{ellpadicbsd}.
Note that by definition
$$[R, \eta]_{D} = \det(\langle S_{i}, S_{j} \rangle_{\eta})$$
and
$$[R, \omega+\eta]_{D} =\det(\langle S_{i}, S_{j} \rangle_{\omega+\eta}).$$
The library syntax is \fun{GEN}{ellpadicregulator}{GEN E, GEN p, long n, GEN S}.
\subsec{ellpadics2$(E,p,n)$}\kbdsidx{ellpadics2}\label{se:ellpadics2}
If $p>2$ is a prime and $E/\Q$ is an elliptic curve with ordinary good
reduction at $p$, returns the slope of the unit eigenvector
of \kbd{ellpadicfrobenius(E,p,n)}, i.e., the action of Frobenius $\varphi$ on
the crystalline module $D_{p}(E)= \Q_{p} \otimes H^{1}_{dR}(E/\Q)$ in the basis of
the given model $(\omega, \eta=x\*\omega)$, where $\omega$ is the invariant
differential $dx/(2\*y+a_{1}\*x+a_{3})$. In other words, $\eta + s_{2}\omega$
is an eigenvector for the unit eigenvalue of $\varphi$.
\bprog
? e=ellinit([17,42]);
? ellpadics2(e,13,4)
%2 = 10 + 2*13 + 6*13^3 + O(13^4)
@eprog
This slope is the unique $c \in 3^{-1}\Z_{p}$ such that the odd solution
$\sigma(t) = t + O(t^{2})$ of
$$ - d(\dfrac{1}{\sigma} \dfrac{d \sigma}{\omega})
= (x(t) + c) \omega$$
is in $t\Z_{p}[[t]]$.
It is equal to $b_{2}/12 - E_{2}/12$ where $E_{2}$ is the value of the Katz
$p$-adic Eisenstein series of weight 2 on $(E,\omega)$. This is
used to construct a canonical $p$-adic height when $E$ has good ordinary
reduction at $p$ as follows
\bprog
s2 = ellpadics2(E,p,n);
h(E,p,n, P, s2) = ellpadicheight(E, [p,[1,-s2]],n, P);
@eprog\noindent Since $s_{2}$ does not depend on the point $P$, we compute it
only once.
The library syntax is \fun{GEN}{ellpadics2}{GEN E, GEN p, long n}.
\subsec{ellperiods$(w,\{\fl=0\})$}\kbdsidx{ellperiods}\label{se:ellperiods}
Let $w$ describe a complex period lattice ($w = [w_{1},w_{2}]$
or an \kbd{ellinit} structure). Returns normalized periods $[W_{1},W_{2}]$
generating the same lattice such that $\tau := W_{1}/W_{2}$ has positive
imaginary part and lies in the standard fundamental domain for
$\text{SL}_{2}(\Z)$.
If $\fl = 1$, the function returns $[[W_{1},W_{2}], [\eta_{1},\eta_{2}]]$,
where $\eta_{1}$ and $\eta_{2}$ are the quasi-periods attached to
$[W_{1},W_{2}]$, satisfying $\eta_{2} W_{1} - \eta_{1} W_{2} = 2 i \pi$.
The output of this function is meant to be used as the first argument
given to ellwp, ellzeta, ellsigma or elleisnum. Quasi-periods are
needed by ellzeta and ellsigma only.
\bprog
? L = ellperiods([1,I],1);
? [w1,w2] = L[1]; [e1,e2] = L[2];
? e2*w1 - e1*w2
%3 = 6.2831853071795864769252867665590057684*I
? ellzeta(L, 1/2 + 2*I)
%4 = 1.5707963... - 6.283185307...*I
? ellzeta([1,I], 1/2 + 2*I) \\ same but less efficient
%4 = 1.5707963... - 6.283185307...*I
@eprog
The library syntax is \fun{GEN}{ellperiods}{GEN w, long flag, long prec}.
\subsec{ellpointtoz$(E,P)$}\kbdsidx{ellpointtoz}\label{se:ellpointtoz}
If $E/\C \simeq \C/\Lambda$ is a complex elliptic curve ($\Lambda =
\kbd{E.omega}$), computes a complex number $z$, well-defined modulo the
lattice $\Lambda$, corresponding to the point $P$; i.e.~such that
$P = [\wp_{\Lambda}(z),\wp'_{\Lambda}(z)]$ satisfies the equation
$$y^{2} = 4x^{3} - g_{2} x - g_{3},$$
where $g_{2}$, $g_{3}$ are the elliptic invariants.
If $E$ is defined over $\R$ and $P\in E(\R)$, we have more precisely, $0 \leq
\Re(t) < w1$ and $0 \leq \Im(t) < \Im(w2)$, where $(w1,w2)$ are the real and
complex periods of $E$.
\bprog
? E = ellinit([0,1]); P = [2,3];
? z = ellpointtoz(E, P)
%2 = 3.5054552633136356529375476976257353387
? ellwp(E, z)
%3 = 2.0000000000000000000000000000000000000
? ellztopoint(E, z) - P
%4 = [2.548947057811923643 E-57, 7.646841173435770930 E-57]
? ellpointtoz(E, [0]) \\ the point at infinity
%5 = 0
@eprog
If $E$ is defined over a general number field, the function returns the
values corresponding to the various complex embeddings of the curve
and of the point, in the same order as \kbd{E.nf.roots}:
\bprog
? E=ellinit([-22032-15552*x,0], nfinit(x^2-2));
? P=[-72*x-108,0];
? ellisoncurve(E,P)
%3 = 1
? ellpointtoz(E,P)
%4 = [-0.52751724240790530394437835702346995884*I,
-0.090507650025885335533571758708283389896*I]
? E.nf.roots
%5 = [-1.4142135623730950488016887242096980786, \\ x-> -sqrt(2)
1.4142135623730950488016887242096980786] \\ x-> sqrt(2)
@eprog
If $E/\Q_{p}$ has multiplicative reduction, then $E/\bar{\Q_{p}}$ is
analytically
isomorphic to $\bar{\Q}_{p}^{*}/q^{\Z}$ (Tate curve) for some $p$-adic integer
$q$. The behavior is then as follows:
\item If the reduction is split ($E.\kbd{tate[2]}$ is a \typ{PADIC}), we have
an isomorphism $\phi: E(\Q_{p}) \simeq \Q_{p}^{*}/q^{\Z}$ and the function
returns $\phi(P)\in \Q_{p}$.
\item If the reduction is \emph{not} split ($E.\kbd{tate[2]}$ is a
\typ{POLMOD}), we only have an isomorphism $\phi: E(K) \simeq K^{*}/q^{\Z}$
over the unramified quadratic extension $K/\Q_{p}$. In this case, the output
$\phi(P)\in K$ is a \typ{POLMOD}; the function is not fully implemented in
this case and may fail with a ``$u$ not in $\Q_{p}$'' exception:
\bprog
? E = ellinit([0,-1,1,0,0], O(11^5)); P = [0,0];
? [u2,u,q] = E.tate; type(u) \\ split multiplicative reduction
%2 = "t_PADIC"
? ellmul(E, P, 5) \\ P has order 5
%3 = [0]
? z = ellpointtoz(E, [0,0])
%4 = 3 + 11^2 + 2*11^3 + 3*11^4 + 6*11^5 + 10*11^6 + 8*11^7 + O(11^8)
? z^5
%5 = 1 + O(11^9)
? E = ellinit(ellfromj(1/4), O(2^6)); x=1/2; y=ellordinate(E,x)[1];
? z = ellpointtoz(E,[x,y]); \\ t_POLMOD of t_POL with t_PADIC coeffs
? liftint(z) \\ lift all p-adics
%8 = Mod(8*u + 7, u^2 + 437)
? x=33/4; y=ellordinate(E,x)[1]; z = ellpointtoz(E,[x,y])
*** at top-level: ...;y=ellordinate(E,x)[1];z=ellpointtoz(E,[x,y])
*** ^--------------------
*** ellpointtoz: sorry, ellpointtoz when u not in Qp is not yet implemented.
@eprog
The library syntax is \fun{GEN}{zell}{GEN E, GEN P, long prec}.
\subsec{ellpow$(E,z,n)$}\kbdsidx{ellpow}\label{se:ellpow}
Deprecated alias for \kbd{ellmul}.
The library syntax is \fun{GEN}{ellmul}{GEN E, GEN z, GEN n}.
\subsec{ellrank$(E,\{\var{effort}=0\},\{\var{points}\})$}\kbdsidx{ellrank}\label{se:ellrank}
If $E$ is an elliptic curve over $\Q$, attempts to compute the
Mordell-Weil group attached to the curve. The output is $[r_{1},r_{2},s,L]$,
where
$r_{1} \le\text{rank}(E) \le r_{2}$, $s$ gives informations on the
Tate-Shafarevic group (see below), and $L$ is a list of independent,
non-torsion rational points on the curve. $E$ can also be given as the output
of \kbd{ellrankinit(E)}.
If \kbd{points} is provided, it must be a vector of rational points on the
curve, which are not computed again.
The parameter \kbd{effort} is a measure of the time employed to find rational
points before giving up. If \kbd{effort} is not $0$, the search is
randomized, so rerunning the function might yield different or even
a different number of rational points. Values up to $10$ or so are reasonable
but the parameter can be increased futher, with running times increasing
roughly like the \emph{cube} of the \kbd{effort} value.
\bprog
? E = ellinit([-127^2,0]);
? ellrank(E)
%2 = [1, 1, 0, []] \\ rank is 1 but no point has been found.
? ellrank(E,4) \\ with more effort we find a point.
%3 = [1, 1, 0, [[38902300445163190028032/305111826865145547009,
680061120400889506109527474197680/5329525731816164537079693913473]]]
@eprog
In addition to the previous calls, the first argument $E$ can be a pair
$[e,f]$, where $e$ is an elliptic curve given by \kbd{ellrankinit} and
$f$ is a quadratic twist of $e$. We then look for points on $f$.
Note that the \kbd{ellrankinit} initialization is independent of $f$, so
this can speed up computations significantly!
\misctitle{Technical explanation}
The algorithm, which computes the $2$-descent and the $2$-part of the Cassels
pairings has an intrinsic limitation: $r_{1} = r_{2}$ never holds when
the Tate-Shafarevic group $G$ has $4$-torsion. Thus, in this case we cannot
determine the rank precisely. The algorithm computes unconditionally three
quantities:
\item the rank $C$ of the $2$-Selmer group.
\item the rank $T$ of the $2$-torsion subgroup.
\item the (even) rank $s$ of $G[2]/2G[4]$; then $r_{2}$ is defined
by $r_{2} = C - T - s$.
The following quantities are also relevant:
\item the rank $R$ of the free part of $E(\Q)$; it always holds that
$r_{1} \le R \le r_{2}$.
\item the rank $S$ of $G[2]$ (conjecturally even); it always holds that
$s \le S$ and that $C = T + R + S$. Then $r_{2} = C - T - s \ge R$.
When the conductor of $E$ is small, the BSD conjecture can be used
to (conditionally) find the true rank:
\bprog
? E=ellinit([-113^2,0]);
? ellrootno(E) \\ rank is even (parity conjecture)
%2 = 1
? ellrank(E)
%3 = [0, 2, 0, []] \\ rank is either 0 or 2, $2$-rank of $G$ is
? ellrank(E, 3) \\ try harder
%4 = [0, 2, 0, []] \\ no luck
? [r,L] = ellanalyticrank(E) \\ assume BSD
%5 = [0, 3.9465...]
? L / ellbsd(E) \\ analytic rank is 0, compute Sha
%6 = 16.0000000000000000000000000000000000000
@eprog
We find that the rank is $0$ and the cardinal of the Tate-Shafarevich group
is $16$ (assuming BSD!). Moreover, since $s=0$, it is isomorphic to
$(\Z/4\Z)^{2}$.
When the rank is $1$ and the conductor is small, \kbd{ellheegner} can be used
to find a non-torsion point:
\bprog
? E = ellinit([-157^2,0]);
? ellrank(E)
%2 = [1, 1, 0, []] \\ rank is 1, no point found
? ellrank(E, 5) \\ Try harder
time = 1,094 ms.
%3 = [1, 1, 0, []] \\ No luck
? ellheegner(E) \\ use analytic method
time = 492 ms.
%4 = [69648970982596494254458225/166136231668185267540804, ...]
@eprog\noindent In this last example, an \kbd{effort} about 10 would also
(with probability about 80\%) find a random point, not necessarily the
Heegner point, in about 5 seconds.
The library syntax is \fun{GEN}{ellrank}{GEN E, long effort, GEN points = NULL, long prec}.
\subsec{ellrankinit$(E)$}\kbdsidx{ellrankinit}\label{se:ellrankinit}
If $E$ is an elliptic curve over $\Q$, initialize data to speed up further
calls to \kbd{ellrank}.
\bprog
? E = ellinit([0,2429469980725060,0,275130703388172136833647756388,0]);
? rk = ellrankinit(E);
? [r, R, s, P] = ellrank(rk)
%3 = [12, 14, 0, [...]]
? [r, R, s, P] = ellrank(rk, 1, P) \\ more effort, using known points
%4 = [14, 14, 0, [...]] \\ this time all points are found
@eprog
The library syntax is \fun{GEN}{ellrankinit}{GEN E, long prec}.
\subsec{ellratpoints$(E,h,\{\fl=0\})$}\kbdsidx{ellratpoints}\label{se:ellratpoints}
$E$ being an integral model of elliptic curve , return a vector
containing the affine rational points on the curve of naive height less than
$h$. If $\fl=1$, stop as soon as a point is found; return either an empty
vector or a vector containing a single point.
See \kbd{hyperellratpoints} for how $h$ can be specified.
\bprog
? E=ellinit([-25,1]);
? ellratpoints(E,10)
%2 = [[-5,1],[-5,-1],[-3,7],[-3,-7],[-1,5],[-1,-5],
[0,1],[0,-1],[5,1],[5,-1],[7,13],[7,-13]]
? ellratpoints(E,10,1)
%3 = [[-5,1]]
@eprog
The library syntax is \fun{GEN}{ellratpoints}{GEN E, GEN h, long flag}.
\subsec{ellrootno$(E,\{p\})$}\kbdsidx{ellrootno}\label{se:ellrootno}
$E$ being an \kbd{ell} structure over $\Q$ as output by \kbd{ellinit},
this function computes the local root number of its $L$-series at the place
$p$ (at the infinite place if $p = 0$). If $p$ is omitted, return the global
root number and in this case the curve can also be defined over a number field.
Note that the global root number is the sign of the functional
equation and conjecturally is the parity of the rank of the
\idx{Mordell-Weil group}. The equation for $E$ needs not be minimal at $p$,
but if the model is already minimal the function will run faster.
The library syntax is \fun{long}{ellrootno}{GEN E, GEN p = NULL}.
\subsec{ellsaturation$(E,V,B)$}\kbdsidx{ellsaturation}\label{se:ellsaturation}
Let $E$ be an elliptic curve over $\Q$ and
and $V$ be a set of independent non-torsion rational points on $E$ of infinite
order that generate a subgroup $G$ of $E(\Q)$ of finite index.
Return a new set $W$ of the same length that generate a subgroup $H$ of
$E(\Q)$ containing $G$ and such that $[E(\Q):H]$ is not divisible by any
prime number less than $B$. The running time is roughly quadratic in $B$.
\bprog
? E = ellinit([0,0, 1, -7, 6]);
? [r,R,s,V] = ellrank(E)
%2 = [3, 3, 0, [[-1,3], [-3,0], [11,35]]]
? matdet(ellheightmatrix(E, V))
%3 = 3.7542920288254557283540759015628405708
? W = ellsaturation(E, V, 2) \\ index is now odd
time = 1 ms.
%4 = [[-1, 3], [-3, 0], [11, 35]]
? W = ellsaturation(E, W, 10) \\ index not divisible by p <= 10
%5 = [[1, -1], [2, -1], [0, -3]]
time = 2 ms.
? W = ellsaturation(E, V, 100) \\ looks OK now
time = 171 ms.
%6 = [[1, -1], [2, -1], [0, -3]]
? matdet(ellheightmatrix(E,V))
%7 = 0.41714355875838396981711954461809339675
? lfun(E,1,3)/3! / ellbsd(E) \\ conductor is small, check assuming BSD
%8 = 0.41714355875838396981711954461809339675
@eprog
The library syntax is \fun{GEN}{ellsaturation}{GEN E, GEN V, long B, long prec}.
\subsec{ellsea$(E,\{\var{tors}=0\})$}\kbdsidx{ellsea}\label{se:ellsea}
Let $E$ be an \var{ell} structure as output by \kbd{ellinit}, defined over
a finite field $\F_{q}$. This low-level function computes the order of the
group $E(\F_{q})$ using the SEA algorithm; compared to the high-level
function \kbd{ellcard}, which includes SEA among its choice of algorithms,
the \kbd{tors} argument allows to speed up a search for curves having almost
prime order and whose quadratic twist may also have almost prime order.
When \kbd{tors} is set to a nonzero value, the function returns $0$ as soon
as it detects that the order has a small prime factor not dividing \kbd{tors};
SEA considers modular polynomials of increasing prime degree $\ell$ and we
return $0$ as soon as we hit an $\ell$ (coprime to \kbd{tors}) dividing
$\#E(\F_{q})$:
\bprog
? ellsea(ellinit([1,1], 2^56+3477), 1)
%1 = 72057594135613381
? forprime(p=2^128,oo, q = ellcard(ellinit([1,1],p)); if(isprime(q),break))
time = 6,571 ms.
? forprime(p=2^128,oo, q = ellsea(ellinit([1,1],p),1);if(isprime(q),break))
time = 522 ms.
@eprog\noindent
In particular, set \kbd{tors} to $1$ if you want a curve with prime order,
to $2$ if you want to allow a cofactor which is a power of two (e.g. for
Edwards's curves), etc. The early exit on bad curves yields a massive
speedup compared to running the cardinal algorithm to completion.
When \kbd{tors} is negative, similar checks are performed for the quadratic
twist of the curve.
The following function returns a curve of prime order over $\F_{p}$.
\bprog
cryptocurve(p) =
{
while(1,
my(E, N, j = Mod(random(p), p));
E = ellinit(ellfromj(j));
N = ellsea(E, 1); if (!N, continue);
if (isprime(N), return(E));
\\ try the quadratic twist for free
if (isprime(2*p+2 - N), return(elltwist(E)));
);
}
? p = randomprime([2^255, 2^256]);
? E = cryptocurve(p); \\ insist on prime order
%2 = 47,447ms
@eprog\noindent The same example without early abort (using \kbd{ellcard(E)}
instead of \kbd{ellsea(E, 1)}) runs for about 5 minutes before finding a
suitable curve.
The availability of the \kbd{seadata} package will speed up the computation,
and is strongly recommended. The generic function \kbd{ellcard} should be
preferred when you only want to compute the cardinal of a given curve without
caring about it having almost prime order:
\item If the characteristic is too small ($p \leq 7$) or the field
cardinality is tiny ($q \leq 523$) the generic algorithm
\kbd{ellcard} is used instead and the \kbd{tors} argument is ignored.
(The reason for this is that SEA is not implemented for $p \leq 7$ and
that if $q \leq 523$ it is likely to run into an infinite loop.)
\item If the field cardinality is smaller than about $2^{50}$, the
generic algorithm will be faster.
\item Contrary to \kbd{ellcard}, \kbd{ellsea} does not store the computed
cardinality in $E$.
The library syntax is \fun{GEN}{ellsea}{GEN E, long tors}.
\subsec{ellsearch$(N)$}\kbdsidx{ellsearch}\label{se:ellsearch}
This function finds all curves in the \tet{elldata} database satisfying
the constraint defined by the argument $N$:
\item if $N$ is a character string, it selects a given curve, e.g.
\kbd{"11a1"}, or curves in the given isogeny class, e.g. \kbd{"11a"}, or
curves with given conductor, e.g. \kbd{"11"};
\item if $N$ is a vector of integers, it encodes the same constraints
as the character string above, according to the \tet{ellconvertname}
correspondance, e.g. \kbd{[11,0,1]} for \kbd{"11a1"}, \kbd{[11,0]} for
\kbd{"11a"} and \kbd{[11]} for \kbd{"11"};
\item if $N$ is an integer, curves with conductor $N$ are selected.
If $N$ codes a full curve name, for instance \kbd{"11a1"} or \kbd{[11,0,1]},
the output format is $[N, [a_{1},a_{2},a_{3},a_{4},a_{6}], G]$ where
$[a_{1},a_{2},a_{3},a_{4},a_{6}]$ are the coefficients of the Weierstrass
equation of the curve and $G$ is a $\Z$-basis of the free part of the
\idx{Mordell-Weil group} attached to the curve.
\bprog
? ellsearch("11a3")
%1 = ["11a3", [0, -1, 1, 0, 0], []]
? ellsearch([11,0,3])
%2 = ["11a3", [0, -1, 1, 0, 0], []]
@eprog\noindent
If $N$ is not a full curve name, then the output is a vector of all matching
curves in the above format:
\bprog
? ellsearch("11a")
%1 = [["11a1", [0, -1, 1, -10, -20], []],
["11a2", [0, -1, 1, -7820, -263580], []],
["11a3", [0, -1, 1, 0, 0], []]]
? ellsearch("11b")
%2 = []
@eprog
The library syntax is \fun{GEN}{ellsearch}{GEN N}.
Also available is \fun{GEN}{ellsearchcurve}{GEN N} that only
accepts complete curve names (as \typ{STR}).
\subsec{ellsigma$(L,\{z=\kbd{'}x\},\{\fl=0\})$}\kbdsidx{ellsigma}\label{se:ellsigma}
Computes the value at $z$ of the Weierstrass $\sigma$ function attached to
the lattice $L$ as given by \tet{ellperiods}$(,1)$: including quasi-periods
is useful, otherwise there are recomputed from scratch for each new $z$.
$$ \sigma(z, L) = z \prod_{\omega\in L^{*}} \left(1 - \dfrac{z}{\omega}\right)
e^{\dfrac{z}{\omega} + \dfrac{z^{2}}{2\omega^{2}}}.$$
It is also possible to directly input $L = [\omega_{1},\omega_{2}]$,
or an elliptic curve $E$ as given by \kbd{ellinit} ($L = \kbd{E.omega}$).
\bprog
? w = ellperiods([1,I], 1);
? ellsigma(w, 1/2)
%2 = 0.47494937998792065033250463632798296855
? E = ellinit([1,0]);
? ellsigma(E) \\ at 'x, implicitly at default seriesprecision
%4 = x + 1/60*x^5 - 1/10080*x^9 - 23/259459200*x^13 + O(x^17)
@eprog
If $\fl=1$, computes an arbitrary determination of $\log(\sigma(z))$.
The library syntax is \fun{GEN}{ellsigma}{GEN L, GEN z = NULL, long flag, long prec}.
\subsec{ellsub$(E,\var{z1},\var{z2})$}\kbdsidx{ellsub}\label{se:ellsub}
Difference of the points $z1$ and $z2$ on the
elliptic curve corresponding to $E$.
The library syntax is \fun{GEN}{ellsub}{GEN E, GEN z1, GEN z2}.
\subsec{ellsupersingularj$(p)$}\kbdsidx{ellsupersingularj}\label{se:ellsupersingularj}
Return a random supersingular $j$-invariant defined over $\F_{p}^{2}$ as a
\typ{FFELT} in the variable \kbd{w}, if $p$ is a prime number, or over the
field of definition of $p$ if $p$ is a \typ{FFELT}. The field must be of even
degree. The random distribution is close to uniform except when $0$ or
$1728$ are supersingular $j$-invariants, in which case they are less
likely to be returned. This bias becomes negligible as $p$ grows.
\bprog
? j = ellsupersingularj(1009)
%1 = 12*w+295
? ellissupersingular(j)
%2 = 1
? a = ffgen([1009,2],'a);
? j = ellsupersingularj(a)
%4 = 867*a+721
? ellissupersingular(j)
%5 = 1
? E = ellinit([j]);
? F = elltwist(E);
? ellissupersingular(F)
%8 = 1
? ellap(E)
%9 = 2018
? ellap(F)
%10 = -2018
@eprog
The library syntax is \fun{GEN}{ellsupersingularj}{GEN p}.
\subsec{elltamagawa$(E)$}\kbdsidx{elltamagawa}\label{se:elltamagawa}
The object $E$ being an elliptic curve over a number field, returns the global
Tamagawa number of the curve (including the factor at infinite places).
\bprog
? e = ellinit([1, -1, 1, -3002, 63929]); \\ curve "90c6" from elldata
? elltamagawa(e)
%2 = 288
? [elllocalred(e,p)[4] | p<-[2,3,5]]
%3 = [6, 4, 6]
? vecprod(%) \\ since e.disc > 0 the factor at infinity is 2
%4 = 144
? ellglobalred(e)[4] \\ product without the factor at infinity
%5 = 144
@eprog
The library syntax is \fun{GEN}{elltamagawa}{GEN E}.
\subsec{elltaniyama$(E,\{n=\var{seriesprecision}\})$}\kbdsidx{elltaniyama}\label{se:elltaniyama}
Computes the modular parametrization of the elliptic curve $E/\Q$,
where $E$ is an \kbd{ell} structure as output by \kbd{ellinit}. This returns
a two-component vector $[u,v]$ of power series, given to $n$ significant
terms (\tet{seriesprecision} by default), characterized by the following two
properties. First the point $(u,v)$ satisfies the equation of the elliptic
curve. Second, let $N$ be the conductor of $E$ and $\Phi: X_{0}(N)\to E$
be a modular parametrization; the pullback by $\Phi$ of the
N\'eron differential $du/(2v+a_{1}u+a_{3})$ is equal to $2i\pi
f(z)dz$, a holomorphic differential form. The variable used in the power
series for $u$ and $v$ is $x$, which is implicitly understood to be equal to
$\exp(2i\pi z)$.
The algorithm assumes that $E$ is a \emph{strong} \idx{Weil curve}
and that the Manin constant is equal to 1: in fact, $f(x) = \sum_{n > 0}
\kbd{ellak}(E, n) x^{n}$.
The library syntax is \fun{GEN}{elltaniyama}{GEN E, long precdl}.
\subsec{elltatepairing$(E,P,Q,m)$}\kbdsidx{elltatepairing}\label{se:elltatepairing}
Let $E$ be an elliptic curve defined over a finite field $k$
and $m \geq 1$ be an integer. This function computes the (nonreduced) Tate
pairing of the points $P$ and $Q$ on $E$, where $P$ is an $m$-torsion point.
More precisely, let $f_{m,P}$ denote a Miller function with divisor $m[P] -
m[O_{E}]$; the algorithm returns $f_{m,P}(Q) \in k^{*}/(k^{*})^{m}$.
The library syntax is \fun{GEN}{elltatepairing}{GEN E, GEN P, GEN Q, GEN m}.
\subsec{elltors$(E)$}\kbdsidx{elltors}\label{se:elltors}
If $E$ is an elliptic curve defined over a number field or a finite field,
outputs the torsion subgroup of $E$ as a 3-component vector \kbd{[t,v1,v2]},
where \kbd{t} is the order of the torsion group, \kbd{v1} gives the structure
of the torsion group as a product of cyclic groups (sorted by decreasing
order), and \kbd{v2} gives generators for these cyclic groups. $E$ must be an
\kbd{ell} structure as output by \kbd{ellinit}.
\bprog
? E = ellinit([-1,0]);
? elltors(E)
%1 = [4, [2, 2], [[0, 0], [1, 0]]]
@eprog\noindent
Here, the torsion subgroup is isomorphic to $\Z/2\Z \times \Z/2\Z$, with
generators $[0,0]$ and $[1,0]$.
The library syntax is \fun{GEN}{elltors}{GEN E}.
\subsec{elltrace$(E,P)$}\kbdsidx{elltrace}\label{se:elltrace}
Let $E$ be an elliptic curve over a base field and a point $P$ defined
over an extension field using \typ{POLMOD} constructs. Returns the sum of
the Galois conjugates of $P$.
The field over which $P$ is defined must be specified, even in the (silly)
case of a trivial extension:
\bprog
? E = ellinit([1,15]); \\ y^2 = x^3 + x + 15, over Q
? P = Mod([a/8-1, 1/32*a^2-11/32*a-19/4], a^3-135*a-408);
? ellisoncurve(E,P) \\ P defined over a cubic extension
%3 = 1
? elltrace(E,P)
%4 = [2,-5]
@eprog
\bprog
? E = ellinit([-13^2, 0]);
? P = Mod([13,0], a^2-2); \\ defined over Q, seen over a quadratic extension
? elltrace(E,P) == ellmul(E,P,2)
%3 = 1
? elltrace(E,[13,0]) \\ number field of definition of the point unspecified!
*** at top-level: elltrace(E,[13,0])
*** ^------------------
*** elltrace: incorrect type in elltrace (t_INT).
? elltrace(E,Mod([13,0],a)) \\ trivial extension
%5 = [Mod(13, a), Mod(0, a)]
? P = Mod([-10*x^3+10*x-13, -16*x^3+16*x-34], x^4-x^3+2*x-1);
? ellisoncurve(E,P)
%7 = 1
? Q = elltrace(E,P)
%8 = [11432100241 / 375584400, 1105240264347961 / 7278825672000]
? ellisoncurve(E,Q)
%9 = 1
@eprog
\bprog
? E = ellinit([2,3], 19); \\ over F_19
? T = a^5+a^4+15*a^3+16*a^2+3*a+1; \\ irreducible
? P = Mod([11*a^3+11*a^2+a+12,15*a^4+9*a^3+18*a^2+18*a+6], T);
? ellisoncurve(E, P)
%4 = 1
? Q = elltrace(E, P)
%5 = [Mod(1,19), Mod(14,19)]
? ellisoncurve(E, Q)
%6 = 1
@eprog
The library syntax is \fun{GEN}{elltrace}{GEN E, GEN P}.
\subsec{elltwist$(E,\{P\})$}\kbdsidx{elltwist}\label{se:elltwist}
Returns an \kbd{ell} structure (as given by \kbd{ellinit}) for the twist
of the elliptic curve $E$ by the quadratic extension of the coefficient
ring defined by $P$ (when $P$ is a polynomial) or \kbd{quadpoly(P)} when $P$
is an integer. If $E$ is defined over a finite field, then $P$ can be
omitted, in which case a random model of the unique nontrivial twist is
returned. If $E$ is defined over a number field, the model should be
replaced by a minimal model (if one exists).
The elliptic curve $E$ can be given in some of the formats allowed by
\kbd{ellinit}: an \kbd{ell} structure, a $5$-component vector
$[a_{1},a_{2},a_{3},a_{4},a_{6}]$ or a $2$-component vector $[a_{4},a_{6}]$.
Twist by discriminant $-3$:
\bprog
? elltwist([0,a2,0,a4,a6], -3)[1..5]
%1 = [0, -3*a2, 0, 9*a4, -27*a6]
? elltwist([a4,a6], -3)[1..5]
%2 = [0, 0, 0, 9*a4, -27*a6]
@eprog
Twist by the Artin-Schreier extension given by $x^{2}+x+T$ in
characteristic $2$:
\bprog
? lift(elltwist([a1,a2,a3,a4,a6]*Mod(1,2), x^2+x+T)[1..5])
%1 = [a1, a2+a1^2*T, a3, a4, a6+a3^2*T]
@eprog
Twist of an elliptic curve defined over a finite field:
\bprog
? E = elltwist([1,7]*Mod(1,19)); lift([E.a4, E.a6])
%1 = [11, 12]
@eprog
The library syntax is \fun{GEN}{elltwist}{GEN E, GEN P = NULL}.
\subsec{ellweilcurve$(E,\{\&\var{ms}\})$}\kbdsidx{ellweilcurve}\label{se:ellweilcurve}
If $E'$ is an elliptic curve over $\Q$, let $L_{E'}$ be the
sub-$\Z$-module of $\Hom_{\Gamma_{0}(N)}(\Delta_{0},\Q)$ attached to $E'$
(It is given by $x[3]$ if $[M,x] = \kbd{msfromell}(E')$.)
On the other hand, if $N$ is the conductor of $E$ and $f$ is the modular form
for $\Gamma_{0}(N)$ attached to $E$, let $L_{f}$ be the lattice of the
$f$-component of $\Hom_{\Gamma_{0}(N)}(\Delta_{0},\Q)$ given by the elements
$\phi$ such that $\phi(\{0,\gamma^{-1} 0\}) \in \Z$ for all
$\gamma \in \Gamma_{0}(N)$ (see \tet{mslattice}).
Let $E'$ run through the isomorphism classes of elliptic curves
isogenous to $E$ as given by \kbd{ellisomat} (and in the same order).
This function returns a pair \kbd{[vE,vS]} where \kbd{vE} contains minimal
models for the $E'$ and \kbd{vS} contains the list of Smith invariants for
the lattices $L_{E'}$ in $L_{f}$. The function also accepts the output of
\kbd{ellisomat}, i.e. the isogeny class. If the optional argument \kbd{ms}
is present, it contains the output of \kbd{msfromell(vE, 0)}, i.e. the new
modular symbol space $M$ of level $N$ and a vector of triples
$[x^{+},x^{-}, L]$ attached to each curve $E'$.
In particular, the strong Weil curve amongst the curves isogenous to $E$
is the one whose Smith invariants are $[c,c]$, where $c$ is the Manin
constant, conjecturally equal to $1$.
\bprog
? E = ellinit("11a3");
? [vE, vS] = ellweilcurve(E);
? [n] = [ i | i<-[1..#vS], vS[i]==[1,1] ] \\ lattice with invariant [1,1]
%3 = [2]
? ellidentify(vE[n]) \\ ... corresponds to strong Weil curve
%4 = [["11a1", [0, -1, 1, -10, -20], []], [1, 0, 0, 0]]
? [vE, vS] = ellweilcurve(E, &ms); \\ vE,vS are as above
? [M, vx] = ms; msdim(M) \\ ... but ms contains more information
%6 = 3
? #vx
%7 = 3
? vx[1]
%8 = [[1/25, -1/10, -1/10]~, [0, 1/2, -1/2]~, [1/25,0; -3/5,1; 2/5,-1]]
? forell(E, 11,11, print(msfromell(ellinit(E[1]), 1)[2]))
[1/5, -1/2, -1/2]~
[1, -5/2, -5/2]~
[1/25, -1/10, -1/10]~
@eprog\noindent The last example prints the modular symbols $x^{+}$
in $M^{+}$ attached to the curves \kbd{11a1}, \kbd{11a2} and \kbd{11a3}.
The library syntax is \fun{GEN}{ellweilcurve}{GEN E, GEN *ms = NULL}.
\subsec{ellweilpairing$(E,P,Q,m)$}\kbdsidx{ellweilpairing}\label{se:ellweilpairing}
Let $E$ be an elliptic curve defined over a finite field and $m \geq 1$
be an integer. This function computes the Weil pairing of the two $m$-torsion
points $P$ and $Q$ on $E$, which is an alternating bilinear map.
More precisely, let $f_{m,R}$ denote a Miller function with
divisor $m[R] - m[O_{E}]$; the algorithm returns the $m$-th root of unity
$$\varepsilon(P,Q)^{m} \cdot f_{m,P}(Q) / f_{m,Q}(P),$$
where $f(R)$ is the extended evaluation of $f$ at the divisor $[R] - [O_{E}]$
and $\varepsilon(P,Q)\in \{\pm1\}$ is given by Weil reciprocity:
$\varepsilon(P,Q) = 1$ if and only if $P, Q, O_{E}$ are not pairwise distinct.
The library syntax is \fun{GEN}{ellweilpairing}{GEN E, GEN P, GEN Q, GEN m}.
\subsec{ellwp$(w,\{z=\kbd{'}x\},\{\fl=0\})$}\kbdsidx{ellwp}\label{se:ellwp}
Computes the value at $z$ of the Weierstrass $\wp$ function attached to
the lattice $w$ as given by \tet{ellperiods}. It is also possible to
directly input $w = [\omega_{1},\omega_{2}]$, or an elliptic curve $E$ as
given by \kbd{ellinit} ($w = \kbd{E.omega}$).
\bprog
? w = ellperiods([1,I]);
? ellwp(w, 1/2)
%2 = 6.8751858180203728274900957798105571978
? E = ellinit([1,1]);
? ellwp(E, 1/2)
%4 = 3.9413112427016474646048282462709151389
@eprog\noindent One can also compute the series expansion around $z = 0$:
\bprog
? E = ellinit([1,0]);
? ellwp(E) \\ 'x implicitly at default seriesprecision
%5 = x^-2 - 1/5*x^2 + 1/75*x^6 - 2/4875*x^10 + O(x^14)
? ellwp(E, x + O(x^12)) \\ explicit precision
%6 = x^-2 - 1/5*x^2 + 1/75*x^6 + O(x^9)
@eprog
Optional \fl\ means 0 (default): compute only $\wp(z)$, 1: compute
$[\wp(z),\wp'(z)]$.
For instance, the Dickson elliptic functions \var{sm} and \var{cm} can be
implemented as follows
\bprog
smcm(z) =
{ my(a, b, E = ellinit([0,-1/(4*27)])); \\ ell. invariants (g2,g3)=(0,1/27)
[a,b] = ellwp(E, z, 1);
[6*a / (1-3*b), (3*b+1)/(3*b-1)];
}
? [s,c] = smcm(0.5);
? s
%2 = 0.4898258757782682170733218609
? c
%3 = 0.9591820206453842491187464098
? s^3+c^3
%4 = 1.000000000000000000000000000
? smcm('x + O('x^11))
%5 = [x - 1/6*x^4 + 2/63*x^7 - 13/2268*x^10 + O(x^11),
1 - 1/3*x^3 + 1/18*x^6 - 23/2268*x^9 + O(x^10)]
@eprog
The library syntax is \fun{GEN}{ellwp0}{GEN w, GEN z = NULL, long flag, long prec}.
For $\fl = 0$, we also have
\fun{GEN}{ellwp}{GEN w, GEN z, long prec}, and
\fun{GEN}{ellwpseries}{GEN E, long v, long precdl} for the power series in
variable $v$.
\subsec{ellxn$(E,n,\{v=\kbd{'}x\})$}\kbdsidx{ellxn}\label{se:ellxn}
For any affine point $P = (t,u)$ on the curve $E$, we have
$$[n]P = (\phi_{n}(P)\psi_{n}(P) : \omega_{n}(P) : \psi_{n}(P)^{3})$$
for some $\phi_{n},\omega_{n},\psi_{n}$ in $\Z[a_{1},a_{2},a_{3},a_{4},a_{6}][t,u]$
modulo the curve equation. This function returns a pair $[A,B]$ of polynomials
in $\Z[a_{1},a_{2},a_{3},a_{4},a_{6}][v]$ such that $[A(t),B(t)]
= [\phi_{n}(P),\psi_{n}(P)^{2}]$ in the function field of $E$,
whose quotient give the abscissa of $[n]P$. If $P$ is an $n$-torsion point,
then $B(t) = 0$.
\bprog
? E = ellinit([17,42]); [t,u] = [114,1218];
? T = ellxn(E, 2, 'X)
%2 = [X^4 - 34*X^2 - 336*X + 289, 4*X^3 + 68*X + 168]
? [a,b] = subst(T,'X,t);
%3 = [168416137, 5934096]
? a / b == ellmul(E, [t,u], 2)[1]
%4 = 1
@eprog
The library syntax is \fun{GEN}{ellxn}{GEN E, long n, long v = -1} where \kbd{v} is a variable number.
\subsec{ellzeta$(w,\{z=\kbd{'}x\})$}\kbdsidx{ellzeta}\label{se:ellzeta}
Computes the value at $z$ of the Weierstrass $\zeta$ function attached to
the lattice $w$ as given by \tet{ellperiods}$(,1)$: including quasi-periods
is useful, otherwise there are recomputed from scratch for each new $z$.
$$ \zeta(z, L) = \dfrac{1}{z} + z^{2}\sum_{\omega\in L^{*}}
\dfrac{1}{\omega^{2}(z-\omega)}.$$
It is also possible to directly input $w = [\omega_{1},\omega_{2}]$,
or an elliptic curve $E$ as given by \kbd{ellinit} ($w = \kbd{E.omega}$).
The quasi-periods of $\zeta$, such that
$$\zeta(z + a\omega_{1} + b\omega_{2}) = \zeta(z) + a\eta_{1} + b\eta_{2} $$
for integers $a$ and $b$ are obtained as $\eta_{i} = 2\zeta(\omega_{i}/2)$.
Or using directly \tet{elleta}.
\bprog
? w = ellperiods([1,I],1);
? ellzeta(w, 1/2)
%2 = 1.5707963267948966192313216916397514421
? E = ellinit([1,0]);
? ellzeta(E, E.omega[1]/2)
%4 = 0.84721308479397908660649912348219163647
@eprog\noindent One can also compute the series expansion around $z = 0$
(the quasi-periods are useless in this case):
\bprog
? E = ellinit([0,1]);
? ellzeta(E) \\ at 'x, implicitly at default seriesprecision
%4 = x^-1 + 1/35*x^5 - 1/7007*x^11 + O(x^15)
? ellzeta(E, x + O(x^20)) \\ explicit precision
%5 = x^-1 + 1/35*x^5 - 1/7007*x^11 + 1/1440257*x^17 + O(x^18)
@eprog\noindent
The library syntax is \fun{GEN}{ellzeta}{GEN w, GEN z = NULL, long prec}.
\subsec{ellztopoint$(E,z)$}\kbdsidx{ellztopoint}\label{se:ellztopoint}
$E$ being an \var{ell} as output by
\kbd{ellinit}, computes the coordinates $[x,y]$ on the curve $E$
corresponding to the complex or $p$-adic parameter $z$. Hence this is the
inverse function of \kbd{ellpointtoz}.
\item If $E$ is defined over a $p$-adic field and has multiplicative
reduction, then $z$ is understood as an element on the
Tate curve $\bar{Q}_{p}^{*} / q^{\Z}$.
\bprog
? E = ellinit([0,-1,1,0,0], O(11^5));
? [u2,u,q] = E.tate; type(u)
%2 = "t_PADIC" \\ split multiplicative reduction
? z = ellpointtoz(E, [0,0])
%3 = 3 + 11^2 + 2*11^3 + 3*11^4 + 6*11^5 + 10*11^6 + 8*11^7 + O(11^8)
? ellztopoint(E,z)
%4 = [O(11^9), O(11^9)]
? E = ellinit(ellfromj(1/4), O(2^6)); x=1/2; y=ellordinate(E,x)[1];
? z = ellpointtoz(E,[x,y]); \\ nonsplit: t_POLMOD with t_PADIC coefficients
? P = ellztopoint(E, z);
? P[1] \\ y coordinate is analogous, more complicated
%8 = Mod(O(2^4)*x + (2^-1 + O(2^5)), x^2 + (1 + 2^2 + 2^4 + 2^5 + O(2^7)))
@eprog
\item If $E$ is defined over the complex numbers (for instance over $\Q$),
$z$ is understood as a complex number in $\C/\Lambda_{E}$. If the
short Weierstrass equation is $y^{2} = 4x^{3} - g_{2}x - g_{3}$, then $[x,y]$
represents the Weierstrass $\wp$-function\sidx{Weierstrass $\wp$-function}
and its derivative. For a general Weierstrass equation we have
$$x = \wp(z) - b_{2}/12,\quad y = \wp'(z)/2 - (a_{1} x + a_{3})/2.$$
If $z$ is in the lattice defining $E$ over $\C$, the result is the point at
infinity $[0]$.
\bprog
? E = ellinit([0,1]); P = [2,3];
? z = ellpointtoz(E, P)
%2 = 3.5054552633136356529375476976257353387
? ellwp(E, z)
%3 = 2.0000000000000000000000000000000000000
? ellztopoint(E, z) - P
%4 = [2.548947057811923643 E-57, 7.646841173435770930 E-57]
? ellztopoint(E, 0)
%5 = [0] \\ point at infinity
@eprog
The library syntax is \fun{GEN}{pointell}{GEN E, GEN z, long prec}.
\subsec{genus2igusa$(\var{PQ},\{k\})$}\kbdsidx{genus2igusa}\label{se:genus2igusa}
Let $PQ$ be a polynomial $P$, resp. a vector $[P,Q]$ of polynomials
defined over a field $F$ of characteristic $\neq 2$.
Returns the Igusa invariants $[J_{2},J_{4},J_{6},J_{8},J_{10}]$ of the
hyperelliptic curve $C/F$, defined by the equation $y^{2} = P(x)$,
resp. $y^{2} + Q(x)*y = P(x)$. If $k$ is given, only return the invariant
of degree $k$ ($k$ must be even between $2$ and $10$).
\bprog
? genus2igusa(x^5+3*x^2-4)
%1 = [0, 9600, 20736, -23040000, 177926144]
? genus2igusa([x^6+x^5-x^4+3*x^3+x^2-2*x+1,x^3-x^2+x-1])
%2 = [-788, 1958, 341220, -68178781, -662731520]
? genus2igusa([x^6+x^5-x^4+3*x^3+x^2-2*x+1,x^3-x^2+x-1],4)
%3 = 1958
? genus2igusa(x^5+3*Mod(a,a^2-3)*x^2-4) \\ @com{over $\Q(\sqrt{3})$}
%4 = [Mod(0, a^2 - 3), Mod(9600*a, a^2 - 3), Mod(186624, a^2 - 3),
Mod(-69120000, a^2 - 3), Mod(-241864704*a + 204800000, a^2 - 3)]
? a = ffgen([3,4], 'a); \\ @com{over $\F_{3^4} = \F_3[a]$}
? genus2igusa(x^6+a*x^5-a*x^4+2*x^3+a*x+a+1)
%6 = [2*a^2, a^3 + a^2 + a + 1, a^2 + a + 2, 2*a^3 + 2*a^2 + a + 1,
2*a^2 + 2]
? a = ffgen([2,4], 'a); \\ @com{$\F_{2^4} = \F_2[a]$}
? genus2igusa(x^6+a*x^5+a*x^4+a*x+a+1) \\ doesn't work in characteristic 2
*** at top-level: genus2igusa(x^6+a*x^5+a*x^4+a*x+a+1)
*** ^------------------------------------
*** genus2igusa: impossible inverse in FF_mul2n: 2.
@eprog
The library syntax is \fun{GEN}{genus2igusa}{GEN PQ, long k}.
\subsec{genus2red$(\var{PQ},\{p\})$}\kbdsidx{genus2red}\label{se:genus2red}
Let $PQ$ be a polynomial $P$, resp. a vector $[P,Q]$ of polynomials, with
rational coefficients.
Determines the reduction at $p > 2$ of the (proper, smooth) genus~2
curve $C/\Q$, defined by the hyperelliptic equation $y^{2} = P(x)$, resp.
$y^{2} + Q(x)*y = P(x)$.
(The special fiber $X_{p}$ of the minimal regular model $X$ of $C$ over $\Z$.)
If $p$ is omitted, determines the reduction type for all (odd) prime
divisors of the discriminant.
\noindent This function was rewritten from an implementation of Liu's
algorithm by Cohen and Liu (1994), \kbd{genus2reduction-0.3}, see
\url{https://www.math.u-bordeaux.fr/~liu/G2R/}.
\misctitle{CAVEAT} The function interface may change: for the
time being, it returns $[N,\var{FaN}, [P_{m}, Q_{m}], V]$
where $N$ is either the local conductor at $p$ or the
global conductor, \var{FaN} is its factorization, $y^{2} +Q_{m}\*y= P_{m}$
defines a
minimal model over $\Z$ and $V$ describes the reduction type at the
various considered~$p$. Unfortunately, the program is not complete for
$p = 2$, and we may return the odd part of the conductor only: this is the
case if the factorization includes the (impossible) term $2^{-1}$; if the
factorization contains another power of $2$, then this is the exact local
conductor at $2$ and $N$ is the global conductor.
\bprog
? default(debuglevel, 1);
? genus2red(x^6 + 3*x^3 + 63, 3)
(potential) stable reduction: [1, []]
reduction at p: [III{9}] page 184, [3, 3], f = 10
%1 = [59049, Mat([3, 10]), x^6 + 3*x^3 + 63, [3, [1, []],
["[III{9}] page 184", [3, 3]]]]
? [N, FaN, T, V] = genus2red(x^3-x^2-1, x^2-x); \\ X_1(13), global reduction
p = 13
(potential) stable reduction: [5, [Mod(0, 13), Mod(0, 13)]]
reduction at p: [I{0}-II-0] page 159, [], f = 2
? N
%3 = 169
? FaN
%4 = Mat([13, 2]) \\ in particular, good reduction at 2 !
? T
%5 = x^6 + 58*x^5 + 1401*x^4 + 18038*x^3 + 130546*x^2 + 503516*x + 808561
? V
%6 = [[13, [5, [Mod(0, 13), Mod(0, 13)]], ["[I{0}-II-0] page 159", []]]]
@eprog\noindent
We now first describe the format of the vector $V = V_{p}$ in the case where
$p$ was specified (local reduction at~$p$): it is a triple $[p, \var{stable},
\var{red}]$. The component $\var{stable} = [\var{type}, \var{vecj}]$ contains
information about the stable reduction after a field extension;
depending on \var{type}s, the stable reduction is
\item 1: smooth (i.e. the curve has potentially good reduction). The
Jacobian $J(C)$ has potentially good reduction.
\item 2: an elliptic curve $E$ with an ordinary double point; \var{vecj}
contains $j$ mod $p$, the modular invariant of $E$. The (potential)
semi-abelian reduction of $J(C)$ is the extension of an elliptic curve (with
modular invariant $j$ mod $p$) by a torus.
\item 3: a projective line with two ordinary double points. The Jacobian
$J(C)$ has potentially multiplicative reduction.
\item 4: the union of two projective lines crossing transversally at three
points. The Jacobian $J(C)$ has potentially multiplicative reduction.
\item 5: the union of two elliptic curves $E_{1}$ and $E_{2}$ intersecting
transversally at one point; \var{vecj} contains their modular invariants
$j_{1}$ and $j_{2}$, which may live in a quadratic extension of $\F_{p}$
and need not be distinct. The Jacobian $J(C)$ has potentially good reduction,
isomorphic to the product of the reductions of $E_{1}$ and $E_{2}$.
\item 6: the union of an elliptic curve $E$ and a projective line which has
an ordinary double point, and these two components intersect transversally
at one point; \var{vecj} contains $j$ mod $p$, the modular invariant of $E$.
The (potential) semi-abelian reduction of $J(C)$ is the extension of an
elliptic curve (with modular invariant $j$ mod $p$) by a torus.
\item 7: as in type 6, but the two components are both singular. The
Jacobian $J(C)$ has potentially multiplicative reduction.
The component $\var{red} = [\var{NUtype}, \var{neron}]$ contains two data
concerning the reduction at $p$ without any ramified field extension.
The \var{NUtype} is a \typ{STR} describing the reduction at $p$ of $C$,
following Namikawa-Ueno, \emph{The complete classification of fibers in
pencils of curves of genus two}, Manuscripta Math., vol. 9, (1973), pages
143-186. The reduction symbol is followed by the corresponding page number
or page range in this article.
The second datum \var{neron} is the group of connected components (over an
algebraic closure of $\F_{p}$) of the N\'eron model of $J(C)$, given as a
finite abelian group (vector of elementary divisors).
\smallskip
If $p = 2$, the \var{red} component may be omitted altogether (and
replaced by \kbd{[]}, in the case where the program could not compute it.
When $p$ was not specified, $V$ is the vector of all $V_{p}$, for all
considered $p$.
\misctitle{Notes about Namikawa-Ueno types}
\item A lower index is denoted between braces: for instance,
\kbd{[I\obr2\cbr-II-5]} means \kbd{[I\_2-II-5]}.
\item If $K$ and $K'$ are Kodaira symbols for singular fibers of elliptic
curves, then \kbd{[$K$-$K'$-m]} and \kbd{[$K'$-$K$-m]} are the same.
We define a total ordering on Kodaira symbol by fixing $\kbd{I} < \kbd{I*} <
\kbd{II} < \kbd{II*}, \dots$. If the reduction type is the same, we order by
the number of components, e.g. $\kbd{I}_{2} < \kbd{I}_{4}$, etc.
Then we normalize our output so that $K \leq K'$.
\item \kbd{[$K$-$K'$-$-1$]} is \kbd{[$K$-$K'$-$\alpha$]} in the notation of
Namikawa-Ueno.
\item The figure \kbd{[2I\_0-m]} in Namikawa-Ueno, page 159, must be denoted
by \kbd{[2I\_0-(m+1)]}.
The library syntax is \fun{GEN}{genus2red}{GEN PQ, GEN p = NULL}.
\subsec{hyperellchangecurve$(C,m)$}\kbdsidx{hyperellchangecurve}\label{se:hyperellchangecurve}
$C$ being a nonsingular hyperelliptic model of a curve,
apply the change of coordinate given by $m = [e, [a,b;c,d], H]$.
If $(x,y)$ is a point on the new model, the corresponding
point $(X,Y)$ on $C$ is given by
$$
X = (a*x + b) / (c*x + d), \quad
Y = e (y + H(x)) / (c*x + d)^{g+1}.
$$
$C$ can be given either by a squarefree polynomial $P$ such that
$C: y^{2} = P(x)$ or by a vector $[P,Q]$ such that
$C: y^{2} + Q(x)\*y = P(x)$ and $Q^{2}+4\*P$ is squarefree.
The library syntax is \fun{GEN}{hyperellchangecurve}{GEN C, GEN m}.
\subsec{hyperellcharpoly$(X)$}\kbdsidx{hyperellcharpoly}\label{se:hyperellcharpoly}
$X$ being a nonsingular hyperelliptic curve defined over a finite field,
return the characteristic polynomial of the Frobenius automorphism.
$X$ can be given either by a squarefree polynomial $P$ such that
$X: y^{2} = P(x)$ or by a vector $[P,Q]$ such that
$X: y^{2} + Q(x)\*y = P(x)$ and $Q^{2}+4\*P$ is squarefree.
The library syntax is \fun{GEN}{hyperellcharpoly}{GEN X}.
\subsec{hyperelldisc$(X)$}\kbdsidx{hyperelldisc}\label{se:hyperelldisc}
$X$ being a nonsingular hyperelliptic model of a curve,
defined over a field of characteristic distinct from 2, returns its discriminant.
$X$ can be given either by a squarefree polynomial $P$ such that
$X$ has equation $y^{2} = P(x)$ or by a vector $[P,Q]$ such that
$X$ has equation $y^{2} + Q(x)\*y = P(x)$ and $Q^{2}+4\*P$ is squarefree.
\bprog
? hyperelldisc([x^3,1])
%1 = -27
? hyperelldisc(x^5+1)
%2 = 800000
@eprog
The library syntax is \fun{GEN}{hyperelldisc}{GEN X}.
\subsec{hyperellisoncurve$(X,p)$}\kbdsidx{hyperellisoncurve}\label{se:hyperellisoncurve}
$X$ being a nonsingular hyperelliptic model of a curve, test whether the
point $p$ is on the curve.
$X$ can be given either by a squarefree polynomial $P$ such that
$X: y^{2} = P(x)$ or by a vector $[P,Q]$ such that
$X: y^{2} + Q(x)\*y = P(x)$ and $Q^{2}+4\*P$ is squarefree.
\bprog
? W = [2*x^6+3*x^5+x^4+x^3-x,x^3+1]; p = [px, py] = [1/3,-14/27];
? hyperellisoncurve(W, p)
%2 = 1
? [Px,Qx]=subst(W,x,px); py^2+py*Qx == Px
%3 = 1
@eprog
The library syntax is \fun{int}{hyperellisoncurve}{GEN X, GEN p}.
\subsec{hyperellminimaldisc$(C,\{\var{pr}\})$}\kbdsidx{hyperellminimaldisc}\label{se:hyperellminimaldisc}
$C$ being a nonsingular integral hyperelliptic model of a curve,
return the minimal discriminant of an integral model of $C$.
If $pr$ is given, it must be a list of primes and
the discriminant is then only garanteed minimal at the elements of $pr$.
$C$ can be given either by a squarefree polynomial $P$ such that
$C: y^{2} = P(x)$ or by a vector $[P,Q]$ such that
$C: y^{2} + Q(x)\*y = P(x)$ and $Q^{2}+4\*P$ is squarefree.
\bprog
? W = [x^6+216*x^3+324,0];
? D = hyperelldisc(W)
%2 = 1828422898924853919744000
? M = hyperellminimaldisc(W)
%4 = 29530050606000
@eprog
The library syntax is \fun{GEN}{hyperellminimaldisc}{GEN C, GEN pr = NULL}.
\subsec{hyperellminimalmodel$(C,\{\&m\},\{\var{pr}\})$}\kbdsidx{hyperellminimalmodel}\label{se:hyperellminimalmodel}
$C$ being a nonsingular integral hyperelliptic model of a curve,
return an integral model of $C$ with minimal discriminant.
If $pr$ is given, it must be a list of primes and
the model is then only garanteed minimal at the elements of $pr$.
If present, $m$ is set to the mapping from the original model to the new
one: a three-component vector $[e,[a,b;c,d],H]$ such that
if $(x,y)$ is a point on $W$, the corresponding point on $C$ is given by
$$ x_{C} = (a*x+b)/(c*x+d) $$
$$ y_{C} = (e*y+H(x))/(c*x+d)^{g+1} $$
where $g$ is the genus.
$C$ can be given either by a squarefree polynomial $P$ such that
$C: y^{2} = P(x)$ or by a vector $[P,Q]$ such that
$C: y^{2} + Q(x)\*y = P(x)$ and $Q^{2}+4\*P$ is squarefree.
\bprog
? W = [x^6+216*x^3+324,0];
? D = hyperelldisc(W)
%2 = 1828422898924853919744000
? Wn = hyperellminimalmodel(W,&M)
%3 = [2*x^6+18*x^3+1,x^3];
? M
%4 = [18, [3, 0; 0, 1], 9*x^3]
? hyperelldisc(Wn)
%5 = 29530050606000
? hyperellchangecurve(W, M)
%6 = [2*x^6+18*x^3+1,x^3]
@eprog
The library syntax is \fun{GEN}{hyperellminimalmodel}{GEN C, GEN *m = NULL, GEN pr = NULL}.
\subsec{hyperellordinate$(H,x)$}\kbdsidx{hyperellordinate}\label{se:hyperellordinate}
Gives a 0, 1 or 2-component vector containing
the $y$-coordinates of the points of the curve $H$ having $x$ as
$x$-coordinate.
The library syntax is \fun{GEN}{hyperellordinate}{GEN H, GEN x}.
\subsec{hyperellpadicfrobenius$(Q,q,n)$}\kbdsidx{hyperellpadicfrobenius}\label{se:hyperellpadicfrobenius}
Let $X$ be the curve defined by $y^{2}=Q(x)$, where $Q$ is a polynomial of
degree $d$ over $\Q$ and $q\ge d$ is a prime such that $X$ has good reduction
at $q$. Return the matrix of the Frobenius endomorphism $\varphi$ on the
crystalline module $D_{p}(X) = \Q_{p} \otimes H^{1}_{dR}(X/\Q)$ with respect to the
basis of the given model $(\omega, x\*\omega,\ldots,x^{g-1}\*\omega)$, where
$\omega = dx/(2\*y)$ is the invariant differential, where $g$ is the genus of
$X$ (either $d=2\*g+1$ or $d=2\*g+2$). The characteristic polynomial of
$\varphi$ is the numerator of the zeta-function of the reduction of the curve
$X$ modulo $q$. The matrix is computed to absolute $q$-adic precision $q^{n}$.
Alternatively, $q$ may be of the form $[T,p]$ where $p$ is a prime,
$T$ is a polynomial with integral coefficients whose projection to
$\F_{p}[t]$ is irreducible, $X$ is defined over $K = \Q[t]/(T)$ and has good
reduction to the finite field $\F_{q} = \F_{p}[t]/(T)$. The matrix of
$\varphi$ on $D_{q}(X) = \Q_{q} \otimes H^{1}_{dR}(X/K)$ is computed
to absolute $p$-adic precision $p^{n}$.
\bprog
? M=hyperellpadicfrobenius(x^5+'a*x+1,['a^2+1,3],10);
? liftall(M)
[48107*a + 38874 9222*a + 54290 41941*a + 8931 39672*a + 28651]
[ 21458*a + 4763 3652*a + 22205 31111*a + 42559 39834*a + 40207]
[ 13329*a + 4140 45270*a + 25803 1377*a + 32931 55980*a + 21267]
[15086*a + 26714 33424*a + 4898 41830*a + 48013 5913*a + 24088]
? centerlift(simplify(liftpol(charpoly(M))))
%8 = x^4+4*x^2+81
? hyperellcharpoly((x^5+Mod(a,a^2+1)*x+1)*Mod(1,3))
%9 = x^4+4*x^2+81
@eprog
The library syntax is \fun{GEN}{hyperellpadicfrobenius0}{GEN Q, GEN q, long n}.
The functions
\fun{GEN}{hyperellpadicfrobenius}{GEN H, ulong p, long n}
and
\fun{GEN}{nfhyperellpadicfrobenius}{GEN H, GEN T, ulong p, long n} are also
available.
\subsec{hyperellratpoints$(X,h,\{\fl=0\})$}\kbdsidx{hyperellratpoints}\label{se:hyperellratpoints}
$X$ being a nonsingular hyperelliptic curve given by an rational model,
return a vector containing the affine rational points on the curve of naive
height less than $h$. If $\fl=1$, stop as soon as a point is found; return
either an empty vector or a vector containing a single point.
$X$ is given either by a squarefree polynomial $P$ such that $X: y^{2}=P(x)$
or by a vector $[P,Q]$ such that $X: y^{2}+Q(x)\*y=P(x)$ and $Q^{2}+4\*P$ is
squarefree.
\noindent The parameter $h$ can be
\item an integer $H$: find the points $[n/d,y]$ whose abscissas $x = n/d$ have
naive height (= $\max(|n|, d)$) less than $H$;
\item a vector $[N,D]$ with $D\leq N$: find the points $[n/d,y]$ with
$|n| \leq N$, $d \leq D$.
\item a vector $[N,[D_{1},D_{2}]]$ with $D_{1}<D_{2}\leq N$ find the points
$[n/d,y]$ with $|n| \leq N$ and $D_{1} \leq d \leq D_{2}$.
The library syntax is \fun{GEN}{hyperellratpoints}{GEN X, GEN h, long flag}.
\subsec{hyperellred$(C,\{\&m\})$}\kbdsidx{hyperellred}\label{se:hyperellred}
Let $C$ be a nonsingular integral hyperelliptic model of a curve of positive
genus $g > 0$. Return an integral model of $C$ with the same discriminant
but small coefficients, using Cremona-Stoll reduction.
The optional argument $m$ is set to the mapping from the original model to
the new one, given by a three-component vector \kbd{[1,[a,b;c,d],H]}
such that $a*d-b*c=1$ and if $(x,y)$ is a point on $W$, the corresponding
point $(X,Y)$ on $C$ is given by
$$
X = (a*x + b) / (c*x + d), \quad
Y = (y + H(x)) / (c*x + d)^{g+1}.
$$
$C$ can be given either by a squarefree polynomial $P$ such that
$C: y^{2} = P(x)$ or by a vector $[P,Q]$ such that
$C: y^{2} + Q(x)\*y = P(x)$ and $Q^{2}+4\*P$ is squarefree.
\bprog
? P = 1001*x^4 + 3704*x^3 + 5136*x^2 + 3163*x + 730;
? hyperellred(P, &m)
%2 = [x^3 + 1, 0]
? hyperellchangecurve(P, m)
%3 = [x^3 + 1, 0]
@eprog
The library syntax is \fun{GEN}{hyperellred}{GEN C, GEN *m = NULL}.
Also available is
\fun{GEN}{ZX_hyperellred}{GEN P, GEN *M} where $C: y^{2} = P(x)$ and *M is
set to \kbd{[a,b;c,d]}
\section{Hypergeometric Motives}
\subsec{Templates} %GPHELPskip
A \emph{hypergeometric template} is a pair of multisets (i.e., sets with
possibly repeated elements) of rational numbers
$(\alpha_{1},\dots,\alpha_{d})$ and $(\beta_{1},\dots,\beta_{d})$
having the same number of elements, and we set
$$A(x)=\prod_{1\le j\le d}(x-e^{2\pi i\alpha_{j}}),\quad
B(x)=\prod_{1\le k\le d}(x-e^{2\pi i\beta_{k}})\;.$$
We make the following assumptions:
\item $\alpha_{j}-\beta_{k}\notin\Z$ for all $j$ and $k$, or
equivalently $\gcd(A,B)=1$.
\item $\alpha_{j}\notin\Z$ for all $j$, or equivalently $A(1)\ne0$.
\item our template is \emph{defined over $\Q$}, in other words
$A,B\in\Z[x]$, or equivalently if some $a/D$ with $\gcd(a,D)=1$ occurs
in the $\alpha_{j}$ or $\beta_{k}$, then all the $b/D$ modulo $1$ with
$\gcd(b,D)=1$ also occur.
The last assumption allows to abbreviate $[a_{1}/D,\dots,a_{\phi(D)}/D]$
(where the $a_{i}$ range in $(\Z/D\Z)^{*}$) to $[D]$. We thus have two possible
ways of giving a hypergeometric template: either by the two vectors
$[\alpha_{1},\dots,\alpha_{d}]$ and $[\beta_{1},\dots,\beta_{d}]$, or by their
denominators $[D_{1},\dots,D_{m}]$ and $[E_{1},\dots,E_{n}]$ , which are
called the
\emph{cyclotomic parameters}; note that $\sum_{j}\phi(D_{j})
= \sum_{k}\phi(E_{k}) = d$.
A third way is to give the \emph{gamma vector} $(\gamma_{n})$
defined by $A(X)/B(X)=\prod_{n}(X^{n}-1)^{\gamma_{n}}$, which satisfies
$\sum_{n} n\gamma_{n}=0$. To any such data we associate a hypergeometric template
using the function \kbd{hgminit}; then the $\alpha_{j}$ and $\beta_{k}$
are obtained using \kbd{hgmalpha}, cyclotomic parameters
using \kbd{hgmcyclo} and the gamma vectors using \kbd{hgmgamma}.
To such a hypergeometric template is associated a number of additional
parameters, for which we do not give the definition but refer to the survey
\emph{Hypergeometric Motives} by Roberts and Villegas,
\kbd{https://arxiv.org/abs/2109.00027}:
the degree $d$, the \emph{weight} $w$, a \emph{Hodge polynomial}~$P$,
a \emph{Tate twist} $T$, and a normalizing M-factor
$M = \prod_{n} n^{n\gamma_{n}}$. The \kbd{hgmparams} function returns
$$[d,w,[P,T],M]\;.$$
Example with cyclotomic parameters $[5],[1,1,1,1]$:
\bprog
? H = hgminit([5]); \\ [1,1,1,1] can be omitted
? hgmparams(H)
%2 = [4, 3, [x^3+x^2+x+1,0], 3125]
? hgmalpha(H)
%3 = [[1/5, 2/5, 3/5, 4/5], [0, 0, 0, 0]]
? hgmcyclo(H)
%4 = [Vecsmall([5]), Vecsmall([1, 1, 1, 1])]
? hgmgamma(H)
%5 = Vecsmall([-5,0,0,0,1]) \\ A/B = (x^5-1) / (x-1)^5
@eprog
\subsec{Motives} %GPHELPskip
A \emph{hypergeometric motive} (HGM for short) is a pair $(H,t)$, where
$H$ is a hypergeometric template and $t\in\Q^{*}$. To such a motive and a
finite field $\F_{q}$ one can associate via an explicit but
complicated formula an \emph{integer} $N(H,t; q)$, see Beukers, Cohen and
Mellit, \emph{Finite hypergeometric functions} Pure and Applied Math
Quarterly 11 (2015), pp 559 - 589, \kbd{https://arxiv.org/abs/1505.02900}.
\misctitle{Warning} Depending on the authors, $t$ may have to be replaced
with $1/t$. The \kbd{Pari/GP} convention is the same as the one in
\kbd{Magma}, but is the inverse of the one in the last reference.
This formula does not make sense and is not valid for \emph{bad
primes}~$p$: a \emph{wild prime} is a prime which divides a denominator of
the $\alpha_{j}$ or $\beta_{i}$. If a prime $p$ is not wild, it can be
\emph{good} if $v_{p}(t)=v_{p}(t-1)=0$, or \emph{tame} otherwise.
The \emph{local Euler factor} $P_{p}$ at a good prime $p$ is then given by
the usual formula
$$-\log P_{p}(T) = \sum_{f\ge1} \dfrac{N(H,t; p^{f}) T^{f}}{f} \;,$$
and in the case of HGM's $P_{p}$ is always a polynomial (note that the Euler
factor used in the global $L$-function is $1/P_{p}(p^{-s})$). At a tame prime
$p$ it
is necessary to modify the above formula, and usually (but not always) the
degree of the local Euler factor decreases. Wild primes are currently not
implemented by a formula but can be guessed via the global functional
equation (see the next section). Continuing the previous example, we find
\bprog
? hgmeulerfactor(H, -1, 3) \\ good prime
%4 = 729*x^4 + 135*x^3 + 45*x^2 + 5*x + 1
? hgmeulerfactor(H, -1, 2) \\ tame prime
%5 = 16*x^3 + 6*x^2 + x + 1
? hgmeulerfactor(H, -1, 5) \\ wild primes not implemented
%6 = 0
@eprog\noindent
To obtain the Euler factor at wild primes, use \kbd{lfuneuler} once
the global $L$-function is computed.
\subsec{The Global $L$-function} %GPHELPskip
A theorem of Katz tells us that if one suitably defines $P_{p}(T)$ for
all primes $p$ including the wild ones, then the $L$-function defined
by $L(H,s)=\prod_{p} P_{p}(p^{-s})^{-1}$ is motivic,
with analytic continuation and functional equation,
as used in the $L$-function package of \kbd{Pari/GP}. The command
\kbd{L = lfunhgm(H,t)} creates such an $L$-function. In particular it must
guess the local Euler factors at wild primes, which can be very expensive
when the conductor \kbd{lfunparams}$(L)[1]$ is large.
In our example, \kbd{L = lfunhgm(H,1/64)} finishes in about 20 seconds
(the conductor is only 525000);
this $L$-function can then be used with all the functions of the
\kbd{lfun} package. For instance we can now obtain the global conductor and
check the Euler factors at all bad primes:
\bprog
? [N] = lfunparams(L); N \\ the conductor
%7 = 525000
? factor(N)
%8 =
[2 3]
[3 1]
[5 5]
[7 1]
? lfuneuler(L,2)
%9 = 1/(-x + 1)
? lfuneuler(L,3)
%10 = 1/(81*x^3 + 6*x^2 - 4*x + 1)
? lfuneuler(L,5)
%11 = 1
? lfuneuler(L,7)
%12 = 1/(2401*x^3 + 301*x^2 + x + 1)
@eprog
Two additional functions related to the global $L$-function are available
which do \emph{not} require its full initialization:
\kbd{hgmcoefs(H,t,n)} computes
the first $n$ coefficients of the $L$-function by setting all wild Euler
factors to $1$; this will be identical to \kbd{lfunan(L,n)} when this is
indeed the case (as in the above example: only $5$ is wild), otherwise all
coefficients divisible by a wild prime will be wrong.
The second is the function \kbd{hgmcoef(H,t,n)} which only computes the
$n$th coefficient of the global $L$-function. It gives an error if $n$
is divisible by a wild prime. Compare \kbd{hgmcoefs(H,1/64,7\^{}6)[7\^{}6]}
which requires more than 1 minute (it computes more than 100000 coefficients),
with \kbd{hgmcoef(H,1/64,7\^{}6)} which outputs $-25290600$ instantaneously.
\subsec{hgmalpha$(H)$}\kbdsidx{hgmalpha}\label{se:hgmalpha}
Returns the alpha and beta parameters of the hypergeometric motive
template $H$.
\bprog
? H = hgminit([5]); \\ template given by cyclotomic parameters
? hgmalpha(H)
%2 = [[1/5, 2/5, 3/5, 4/5], [0, 0, 0, 0]]
@eprog
The library syntax is \fun{GEN}{hgmalpha}{GEN H}.
\subsec{hgmbydegree$(n)$}\kbdsidx{hgmbydegree}\label{se:hgmbydegree}
Outputs $[L(0),...,L(n-1)]$ where $L(w)$ is the list of
cyclotomic parameters of all possible hypergeometric motive templates of
degree $n$ and weight $w$.
The library syntax is \fun{GEN}{hgmbydegree}{long n}.
\subsec{hgmcoef$(H,t,n)$}\kbdsidx{hgmcoef}\label{se:hgmcoef}
$(H,t)$ being a hypergeometric motive, returns the
$n$-th coefficient of its $L$-function. This is not implemented for wild
primes $p$ and will raise an exception if such a $p$ divides~$n$.
The library syntax is \fun{GEN}{hgmcoef}{GEN H, GEN t, GEN n}.
\subsec{hgmcoefs$(H,t,n)$}\kbdsidx{hgmcoefs}\label{se:hgmcoefs}
$(H,t)$ being a hypergeometric motive, returns the
first $n$ coefficients of its $L$-function, where Euler factors at wild primes
are set to 1. The argument $t$ may be replaced by $[t,\var{bad}]$
where \var{bad} is a vector of pairs $[p,L_{p}]$, $p$ being a prime and $L_{p}$
being the corresponding local Euler factor, overriding the default.
If you hope that the wild Euler factors can be computed not too slowly
from the functional equation, you can also set \kbd{L=lfunhgm(H,t)}, and then
\kbd{lfunan(L,n)}, and then the Euler factors at wild primes should
be correct.
The library syntax is \fun{GEN}{hgmcoefs}{GEN H, GEN t, long n}.
\subsec{hgmcyclo$(H)$}\kbdsidx{hgmcyclo}\label{se:hgmcyclo}
Returns the cyclotomic parameters $(D,E)$ of the
hypergeometric motive template $H$.
\bprog
\\ template given by alpha (implied beta is [0,0,0,0])
? H = hgminit([1/5, 2/5, 3/5, 4/5]);
? hgmcyclo(H)
%3 = [Vecsmall([5]), Vecsmall([1, 1, 1, 1])]
? apply(Vec, %) \\ for readability
%4 = [[5], [1, 1, 1, 1]]
@eprog
The library syntax is \fun{GEN}{hgmcyclo}{GEN H}.
\subsec{hgmeulerfactor$(H,t,p,\{\&e\})$}\kbdsidx{hgmeulerfactor}\label{se:hgmeulerfactor}
$(H,t)$ being a hypergeometric motive, returns the inverse of its
Euler factor at the prime $p$ and the exponent $e$ of the conductor at $p$.
This is not implemented when $p$ is a wild prime: the function returns $0$ and
sets $e$ to $-1$. Caveat: contrary to \kbd{lfuneuler}, this function returns
the \emph{inverse} of the Euler factor, given by a polynomial $P_{p}$ such that
the Euler factor is $1 / P_{p}(p^{-s})$.
\bprog
? H = hgminit([5]); \\ cyclotomic parameters [5] and [1,1,1,1]
? hgmeulerfactor(H, 1/2, 3)
%2 = 729*x^4 + 135*x^3 + 45*x^2 + 5*x + 1
? hgmeulerfactor(H, 1/2, 3, &e)
%3 = 729*x^4 + 135*x^3 + 45*x^2 + 5*x + 1
? e
%4 = 0
? hgmeulerfactor(H, 1/2, 2, &e)
%5 = -x + 1
? e
%6 = 3
? hgmeulerfactor(H, 1/2, 5)
%7 = 0 \\ 5 is wild
@eprog
If the conductor is small, the wild Euler factors can be computed
from the functional equation: set \kbd{L = lfunhgm(H,t)} (the complexity
should be roughly proportional to the conductor) then
the \kbd{lfuneuler} function should give you the correct Euler factors
at all primes:
\bprog
? L = lfunhgm(H, 1/2);
time = 790 ms. \\ fast in this case, only 5 is wild
? lfunparams(L) \\ ... and the conductor 5000 is small
%8 = [5000, 4, [-1, 0, 0, 1]]
? lfuneuler(L, 5)
%9 = 1 \\ trivial Euler factor
? L = lfunhgm(H, 1/64); lfunparams(L)
time = 20,122 ms. \\ slower: the conductor is larger
%10 = [525000, 4, [-1, 0, 0, 1]]
? L = lfunhgm(H, 1/128); lfunparams(L)
time = 2min, 16,205 ms. \\ even slower, etc.
%11 = [3175000, 4, [-1, 0, 0, 1]]
@eprog
The library syntax is \fun{GEN}{hgmeulerfactor}{GEN H, GEN t, long p, GEN *e = NULL}.
\subsec{hgmgamma$(H)$}\kbdsidx{hgmgamma}\label{se:hgmgamma}
Returns the gamma vector of the hypergeometric motive
template $H$.
\bprog
? H = hgminit([5]);
? hgmgamma(H)
%2 = Vecsmall([-5, 0, 0, 0, 1])
@eprog
The library syntax is \fun{GEN}{hgmgamma}{GEN H}.
\subsec{hgminit$(a,\{b\})$}\kbdsidx{hgminit}\label{se:hgminit}
Create the template for the hypergeometric motive with parameters
$a$ and possibly $b$. The format of the parameters may be
\item alpha: lists of rational numbers $a=(\alpha_{j})$ and
$b=(\beta_{k})$ of the same length (and defined over~$\Q$); if $b$ is
omitted, we take it to be $(0,\dots,0)$.
\item cyclo: lists $a=D$ and $b=E$ of positive integers corresponding
to the denominators of the $(\alpha_{i})$ and $(\beta_{i})$; if $b$ is omitted
we take it to be $(1,\dots,1)$. This is the simplest and most compact input
format.
\item gamma: list of $\gamma_{n}$ such that the
$\prod_{j}(x-\exp(2\pi i\alpha_{j})) / \prod_{k}(x-\exp(2\pi i\beta_{k}))
= \prod_{n}(x^{n}-1)^{\gamma_{n}}$.
The hypergeometric motive itself is given by a pair $(H,t)$, where $H$
is a template as above and $t\in \Q^{*}$. Note that the motives given by
$(\alpha, \beta; t)$ and $(\beta,\alpha; 1/t)$ are identical.
\bprog
? H = hgminit([5]); \\ template given by cyclotomic parameters 5 and 1,1,1,1
? L = lfunhgm(H, 1); \\ global L-function attached to motive (H,1)
? lfunparams(L)
%3 = [25, 4, [0, 1]]
? hgmalpha(H)
%4 = [[1/5, 2/5, 3/5, 4/5], [0, 0, 0, 0]]
? hgmgamma(H)
%5 = Vecsmall([-5, 0, 0, 0, 1])
@eprog
The library syntax is \fun{GEN}{hgminit}{GEN a, GEN b = NULL}.
\subsec{hgmissymmetrical$(H)$}\kbdsidx{hgmissymmetrical}\label{se:hgmissymmetrical}
Is the hypergeometric motive template $H$ symmetrical
at $t=1$? This means that the $\alpha_{j}$ and $\beta_{k}$ defining the
template are obtained from one another by adding $1/2$ (modulo $1$), see
\kbd{hgmtwist}.
\bprog
? H = hgminit([2,2]);
? hgmalpha(H)
%2 = [[1/2, 1/2], [0, 0]]
? hgmissymmetrical(H)
%3 = 1 \\ this template is symmetrical
? H = hgminit([5]);
? hgmalpha(H)
%5 = [[1/5, 2/5, 3/5, 4/5], [0, 0, 0, 0]]
? hgmissymmetrical(H)
%6 = 1 \\ this one is not
@eprog
The library syntax is \fun{long}{hgmissymmetrical}{GEN H}.
\subsec{hgmparams$(H)$}\kbdsidx{hgmparams}\label{se:hgmparams}
$H$ being a hypergeometric motive template, returns
$[d,w,[P,T], M]$, where $d$ is the degree, $w$ the weight,
$P$ the Hodge polynomial, and $T$ the Tate twist number (so that the Hodge
function itself is $P/x^{T}$); finally the normalizing factor $M$ is the
so-called $M$-value, $M = \prod_{n} n^{n\gamma_{n}}$.
The library syntax is \fun{GEN}{hgmparams}{GEN H}.
\subsec{hgmtwist$(H)$}\kbdsidx{hgmtwist}\label{se:hgmtwist}
Twist by $1/2$ of alpha and beta of the hypergeometric motive
template $H$.
\bprog
? H = hgminit([5]);
? hgmalpha(H)
%2 = [[1/5, 2/5, 3/5, 4/5], [0, 0, 0, 0]]
? H2 = hgmtwist(H);
? hgmalpha(H2)
%4 = [[1/10, 3/10, 7/10, 9/10], [1/2, 1/2, 1/2, 1/2]]
@eprog\noindent The template is symmetrical (\kbd{hgmissymmetrical})
if it is equal to its twist.
The library syntax is \fun{GEN}{hgmtwist}{GEN H}.
\subsec{lfunhgm$(H,t,\{\var{hint}\})$}\kbdsidx{lfunhgm}\label{se:lfunhgm}
$(H,t)$ being a hypergeometric motive, returns the corresponding
\kbd{lfuncreate} data for use with the $L$-function package. This function
needs to guess local conductors and euler factors at wild primes and
will be very costly if there are many such primes: the complexity is roughly
proportional to the conductor. The optional parameter \kbd{hint}
allows to speed up the function by making various assumptions:
\item $\kbd{hint} = \var{lim}$ a \typ{INT}: assume that Euler factors at wild
primes have degree less than \var{lim}, which may speed it up a little.
\item $\kbd{hint} = [N]$: guess that the conductor is $N$.
\item $\kbd{hint} = [N, \var{lim}]$: initial guess $N$ for the conductor
and limit degrees to \var{lim}.
If your guess for \var{lim} is wrong, the function will enter an infinite loop.
If your guess for an initial $N$ is wrong, the function silently restarts
(it will not enter an infinite loop unless a simultaneous failed guess for
\var{lim} is made).
\bprog
? H = hgminit([5]);
? L = lfunhgm(H, 1/64);
time = 23,113 ms.
? L=lfunhgm(H,1/64,0); \\ assume Euler factors at wild primes are trivial
time = 19,721 ms. \\ a little faster
? L=lfunhgm(H,1/64,[525000]); \\ initial guess N = 525000
time = 15,486 ms. \\ a little faster
? L=lfunhgm(H,1/64,[525000, 0]);
time = 15,293 ms. \\ marginally faster with both assumptions
@eprog
The library syntax is \fun{GEN}{lfunhgm}{GEN H, GEN t, GEN hint = NULL, long bitprec}.
\section{$L$-functions}
This section describes routines related to $L$-functions. We first introduce
the basic concept and notations, then explain how to represent them in GP.
Let $\Gamma_{\R}(s) = \pi^{-s/2}\Gamma(s/2)$, where $\Gamma$ is Euler's gamma
function. Given $d \geq 1$ and a $d$-tuple $A=[\alpha_{1},\dots,\alpha_{d}]$
of complex numbers, we let $\gamma_{A}(s) = \prod_{\alpha \in A}
\Gamma_{\R}(s + \alpha)$.
Given a sequence $a = (a_{n})_{n\geq 1}$ of complex numbers
(such that $a_{1} = 1$),
a positive \emph{conductor} $N \in \Z$, and a \emph{gamma factor}
$\gamma_{A}$ as above, we consider the Dirichlet series
$$ L(a,s) = \sum_{n\geq 1} a_{n} n^{-s} $$
and the attached completed function
$$ \Lambda(a,s) = N^{s/2}\gamma_{A}(s) \cdot L(a,s). $$
Such a datum defines an \emph{$L$-function} if it satisfies the three
following assumptions:
\item [Convergence] The $a_{n} = O_{\epsilon}(n^{k_{1}+\epsilon})$
have polynomial growth, equivalently $L(s)$ converges absolutely in some
right half-plane $\Re(s) > k_{1} + 1$.
\item [Analytic continuation] $L(s)$ has a meromorphic continuation to the
whole complex plane with finitely many poles.
\item [Functional equation] There exist an integer $k$, a complex number
$\epsilon$ (usually of modulus~$1$), and an attached sequence $a^{*}$
defining both an $L$-function $L(a^{*},s)$ satisfying the above two assumptions
and a completed function $\Lambda(a^{*},s) = N^{s/2}\gamma_{A}(s) \cdot
L(a^{*},s)$, such that
$$\Lambda(a,k-s) = \epsilon \Lambda(a^{*},s)$$
for all regular points.
More often than not in number theory we have $a^{*} = \overline{a}$ (which
forces $|\epsilon| = 1$), but this needs not be the case. If $a$ is a real
sequence and $a = a^{*}$, we say that $L$ is \emph{self-dual}. We do not assume
that the $a_{n}$ are multiplicative, nor equivalently that $L(s)$ has an Euler
product.
\misctitle{Remark}
Of course, $a$ determines the $L$-function, but the (redundant) datum $a,a^{*},
A, N, k, \epsilon$ describes the situation in a form more suitable for fast
computations; knowing the polar part $r$ of $\Lambda(s)$ (a rational function
such that $\Lambda-r$ is holomorphic) is also useful. A subset of these,
including only finitely many $a_{n}$-values will still completely determine $L$
(in suitable families), and we provide routines to try and compute missing
invariants from whatever information is available.
\misctitle{Important Caveat}
The implementation assumes that the implied constants in the $O_{\epsilon}$ are
small. In our generic framework, it is impossible to return proven results
without more detailed information about the $L$ function. The intended use of
the $L$-function package is not to prove theorems, but to experiment and
formulate conjectures, so all numerical results should be taken with a grain
of salt. One can always increase \kbd{realbitprecision} and recompute: the
difference estimates the actual absolute error in the original output.
\misctitle{Note} The requested precision has a major impact on runtimes.
Because of this, most $L$-function routines, in particular \kbd{lfun} itself,
specify the requested precision in \emph{bits}, not in decimal digits.
This is transparent for the user once \tet{realprecision} or
\tet{realbitprecision} are set. We advise to manipulate precision via
\tet{realbitprecision} as it allows finer granularity: \kbd{realprecision}
increases by increments of 64 bits, i.e. 19 decimal digits at a time.
\subsec{Theta functions} %GPHELPskip
Given an $L$-function as above, we define an attached theta function
via Mellin inversion: for any positive real $t > 0$, we let
$$ \theta(a,t) := \dfrac{1}{2\pi i}\int_{\Re(s) = c} t^{-s} \Lambda(s)\, ds $$
where $c$ is any positive real number $c > k_{1}+1$ such that $c + \Re(a) > 0$
for all $a\in A$. In fact, we have
$$\theta(a,t) = \sum_{n\geq 1} a_{n} K(nt/N^{1/2})
\quad\text{where}\quad
K(t) := \dfrac{1}{2\pi i}\int_{\Re(s) = c} t^{-s} \gamma_{A}(s)\, ds.$$
Note that this function is analytic and actually makes sense for complex $t$,
such that $\Re(t^{2/d}) > 0$, i.e. in a cone containing the positive real
half-line. The functional equation for $\Lambda$ translates into
$$ \theta(a,1/t) - \epsilon t^{k}\theta(a^{*},t) = P_{\Lambda}(t), $$
where $P_{\Lambda}$ is an explicit polynomial in $t$ and $\log t$ given by the
Taylor expansion of the polar part of $\Lambda$: there are no $\log$'s if
all poles are simple, and $P = 0$ if $\Lambda$ is entire. The values
$\theta(t)$ are generally easier to compute than the $L(s)$, and this
functional equation provides a fast way to guess possible values for
missing invariants in the $L$-function definition.
\subsec{Data structures describing $L$ and theta functions} %GPHELPskip
We have 3 levels of description:
\item an \tet{Lmath} is an arbitrary description of the underlying
mathematical situation (to which e.g., we associate the $a_{p}$ as traces of
Frobenius elements); this is done via constructors to be described in the
subsections below.
\item an \tet{Ldata} is a computational description of situation, containing
the complete datum ($a,a^{*},A,k,N,\epsilon,r$). Where $a$ and $a^{*}$ describe
the coefficients (given $n,b$ we must be able to compute $[a_{1},\dots,a_{n}]$
with bit accuracy $b$), $A$ describes the Euler factor, the (classical) weight
is $k$, $N$ is the conductor, and $r$ describes the polar part of $L(s)$.
This is obtained via the function \tet{lfuncreate}. N.B. For motivic
$L$-functions, the motivic weight $w$ is $w = k-1$; but we also support
nonmotivic $L$-functions.
\misctitle{Technical note} When some components of an \kbd{Ldata} cannot be
given exactly, usually $r$ or $\epsilon$, the \kbd{Ldata} may be given as a
\emph{closure}. When evaluated at a given precision, the closure must return
all components as exact data or floating point numbers at the requested
precision, see \kbd{??lfuncreate}. The reason for this technicality is that
the accuracy to which we must compute is not bounded a priori and unknown
at this stage: it depends on the domain where we evaluate the $L$-function.
\item an \tet{Linit} contains an \kbd{Ldata} and everything needed for fast
\emph{numerical} computations. It specifies the functions to be considered
(either $L^{(j)}(s)$ or $\theta^{(j)}(t)$ for derivatives of order $j \leq
m$, where $m$ is now fixed) and specifies a \emph{domain} which limits
the range of arguments ($t$ or $s$, respectively to certain cones and
rectangular regions) and the output accuracy. This is obtained via the
functions \tet{lfuninit} or \tet{lfunthetainit}.
All the functions which are specific to $L$ or theta functions share the
prefix \kbd{lfun}. They take as first argument either an \kbd{Lmath}, an
\kbd{Ldata}, or an \kbd{Linit}. If a single value is to be computed,
this makes no difference, but when many values are needed (e.g. for plots or
when searching for zeros), one should first construct an \kbd{Linit}
attached to the search range and use it in all subsequent calls.
If you attempt to use an \kbd{Linit} outside the range for which it was
initialized, a warning is issued, because the initialization is
performed again, a major inefficiency:
\bprog
? Z = lfuncreate(1); \\ Riemann zeta
? L = lfuninit(Z, [1/2, 0, 100]); \\ zeta(1/2+it), |t| < 100
? lfun(L, 1/2) \\ OK, within domain
%3 = -1.4603545088095868128894991525152980125
? lfun(L, 0) \\ not on critical line !
*** lfun: Warning: lfuninit: insufficient initialization.
%4 = -0.50000000000000000000000000000000000000
? lfun(L, 1/2, 1) \\ attempt first derivative !
*** lfun: Warning: lfuninit: insufficient initialization.
%5 = -3.9226461392091517274715314467145995137
@eprog
For many $L$-functions, passing from \kbd{Lmath} to an \kbd{Ldata} is
inexpensive: in that case one may use \kbd{lfuninit} directly from the
\kbd{Lmath} even when evaluations in different domains are needed. The
above example could equally have skipped the \kbd{lfuncreate}:
\bprog
? L = lfuninit(1, [1/2, 0, 100]); \\ zeta(1/2+it), |t| < 100
@eprog\noindent In fact, when computing a single value, you can even skip
\kbd{lfuninit}:
\bprog
? L = lfun(1, 1/2, 1); \\ zeta'(1/2)
? L = lfun(1, 1+x+O(x^5)); \\ first 5 terms of Taylor expansion at 1
@eprog\noindent Both give the desired results with no warning.
\misctitle{Complexity}
The implementation requires $O(N(|t|+1))^{1/2}$ coefficients $a_{n}$
to evaluate $L$ of conductor $N$ at $s = \sigma + i t$.
We now describe the available high-level constructors, for built-in $L$
functions.
\subsec{Dirichlet $L$-functions} %GPHELPskip
Given a Dirichlet character $\chi:(\Z/N\Z)^{*}\to \C$, we let
$$L(\chi, s) = \sum_{n\geq 1} \chi(n) n^{-s}.$$
Only primitive characters are supported. Given a nonzero
integer $D$, the \typ{INT} $D$ encodes the function $L((D_{0}/.), s)$, for the
quadratic Kronecker symbol attached to the fundamental discriminant
$D_{0} = \kbd{coredisc}(D)$. This includes Riemann $\zeta$ function via the
special case $D = 1$.
More general characters can be represented in a variety of ways:
\item via Conrey notation (see \tet{znconreychar}): $\chi_{N}(m,\cdot)$
is given as the \typ{INTMOD} \kbd{Mod(m,N)}.
\item via a \var{znstar} structure describing the abelian group
$(\Z/N\Z)^{*}$, where the character is given in terms of the \var{znstar}
generators:
\bprog
? G = znstar(100, 1); \\ (Z/100Z)^*
? G.cyc \\ ~ Z/20 . g1 + Z/2 . g2 for some generators g1 and g2
%2 = [20, 2]
? G.gen
%3 = [77, 51]
? chi = [a, b] \\ maps g1 to e(a/20) and g2 to e(b/2); e(x) = exp(2ipi x)
@eprog\noindent
More generally, let $(\Z/N\Z)^{*} = \oplus (\Z/d_{j}\Z) g_{j}$ be given via a
\var{znstar} structure $G$ (\kbd{G.cyc} gives the $d_{j}$ and \kbd{G.gen} the
$g_{j}$). A \tev{character} $\chi$ on $G$ is given by a row vector
$v = [a_{1},\ldots,a_{n}]$ such that $\chi(\prod_{j} g_{j}^{n_{j}})
= \exp(2\pi i\sum_{j} a_{j} n_{j} / d_{j})$. The pair $[G, v]$ encodes the
\emph{primitive} character attached to $\chi$.
\item in fact, this construction $[G, m]$ describing a character
is more general: $m$ is also allowed to be a Conrey label as seen above,
or a Conrey logarithm (see \tet{znconreylog}), and the latter format is
actually the fastest one. Instead
of a single character as above, one may use the construction
\kbd{lfuncreate([G, vchi])} where \kbd{vchi} is a nonempty vector of
characters \emph{of the same conductor} (more precisely, whose attached
primitive characters have the same conductor) and \emph{same parity}.
The function is then vector-valued, where the values are ordered as the
characters in \kbd{vchi}. Conrey labels cannot be used in this last format
because of the need to distinguish a single character given by a row vector
of integers and a vector of characters given by their labels: use
\kbd{znconreylog(G,i)} first to convert a label to Conrey logarithm.
\item it is also possible to view Dirichlet characters as Hecke characters
over $K = \Q$ (see below), for a modulus $[N, [1]]$ but this is both more
complicated and less efficient.
In all cases, a nonprimitive character is replaced by the attached primitive
character.
\subsec{Hecke $L$-functions of finite order characters} %GPHELPskip
The Dedekind zeta function of a number field $K = \Q[X]/(T)$ is encoded
either by the defining polynomial $T$, or any absolute number fields
structure (a \var{nf} is enough).
An alternative description for the Dedekind zeta function of an Abelian
extension of a number field is to use class-field theory parameters
$[\var{bnr}, \var{subg}]$, see \kbd{bnrinit}.
\bprog
? bnf = bnfinit(a^2 - a - 9);
? bnr = bnrinit(bnf, [2, [0,0]]); subg = Mat(3);
? L = lfuncreate([bnr, subg]);
@eprog
Let $K$ be a number field given as a \kbd{bnfinit}.
Given a finite order Hecke character $\chi: Cl_{f}(K)\to \C$, we let
$$L(\chi, s) = \sum_{A \subset O_{K}} \chi(A)\, \left(N_{K/\Q}A\right)^{-s}.$$
Let $Cl_{f}(K) = \oplus (\Z/d_{j}\Z) g_{j}$ given by a \var{bnr} structure
with generators: the $d_{j}$ are given by \kbd{K.cyc} and the $g_{j}$ by
\kbd{K.gen}.
A \tev{character} $\chi$ on the ray class group is given by a row vector
$v = [a_{1},\ldots,a_{n}]$ such that $\chi(\prod_{j} g_{j}^{n_{j}})
= \exp(2\pi i\sum_{j} a_{j} n_{j} / d_{j})$. The pair $[\var{bnr}, v]$
encodes the \emph{primitive} character attached to $\chi$.
\bprog
? K = bnfinit(x^2-60);
? Cf = bnrinit(K, [7, [1,1]], 1); \\ f = 7 oo_1 oo_2
? Cf.cyc
%3 = [6, 2, 2]
? Cf.gen
%4 = [[2, 1; 0, 1], [22, 9; 0, 1], [-6, 7]~]
? lfuncreate([Cf, [1,0,0]]); \\@com $\chi(g_{1}) = \zeta_{6}$, $\chi(g_{2})=\chi(g_{3})=1$
@eprog
\noindent Dirichlet characters on $(\Z/N\Z)^{*}$ are a special case,
where $K = \Q$:
\bprog
? Q = bnfinit(x);
? Cf = bnrinit(Q, [100, [1]]); \\ for odd characters on (Z/100Z)*
@eprog\noindent
For even characters, replace by \kbd{bnrinit(K, N)}. Note that the simpler
direct construction in the previous section will be more efficient. Instead
of a single character as above, one may use the construction
\kbd{lfuncreate([Cf, vchi])} where \kbd{vchi} is a nonempty vector of
characters \emph{of the same conductor} (more precisely, whose attached
primitive characters have the same conductor). The function is then
vector-valued, where the values are ordered as the characters in \kbd{vchi}.
\subsec{General Hecke $L$-functions} \label{se:lfungchar} %GPHELPskip
Given a Hecke \tev{Grossencharacter} $\chi: \A^{\times}\to \C^{\times}$ of
conductor~$\goth{f}$, we let
$$L(\chi, s) = \sum_{A \subset \Z_{K},\ A+\goth{f}=\Z_{K}} \chi(A)\, \left(N_{K/\Q}A\right)^{-s}.$$
Let $C_{K}(\goth{m})=\A^{\times}/(K^{\times}\cdot U(\goth{m}))$ be an id\`ele class
group of modulus $\goth{m}$ given by a \var{gchar} structure~\var{gc} (see
\tet{gcharinit} and Section~\ref{se:GCHAR}).
A Grossencharacter $\chi$ on $C_{K}(\goth{m})$ is given by a row
vector of size \kbd{\#\var{gc}.cyc}.
\bprog
? gc = gcharinit(x^3+4*x-1,[5,[1]]); \\ mod = 5.oo
? gc.cyc
%3 = [4, 2, 0, 0]
? gcharlog(gc,idealprimedec(gc.bnf,5)[1]) \\@com logarithm map $C_{K}(\goth{m})\to \R^{n}$
? chi = [1,0,0,1,0]~;
? gcharduallog(gc,chi) \\@com row vector of coefficients in $\R^{n}$
? L = lfuncreate([gc,chi]); \\@com non algebraic $L$-function
? lfunzeros(L,1)
? lfuneuler(L,2) \\@com Euler factor at 2
@eprog
Finite order Hecke characters are a special case.
\subsec{Artin $L$ functions} %GPHELPskip
Given a Galois number field $N/\Q$ with group $G = \kbd{galoisinit}(N)$,
a representation $\rho$ of $G$ over the cyclotomic field $\Q(\zeta_{n})$
is specified by the matrices giving the images of $\kbd{G.gen}$ by $\rho$.
The corresponding Artin $L$ function is created using \tet{lfunartin}.
\bprog
P = quadhilbert(-47); \\ degree 5, Galois group D_5
N = nfinit(nfsplitting(P)); \\ Galois closure
G = galoisinit(N);
[s,t] = G.gen; \\ order 5 and 2
L = lfunartin(N,G, [[a,0;0,a^-1],[0,1;1,0]], 5); \\ irr. degree 2
@eprog\noindent In the above, the polynomial variable (here \kbd{a}) represents
$\zeta_{5} := \exp(2i\pi/5)$ and the two matrices give the images of
$s$ and $t$. Here, priority of \kbd{a} must be lower than the priority
of \kbd{x}.
\subsec{$L$-functions of algebraic varieties} %GPHELPskip
$L$-function of elliptic curves over number fields are supported.
\bprog
? E = ellinit([1,1]);
? L = lfuncreate(E); \\ L-function of E/Q
? E2 = ellinit([1,a], nfinit(a^2-2));
? L2 = lfuncreate(E2); \\ L-function of E/Q(sqrt(2))
@eprog
$L$-function of hyperelliptic genus-$2$ curve can be created with
\kbd{lfungenus2}. To create the $L$ function of the curve
$y^{2}+(x^{3}+x^{2}+1)y = x^{2}+x$:
\bprog
? L = lfungenus2([x^2+x, x^3+x^2+1]);
@eprog
Currently, the model needs to be minimal at $2$, and if the conductor is even,
its valuation at $2$ might be incorrect (a warning is issued).
\subsec{Eta quotients / Modular forms} %GPHELPskip
An eta quotient is created by applying \tet{lfunetaquo} to a matrix with
2 columns $[m, r_{m}]$ representing
$$ f(\tau) := \prod_{m} \eta(m\tau)^{r_{m}}. $$
It is currently assumed that $f$ is a self-dual cuspidal form on
$\Gamma_{0}(N)$ for some $N$.
For instance, the $L$-function $\sum \tau(n) n^{-s}$
attached to Ramanujan's $\Delta$ function is encoded as follows
\bprog
? L = lfunetaquo(Mat([1,24]));
? lfunan(L, 100) \\ first 100 values of tau(n)
@eprog
More general modular forms defined by modular symbols will be added later.
\subsec{Low-level Ldata format} %GPHELPskip
When no direct constructor is available, you can still input an $L$ function
directly by supplying $[a, a^{*},A, k, N, \epsilon, r]$ to \kbd{lfuncreate}
(see \kbd{??lfuncreate} for details).
It is \emph{strongly} suggested to first check consistency of the created
$L$-function:
\bprog
? L = lfuncreate([a, as, A, k, N, eps, r]);
? lfuncheckfeq(L) \\ check functional equation
@eprog
\subsec{lfun$(L,s,\{D=0\})$}\kbdsidx{lfun}\label{se:lfun}
Compute the L-function value $L(s)$, or if \kbd{D} is set, the
derivative of order \kbd{D} at $s$. The parameter
\kbd{L} is either an Lmath, an Ldata (created by \kbd{lfuncreate}, or an
Linit (created by \kbd{lfuninit}), preferrably the latter if many values
are to be computed.
The argument $s$ is also allowed to be a power series; for instance, if $s =
\alpha + x + O(x^{n})$, the function returns the Taylor expansion of order $n$
around $\alpha$. The result is given with absolute error less than $2^{-B}$,
where $B = \text{realbitprecision}$.
\misctitle{Caveat} The requested precision has a major impact on runtimes.
It is advised to manipulate precision via \tet{realbitprecision} as
explained above instead of \tet{realprecision} as the latter allows less
granularity: \kbd{realprecision} increases by increments of 64 bits, i.e. 19
decimal digits at a time.
\bprog
? lfun(x^2+1, 2) \\ Lmath: Dedekind zeta for Q(i) at 2
%1 = 1.5067030099229850308865650481820713960
? L = lfuncreate(ellinit("5077a1")); \\ Ldata: Hasse-Weil zeta function
? lfun(L, 1+x+O(x^4)) \\ zero of order 3 at the central point
%3 = 0.E-58 - 5.[...] E-40*x + 9.[...] E-40*x^2 + 1.7318[...]*x^3 + O(x^4)
\\ Linit: zeta(1/2+it), |t| < 100, and derivative
? L = lfuninit(1, [100], 1);
? T = lfunzeros(L, [1,25]);
%5 = [14.134725[...], 21.022039[...]]
? z = 1/2 + I*T[1];
? abs( lfun(L, z) )
%7 = 8.7066865533412207420780392991125136196 E-39
? abs( lfun(L, z, 1) )
%8 = 0.79316043335650611601389756527435211412 \\ simple zero
@eprog
The library syntax is \fun{GEN}{lfun0}{GEN L, GEN s, long D, long bitprec}.
\subsec{lfunan$(L,n)$}\kbdsidx{lfunan}\label{se:lfunan}
Compute the first $n$ terms of the Dirichlet series attached to the
$L$-function given by \kbd{L} (\kbd{Lmath}, \kbd{Ldata} or \kbd{Linit}).
\bprog
? lfunan(1, 10) \\ Riemann zeta
%1 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
? lfunan(5, 10) \\ Dirichlet L-function for kronecker(5,.)
%2 = [1, -1, -1, 1, 0, 1, -1, -1, 1, 0]
@eprog
The library syntax is \fun{GEN}{lfunan}{GEN L, long n, long prec}.
\subsec{lfunartin$(\var{nf},\var{gal},\var{rho},n)$}\kbdsidx{lfunartin}\label{se:lfunartin}
Returns the \kbd{Ldata} structure attached to the
Artin $L$-function provided by the representation $\rho$ of the Galois group
of the extension $K/\Q$, defined over the cyclotomic field $\Q(\zeta_{n})$,
where \var{nf} is the nfinit structure attached to $K$,
\var{gal} is the galoisinit structure attached to $K/\Q$, and \var{rho} is
given either
\item by the values of its character on the conjugacy classes
(see \kbd{galoisconjclasses} and \kbd{galoischartable})
\item or by the matrices that are the images of the generators
\kbd{\var{gal}.gen}.
Cyclotomic numbers in \kbd{rho} are represented by polynomials, whose
variable is understood as the complex number $\exp(2\*i\*\pi/n)$.
In the following example we build the Artin $L$-functions attached to the two
irreducible degree $2$ representations of the dihedral group $D_{10}$ defined
over $\Q(\zeta_{5})$, for the extension $H/\Q$ where $H$ is the Hilbert class
field of $\Q(\sqrt{-47})$.
We show numerically some identities involving Dedekind $\zeta$ functions and
Hecke $L$ series.
\bprog
? P = quadhilbert(-47)
%1 = x^5 + 2*x^4 + 2*x^3 + x^2 - 1
? N = nfinit(nfsplitting(P));
? G = galoisinit(N); \\ D_10
? [T,n] = galoischartable(G);
? T \\ columns give the irreducible characters
%5 =
[1 1 2 2]
[1 -1 0 0]
[1 1 -y^3 - y^2 - 1 y^3 + y^2]
[1 1 y^3 + y^2 -y^3 - y^2 - 1]
? n
%6 = 5
? L2 = lfunartin(N,G, T[,2], n);
? L3 = lfunartin(N,G, T[,3], n);
? L4 = lfunartin(N,G, T[,4], n);
? s = 1 + x + O(x^4);
? lfun(-47,s) - lfun(L2,s)
%11 ~ 0
? lfun(1,s)*lfun(-47,s)*lfun(L3,s)^2*lfun(L4,s)^2 - lfun(N,s)
%12 ~ 0
? lfun(1,s)*lfun(L3,s)*lfun(L4,s) - lfun(P,s)
%13 ~ 0
? bnr = bnrinit(bnfinit(x^2+47),1,1);
? bnr.cyc
%15 = [5] \\ Z/5Z: 4 nontrivial ray class characters
? lfun([bnr,[1]], s) - lfun(L3, s)
%16 ~ 0
? lfun([bnr,[2]], s) - lfun(L4, s)
%17 ~ 0
? lfun([bnr,[3]], s) - lfun(L3, s)
%18 ~ 0
? lfun([bnr,[4]], s) - lfun(L4, s)
%19 ~ 0
@eprog
The first identity identifies the nontrivial abelian character with
$(-47,\cdot)$; the second is the factorization of the regular representation of
$D_{10}$; the third is the factorization of the natural representation of
$D_{10}\subset S_{5}$; and the final four are the expressions of the degree $2$
representations as induced from degree $1$ representations.
The library syntax is \fun{GEN}{lfunartin}{GEN nf, GEN gal, GEN rho, long n, long bitprec}.
\subsec{lfuncheckfeq$(L,\{t\})$}\kbdsidx{lfuncheckfeq}\label{se:lfuncheckfeq}
Given the data attached to an $L$-function (\kbd{Lmath}, \kbd{Ldata}
or \kbd{Linit}), check whether the functional equation is satisfied.
This is most useful for an \kbd{Ldata} constructed ``by hand'', via
\kbd{lfuncreate}, to detect mistakes.
If the function has poles, the polar part must be specified. The routine
returns a bit accuracy $b$ such that $|w - \hat{w}| < 2^{b}$, where $w$ is
the root number contained in \kbd{data}, and
$$\hat{w} = \theta(1/t) t^{-k} / \overline{\theta}(t)$$ is a computed value
derived from the assumed functional equation.
Of course, the expected result is a large negative value of the order of
\kbd{realbitprecision}. But if $\overline{\theta}$ is very small
at $t$, you should first increase \kbd{realbitprecision} by
$-\log_{2} |\overline{\theta}(t)|$, which is
positive if $\theta$ is small, to get a meaningful result.
Note that $t$ should be close to the unit disc for efficiency and such that
$\overline{\theta}(t) \neq 0$. If the parameter $t$ is omitted, we check the
functional equation at the ``random'' complex number $t = 335/339 + I/7$.
\bprog
? \pb 128 \\ 128 bits of accuracy
? default(realbitprecision)
%1 = 128
? L = lfuncreate(1); \\ Riemann zeta
? lfuncheckfeq(L)
%3 = -124
@eprog\noindent i.e. the given data is consistent to within 4 bits for the
particular check consisting of estimating the root number from all other
given quantities. Checking away from the unit disc will either fail with
a precision error, or give disappointing results (if $\theta(1/t)$ is
large it will be computed with a large absolute error)
\bprog
? lfuncheckfeq(L, 2+I)
%4 = -115
? lfuncheckfeq(L,10)
*** at top-level: lfuncheckfeq(L,10)
*** ^------------------
*** lfuncheckfeq: precision too low in lfuncheckfeq.
@eprog
\misctitle{The case of Dedekind zeta functions} Dedekind zeta function for
a number field $K = \Q[X]/(T)$ is in general computed
(assuming Artin conjecture) as $(\zeta_{K}/\zeta_{k}) \times \zeta_{k}$,
where $k$ is a
maximal subfield, applied recursively if possible. When $K/\Q$ is Galois,
the zeta function is directly decomposed as a product of Artin
$L$-functions.
These decompositions are computed when \kbd{lfuninit} is called. The
behavior of \kbd{lfuncheckfeq} is then different depending of its argument
\item the artificial query \kbd{lfuncheckfeq}$(T)$ serves little purpose
since we already know that the technical parameters are theoretically
correct; we just obtain an estimate on the accuracy they allow. This is
computed directly, without using the above decomposition. And is likely to
be very costly if the degree of $T$ is large, possibly overflowing the
possibilities of the implementation.
\item a query \kbd{L = lfuninit(T, ...); lfuncheckfeq(L)} on the other hand
returns the maximum of the \kbd{lfuncheckfeq} values for all involved
$L$-functions, giving a general consistency check and again an estimate
for the accuracy of computed values.
At the default accuracy of 128 bits:
\bprog
? T = polcyclo(43);
? lfuncheckfeq(T);
*** at top-level: lfuncheckfeq(T)
*** ^---------------
*** lfuncheckfeq: overflow in lfunthetacost.
? lfuncheckfeq(lfuninit(T, [2]))
time = 107 ms.
%2 = -122
@eprog
The library syntax is \fun{long}{lfuncheckfeq}{GEN L, GEN t = NULL, long bitprec}.
\subsec{lfunconductor$(L,\{\var{setN}=10000\},\{\fl=0\})$}\kbdsidx{lfunconductor}\label{se:lfunconductor}
Computes the conductor of the given $L$-function (if the structure
contains a conductor, it is ignored). Two methods are available,
depending on what we know about the conductor, encoded in the \kbd{setN}
parameter:
\item \kbd{setN} is a scalar: we know nothing but expect that the conductor
lies in the interval $[1, \kbd{setN}]$.
If $\fl$ is $0$ (default), gives either the conductor found as an
integer, or a vector (possibly empty) of conductors found. If $\fl$ is
$1$, same but gives the computed floating point approximations to the
conductors found, without rounding to integers. It $\fl$ is $2$, gives
all the conductors found, even those far from integers.
\misctitle{Caveat} This is a heuristic program and the result is not
proven in any way:
\bprog
? L = lfuncreate(857); \\ Dirichlet L function for kronecker(857,.)
? \p19
realprecision = 19 significant digits
? lfunconductor(L)
%2 = [17, 857]
? lfunconductor(L,,1) \\ don't round
%3 = [16.99999999999999999, 857.0000000000000000]
? \p38
realprecision = 38 significant digits
? lfunconductor(L)
%4 = 857
@eprog\noindent Increasing \kbd{setN} or increasing \kbd{realbitprecision}
slows down the program but gives better accuracy for the result. This
algorithm should only be used if the primes dividing the conductor are
unknown, which is uncommon.
\item \kbd{setN} is a vector of possible conductors; for instance
of the form \kbd{D1 * divisors(D2)}, where $D_{1}$ is the known part
of the conductor and $D_{2}$ is a multiple of the contribution of the
bad primes.
In that case, $\fl$ is ignored and the routine uses \kbd{lfuncheckfeq}.
It returns $[N,e]$ where $N$ is the best conductor in the list and $e$ is the
value of \kbd{lfuncheckfeq} for that $N$. When no suitable conductor exist or
there is a tie among best potential conductors, return the empty vector
\kbd{[]}.
\bprog
? E = ellinit([0,0,0,4,0]); /* Elliptic curve y^2 = x^3+4x */
? E.disc \\ |disc E| = 2^12
%2 = -4096
\\ create Ldata by hand. Guess that root number is 1 and conductor N
? L(N) = lfuncreate([n->ellan(E,n), 0, [0,1], 2, N, 1]);
\\ lfunconductor ignores conductor = 1 in Ldata !
? lfunconductor(L(1), divisors(E.disc))
%5 = [32, -127]
? fordiv(E.disc, d, print(d,": ",lfuncheckfeq(L(d)))) \\ direct check
1: 0
2: 0
4: -1
8: -2
16: -3
32: -127
64: -3
128: -2
256: -2
512: -1
1024: -1
2048: 0
4096: 0
@eprog\noindent The above code assumed that root number was $1$;
had we set it to $-1$, none of the \kbd{lfuncheckfeq} values would have been
acceptable:
\bprog
? L2 = lfuncreate([n->ellan(E,n), 0, [0,1], 2, 0, -1]);
? lfunconductor(L2, divisors(E.disc))
%7 = []
@eprog
The library syntax is \fun{GEN}{lfunconductor}{GEN L, GEN setN = NULL, long flag, long bitprec}.
\subsec{lfuncost$(L,\{\var{sdom}\},\{\var{der}=0\})$}\kbdsidx{lfuncost}\label{se:lfuncost}
Estimate the cost of running
\kbd{lfuninit(L,sdom,der)} at current bit precision, given by a vector
$[t, b]$.
\item If $L$ contains the root number, indicate that $t$ coefficients $a_{n}$
will be computed, as well as $t$ values of \tet{gammamellininv}, all at bit
accuracy $b$. A subsequent call to \kbd{lfun} at $s$ evaluates a polynomial
of degree $t$ at $\exp(h s)$ for some real parameter $h$, at the same bit
accuracy $b$.
\item If the root number is \emph{not} known, then more values of $a_{n}$ may
be needed in order to compute it, and the returned value of $t$ takes this
into account (it may not be the exact value in this case but is always
an upper bound). Fewer than $t$ \kbd{gammamellininv} will be needed, and
a call to \kbd{lfun} evaluates a polynomial of degree less that $t$, still
at bit accuracy $b$.
If $L$ is already an \kbd{Linit}, then \var{sdom} and \var{der} are ignored
and are best left omitted; the bit accuracy is also inferred from $L$: in
short we get an estimate of the cost of using that particular \kbd{Linit}.
Note that in this case, the root number is always already known and you get
the right value of $t$ (corresponding to the number of past calls to
\kbd{gammamellinv} and the actual degree of the evaluated polynomial).
\bprog
? \pb 128
? lfuncost(1, [100]) \\ for zeta(1/2+I*t), |t| < 100
%1 = [7, 242] \\ 7 coefficients, 242 bits
? lfuncost(1, [1/2, 100]) \\ for zeta(s) in the critical strip, |Im s| < 100
%2 = [7, 246] \\ now 246 bits
? lfuncost(1, [100], 10) \\ for zeta(1/2+I*t), |t| < 100
%3 = [8, 263] \\ 10th derivative increases the cost by a small amount
? lfuncost(1, [10^5])
%3 = [158, 113438] \\ larger imaginary part: huge accuracy increase
? L = lfuncreate(polcyclo(5)); \\ Dedekind zeta for Q(zeta_5)
? lfuncost(L, [100]) \\ at s = 1/2+I*t), |t| < 100
%5 = [11457, 582]
? lfuncost(L, [200]) \\ twice higher
%6 = [36294, 1035]
? lfuncost(L, [10^4]) \\ much higher: very costly !
%7 = [70256473, 45452]
? \pb 256
? lfuncost(L, [100]); \\ doubling bit accuracy is cheaper
%8 = [17080, 710]
? \p38
? K = bnfinit(y^2 - 4493); [P] = idealprimedec(K,1123); f = [P,[1,1]];
? R = bnrinit(K, f); R.cyc
%10 = [1122]
? L = lfuncreate([R, [7]]); \\ Hecke L-function
? L[6]
%12 = 0 \\ unknown root number
? \pb 3000
? lfuncost(L, [0], 1)
%13 = [1171561, 3339]
? L = lfuninit(L, [0], 1);
time = 1min, 56,426 ms.
? lfuncost(L)
%14 = [826966, 3339]
@eprog\noindent In the final example, the root number was unknown and
extra coefficients $a_{n}$ were needed to compute it ($1171561$). Once the
initialization is performed we obtain the lower value $t = 826966$, which
corresponds to the number of \kbd{gammamellinv} computed and the actual
degree of the polynomial to be evaluated to compute a value within the
prescribed domain.
Finally, some $L$ functions can be factorized algebraically
by the \kbd{lfuninit} call, e.g. the Dedekind zeta function of abelian
fields, leading to much faster evaluations than the above upper bounds.
In that case, the function returns a vector of costs as above for each
individual function in the product actually evaluated:
\bprog
? L = lfuncreate(polcyclo(5)); \\ Dedekind zeta for Q(zeta_5)
? lfuncost(L, [100]) \\ a priori cost
%2 = [11457, 582]
? L = lfuninit(L, [100]); \\ actually perform all initializations
? lfuncost(L)
%4 = [[16, 242], [16, 242], [7, 242]]
@eprog\noindent The Dedekind function of this abelian quartic field
is the product of four Dirichlet $L$-functions attached to the trivial
character, a nontrivial real character and two complex conjugate
characters. The nontrivial characters happen to have the same conductor
(hence same evaluation costs), and correspond to two evaluations only
since the two conjugate characters are evaluated simultaneously.
For a total of three $L$-functions evaluations, which explains the three
components above. Note that the actual cost is much lower than the a priori
cost in this case.
The library syntax is \fun{GEN}{lfuncost0}{GEN L, GEN sdom = NULL, long der, long bitprec}.
Also available is
\fun{GEN}{lfuncost}{GEN L, GEN dom, long der, long bitprec}
when $L$ is \emph{not} an \kbd{Linit}; the return value is a \typ{VECSMALL}
in this case.
\subsec{lfuncreate$(\var{obj})$}\kbdsidx{lfuncreate}\label{se:lfuncreate}
This low-level routine creates \tet{Ldata} structures, needed by
\var{lfun} functions, describing an $L$-function and its functional equation.
We advise using a high-level constructor when one is available, see
\kbd{??lfun}, and this function accepts them:
\bprog
? L = lfuncreate(1); \\ Riemann zeta
? L = lfuncreate(5); \\ Dirichlet L-function for quadratic character (5/.)
? L = lfuncreate(x^2+1); \\ Dedekind zeta for Q(i)
? L = lfuncreate(ellinit([0,1])); \\ L-function of E/Q: y^2=x^3+1
@eprog\noindent One can then use, e.g., \kbd{lfun(L,s)} to directly
evaluate the respective $L$-functions at $s$, or \kbd{lfuninit(L, [c,w,h]}
to initialize computations in the rectangular box $\Re(s-c) \leq w$,
$\Im(s) \leq h$.
We now describe the low-level interface, used to input nonbuiltin
$L$-functions. The input is now a $6$ or $7$ component vector
$V=[a, astar, Vga, k, N, eps, poles]$, whose components are as follows:
\item \kbd{V[1]=a} encodes the Dirichlet series coefficients $(a_{n})$. The
preferred format is a closure of arity 1: \kbd{n->vector(n,i,a(i))} giving
the vector of the first $n$ coefficients. The closure is allowed to return
a vector of more than $n$ coefficients (only the first $n$ will be
considered) or even less than $n$, in which case loss of accuracy will occur
and a warning that \kbd{\#an} is less than expected is issued. This
allows to precompute and store a fixed large number of Dirichlet
coefficients in a vector $v$ and use the closure \kbd{n->v}, which
does not depend on $n$. As a shorthand for this latter case, you can input
the vector $v$ itself instead of the closure.
\bprog
? z = lfuncreate([n->vector(n,i,1), 1, [0], 1, 1, 1, 1]); \\ Riemann zeta
? lfun(z,2) - Pi^2/6
%2 = -5.877471754111437540 E-39
@eprog
A second format is limited to $L$-functions affording an
Euler product. It is a closure of arity 2 \kbd{(p,d)->F(p)} giving the
local factor $L_{p}(X)$ at $p$ as a rational function, to be evaluated at
$p^{-s}$ as in \kbd{direuler}; $d$ is set to \kbd{logint}$(n,p)$ + 1, where
$n$ is the total number of Dirichlet coefficients $(a_{1},\dots,a_{n})$ that will
be computed. In other words, the smallest integer $d$ such that $p^{d} > n$.
This parameter $d$ allows to compute only part of
$L_{p}$ when $p$ is large and $L_{p}$ expensive to compute: any polynomial
(or \typ{SER}) congruent to $L_{p}$ modulo $X^{d}$ is acceptable since only
the coefficients of $X^{0}, \dots, X^{d-1}$ are needed to expand the Dirichlet
series. The closure can of course ignore this parameter:
\bprog
? z = lfuncreate([(p,d)->1/(1-x), 1, [0], 1, 1, 1, 1]); \\ Riemann zeta
? lfun(z,2) - Pi^2/6
%4 = -5.877471754111437540 E-39
@eprog\noindent
One can describe separately the generic local factors coefficients
and the bad local factors by setting $\kbd{dir} = [F, L_{bad}]$,
were $L_{bad} = [[p_{1},L_{p_{1}}], \dots,[p_{k},L_{p_{k}}]]$, where $F$
describes the generic local factors as above, except that when $p = p_{i}$
for some $i \leq k$, the coefficient $a_{p}$ is directly set to $L_{p_{i}}$
instead of calling $F$.
\bprog
N = 15;
E = ellinit([1, 1, 1, -10, -10]); \\ = "15a1"
F(p,d) = 1 / (1 - ellap(E,p)*'x + p*'x^2);
Lbad = [[3, 1/(1+'x)], [5, 1/(1-'x)]];
L = lfuncreate([[F,Lbad], 0, [0,1], 2, N, ellrootno(E)]);
@eprog\noindent Of course, in this case, \kbd{lfuncreate(E)} is preferable!
\item \kbd{V[2]=astar} is the Dirichlet series coefficients of the dual
function, encoded as \kbd{a} above. The sentinel values $0$ and $1$ may
be used for the special cases where $a = a^{*}$ and $a = \overline{a^{*}}$,
respectively.
\item \kbd{V[3]=Vga} is the vector of $\alpha_{j}$ such that the gamma
factor of the $L$-function is equal to
$$\gamma_{A}(s)=\prod_{1\le j\le d}\Gamma_{\R}(s+\alpha_{j}),$$
where $\Gamma_{\R}(s)=\pi^{-s/2}\Gamma(s/2)$.
This same syntax is used in the \kbd{gammamellininv} functions.
In particular the length $d$ of \kbd{Vga} is the degree of the $L$-function.
In the present implementation, the $\alpha_{j}$ are assumed to be exact
rational numbers. However when calling theta functions with \emph{complex}
(as opposed to real) arguments, determination problems occur which may
give wrong results when the $\alpha_{j}$ are not integral.
\item \kbd{V[4]=k} is a positive integer $k$. The functional equation relates
values at $s$ and $k-s$. For instance, for an Artin $L$-series such as a
Dedekind zeta function we have $k = 1$, for an elliptic curve $k = 2$, and
for a modular form, $k$ is its weight. For motivic $L$-functions, the
\emph{motivic} weight $w$ is $w = k-1$.
By default we assume that $a_{n} = O_{\epsilon}(n^{k_{1}+\epsilon})$, where
$k_{1} = w$ and even $k_{1} = w/2$ when the $L$ function has no pole
(Ramanujan-Petersson). If this is not the case, you can replace the
$k$ argument by a vector $[k,k_{1}]$, where $k_{1}$ is the upper bound you can
assume.
\item \kbd{V[5]=N} is the conductor, an integer $N\ge1$, such that
$\Lambda(s)=N^{s/2}\gamma_{A}(s)L(s)$ with $\gamma_{A}(s)$ as above.
\item \kbd{V[6]=eps} is the root number $\varepsilon$, i.e., the
complex number (usually of modulus $1$) such that
$\Lambda(a, k-s) = \varepsilon \Lambda(a^{*}, s)$.
\item The last optional component \kbd{V[7]=poles} encodes the poles of the
$L$ or $\Lambda$-functions, and is omitted if they have no poles.
A polar part is given by a list of $2$-component vectors
$[\beta,P_{\beta}(x)]$, where
$\beta$ is a pole and the power series $P_{\beta}(x)$ describes
the attached polar part, such that $L(s) - P_{\beta}(s-\beta)$ is holomorphic
in a neighbourhood of $\beta$. For instance $P_{\beta} = r/x+O(1)$ for a
simple pole at $\beta$ or $r_{1}/x^{2}+r_{2}/x+O(1)$ for a double pole.
The type of the list describing the polar part allows to distinguish between
$L$ and $\Lambda$: a \typ{VEC} is attached to $L$, and a \typ{COL}
is attached to $\Lambda$. Unless $a = \overline{a^{*}}$ (coded by \kbd{astar}
equal to $0$ or $1$), it is mandatory to specify the polar part of $\Lambda$
rather than those of $L$ since the poles of $L^{*}$ cannot be infered from the
latter ! Whereas the functional equation allows to deduce the polar part of
$\Lambda^{*}$ from the polar part of $\Lambda$.
Finally, if $a = \overline{a^{*}}$, we allow a shortcut to describe
the frequent situation where $L$ has at most simple pole, at $s = k$,
with residue $r$ a complex scalar: you may then input $\kbd{poles} = r$.
This value $r$ can be set to $0$ if unknown and it will be computed.
\misctitle{When one component is not exact}
Alternatively, \kbd{obj} can be a closure of arity $0$ returning the above
vector to the current real precision. This is needed if some components
are not available exactly but only through floating point approximations.
The closure allows algorithms to recompute them to higher accuracy when
needed. Compare
\bprog
? Ld1() = [n->lfunan(Mod(2,7),n),1,[0],1,7,((-13-3*sqrt(-3))/14)^(1/6)];
? Ld2 = [n->lfunan(Mod(2,7),n),1,[0],1,7,((-13-3*sqrt(-3))/14)^(1/6)];
? L1 = lfuncreate(Ld1);
? L2 = lfuncreate(Ld2);
? lfun(L1,1/2+I*200) \\ OK
%5 = 0.55943925130316677665287870224047183265 -
0.42492662223174071305478563967365980756*I
? lfun(L2,1/2+I*200) \\ all accuracy lost
%6 = 0.E-38 + 0.E-38*I
@eprog\noindent
The accuracy lost in \kbd{Ld2} is due to the root number being given to
an insufficient precision. To see what happens try
\bprog
? Ld3() = printf("prec needed: %ld bits",getlocalbitprec());Ld1()
? L3 = lfuncreate(Ld3);
prec needed: 64 bits
? z3 = lfun(L3,1/2+I*200)
prec needed: 384 bits
%16 = 0.55943925130316677665287870224047183265 -
0.42492662223174071305478563967365980756*I
@eprog
The library syntax is \fun{GEN}{lfuncreate}{GEN obj}.
\subsec{lfundiv$(\var{L1},\var{L2})$}\kbdsidx{lfundiv}\label{se:lfundiv}
Creates the \kbd{Ldata} structure (without initialization) corresponding
to the quotient of the Dirichlet series $L_{1}$ and $L_{2}$ given by
\kbd{L1} and \kbd{L2}. Assume that $v_{z}(L_{1}) \geq v_{z}(L_{2})$ at all
complex numbers $z$: the construction may not create new poles, nor increase
the order of existing ones.
The library syntax is \fun{GEN}{lfundiv}{GEN L1, GEN L2, long bitprec}.
\subsec{lfundual$(L)$}\kbdsidx{lfundual}\label{se:lfundual}
Creates the \kbd{Ldata} structure (without initialization) corresponding
to the dual L-function $\hat{L}$ of $L$. If $k$ and $\varepsilon$ are
respectively the weight and root number of $L$, then the following formula
holds outside poles, up to numerical errors:
$$\Lambda(L, s) = \varepsilon \Lambda(\hat{L}, k - s).$$
\bprog
? L = lfunqf(matdiagonal([1,2,3,4]));
? eps = lfunrootres(L)[3]; k = L[4];
? M = lfundual(L); lfuncheckfeq(M)
%3 = -127
? s= 1+Pi*I;
? a = lfunlambda(L,s);
? b = eps * lfunlambda(M,k-s);
? exponent(a - b)
%7 = -130
@eprog
The library syntax is \fun{GEN}{lfundual}{GEN L, long bitprec}.
\subsec{lfunetaquo$(M)$}\kbdsidx{lfunetaquo}\label{se:lfunetaquo}
Returns the \kbd{Ldata} structure attached to the $L$ function
attached to the modular form
$z\mapsto \prod_{i=1}^{n} \eta(M_{i,1}\*z)^{M_{i,2}}$
It is currently assumed that $f$ is a self-dual cuspidal form on
$\Gamma_{0}(N)$ for some $N$.
For instance, the $L$-function $\sum \tau(n) n^{-s}$
attached to Ramanujan's $\Delta$ function is encoded as follows
\bprog
? L = lfunetaquo(Mat([1,24]));
? lfunan(L, 100) \\ first 100 values of tau(n)
@eprog\noindent For convenience, a \typ{VEC} is also accepted instead of
a factorization matrix with a single row:
\bprog
? L = lfunetaquo([1,24]); \\ same as above
@eprog
The library syntax is \fun{GEN}{lfunetaquo}{GEN M}.
\subsec{lfuneuler$(L,p)$}\kbdsidx{lfuneuler}\label{se:lfuneuler}
Return the Euler factor at $p$ of the
$L$-function given by \kbd{L} (\kbd{Lmath}, \kbd{Ldata} or \kbd{Linit}),
assuming the $L$-function admits an Euler product factorization and that it
can be determined.
\bprog
? E=ellinit([1,3]);
? lfuneuler(E,7)
%2 = 1/(7*x^2-2*x+1)
? L=lfunsympow(E,2);
? lfuneuler(L,11)
%4 = 1/(-1331*x^3+275*x^2-25*x+1)
@eprog
The library syntax is \fun{GEN}{lfuneuler}{GEN L, GEN p, long prec}.
\subsec{lfungenus2$(F)$}\kbdsidx{lfungenus2}\label{se:lfungenus2}
Returns the \kbd{Ldata} structure attached to the $L$ function
attached to the genus-2 curve defined by $y^{2}=F(x)$ or
$y^{2}+Q(x)\*y=P(x)$ if $F=[P,Q]$.
Currently, if the conductor is even, its valuation at $2$ might be incorrect
(a warning is issued).
The library syntax is \fun{GEN}{lfungenus2}{GEN F}.
\subsec{lfunhardy$(L,t)$}\kbdsidx{lfunhardy}\label{se:lfunhardy}
Variant of the Hardy $Z$-function given by \kbd{L}, used for
plotting or locating zeros of $L(k/2+it)$ on the critical line.
The precise definition is as
follows: let $k/2$ be the center of the critical strip, $d$ be the
degree, $\kbd{Vga} = (\alpha_{j})_{j\leq d}$ given the gamma factors,
and $\varepsilon$ be the root number; we set
$s = k/2+it = \rho e^{i\theta}$ and
$2E = d(k/2-1) + \Re(\sum_{1\le j\le d}\alpha_{j})$. Assume first that
$\Lambda$ is self-dual, then the computed function at $t$ is equal to
$$Z(t) = \varepsilon^{-1/2}\Lambda(s) \cdot \rho^{-E}e^{dt\theta/2}\;,$$
which is a real function of $t$
vanishing exactly when $L(k/2+it)$ does on the critical line. The
normalizing factor $|s|^{-E}e^{dt\theta/2}$ compensates the
exponential decrease of $\gamma_{A}(s)$ as $t\to\infty$ so that
$Z(t) \approx 1$. For non-self-dual $\Lambda$, the definition is the same
except we drop the $\varepsilon^{-1/2}$ term (which is not well defined since
it depends on the chosen dual sequence $a^{*}(n)$): $Z(t)$ is still of the
order of $1$ and still vanishes where $L(k/2+it)$ does, but it needs no
longer be real-valued.
\bprog
? T = 100; \\ maximal height
? L = lfuninit(1, [T]); \\ initialize for zeta(1/2+it), |t|<T
? \p19 \\ no need for large accuracy
? ploth(t = 0, T, lfunhardy(L,t))
@eprog\noindent Using \kbd{lfuninit} is critical for this particular
applications since thousands of values are computed. Make sure to initialize
up to the maximal $t$ needed: otherwise expect to see many warnings for
unsufficient initialization and suffer major slowdowns.
The library syntax is \fun{GEN}{lfunhardy}{GEN L, GEN t, long bitprec}.
\subsec{lfuninit$(L,\var{sdom},\{\var{der}=0\})$}\kbdsidx{lfuninit}\label{se:lfuninit}
Initalization function for all functions linked to the
computation of the $L$-function $L(s)$ encoded by \kbd{L}, where
$s$ belongs to the rectangular domain $\kbd{sdom} = [\var{center},w,h]$
centered on the real axis, $|\Re(s)-\var{center}| \leq w$, $|\Im(s)| \leq h$,
where all three components of \kbd{sdom} are real and $w$, $h$ are
nonnegative. \kbd{der} is the maximum order of derivation that will be used.
The subdomain $[k/2, 0, h]$ on the critical line (up to height $h$)
can be encoded as $[h]$ for brevity. The subdomain $[k/2, w, h]$
centered on the critical line can be encoded as $[w, h]$ for brevity.
The argument \kbd{L} is an \kbd{Lmath}, an \kbd{Ldata} or an \kbd{Linit}. See
\kbd{??Ldata} and \kbd{??lfuncreate} for how to create it.
The height $h$ of the domain is a \emph{crucial} parameter: if you only
need $L(s)$ for real $s$, set $h$ to~0.
The running time is roughly proportional to
$$(B / d+\pi h/4)^{d/2+3}N^{1/2},$$
where $B$ is the default bit accuracy, $d$ is the degree of the
$L$-function, and $N$ is the conductor (the exponent $d/2+3$ is reduced
to $d/2+2$ when $d=1$ and $d=2$). There is also a dependency on $w$,
which is less crucial, but make sure to use the smallest rectangular
domain that you need.
\bprog
? L0 = lfuncreate(1); \\ Riemann zeta
? L = lfuninit(L0, [1/2, 0, 100]); \\ for zeta(1/2+it), |t| < 100
? lfun(L, 1/2 + I)
? L = lfuninit(L0, [100]); \\ same as above !
@eprog\noindent
\misctitle{Riemann-Siegel formula}
If $L$ is a function of degree $d = 1$, then a completely different
algorithm is implemented which can compute with complexity $N \sqrt{h}$ (for
fixed accuracy $B$). So it handles larger imaginary parts than the default
implementation. But this variant is less efficient when the imaginary part of
$s$ is tiny and the dependency in $B$ is still in $O(B^{2+1/2})$.
For such functions, you can use $\var{sdom} = \kbd{[]}$ to indicate that you
are only interested in relatively high imaginary parts and do not want to
perform any initialization:
\bprog
? L = lfuninit(1, []); \\ Riemann zeta
? #lfunzeros(L, [10^12, 10^12+1])
time = 1min, 31,496 ms.
%2 = 4
@eprog\noindent If you ask instead for
\kbd{lfuninit(1, [10\pow12+1])}, the initialization is restricted by some
cutoff value (depending on the conductor, but less than $10^4$ in any case):
up to that point, the standard algorithm is used (and uses the
initialization); and above the cutoff, we switch to Riemann-Siegel. Note that
this is quite wasteful if only values with imaginary parts larger than $10^4$
are needed.
The library syntax is \fun{GEN}{lfuninit0}{GEN L, GEN sdom, long der, long bitprec}.
\subsec{lfunlambda$(L,s,\{D=0\})$}\kbdsidx{lfunlambda}\label{se:lfunlambda}
Compute the completed $L$-function $\Lambda(s) = N^{s/2}\gamma(s)L(s)$,
or if \kbd{D} is set, the derivative of order \kbd{D} at $s$.
The parameter \kbd{L} is either an \kbd{Lmath}, an \kbd{Ldata} (created by
\kbd{lfuncreate}, or an \kbd{Linit} (created by \kbd{lfuninit}), preferrably the
latter if many values are to be computed.
The result is given with absolute error less than $2^{-B}|\gamma(s)N^{s/2}|$,
where $B = \text{realbitprecision}$.
The library syntax is \fun{GEN}{lfunlambda0}{GEN L, GEN s, long D, long bitprec}.
\subsec{lfunmfspec$(L)$}\kbdsidx{lfunmfspec}\label{se:lfunmfspec}
Let $L$ be the $L$-function attached to a modular eigenform $f$ of
weight $k$, as given by \kbd{lfunmf}. In even weight, returns
\kbd{[vo,ve,om,op]}, where \kbd{vo} (resp., \kbd{ve}) is the vector of odd
(resp., even) periods of $f$ and \kbd{om} and \kbd{op} the corresponding
real numbers $\omega^{-}$ and $\omega^{+}$ normalized in a noncanonical way.
In odd weight \kbd{om} is the same as \kbd{op} and we
return \kbd{[v,op]} where $v$ is the vector of all periods.
\bprog
? D = mfDelta(); mf = mfinit(D); L = lfunmf(mf, D);
? [vo, ve, om, op] = lfunmfspec(L)
%2 = [[1, 25/48, 5/12, 25/48, 1], [1620/691, 1, 9/14, 9/14, 1, 1620/691],\
0.0074154209298961305890064277459002287248,\
0.0050835121083932868604942901374387473226]
? DS = mfsymbol(mf, D); bestappr(om*op / mfpetersson(DS), 10^8)
%3 = 8192/225
? mf = mfinit([4, 9, -4], 0);
? F = mfeigenbasis(mf)[1]; L = lfunmf(mf, F);
? [v, om] = lfunmfspec(L)
%6 = [[1, 10/21, 5/18, 5/24, 5/24, 5/18, 10/21, 1],\
1.1302643192034974852387822584241400608]
? FS = mfsymbol(mf, F); bestappr(om^2 / mfpetersson(FS), 10^8)
%7 = 113246208/325
@eprog
The library syntax is \fun{GEN}{lfunmfspec}{GEN L, long bitprec}.
\subsec{lfunmul$(\var{L1},\var{L2})$}\kbdsidx{lfunmul}\label{se:lfunmul}
Creates the \kbd{Ldata} structure (without initialization) corresponding
to the product of the Dirichlet series given by \kbd{L1} and
\kbd{L2}.
The library syntax is \fun{GEN}{lfunmul}{GEN L1, GEN L2, long bitprec}.
\subsec{lfunorderzero$(L,\{m=-1\})$}\kbdsidx{lfunorderzero}\label{se:lfunorderzero}
Computes the order of the possible zero of the $L$-function at the
center $k/2$ of the critical strip; return $0$ if $L(k/2)$ does not vanish.
If $m$ is given and has a nonnegative value, assumes the order is at most $m$.
Otherwise, the algorithm chooses a sensible default:
\item if the $L$ argument is an \kbd{Linit}, assume that a multiple zero at
$s = k / 2$ has order less than or equal to the maximal allowed derivation
order.
\item else assume the order is less than $4$.
You may explicitly increase this value using optional argument~$m$; this
overrides the default value above. (Possibly forcing a recomputation
of the \kbd{Linit}.)
The library syntax is \fun{long}{lfunorderzero}{GEN L, long m, long bitprec}.
\subsec{lfunparams$(\var{ldata})$}\kbdsidx{lfunparams}\label{se:lfunparams}
Returns the parameters $[N, k, Vga]$ of the $L$-function
defined by \kbd{ldata}, corresponding respectively to
the conductor, the functional equation relating values at $s$ and $k-s$,
and the gamma shifts of the $L$-function (see \kbd{lfuncreate}). The gamma
shifts are returned to the current precision.
\bprog
? L = lfuncreate(1); /* Riemann zeta function */
? lfunparams(L)
%2 = [1, 1, [0]]
@eprog
The library syntax is \fun{GEN}{lfunparams}{GEN ldata, long prec}.
\subsec{lfunqf$(Q)$}\kbdsidx{lfunqf}\label{se:lfunqf}
Returns the \kbd{Ldata} structure attached to the $\Theta$ function
of the lattice attached to the primitive form proportional to the definite
positive quadratic form $Q$.
\bprog
? L = lfunqf(matid(2));
? lfunqf(L,2)
%2 = 6.0268120396919401235462601927282855839
? lfun(x^2+1,2)*4
%3 = 6.0268120396919401235462601927282855839
@eprog
The following computes the Madelung constant:
\bprog
? L1=lfunqf(matdiagonal([1,1,1]));
? L2=lfunqf(matdiagonal([4,1,1]));
? L3=lfunqf(matdiagonal([4,4,1]));
? F(s)=6*lfun(L2,s)-12*lfun(L3,s)-lfun(L1,s)*(1-8/4^s);
? F(1/2)
%5 = -1.7475645946331821906362120355443974035
@eprog
The library syntax is \fun{GEN}{lfunqf}{GEN Q, long prec}.
\subsec{lfunrootres$(\var{data})$}\kbdsidx{lfunrootres}\label{se:lfunrootres}
Given the \kbd{Ldata} attached to an $L$-function (or the output of
\kbd{lfunthetainit}), compute the root number and the residues.
The output is a 3-component vector
$[[[a_{1},r_{1}],\cdots,[a_{n}, r_{n}], [[b_{1}, R_{1}],\cdots,[b_{m}, R_{m}]]~, w]$,
where $r_{i}$ is the
polar part of $L(s)$ at $a_{i}$, $R_{i}$ is is the polar part of $\Lambda(s)$ at
$b_{i}$ or $[0,0,r]$ if there is no pole,
and $w$ is the root number. In the present implementation,
\item either the polar part must be completely known (and is then arbitrary):
the function determines the root number,
\bprog
? L = lfunmul(1,1); \\ zeta^2
? [r,R,w] = lfunrootres(L);
? r \\ single pole at 1, double
%3 = [[1, 1.[...]*x^-2 + 1.1544[...]*x^-1 + O(x^0)]]
? w
%4 = 1
? R \\ double pole at 0 and 1
%5 = [[1,[...]], [0,[...]]]~
@eprog
\item or at most a single pole is allowed: the function computes both
the root number and the residue ($0$ if no pole).
The library syntax is \fun{GEN}{lfunrootres}{GEN data, long bitprec}.
\subsec{lfunshift$(L,d,\{\fl\})$}\kbdsidx{lfunshift}\label{se:lfunshift}
Creates the Ldata structure (without initialization) corresponding to the
shift of $L$ by $d$, that is to the function $L_{d}$ such that
$L_{d}(s) = L(s-d)$. If $\fl=1$, return the product $L\times L_{d}$ instead.
\bprog
? Z = lfuncreate(1); \\ zeta(s)
? L = lfunshift(Z,1); \\ zeta(s-1)
? normlp(Vec(lfunlambda(L,s)-lfunlambda(L,3-s)))
%3 = 0.E-38 \\ the expansions coincide to 'seriesprecision'
? lfun(L,1)
%4 = -0.50000000000000000000000000000000000000 \\ = zeta(0)
? M = lfunshift(Z,1,1); \\ zeta(s)*zeta(s-1)
? normlp(Vec(lfunlambda(M,s)-lfunlambda(M,2-s)))
%6 = 2.350988701644575016 E-38
? lfun(M,2) \\ simple pole at 2, residue zeta(2)
%7 = 1.6449340668482264364724151666460251892*x^-1+O(x^0)
@eprog
The library syntax is \fun{GEN}{lfunshift}{GEN L, GEN d, long flag, long bitprec}.
\subsec{lfunsympow$(E,m)$}\kbdsidx{lfunsympow}\label{se:lfunsympow}
Returns the \kbd{Ldata} structure attached to the $L$ function
attached to the $m$-th symmetric power of the elliptic curve $E$ defined over
the rationals.
The library syntax is \fun{GEN}{lfunsympow}{GEN E, ulong m}.
\subsec{lfuntheta$(\var{data},t,\{m=0\})$}\kbdsidx{lfuntheta}\label{se:lfuntheta}
Compute the value of the $m$-th derivative
at $t$ of the theta function attached to the $L$-function given by \kbd{data}.
\kbd{data} can be either the standard $L$-function data, or the output of
\kbd{lfunthetainit}. The result is given with absolute error less than
$2^{-B}$, where $B = \text{realbitprecision}$.
The theta function is defined by the formula
$\Theta(t)=\sum_{n\ge1}a(n)K(nt/\sqrt{N})$, where $a(n)$ are the coefficients
of the Dirichlet series, $N$ is the conductor, and $K$ is the inverse Mellin
transform of the gamma product defined by the \kbd{Vga} component.
Its Mellin transform is equal to $\Lambda(s)-P(s)$, where $\Lambda(s)$
is the completed $L$-function and the rational function $P(s)$ its polar part.
In particular, if the $L$-function is the $L$-function of a modular form
$f(\tau)=\sum_{n\ge0}a(n)q^{n}$ with $q=\exp(2\pi i\tau)$, we have
$\Theta(t)=2(f(it/\sqrt{N})-a(0))$. Note that $a(0)=-L(f,0)$ in this case.
The library syntax is \fun{GEN}{lfuntheta}{GEN data, GEN t, long m, long bitprec}.
\subsec{lfunthetacost$(L,\{\var{tdom}\},\{m=0\})$}\kbdsidx{lfunthetacost}\label{se:lfunthetacost}
This function estimates the cost of running
\kbd{lfunthetainit(L,tdom,m)} at current bit precision. Returns the number of
coefficients $a_{n}$ that would be computed. This also estimates the
cost of a subsequent evaluation \kbd{lfuntheta}, which must compute
that many values of \kbd{gammamellininv} at the current bit precision.
If $L$ is already an \kbd{Linit}, then \var{tdom} and $m$ are ignored
and are best left omitted: we get an estimate of the cost of using that
particular \kbd{Linit}.
\bprog
? \pb 1000
? L = lfuncreate(1); \\ Riemann zeta
? lfunthetacost(L); \\ cost for theta(t), t real >= 1
%1 = 15
? lfunthetacost(L, 1 + I); \\ cost for theta(1+I). Domain error !
*** at top-level: lfunthetacost(1,1+I)
*** ^--------------------
*** lfunthetacost: domain error in lfunthetaneed: arg t > 0.785
? lfunthetacost(L, 1 + I/2) \\ for theta(1+I/2).
%2 = 23
? lfunthetacost(L, 1 + I/2, 10) \\ for theta^((10))(1+I/2).
%3 = 24
? lfunthetacost(L, [2, 1/10]) \\ cost for theta(t), |t| >= 2, |arg(t)| < 1/10
%4 = 8
? L = lfuncreate( ellinit([1,1]) );
? lfunthetacost(L) \\ for t >= 1
%6 = 2471
@eprog
The library syntax is \fun{long}{lfunthetacost0}{GEN L, GEN tdom = NULL, long m, long bitprec}.
\subsec{lfunthetainit$(L,\{\var{tdom}\},\{m=0\})$}\kbdsidx{lfunthetainit}\label{se:lfunthetainit}
Initalization function for evaluating the $m$-th derivative of theta
functions with argument $t$ in domain \var{tdom}. By default (\var{tdom}
omitted), $t$ is real, $t \geq 1$. Otherwise, \var{tdom} may be
\item a positive real scalar $\rho$: $t$ is real, $t \geq \rho$.
\item a nonreal complex number: compute at this particular $t$; this
allows to compute $\theta(z)$ for any complex $z$ satisfying $|z|\geq |t|$
and $|\arg z| \leq |\arg t|$; we must have $|2 \arg z / d| < \pi/2$, where
$d$ is the degree of the $\Gamma$ factor.
\item a pair $[\rho,\alpha]$: assume that $|t| \geq \rho$ and $|\arg t| \leq
\alpha$; we must have $|2\alpha / d| < \pi/2$, where $d$ is the degree of
the $\Gamma$ factor.
\bprog
? \p500
? L = lfuncreate(1); \\ Riemann zeta
? t = 1+I/2;
? lfuntheta(L, t); \\ direct computation
time = 30 ms.
? T = lfunthetainit(L, 1+I/2);
time = 30 ms.
? lfuntheta(T, t); \\ instantaneous
@eprog\noindent The $T$ structure would allow to quickly compute $\theta(z)$
for any $z$ in the cone delimited by $t$ as explained above. On the other hand
\bprog
? lfuntheta(T,I)
*** at top-level: lfuntheta(T,I)
*** ^--------------
*** lfuntheta: domain error in lfunthetaneed: arg t > 0.785398163397448
@eprog
The initialization is equivalent to
\bprog
? lfunthetainit(L, [abs(t), arg(t)])
@eprog
The library syntax is \fun{GEN}{lfunthetainit}{GEN L, GEN tdom = NULL, long m, long bitprec}.
\subsec{lfuntwist$(L,\var{chi})$}\kbdsidx{lfuntwist}\label{se:lfuntwist}
Creates the Ldata structure (without initialization) corresponding to the
twist of L by the primitive character attached to the Dirichlet character
\kbd{chi}. The conductor of the character must be coprime to the conductor
of the L-function $L$.
The library syntax is \fun{GEN}{lfuntwist}{GEN L, GEN chi, long bitprec}.
\subsec{lfunzeros$(L,\var{lim},\{\var{divz}=8\})$}\kbdsidx{lfunzeros}\label{se:lfunzeros}
\kbd{lim} being either a positive upper limit or a nonempty real
interval, computes an ordered list of zeros of $L(s)$ on the critical line up
to the given upper limit or in the given interval. Use a naive algorithm
which may miss some zeros: it assumes that two consecutive zeros at height
$T \geq 1$ differ at least by $2\pi/\omega$, where
$$\omega := \kbd{divz} \cdot
\big(d\log(T/2\pi) + d+ 2\log(N/(\pi/2)^{d})\big).$$
To use a finer search mesh, set divz to some integral value
larger than the default (= 8).
\bprog
? lfunzeros(1, 30) \\ zeros of Rieman zeta up to height 30
%1 = [14.134[...], 21.022[...], 25.010[...]]
? #lfunzeros(1, [100,110]) \\ count zeros with 100 <= Im(s) <= 110
%2 = 4
@eprog\noindent The algorithm also assumes that all zeros are simple except
possibly on the real axis at $s = k/2$ and that there are no poles in the
search interval. (The possible zero at $s = k/2$ is repeated according to
its multiplicity.)
If you pass an \kbd{Linit} to the function, the algorithm assumes that a
multiple zero at $s = k / 2$ has order less than or equal to the maximal
derivation order allowed by the \kbd{Linit}. You may increase that value in
the \kbd{Linit} but this is costly: only do it for zeros of low height or in
\kbd{lfunorderzero} instead.
The library syntax is \fun{GEN}{lfunzeros}{GEN L, GEN lim, long divz, long bitprec}.
\section{Modular forms}
This section describes routines for working with modular forms and modular
form spaces.
\subsec{Modular form spaces} %GPHELPskip
These structures are initialized by the \kbd{mfinit} command; supported
modular form \emph{spaces} with corresponding flags are the following:
\item The full modular form space $M_{k}(\Gamma_{0}(N),\chi)$, where $k$ is an
integer or a half-integer and $\chi$ a Dirichlet character modulo $N$
($\fl=4$, the default).
\item The cuspidal space $S_{k}(\Gamma_{0}(N),\chi)$ ($\fl=1$).
\item The Eisenstein space ${\cal E}_{k}(\Gamma_{0}(N),\chi)$ ($\fl=3$), so
that $M_{k}={\cal E}_{k}\oplus S_{k}$.
\item The new space $S_{k}^{\text{new}}(\Gamma_{0}(N),\chi)$ ($\fl=0$).
\item The old space $S_{k}^{\text{old}}(\Gamma_{0}(N),\chi)$ ($\fl=2$),
so that
$S_{k}=S_{k}^{\text{new}}\oplus S_{k}^{\text{old}}$.
These resulting \kbd{mf} structure contains a basis of modular forms, which
is accessed by the function \kbd{mfbasis}; the elements of this basis have
Fourier coefficients in the cyclotomic field $\Q(\chi)$. These coefficients
are given algebraically, as rational numbers or \typ{POLMOD}s. The member
function \kbd{mf.mod} recovers the modulus used to define $\Q(\chi)$, which
is a cyclotomic polynomial $\Phi_{n}(t)$. When needed, the elements of
$\Q(\chi)$ are considered to be canonically embedded into $\C$ via
$\kbd{Mod}(t,\Phi_{n}(t)) \mapsto \exp(2i\pi/n)$.
The basis of eigenforms for the new space is obtained by the function
\kbd{mfeigenbasis}: the elements of this basis now have Fourier coefficients
in a relative field extension of $\Q(\chi)$. Note that if the space is
larger than the new space (i.e. is the cuspidal or full space) we
nevertheless obtain only the eigenbasis for the new space.
\subsec{Generalized modular forms} %GPHELPskip
A modular form is represented in a special internal format giving the
possibility to compute an arbitrary number of terms of its Fourier coefficients
at infinity $[a(0),a(1),...,a(n)]$ using the function \kbd{mfcoefs}. These
coefficients are given algebraically, as rational numbers or \typ{POLMOD}s.
The member function \kbd{f.mod} recovers the modulus used in the
coefficients of $f$, which will be the same as for $k = \Q(\chi)$ (a cyclotomic
polynomial), or define a number field extension $K/k$.
Modular forms are obtained either directly from other mathematical objects,
e.g., elliptic curves, or by a specific formula, e.g., Eisenstein series or
Ramanujan's Delta function, or by applying standard operators to existing forms
(Hecke operators, Rankin--Cohen brackets, \dots). A function \kbd{mfparams} is
provided so that one can recover the level, weight, character and field of
definition corresponding to a given modular form.
A number of creation functions and operations are provided. It is however
important to note that strictly speaking some of these operations create
objects which are \emph{not} modular forms: typical examples are
derivation or integration of modular forms, the Eisenstein series $E_{2}$, eta
quotients, or quotients of modular forms. These objects are nonetheless very
important in the theory, so are not considered as errors; however the user must
be aware that no attempt is made to check that the objects that he handles are
really modular. When the documentation of a function does not state that it
applies to generalized modular forms, then the output is undefined if the
input is not a true modular form.
\subsec{lfunmf$(\var{mf},\{F\})$}\kbdsidx{lfunmf}\label{se:lfunmf}
If $F$ is a modular form in \kbd{mf}, output the L-functions
corresponding to its $[\Q(F):\Q(\chi)]$ complex embeddings, ready for use with
the \kbd{lfun} package. If $F$ is omitted, output the $L$-functions attached
to all eigenforms in the new space; the result is a vector whose length is
the number of Galois orbits of newforms. Each entry contains the vector of
$L$-functions corresponding to the $d$ complex embeddings of an orbit of
dimension $d$ over $\Q(\chi)$.
\bprog
? mf = mfinit([35,2],0);mffields(mf)
%1 = [y, y^2 - y - 4]
? f = mfeigenbasis(mf)[2]; mfparams(f) \\ orbit of dimension two
%2 = [35, 2, 1, y^2 - y - 4, t - 1]
? [L1,L2] = lfunmf(mf, f); \\ Two L-functions
? lfun(L1,1)
%4 = 0.81018461849460161754947375433874745585
? lfun(L2,1)
%5 = 0.46007635204895314548435893464149369804
? [ lfun(L,1) | L <- concat(lfunmf(mf)) ]
%6 = [0.70291..., 0.81018..., 0.46007...]
@eprog\noindent The \kbd{concat} instruction concatenates the vectors
corresponding to the various (here two) orbits, so that we obtain the vector
of all the $L$-functions attached to eigenforms.
The library syntax is \fun{GEN}{lfunmf}{GEN mf, GEN F = NULL, long bitprec}.
\subsec{mfDelta$()$}\kbdsidx{mfDelta}\label{se:mfDelta}
Mf structure corresponding to the Ramanujan Delta function $\Delta$.
\bprog
? mfcoefs(mfDelta(),4)
%1 = [0, 1, -24, 252, -1472]
@eprog
The library syntax is \fun{GEN}{mfDelta}{}.
\subsec{mfEH$(k)$}\kbdsidx{mfEH}\label{se:mfEH}
$k$ being in $1/2+\Z_{\geq 0}$, return the mf structure corresponding to
the Cohen-Eisenstein series $H_{k}$ of weight $k$ on $\Gamma_{0}(4)$.
\bprog
? H = mfEH(13/2); mfcoefs(H,4)
%1 = [691/32760, -1/252, 0, 0, -2017/252]
@eprog The coefficients of $H$ are given by the Cohen-Hurwitz function
$H(k-1/2,N)$ and can be obtained for moderately large values of $N$ (the
algorithm uses $\tilde{O}(N)$ time):
\bprog
? mfcoef(H,10^5+1)
time = 55 ms.
%2 = -12514802881532791504208348
? mfcoef(H,10^7+1)
time = 6,044 ms.
%3 = -1251433416009877455212672599325104476
@eprog
The library syntax is \fun{GEN}{mfEH}{GEN k}.
\subsec{mfEk$(k)$}\kbdsidx{mfEk}\label{se:mfEk}
K being an even nonnegative integer, return the mf structure
corresponding to the standard Eisenstein series $E_{k}$.
\bprog
? mfcoefs(mfEk(8), 4)
%1 = [1, 480, 61920, 1050240, 7926240]
@eprog
The library syntax is \fun{GEN}{mfEk}{long k}.
\subsec{mfTheta$(\{\var{psi}=1\})$}\kbdsidx{mfTheta}\label{se:mfTheta}
The unary theta function corresponding to the primitive Dirichlet
character $\psi$. Its level is $4 F(\psi)^{2}$ and its weight is
$1 - \psi(-1)/2$.
\bprog
? Ser(mfcoefs(mfTheta(),30))
%1 = 1 + 2*x + 2*x^4 + 2*x^9 + 2*x^16 + 2*x^25 + O(x^31)
? f = mfTheta(8); Ser(mfcoefs(f,30))
%2 = 2*x - 2*x^9 - 2*x^25 + O(x^31)
? mfparams(f)
%3 = [256, 1/2, 8, y, t + 1]
? g = mfTheta(-8); Ser(mfcoefs(g,30))
%4 = 2*x + 6*x^9 - 10*x^25 + O(x^31)
? mfparams(g)
%5 = [256, 3/2, 8, y, t + 1]
? h = mfTheta(Mod(2,5)); mfparams(h)
%6 = [100, 3/2, Mod(7, 20), y, t^2 + 1]
@eprog
The library syntax is \fun{GEN}{mfTheta}{GEN psi = NULL}.
\subsec{mfatkin$(\var{mfatk},f)$}\kbdsidx{mfatkin}\label{se:mfatkin}
Given a \kbd{mfatk} output by \kbd{mfatk = mfatkininit(mf,Q)} and
a modular form $f$ belonging to the pace \kbd{mf}, returns the modular
form $g = C \times f|W_{Q}$, where $C = \kbd{mfatk[3]}$ is a normalizing
constant such that $g$ has the same field of coefficients as $f$;
\kbd{mfatk[3]} gives the constant $C$, and \kbd{mfatk[1]} gives
the modular form space to which $g$ belongs (or is set to $0$ if
it is \kbd{mf}).
\bprog
? mf = mfinit([35,2],0); [f] = mfbasis(mf);
? mfcoefs(f, 4)
%2 = [0, 3, -1, 0, 3]
? mfatk = mfatkininit(mf,7);
? g = mfatkin(mfatk, f); mfcoefs(g, 4)
%4 = [0, 1, -1, -2, 7]
? mfatk = mfatkininit(mf,35);
? g = mfatkin(mfatk, f); mfcoefs(g, 4)
%6 = [0, -3, 1, 0, -3]
@eprog
The library syntax is \fun{GEN}{mfatkin}{GEN mfatk, GEN f}.
\subsec{mfatkineigenvalues$(\var{mf},Q)$}\kbdsidx{mfatkineigenvalues}\label{se:mfatkineigenvalues}
Given a modular form space \kbd{mf} of integral weight $k$ and a primitive
divisor $Q$ of the level $N$ of \kbd{mf}, outputs the Atkin--Lehner
eigenvalues of $w_{Q}$ on the new space, grouped by orbit. If the Nebentypus
$\chi$ of \kbd{mf} is a
(trivial or) quadratic character defined modulo $N/Q$, the result is rounded
and the eigenvalues are $\pm i^{k}$.
\bprog
? mf = mfinit([35,2],0); mffields(mf)
%1 = [y, y^2 - y - 4] \\ two orbits, dimension 1 and 2
? mfatkineigenvalues(mf,5)
%2 = [[1], [-1, -1]]
? mf = mfinit([12,7,Mod(3,4)],0);
? mfatkineigenvalues(mf,3)
%4 = [[I, -I, -I, I, I, -I]] \\ one orbit
@eprog
To obtain the eigenvalues on a larger space than the new space,
e.g., the full space, you can directly call \kbd{[mfB,M,C]=mfatkininit} and
compute the eigenvalues as the roots of the characteristic polynomial of
$M/C$, by dividing the roots of \kbd{charpoly(M)} by $C$. Note that the
characteristic polynomial is computed exactly since $M$ has coefficients in
$\Q(\chi)$, whereas $C$ may be given by a complex number. If the coefficients
of the characteristic polynomial are polmods modulo $T$ they must be embedded
to $\C$ first using \kbd{subst(lift(), t, exp(2*I*Pi/n))}, when $T$ is
\kbd{poliscyclo(n)}; note that $T = \kbd{mf.mod}$.
The library syntax is \fun{GEN}{mfatkineigenvalues}{GEN mf, long Q, long prec}.
\subsec{mfatkininit$(\var{mf},Q)$}\kbdsidx{mfatkininit}\label{se:mfatkininit}
Given a modular form space with parameters $N,k,\chi$ and a
primitive divisor $Q$ of the level $N$, initializes data necessary for
working with the Atkin--Lehner operator $W_{Q}$, for now only the function
\kbd{mfatkin}. We write $\chi \sim \chi_{Q} \chi_{N/Q}$ where
the two characters are primitive with (coprime) conductors dividing
$Q$ and $N/Q$ respectively. For $F\in M_{k}(\Gamma_{0}(N),\chi)$,
the form $F | W_{Q}$ still has level $N$ and weight $k$ but its
Nebentypus may no longer be $\chi$: it becomes
$\overline{\chi_{Q}} \chi_{N/Q})$
if $k$ is integral and $\overline{\chi_{Q}} \chi_{N/Q})(4Q/\cdot)$ if not.
The result is a technical 4-component vector \kbd{[mfB, MC, C, mf]}, where
\item \kbd{mfB} encodes the modular form space to which
$F|W_{Q}$ belongs when $F \in M_{k}(\Gamma_{0}(N), \chi)$: an \kbd{mfinit}
corresponding to a new Nebentypus or the integer $0$ when the character does
not change. This does not depend on $F$.
\item \kbd{MC} is the matrix of $W_{Q}$ on the bases of \kbd{mf} and \kbd{mfB}
multiplied by a normalizing constant $C(k,\chi,Q)$. This matrix has polmod
coefficients in $\Q(\chi)$.
\item \kbd{C} is the complex constant $C(k,\chi,Q)$. For $k$
integral, let $A(k,\chi, Q) = Q^{\varepsilon}/g(\chi_{Q})$, where
$\varepsilon = 0$ for $k$ even and $1/2$ for $k$ odd and
where $g(\chi_{Q})$ is the Gauss sum attached to $\chi_{Q}$). (A similar, more
complicated, definition holds in half-integral weight depending on the parity
of $k - 1/2$.) Then if $M$ denotes the matrix of $W_{Q}$ on the bases
of \kbd{mf} and \kbd{mfB}, $A \cdot M$ has coefficients in $\Q(\chi)$.
If $A$ is rational, we let $C = 1$ and $C = A$ as a floating point complex
number otherwise, and finally $\kbd{MC} := M \cdot C$.
\bprog
? mf=mfinit([32,4],0); [mfB,MC,C]=mfatkininit(mf,32); MC
%1 =
[5/16 11/2 55/8]
[ 1/8 0 -5/4]
[1/32 -1/4 11/16]
? C
%2 = 1
? mf=mfinit([32,4,8],0); [mfB,MC,C]=mfatkininit(mf,32); MC
%3 =
[ 1/8 -7/4]
[-1/16 -1/8]
? C
%4 = 0.35355339059327376220042218105242451964
? algdep(C,2) \\ C = 1/sqrt(8)
%5 = 8*x^2 - 1
@eprog
The library syntax is \fun{GEN}{mfatkininit}{GEN mf, long Q, long prec}.
\subsec{mfbasis$(\var{NK},\{\var{space}=4\})$}\kbdsidx{mfbasis}\label{se:mfbasis}
If $NK=[N,k,\var{CHI}]$ as in \kbd{mfinit}, gives a basis of the
corresponding subspace of $M_{k}(\Gamma_{0}(N),\chi)$. $NK$ can also be the
output of \kbd{mfinit}, in which case \kbd{space} can be omitted.
To obtain the eigenforms, use \kbd{mfeigenbasis}.
If \kbd{space} is a full space $M_{k}$, the output is the union of first, a
basis of the space of Eisenstein series, and second, a basis of the cuspidal
space.
\bprog
? see(L) = apply(f->mfcoefs(f,3), L);
? mf = mfinit([35,2],0);
? see( mfbasis(mf) )
%2 = [[0, 3, -1, 0], [0, -1, 9, -8], [0, 0, -8, 10]]
? see( mfeigenbasis(mf) )
%3 = [[0, 1, 0, 1], [Mod(0, z^2 - z - 4), Mod(1, z^2 - z - 4), \
Mod(-z, z^2 - z - 4), Mod(z - 1, z^2 - z - 4)]]
? mf = mfinit([35,2]);
? see( mfbasis(mf) )
%5 = [[1/6, 1, 3, 4], [1/4, 1, 3, 4], [17/12, 1, 3, 4], \
[0, 3, -1, 0], [0, -1, 9, -8], [0, 0, -8, 10]]
? see( mfbasis([48,4],0) )
%6 = [[0, 3, 0, -3], [0, -3, 0, 27], [0, 2, 0, 30]]
@eprog
The library syntax is \fun{GEN}{mfbasis}{GEN NK, long space}.
\subsec{mfbd$(F,d)$}\kbdsidx{mfbd}\label{se:mfbd}
$F$ being a generalized modular form, return $B(d)(F)$, where $B(d)$ is
the expanding operator $\tau\mapsto d\tau$.
\bprog
? D2=mfbd(mfDelta(),2); mfcoefs(D2, 6)
%1 = [0, 0, 1, 0, -24, 0, 252]
@eprog
The library syntax is \fun{GEN}{mfbd}{GEN F, long d}.
\subsec{mfbracket$(F,G,\{m=0\})$}\kbdsidx{mfbracket}\label{se:mfbracket}
Compute the $m$-th Rankin--Cohen bracket of the generalized modular
forms $F$ and $G$.
\bprog
? E4 = mfEk(4); E6 = mfEk(6);
? D1 = mfbracket(E4,E4,2); mfcoefs(D1,5)/4800
%2 = [0, 1, -24, 252, -1472, 4830]
? D2 = mfbracket(E4,E6,1); mfcoefs(D2,10)/(-3456)
%3 = [0, 1, -24, 252, -1472, 4830]
@eprog
The library syntax is \fun{GEN}{mfbracket}{GEN F, GEN G, long m}.
\subsec{mfcoef$(F,n)$}\kbdsidx{mfcoef}\label{se:mfcoef}
Compute the $n$-th Fourier coefficient $a(n)$ of the generalized modular
form $F$. Note that this is the $n+1$-st component of the vector
\kbd{mfcoefs(F,n)} as well as the second component of \kbd{mfcoefs(F,1,n)}.
\bprog
? mfcoef(mfDelta(),10)
%1 = -115920
@eprog
The library syntax is \fun{GEN}{mfcoef}{GEN F, long n}.
\subsec{mfcoefs$(F,n,\{d=1\})$}\kbdsidx{mfcoefs}\label{se:mfcoefs}
Compute the vector of Fourier coefficients $[a[0],a[d],...,a[nd]]$ of the
generalized modular form $F$; $d$ must be positive and $d = 1$ by default.
\bprog
? D = mfDelta();
? mfcoefs(D,10)
%2 = [0, 1, -24, 252, -1472, 4830, -6048, -16744, 84480, -113643, -115920]
? mfcoefs(D,5,2)
%3 = [0, -24, -1472, -6048, 84480, -115920]
? mfcoef(D,10)
%4 = -115920
@eprog\noindent
This function also applies when $F$ is a modular form space as output by
\kbd{mfinit}; it then returns the matrix whose columns give the Fourier
expansions of the elements of \kbd{mfbasis}$(F)$:
\bprog
? mf = mfinit([1,12]);
? mfcoefs(mf,5)
%2 =
[691/65520 0]
[ 1 1]
[ 2049 -24]
[ 177148 252]
[ 4196353 -1472]
[ 48828126 4830]
@eprog
The library syntax is \fun{GEN}{mfcoefs}{GEN F, long n, long d}.
\subsec{mfconductor$(\var{mf},F)$}\kbdsidx{mfconductor}\label{se:mfconductor}
\kbd{mf} being output by \kbd{mfinit} for the cuspidal space and
$F$ a modular form, gives the smallest level at which $F$ is defined.
In particular, if $F$ is cuspidal and we write $F = \sum_{j} B(d_{j}) f_{j}$
for new forms $f_{j}$ of level $N_{j}$ (see \kbd{mftonew}), then its conductor
is the least common multiple of the $d_{j} N_{j}$.
\bprog
? mf=mfinit([96,6],1); vF = mfbasis(mf); mfdim(mf)
%1 = 72
? vector(10,i, mfconductor(mf, vF[i]))
%2 = [3, 6, 12, 24, 48, 96, 4, 8, 12, 16]
@eprog
The library syntax is \fun{long}{mfconductor}{GEN mf, GEN F}.
\subsec{mfcosets$(N)$}\kbdsidx{mfcosets}\label{se:mfcosets}
Let $N$ be a positive integer. Return the list of right cosets of
$\Gamma_{0}(N) \bs \Gamma$, i.e., matrices $\gamma_{j} \in \Gamma$ such that
$\Gamma = \bigsqcup_{j} \Gamma_{0}(N) \gamma_{j}$.
The $\gamma_{j}$ are chosen in the form $[a,b;c,d]$ with $c \mid N$.
\bprog
? mfcosets(4)
%1 = [[0, -1; 1, 0], [1, 0; 1, 1], [0, -1; 1, 2], [0, -1; 1, 3],\
[1, 0; 2, 1], [1, 0; 4, 1]]
@eprog\noindent We also allow the argument $N$ to be a modular form space,
in which case it is replaced by the level of the space:
\bprog
? M = mfinit([4, 12, 1], 0); mfcosets(M)
%2 = [[0, -1; 1, 0], [1, 0; 1, 1], [0, -1; 1, 2], [0, -1; 1, 3],\
[1, 0; 2, 1], [1, 0; 4, 1]]
@eprog
\misctitle{Warning} In the present implementation, the trivial coset is
represented by $[1,0;N,1]$ and is the last in the list.
The library syntax is \fun{GEN}{mfcosets}{GEN N}.
\subsec{mfcuspisregular$(\var{NK},\var{cusp})$}\kbdsidx{mfcuspisregular}\label{se:mfcuspisregular}
In the space defined by \kbd{NK = [N,k,CHI]} or \kbd{NK = mf},
determine if \kbd{cusp} in canonical format (oo or denominator
dividing $N$) is regular or not.
\bprog
? mfcuspisregular([4,3,-4],1/2)
%1 = 0
@eprog
The library syntax is \fun{long}{mfcuspisregular}{GEN NK, GEN cusp}.
\subsec{mfcusps$(N)$}\kbdsidx{mfcusps}\label{se:mfcusps}
Let $N$ be a positive integer. Return the list of cusps of $\Gamma_{0}(N)$
in the form $a/b$ with $b\mid N$.
\bprog
? mfcusps(24)
%1 = [0, 1/2, 1/3, 1/4, 1/6, 1/8, 1/12, 1/24]
@eprog\noindent We also allow the argument $N$ to be a modular form space,
in which case it is replaced by the level of the space:
\bprog
? M = mfinit([4, 12, 1], 0); mfcusps(M)
%2 = [0, 1/2, 1/4]
@eprog
The library syntax is \fun{GEN}{mfcusps}{GEN N}.
\subsec{mfcuspval$(\var{mf},F,\var{cusp})$}\kbdsidx{mfcuspval}\label{se:mfcuspval}
Valuation of modular form $F$ in the space \kbd{mf} at
\kbd{cusp}, which can be either $\infty$ or any rational number. The
result is either a rational number or $\infty$ if $F$ is zero. Let
$\chi$ be the Nebentypus of the space \kbd{mf}; if $\Q(F) \neq \Q(\chi)$,
return the vector of valuations attached to the $[\Q(F):\Q(chi)]$ complex
embeddings of $F$.
\bprog
? T=mfTheta(); mf=mfinit([12,1/2]); mfcusps(12)
%1 = [0, 1/2, 1/3, 1/4, 1/6, 1/12]
? apply(x->mfcuspval(mf,T,x), %1)
%2 = [0, 1/4, 0, 0, 1/4, 0]
? mf=mfinit([12,6,12],1); F=mfbasis(mf)[5];
? apply(x->mfcuspval(mf,F,x),%1)
%4 = [1/12, 1/6, 1/2, 2/3, 1/2, 2]
? mf=mfinit([12,3,-4],1); F=mfbasis(mf)[1];
? apply(x->mfcuspval(mf,F,x),%1)
%6 = [1/12, 1/6, 1/4, 2/3, 1/2, 1]
? mf = mfinit([625,2],0); [F] = mfeigenbasis(mf); mfparams(F)
%7 = [625, 2, 1, y^2 - y - 1, t - 1] \\ [Q(F):Q(chi)] = 2
? mfcuspval(mf, F, 1/25)
%8 = [1, 2] \\ one conjugate has valuation 1, and the other is 2
? mfcuspval(mf, F, 1/5)
%9 = [1/25, 1/25]
@eprog
The library syntax is \fun{GEN}{mfcuspval}{GEN mf, GEN F, GEN cusp, long bitprec}.
\subsec{mfcuspwidth$(N,\var{cusp})$}\kbdsidx{mfcuspwidth}\label{se:mfcuspwidth}
Width of \kbd{cusp} in $\Gamma_{0}(N)$.
\bprog
? mfcusps(12)
%1 = [0, 1/2, 1/3, 1/4, 1/6, 1/12]
? [mfcuspwidth(12,c) | c <- mfcusps(12)]
%2 = [12, 3, 4, 3, 1, 1]
? mfcuspwidth(12, oo)
%3 = 1
@eprog\noindent We also allow the argument $N$ to be a modular form space,
in which case it is replaced by the level of the space:
\bprog
? M = mfinit([4, 12, 1], 0); mfcuspwidth(M, 1/2)
%4 = 1
@eprog
The library syntax is \fun{long}{mfcuspwidth}{GEN N, GEN cusp}.
\subsec{mfderiv$(F,\{m=1\})$}\kbdsidx{mfderiv}\label{se:mfderiv}
$m$-th formal derivative of the power series corresponding to
the generalized modular form $F$, with respect to the differential operator
$qd/dq$ (default $m=1$).
\bprog
? D=mfDelta();
? mfcoefs(D, 4)
%2 = [0, 1, -24, 252, -1472]
? mfcoefs(mfderiv(D), 4)
%3 = [0, 1, -48, 756, -5888]
@eprog
The library syntax is \fun{GEN}{mfderiv}{GEN F, long m}.
\subsec{mfderivE2$(F,\{m=1\})$}\kbdsidx{mfderivE2}\label{se:mfderivE2}
Compute the Serre derivative $(q \* d/dq)F - kE_{2}F/12$
of the generalized modular form $F$, which has weight $k+2$;
if $F$ is a true modular form, then its Serre derivative is also modular.
If $m>1$, compute the $m$-th iterate, of weight $k + 2m$.
\bprog
? mfcoefs(mfderivE2(mfEk(4)),5)*(-3)
%1 = [1, -504, -16632, -122976, -532728]
? mfcoefs(mfEk(6),5)
%2 = [1, -504, -16632, -122976, -532728]
@eprog
The library syntax is \fun{GEN}{mfderivE2}{GEN F, long m}.
\subsec{mfdescribe$(F,\{\&G\})$}\kbdsidx{mfdescribe}\label{se:mfdescribe}
Gives a human-readable description of $F$, which is either a modular
form space or a generalized modular form. If the address of $G$ is given,
puts into $G$ the vector of parameters of the outermost operator defining $F$;
this vector is empty if $F$ is a leaf (an atomic object such as
\kbd{mfDelta()}, not defined in terms of other forms) or a modular form space.
\bprog
? E1 = mfeisenstein(4,-3,-4); mfdescribe(E1)
%1 = "F_4(-3, -4)"
? E2 = mfeisenstein(3,5,-7); mfdescribe(E2)
%2 = "F_3(5, -7)"
? E3 = mfderivE2(mfmul(E1,E2), 3); mfdescribe(E3,&G)
%3 = "DERE2^3(MUL(F_4(-3, -4), F_3(5, -7)))"
? mfdescribe(G[1][1])
%4 = "MUL(F_4(-3, -4), F_3(5, -7))"
? G[2]
%5 = 3
? for (i = 0, 4, mf = mfinit([37,4],i); print(mfdescribe(mf)));
S_4^new(G_0(37, 1))
S_4(G_0(37, 1))
S_4^old(G_0(37, 1))
E_4(G_0(37, 1))
M_4(G_0(37, 1))
@eprog
The library syntax is \fun{GEN}{mfdescribe}{GEN F, GEN *G = NULL}.
\subsec{mfdim$(\var{NK},\{\var{space}=4\})$}\kbdsidx{mfdim}\label{se:mfdim}
If $NK=[N,k,\var{CHI}]$ as in \kbd{mfinit}, gives the dimension of the
corresponding subspace of $M_{k}(\Gamma_{0}(N),\chi)$. $NK$ can also be the
output of \kbd{mfinit}, in which case space must be omitted.
The subspace is described by the small integer \kbd{space}: $0$ for the
newspace $S_{k}^{\text{new}}(\Gamma_{0}(N),\chi)$, $1$ for the cuspidal
space $S_{k}$, $2$ for the oldspace $S_{k}^{\text{old}}$, $3$ for the space of
Eisenstein series $E_{k}$ and $4$ for the full space $M_{k}$.
\misctitle{Wildcards}
As in \kbd{mfinit}, \var{CHI} may be the wildcard 0
(all Galois orbits of characters); in this case, the output is a vector of
$[\var{order}, \var{conrey}, \var{dim}, \var{dimdih}]$ corresponding
to the nontrivial spaces, where
\item \var{order} is the order of the character,
\item \var{conrey} its Conrey label from which the character may be recovered
via \kbd{znchar}$(\var{conrey})$,
\item \var{dim} the dimension of the corresponding space,
\item \var{dimdih} the dimension of the subspace of dihedral forms
corresponding to Hecke characters if $k = 1$ (this is not implemented for
the old space and set to $-1$ for the time being) and 0 otherwise.
The spaces are sorted by increasing order of the character; the characters are
taken up to Galois conjugation and the Conrey number is the minimal one among
Galois conjugates. In weight $1$, this is only implemented when
the space is 0 (newspace), 1 (cusp space), 2(old space) or 3(Eisenstein
series).
\misctitle{Wildcards for sets of characters} \var{CHI} may be a set
of characters, and we return the set of $[\var{dim},\var{dimdih}]$.
\misctitle{Wildcard for $M_{k}(\Gamma_{1}(N))$}
Additionally, the wildcard $\var{CHI} = -1$ is available in which case we
output the total dimension of the corresponding
subspace of $M_{k}(\Gamma_{1}(N))$. In weight $1$, this is not implemented
when the space is 4 (fullspace).
\bprog
? mfdim([23,2], 0) \\ new space
%1 = 2
? mfdim([96,6], 0)
%2 = 10
? mfdim([10^9,4], 3) \\ Eisenstein space
%1 = 40000
? mfdim([10^9+7,4], 3)
%2 = 2
? mfdim([68,1,-1],0)
%3 = 3
? mfdim([68,1,0],0)
%4 = [[2, Mod(67, 68), 1, 1], [4, Mod(47, 68), 1, 1]]
? mfdim([124,1,0],0)
%5 = [[6, Mod(67, 124), 2, 0]]
@eprog
This last example shows that there exists a nondihedral form of weight 1
in level 124.
The library syntax is \fun{GEN}{mfdim}{GEN NK, long space}.
\subsec{mfdiv$(F,G)$}\kbdsidx{mfdiv}\label{se:mfdiv}
Given two generalized modular forms $F$ and $G$, compute $F/G$ assuming
that the quotient will not have poles at infinity. If this is the
case, use \kbd{mfshift} before doing the division.
\bprog
? D = mfDelta(); \\ Delta
? H = mfpow(mfEk(4), 3);
? J = mfdiv(H, D)
*** at top-level: J=mfdiv(H,mfdeltac
*** ^--------------------
*** mfdiv: domain error in mfdiv: ord(G) > ord(F)
? J = mfdiv(H, mfshift(D,1));
? mfcoefs(J, 4)
%4 = [1, 744, 196884, 21493760, 864299970]
@eprog
The library syntax is \fun{GEN}{mfdiv}{GEN F, GEN G}.
\subsec{mfeigenbasis$(\var{mf})$}\kbdsidx{mfeigenbasis}\label{se:mfeigenbasis}
Vector of the eigenforms for the space \kbd{mf}.
The initial basis of forms computed by \kbd{mfinit} before splitting
is also available via \kbd{mfbasis}.
\bprog
? mf = mfinit([26,2],0);
? see(L) = for(i=1,#L,print(mfcoefs(L[i],6)));
? see( mfeigenbasis(mf) )
[0, 1, -1, 1, 1, -3, -1]
[0, 1, 1, -3, 1, -1, -3]
? see( mfbasis(mf) )
[0, 2, 0, -2, 2, -4, -4]
[0, -2, -4, 10, -2, 0, 8]
@eprog
The eigenforms are internally expressed as (algebraic) linear combinations of
\kbd{mfbasis(mf)} and it is very inefficient to compute many coefficients
of those forms individually: you should rather use \kbd{mfcoefs(mf)}
to expand the basis once and for all, then multiply by \kbd{mftobasis(mf,f)}
for the forms you're interested in:
\bprog
? mf = mfinit([96,6],0); B = mfeigenbasis(mf); #B
%1 = 8;
? vector(#B, i, mfcoefs(B[i],1000)); \\ expanded individually: slow
time = 7,881 ms.
? M = mfcoefs(mf, 1000); \\ initialize once
time = 982 ms.
? vector(#B, i, M * mftobasis(mf,B[i])); \\ then expand: much faster
time = 623 ms.
@eprog
When the eigenforms are defined over an extension field of $\Q(\chi)$ for a
nonrational character, their coefficients are hard to read and you may want
to lift them or to express them in an absolute number field. In the
construction below $T$ defines $\Q(f)$ over $\Q$, $a$ is the image of the
generator \kbd{Mod}$(t, t^{2}+t+1)$ of $\Q(\chi)$ in $\Q(f)$
and $y - ka$ is the image of the root $y$ of \kbd{f.mod}:
\bprog
? mf = mfinit([31, 2, Mod(25,31)], 0); [f] = mfeigenbasis(mf);
? f.mod
%2 = Mod(1, t^2 + t + 1)*y^2 + Mod(2*t + 2, t^2 + t + 1)
? v = liftpol(mfcoefs(f,5))
%3 = [0, 1, (-t - 1)*y - 1, t*y + (t + 1), (2*t + 2)*y + 1, t]
? [T,a,k] = rnfequation(mf.mod, f.mod, 1)
%4 = [y^4 + 2*y^2 + 4, Mod(-1/2*y^2 - 1, y^4 + 2*y^2 + 4), 0]
? liftpol(substvec(v, [t,y], [a, y-k*a]))
%5 = [0, 1, 1/2*y^3 - 1, -1/2*y^3 - 1/2*y^2 - y, -y^3 + 1, -1/2*y^2 - 1]
@eprog\noindent Beware that the meaning of $y$ has changed in the last line
is different: it now represents of root of $T$, no longer of \kbd{f.mod}
(the notions coincide if $k = 0$ as here but it will not always be the case).
This can be avoided with an extra variable substitution, for instance
\bprog
? [T,a,k] = rnfequation(mf.mod, subst(f.mod,'y,'x), 1)
%6 = [x^4 + 2*x^2 + 4, Mod(-1/2*x^2 - 1, x^4 + 2*x^2 + 4), 0]
? liftpol(substvec(v, [t,y], [a, x-k*a]))
%7 = [0, 1, 1/2*x^3 - 1, -1/2*x^3 - 1/2*x^2 - x, -x^3 + 1, -1/2*x^2 - 1]
@eprog
The library syntax is \fun{GEN}{mfeigenbasis}{GEN mf}.
\subsec{mfeigensearch$(\var{NK},\{\var{AP}\})$}\kbdsidx{mfeigensearch}\label{se:mfeigensearch}
Search for a normalized rational eigen cuspform with quadratic
character given restrictions on a few initial coefficients. The meaning of
the parameters is as follows:
\item \kbd{NK} governs the limits of the search: it is of the form
$[N,k]$: search for given level $N$, weight $k$ and quadratic
character; note that the character $(D/.)$ is uniquely determined by $(N,k)$.
The level $N$ can be replaced by a vector of allowed levels.
\item \kbd{AP} is the search criterion, which can be omitted: a list of
pairs $[\ldots, [p,a_{p}], \ldots]$, where $p$ is a prime number and $a_{p}$ is
either a \typ{INT} (the $p$-th Fourier coefficient must match $a_{p}$ exactly)
or a \typ{INTMOD} \kbd{Mod}$(a,b)$ (the $p$-th coefficient must be congruent
to $a$ modulo $b$).
The result is a vector of newforms $f$ matching the search criteria, sorted
by increasing level then increasing $|D|$.
\bprog
? #mfeigensearch([[1..80],2], [[2,2],[3,-1]])
%1 = 1
? #mfeigensearch([[1..80],2], [[2,2],[5,2]])
%2 = 1
? v = mfeigensearch([[1..20],2], [[3,Mod(2,3)],[7,Mod(5,7)]]); #v
%3 = 1
? F=v[1]; [mfparams(F)[1], mfcoefs(F,15)]
%4 = [11, [0, 1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1]]
@eprog
The library syntax is \fun{GEN}{mfeigensearch}{GEN NK, GEN AP = NULL}.
\subsec{mfeisenstein$(k,\{\var{CHI1}\},\{\var{CHI2}\})$}\kbdsidx{mfeisenstein}\label{se:mfeisenstein}
Create the Eisenstein series $E_{k}(\chi_{1},\chi_{2})$, where $k \geq 1$,
$\chi_{i}$ are Dirichlet characters and an omitted character is considered as
trivial. This form belongs to ${\cal E}_{k}(\Gamma_{0}(N), \chi)$ with $\chi =
\chi_{1}\chi_{2}$ and $N$ is the product of the conductors of $\chi_{1}$ and
$\chi_{2}$.
\bprog
? CHI = Mod(3,4);
? E = mfeisenstein(3, CHI);
? mfcoefs(E, 6)
%2 = [-1/4, 1, 1, -8, 1, 26, -8]
? CHI2 = Mod(4,5);
? mfcoefs(mfeisenstein(3,CHI,CHI2), 6)
%3 = [0, 1, -1, -10, 1, 25, 10]
? mfcoefs(mfeisenstein(4,CHI,CHI), 6)
%4 = [0, 1, 0, -28, 0, 126, 0]
? mfcoefs(mfeisenstein(4), 6)
%5 = [1/240, 1, 9, 28, 73, 126, 252]
@eprog\noindent Note that \kbd{mfeisenstein}$(k)$ is 0 for $k$ odd and
$-B_{k}/(2k) \cdot E_{k}$ for $k$ even, where
$$E_{k}(q) = 1 - (2k/B_{k})\sum_{n\geq 1} \sigma_{k-1}(n) q^{n}$$
is the standard Eisenstein series. In other words it is normalized so that its
linear coefficient is $1$.
\misctitle{Important note} This function is currently implemented only when
$\Q(\chi)$ is the field of definition of $E_{k}(\chi_{1},\chi_{2})$. If it is a
strict subfield, an error is raised:
\bprog
? mfeisenstein(6, Mod(7,9), Mod(4,9));
*** at top-level: mfeisenstein(6,Mod(7,9),Mod(4,9))
*** ^---------------------------------
*** mfeisenstein: sorry, mfeisenstein for these characters is not
*** yet implemented.
@eprog\noindent The reason for this is that each modular form is attached
to a modular form space $M_{k}(\Gamma_{0}(N),\chi)$. This is a $\C$-vector
space but it allows a basis of forms defined over $\Q(\chi)$ and is only
implemented as a $\Q(\chi)$-vector space: there is
in general no mechanism to take linear combinations of forms in the space
with coefficients belonging to a larger field. (Due to their importance,
eigenforms are the single exception to this restriction; for an eigenform
$F$, $\Q(F)$ is built on top of $\Q(\chi)$.) When the property $\Q(\chi) =
\Q(E_{k}(\chi_{1},\chi_{2})$ does not hold, we cannot express $E$ as a
$\Q(\chi)$-linear combination of the basis forms and many operations will
fail. For this reason, the construction is currently disabled.
The library syntax is \fun{GEN}{mfeisenstein}{long k, GEN CHI1 = NULL, GEN CHI2 = NULL}.
\subsec{mfembed$(f,\{v\})$}\kbdsidx{mfembed}\label{se:mfembed}
Let $f$ be a generalized modular form with parameters $[N,k,\chi,P]$ (see
\kbd{mfparams}, we denote $\Q(\chi)$ the subfield of $\C$ generated by the
values of $\chi$ and $\Q(f)$ the field of definition of $f$. In this context
$\Q(\chi)$ has a single canonical complex embeding given by
$s: \kbd{Mod(t, polcyclo(n,t))} \mapsto \exp(2i\pi/n)$ and the number field
$\Q(f)$ has $[\Q(f):\Q(\chi)]$ induced embeddings attached to the complex
roots of the polynomial $s(P)$. If $\Q(f)$ is stricly larger than $\Q(\chi)$
we only allow an $f$ which is an eigenform, produced by \kbd{mfeigenbasis}.
This function is meant to create embeddings of $\Q(f)$ and/or apply them
to the object $v$, typically a vector of Fourier coefficients of $f$
from \kbd{mfcoefs}.
\item If $v$ is omitted and $f$ is a modular form as above, we return the
embedding of $\Q(\chi)$ if $\Q(\chi) = \Q(f)$ and a vector containing
$[\Q(f):\Q(\chi)]$ embeddings of $\Q(f)$ otherwise.
\item If $v$ is given, it must be a scalar in $\Q(f)$, or a vector/matrix of
such, we apply the embeddings coefficientwise and return either
a single result if $\Q(f) = \Q(\chi)$ and a vector of $[\Q(f):\Q(\chi)]$
results otherwise.
\item Finally $f$ can be replaced by a single embedding produced by
\kbd{mfembed}$(f)$ ($v$ was omitted) and we apply that particular embedding
to $v$.
\bprog
? mf = mfinit([35,2,Mod(11,35)], 0);
? [f] = mfbasis(mf);
? f.mod \\@com $\Q(\chi) = \Q(\zeta_{3})$
%3 = t^2 + t + 1
? v = mfcoefs(f,5); lift(v) \\@com coefficients in $\Q(\chi)$
%4 = [0, 2, -2*t - 2, 2*t, 2*t, -2*t - 2]
? mfembed(f, v) \\ single embedding
%5 = [0, 2, -1 - 1.7320...*I, -1 + 1.73205...*I, -1 + 1.7320...*I, ...]
? [F] = mfeigenbasis(mf);
? mffields(mf)
%7 = [y^2 + Mod(-2*t, t^2 + t + 1)] \\@com $[\Q(f):\Q(\chi)] = 2$
? V = liftpol( mfcoefs(F,5) );
%8 = [0, 1, y + (-t - 1), (t + 1)*y + t, (-2*t - 2)*y + t, -t - 1]
? vall = mfembed(F, V); #vall
%9 = 2 \\ 2 embeddings, both applied to V
? vall[1] \\ the first
%10 = [0, 1, -1.2071... - 2.0907...*I, 0.2071... - 0.3587...*I, ...]
? vall[2] \\ and the second one
%11 = [0, 1, 0.2071... + 0.3587...*I, -1.2071... + 2.0907...*I, ...]
? vE = mfembed(F); #vE \\ same 2 embeddings
%12 = 2
? mfembed(vE[1], V) \\ apply first embedding to V
%13 = [0, 1, -1.2071... - 2.0907...*I, 0.2071... - 0.3587...*I, ...]
@eprog
For convenience, we also allow a modular form space from \kbd{mfinit}
instead of $f$, corresponding to the single embedding of $\Q(\chi)$.
\bprog
? [mfB,MC,C] = mfatkininit(mf,7); MC \\@com coefs in $\Q(\chi)$
%13 =
[ Mod(2/7*t, t^2 + t + 1) Mod(-1/7*t - 2/7, t^2 + t + 1)]
[Mod(-1/7*t - 2/7, t^2 + t + 1) Mod(2/7*t, t^2 + t + 1)]
? C \\ normalizing constant
%14 = 0.33863... - 0.16787*I
? M = mfembed(mf, MC) / C \\ the true matrix for the action of w_7
[-0.6294... + 0.4186...*I -0.3625... - 0.5450...*I]
[-0.3625... - 0.5450...*I -0.6294... + 0.4186...*I]
? exponent(M*conj(M) - 1) \\ M * conj(M) is close to 1
%16 = -126
@eprog
The library syntax is \fun{GEN}{mfembed0}{GEN f, GEN v = NULL, long prec}.
\subsec{mfeval$(\var{mf},F,\var{vtau})$}\kbdsidx{mfeval}\label{se:mfeval}
Computes the numerical value of the modular form $F$, belonging
to \var{mf}, at the complex number \kbd{vtau} or the vector \kbd{vtau}
of complex numbers in the completed upper-half plane. The result is given
with absolute error less than $2^{-B}$, where $B = \text{realbitprecision}$.
If the field of definition $\Q(F)$ is larger than $\Q(\chi)$ then $F$ may be
embedded into $\C$ in $d=[\Q(F):\Q(\chi)]$ ways, in which case a vector of
the $d$ results is returned.
\bprog
? mf = mfinit([11,2],0); F = mfbasis(mf)[1]; mfparams(F)
%1 = [11, 2, 1, y, t-1] \\ Q(F) = Q(chi) = Q
? mfeval(mf,F,I/2)
%2 = 0.039405471130100890402470386372028382117
? mf = mfinit([35,2],0); F = mfeigenbasis(mf)[2]; mfparams(F)
%3 = [35, 2, 1, y^2 - y - 4, t - 1] \\ [Q(F) : Q(chi)] = 2
? mfeval(mf,F,I/2)
%4 = [0.045..., 0.0385...] \\ sigma_1(F) and sigma_2(F) at I/2
? mf = mfinit([12,4],1); F = mfbasis(mf)[1];
? mfeval(mf, F, 0.318+10^(-7)*I)
%6 = 3.379... E-21 + 6.531... E-21*I \\ instantaneous !
@eprog\noindent In order to maximize the imaginary part of the argument,
the function computes $(f \mid_{k} \gamma)(\gamma^{-1}\cdot\tau)$ for a
suitable $\gamma$ not necessarily in $\Gamma_{0}(N)$ (in which case $f \mid
\gamma$ is evaluated using \kbd{mfslashexpansion}).
\bprog
? T = mfTheta(); mf = mfinit(T); mfeval(mf,T,[0,1/2,1,oo])
%1 = [1/2 - 1/2*I, 0, 1/2 - 1/2*I, 1]
@eprog
The library syntax is \fun{GEN}{mfeval}{GEN mf, GEN F, GEN vtau, long bitprec}.
\subsec{mffields$(\var{mf})$}\kbdsidx{mffields}\label{se:mffields}
Given \kbd{mf} as output by \kbd{mfinit} with parameters
$(N,k,\chi)$, returns the vector of polynomials defining each Galois orbit of
newforms over $\Q(\chi)$.
\bprog
? mf = mfinit([35,2],0); mffields(mf)
%1 = [y, y^2 - y - 4]
@eprog\noindent Here the character is trivial so $\Q(\chi) = \Q)$ and there
are 3 newforms: one is rational (corresponding to $y$), the other two are
conjugate and defined over the quadratic field $\Q[y]/(y^{2}-y-4)$.
\bprog
? [G,chi] = znchar(Mod(3,35));
? zncharconductor(G,chi)
%2 = 35
? charorder(G,chi)
%3 = 12
? mf = mfinit([35, 2, [G,chi]],0); mffields(mf)
%4 = [y, y]
@eprog Here the character is primitive of order 12 and the two newforms are
defined over $\Q(\chi) = \Q(\zeta_{12})$.
\bprog
? mf = mfinit([35, 2, Mod(13,35)],0); mffields(mf)
%3 = [y^2 + Mod(5*t, t^2 + 1)]
@eprog This time the character has order 4 and there are two conjugate
newforms over $\Q(\chi) = Q(i)$.
The library syntax is \fun{GEN}{mffields}{GEN mf}.
\subsec{mffromell$(E)$}\kbdsidx{mffromell}\label{se:mffromell}
$E$ being an elliptic curve defined over $Q$ given by an
integral model in \kbd{ellinit} format, computes a 3-component vector
\kbd{[mf,F,v]}, where $F$ is the newform corresponding to $E$ by
modularity, \kbd{mf} is the newspace to which $F$ belongs, and
\kbd{v} gives the coefficients of $F$ on \kbd{mfbasis(mf)}.
\bprog
? E = ellinit("26a1");
? [mf,F,co] = mffromell(E);
? co
%2 = [3/4, 1/4]~
? mfcoefs(F, 5)
%3 = [0, 1, -1, 1, 1, -3]
? ellan(E, 5)
%4 = [1, -1, 1, 1, -3]
@eprog
The library syntax is \fun{GEN}{mffromell}{GEN E}.
\subsec{mffrometaquo$(\var{eta},\{\fl=0\})$}\kbdsidx{mffrometaquo}\label{se:mffrometaquo}
Modular form corresponding to the eta quotient matrix \kbd{eta}.
If the valuation $v$ at infinity is fractional, returns $0$. If the eta
quotient is not holomorphic but simply meromorphic, returns $0$ if
$\fl=0$; returns the eta quotient (divided by $q$ to the power $-v$ if
$v < 0$, i.e., with valuation $0$) if $\fl$ is set.
\bprog
? mffrometaquo(Mat([1,1]),1)
%1 = 0
? mfcoefs(mffrometaquo(Mat([1,24])),6)
%2 = [0, 1, -24, 252, -1472, 4830, -6048]
? mfcoefs(mffrometaquo([1,1;23,1]),10)
%3 = [0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0]
? F = mffrometaquo([1,2;2,-1]); mfparams(F)
%4 = [16, 1/2, 1, y, t - 1]
? mfcoefs(F,10)
%5 = [1, -2, 0, 0, 2, 0, 0, 0, 0, -2, 0]
? mffrometaquo(Mat([1,-24]))
%6 = 0
? f = mffrometaquo(Mat([1,-24]),1); mfcoefs(f,6)
%7 = [1, 24, 324, 3200, 25650, 176256, 1073720]
@eprog\noindent For convenience, a \typ{VEC} is also accepted instead of
a factorization matrix with a single row:
\bprog
? f = mffrometaquo([1,24]); \\ also valid
@eprog
The library syntax is \fun{GEN}{mffrometaquo}{GEN eta, long flag}.
\subsec{mffromlfun$(L)$}\kbdsidx{mffromlfun}\label{se:mffromlfun}
Let $L$ being an $L$-function in any of the \kbd{lfun} formats representing
a self-dual modular form (for instance an eigenform). Return
\kbd{[NK,space,v]} when \kbd{mf = mfinit(NK,space)} is the modular
form space containing the form and \kbd{mftobasis(mf, v)} will represent it
on the space basis. If $L$ has rational coefficients, this will be enough
to recognize the modular form in \var{mf}:
\bprog
? L = lfuncreate(x^2+1);
? lfunan(L,10)
%2 = [1, 1, 0, 1, 2, 0, 0, 1, 1, 2]
? [NK,space,v] = mffromlfun(L); NK
%4 = [4, 1, -4]
? mf=mfinit(NK,space); w = mftobasis(mf,v)
%5 = [1.0000000000000000000000000000000000000]~
? [f] = mfbasis(mf); mfcoefs(f,10) \\ includes a_0 !
%6 = [1/4, 1, 1, 0, 1, 2, 0, 0, 1, 1, 2]
@eprog
If $L$ has inexact complex coefficients, one can for instance
compute an eigenbasis for \var{mf} and check whether one of the attached
$L$-function is reasonably close to $L$. In the example, we cheat by
producing the $L$ function from an eigenform in a known space, but the
function does not use this information:
\bprog
? mf = mfinit([32,6,Mod(5,32)],0);
? [poldegree(K) | K<-mffields(mf)]
%2 = [19] \\ one orbit, [Q(F) : Q(chi)] = 19
? L = lfunmf(mf)[1][1]; \\ one of the 19 L-functions attached to F
? lfunan(L,3)
%4 = [1, 5.654... - 0.1812...*I, -7.876... - 19.02...*I]
? [NK,space,v] = mffromlfun(L); NK
%5 = [32, 6, Mod(5, 32)]
? vL = concat(lfunmf(mf)); \\ L functions for all cuspidal eigenforms
? an = lfunan(L,10);
? for (i = 1, #vL, if (normlp(lfunan(vL[i],10) - an, oo) < 1e-10, print(i)));
1
@eprog
The library syntax is \fun{GEN}{mffromlfun}{GEN L, long prec}.
\subsec{mffromqf$(Q,\{P\})$}\kbdsidx{mffromqf}\label{se:mffromqf}
$Q$ being an even integral positive definite quadratic form
and $P$ a homogeneous spherical polynomial for $Q$, computes
a 3-component vector $[\var{mf},F,v]$, where $F$ is the theta function
corresponding to $(Q,P)$, \var{mf} is the corresponding space of modular
forms (from \kbd{mfinit}), and $v$ gives the coefficients of $F$ on
\kbd{mfbasis(mf)}.
\bprog
? [mf,F,v] = mffromqf(2*matid(10)); v
%1 = [64/5, 4/5, 32/5]~
? mfcoefs(F, 5)
%2 = [1, 20, 180, 960, 3380, 8424]
? mfcoef(F, 10000) \\ number of ways of writing 10000 as sum of 10 squares
%3 = 128205250571893636
? mfcoefs(F, 10000); \\ fast !
time = 220ms
? [mf,F,v] = mffromqf([2,0;0,2],x^4-6*x^2*y^2+y^4);
? mfcoefs(F,10)
%6 = [0, 4, -16, 0, 64, -56, 0, 0, -256, 324, 224]
? mfcoef(F,100000) \\ instantaneous
%7 = 41304367104
@eprog
Odd dimensions are supported, corresponding to forms of half-integral weight:
\bprog
? [mf,F,v] = mffromqf(2*matid(3));
? mfisequal(F, mfpow(mfTheta(),3))
%2 = 1
? mfcoefs(F, 32) \\ illustrate Legendre's 3-square theorem
%3 = [ 1,
6, 12, 8, 6, 24, 24, 0, 12,
30, 24, 24, 8, 24, 48, 0, 6,
48, 36, 24,24, 48, 24, 0, 24,
30, 72, 32, 0, 72, 48, 0, 12]
@eprog
The library syntax is \fun{GEN}{mffromqf}{GEN Q, GEN P = NULL}.
\subsec{mfgaloisprojrep$(\var{mf},F)$}\kbdsidx{mfgaloisprojrep}\label{se:mfgaloisprojrep}
\var{mf} being an \kbd{mf} output by \kbd{mfinit} in weight $1$,
return a polynomial defining the field fixed by the kernel of the projective
Artin representation attached to \var{F} (by Deligne--Serre).
Currently only implemented for projective images $A_{4}$, $A_{5}$ and $S_{4}$.
The type $A_{5}$ requires the \kbd{nflistdata} package to be installed.
\bprog
\\ A4 example
? mf = mfinit([4*31,1,Mod(87,124)],0);
? F = mfeigenbasis(mf)[1];
? mfgaloistype(mf,F)
%3 = -12
? pol = mfgaloisprojrep(mf,F)
%4 = x^12 + 68*x^10 + 4808*x^8 + ... + 4096
? G = galoisinit(pol); galoisidentify(G)
%5 = [12,3] \\A4
? pol4 = polredbest(galoisfixedfield(G,G.gen[3], 1))
%6 = x^4 + 7*x^2 - 2*x + 14
? polgalois(pol4)
%7 = [12, 1, 1, "A4"]
? factor(nfdisc(pol4))
%8 =
[ 2 4]
[31 2]
\\ S4 example
? mf = mfinit([4*37,1,Mod(105,148)],0);
? F = mfeigenbasis(mf)[1];
? mfgaloistype(mf,F)
%11 = -24
? pol = mfgaloisprojrep(mf,F)
%12 = x^24 + 24*x^22 + 256*x^20 + ... + 255488256
? G = galoisinit(pol); galoisidentify(G)
%13 = [24, 12] \\S4
? pol4 = polredbest(galoisfixedfield(G,G.gen[3..4], 1))
%14 = x^4 - x^3 + 5*x^2 - 7*x + 12
? polgalois(pol4)
%15 = [24, -1, 1, "S4"]
? factor(nfdisc(pol4))
%16 =
[ 2 2]
[37 3]
@eprog
The library syntax is \fun{GEN}{mfgaloisprojrep}{GEN mf, GEN F, long prec}.
\subsec{mfgaloistype$(\var{NK},\{F\})$}\kbdsidx{mfgaloistype}\label{se:mfgaloistype}
\kbd{NK} being either \kbd{[N,1,CHI]} or an \kbd{mf} output by
\kbd{mfinit} in weight $1$, gives the vector of types of Galois
representations attached to each cuspidal eigenform,
unless the modular form \kbd{F} is specified, in which case only for \kbd{F}
(note that it is not tested whether \kbd{F} belongs to the correct modular
form space, nor whether it is a cuspidal eigenform). Types $A_{4}$, $S_{4}$,
$A_{5}$ are represented by minus their cardinality $-12$, $-24$, or $-60$,
and type $D_{n}$ is represented by its cardinality, the integer $2n$:
\bprog
? mfgaloistype([124,1, Mod(67,124)]) \\ A4
%1 = [-12]
? mfgaloistype([148,1, Mod(105,148)]) \\ S4
%2 = [-24]
? mfgaloistype([633,1, Mod(71,633)]) \\ D10, A5
%3 = [10, -60]
? mfgaloistype([239,1, -239]) \\ D6, D10, D30
%4 = [6, 10, 30]
? mfgaloistype([71,1, -71])
%5 = [14]
? mf = mfinit([239,1, -239],0); F = mfeigenbasis(mf)[2];
? mfgaloistype(mf, F)
%7 = 10
@eprog
The function may also return~$0$ as a type when it failed to determine it; in
this case the correct type is either~$-12$ or~$-60$, and most likely~$-12$.
The library syntax is \fun{GEN}{mfgaloistype}{GEN NK, GEN F = NULL}.
\subsec{mfhecke$(\var{mf},F,n)$}\kbdsidx{mfhecke}\label{se:mfhecke}
$F$ being a modular form in modular form space \var{mf}, returns
$T(n)F$, where $T(n)$ is the $n$-th Hecke operator.
\misctitle{Warning} If $F$ is of level $M<N$, then $T(n)F$
is in general not the same in $M_{k}(\Gamma_{0}(M),\chi)$ and in
$M_{k}(\Gamma_{0}(N),\chi)$. We take $T(n)$ at the same level as the one
used in \kbd{mf}.
\bprog
? mf = mfinit([26,2],0); F = mfbasis(mf)[1]; mftobasis(mf,F)
%1 = [1, 0]~
? G2 = mfhecke(mf,F,2); mftobasis(mf,G2)
%2 = [0, 1]~
? G5 = mfhecke(mf,F,5); mftobasis(mf,G5)
%3 = [-2, 1]~
@eprog\noindent Modular forms of half-integral weight are supported, in
which case $n$ must be a perfect square, else $T_{n}$ will act as $0$ (the
operator $T_{p}$ for $p \mid N$ is not supported yet):
\bprog
? F = mfpow(mfTheta(),3); mf = mfinit(F);
? mfisequal(mfhecke(mf,F,9), mflinear([F],[4]))
%2 = 1
@eprog ($F$ is an eigenvector of all $T_{p^{2}}$, with eigenvalue $p+1$ for
odd $p$.)
\misctitle{Warning} When $n$ is a large composite, resp.~the square of a large
composite in half-integral weight, it is in general more efficient to use
\kbd{mfheckemat} on the \kbd{mftobasis} coefficients:
\bprog
? mfcoefs(mfhecke(mf,F,3^10), 10)
time = 917 ms.
%3 = [324, 1944, 3888, 2592, 1944, 7776, 7776, 0, 3888, 9720, 7776]
? M = mfheckemat(mf,3^10) \\ instantaneous
%4 =
[324]
? G = mflinear(mf, M*mftobasis(mf,F));
? mfcoefs(G, 10) \\ instantaneous
%6 = [324, 1944, 3888, 2592, 1944, 7776, 7776, 0, 3888, 9720, 7776]
@eprog
The library syntax is \fun{GEN}{mfhecke}{GEN mf, GEN F, long n}.
\subsec{mfheckemat$(\var{mf},\var{vecn})$}\kbdsidx{mfheckemat}\label{se:mfheckemat}
If \kbd{vecn} is an integer, matrix of the Hecke operator $T(n)$ on the
basis formed by \kbd{mfbasis(mf)}. If it is a vector, vector of
such matrices, usually faster than calling each one individually.
\bprog
? mf=mfinit([32,4],0); mfheckemat(mf,3)
%1 =
[0 44 0]
[1 0 -10]
[0 -2 0]
? mfheckemat(mf,[5,7])
%2 = [[0, 0, 220; 0, -10, 0; 1, 0, 12], [0, 88, 0; 2, 0, -20; 0, -4, 0]]
@eprog
The library syntax is \fun{GEN}{mfheckemat}{GEN mf, GEN vecn}.
\subsec{mfinit$(\var{NK},\{\var{space}=4\})$}\kbdsidx{mfinit}\label{se:mfinit}
Create the space of modular forms corresponding to the data contained in
\kbd{NK} and \kbd{space}. \kbd{NK} is a vector which can be
either $[N,k]$ ($N$ level, $k$ weight) corresponding to a subspace of
$M_{k}(\Gamma_{0}(N))$, or $[N,k,\var{CHI}]$ (\var{CHI} a character)
corresponding to a subspace of $M_{k}(\Gamma_{0}(N),\chi)$. Alternatively,
it can be a modular form $F$ or modular form space, in which case we use
\kbd{mfparams} to define the space parameters.
The subspace is described by the small integer \kbd{space}: $0$ for the
newspace $S_{k}^{\text{new}}(\Gamma_{0}(N),\chi)$, $1$ for the cuspidal
space $S_{k}$, $2$ for the oldspace $S_{k}^{\text{old}}$, $3$ for the space of
Eisenstein series $E_{k}$ and $4$ for the full space $M_{k}$.
\misctitle{Wildcards} For given level and weight, it is advantageous to
compute simultaneously spaces attached to different Galois orbits
of characters, especially in weight $1$. The parameter \var{CHI} may be set
to 0 (wildcard), in which case we return a vector of all \kbd{mfinit}(s) of
non trivial spaces in $S_{k}(\Gamma_{1}(N))$, one for each Galois orbit
(see \kbd{znchargalois}). One may also set \var{CHI} to a vector of
characters and we return a vector of all mfinits of subspaces of
$M_{k}(G_{0}(N),\chi)$ for $\chi$ in the list, in the same order. In weight $1$,
only $S_{1}^{\text{new}}$, $S_{1}$ and $E_{1}$ support wildcards.
The output is a technical structure $S$, or a vector of structures if
\var{CHI} was a wildcard, which contains the following information:
$[N,k,\chi]$ is given by \kbd{mfparams}$(S)$, the space
dimension is \kbd{mfdim}$(S)$ and a $\C$-basis for the space is
\kbd{mfbasis}$(S)$. The structure is entirely algebraic and does not depend
on the current \kbd{realbitprecision}.
\bprog
? S = mfinit([36,2], 0); \\ new space
? mfdim(S)
%2 = 1
? mfparams
%3 = [36, 2, 1, y] \\ trivial character
? f = mfbasis(S)[1]; mfcoefs(f,10)
%4 = [0, 1, 0, 0, 0, 0, 0, -4, 0, 0, 0]
? vS = mfinit([36,2,0],0); \\ with wildcard
? #vS
%6 = 4 \\ 4 non trivial spaces (mod Galois action)
? apply(mfdim,vS)
%7 = [1, 2, 1, 4]
? mfdim([36,2,0], 0)
%8 = [[1, Mod(1, 36), 1, 0], [2, Mod(35, 36), 2, 0], [3, Mod(13, 36), 1, 0],
[6, Mod(11, 36), 4, 0]]
@eprog
The library syntax is \fun{GEN}{mfinit}{GEN NK, long space}.
\subsec{mfisCM$(F)$}\kbdsidx{mfisCM}\label{se:mfisCM}
Tests whether the eigenform $F$ is a CM form. The answer
is $0$ if it is not, and if it is, either the unique negative discriminant
of the CM field, or the pair of two negative discriminants of CM fields,
this latter case occurring only in weight $1$ when the projective image is
$D_{2}=C_{2}\times C_{2}$, i.e., coded $4$ by \kbd{mfgaloistype}.
\bprog
? F = mffromell(ellinit([0,1]))[2]; mfisCM(F)
%1 = -3
? mf = mfinit([39,1,-39],0); F=mfeigenbasis(mf)[1]; mfisCM(F)
%2 = Vecsmall([-3, -39])
? mfgaloistype(mf)
%3 = [4]
@eprog
The library syntax is \fun{GEN}{mfisCM}{GEN F}.
\subsec{mfisequal$(F,G,\{\var{lim}=0\})$}\kbdsidx{mfisequal}\label{se:mfisequal}
Checks whether the modular forms $F$ and $G$ are equal. If \kbd{lim}
is nonzero, only check equality of the first $lim+1$ Fourier coefficients
and the function then also applies to generalized modular forms.
\bprog
? D = mfDelta(); F = mfderiv(D);
? G = mfmul(mfEk(2), D);
? mfisequal(F, G)
%2 = 1
@eprog
The library syntax is \fun{long}{mfisequal}{GEN F, GEN G, long lim}.
\subsec{mfisetaquo$(f,\{\fl=0\})$}\kbdsidx{mfisetaquo}\label{se:mfisetaquo}
If the generalized modular form $f$ is a holomorphic eta quotient,
return the eta quotient matrix, else return 0. If \fl is set, also accept
meromorphic eta quotients: check whether $f = q^{-v(g)} g(q)$ for some
eta quotient $g$; if so, return the eta quotient matrix attached to $g$,
else return $0$.
See \kbd{mffrometaquo}.
\bprog
? mfisetaquo(mfDelta())
%1 =
[1 24]
? f = mffrometaquo([1,1;23,1]);
? mfisetaquo(f)
%3 =
[ 1 1]
[23 1]
? f = mffrometaquo([1,-24], 1);
? mfisetaquo(f) \\ nonholomorphic
%5 = 0
? mfisetaquo(f,1)
%6 =
[1 -24]
@eprog
The library syntax is \fun{GEN}{mfisetaquo}{GEN f, long flag}.
\subsec{mfkohnenbasis$(\var{mf})$}\kbdsidx{mfkohnenbasis}\label{se:mfkohnenbasis}
\kbd{mf} being a cuspidal space of half-integral weight $k\ge3/2$
with level $N$ and character $\chi$, gives a
basis $B$ of the Kohnen $+$-space of \kbd{mf} as a matrix whose columns are
the coefficients of $B$ on the basis of \kbd{mf}. The conductor of either
$\chi$ or $\chi \cdot (-4/.)$ must divide $N/4$.
\bprog
? mf = mfinit([36,5/2],1); K = mfkohnenbasis(mf); K~
%1 =
[-1 0 0 2 0 0]
[ 0 0 0 0 1 0]
? (mfcoefs(mf,20) * K)~
%4 =
[0 -1 0 0 2 0 0 0 0 0 0 0 0 -6 0 0 8 0 0 0 0]
[0 0 0 0 0 1 0 0 -2 0 0 0 0 0 0 0 0 1 0 0 2]
? mf = mfinit([40,3/2,8],1); mfkohnenbasis(mf)
*** at top-level: mfkohnenbasis(mf)
*** ^-----------------
*** mfkohnenbasis: incorrect type in mfkohnenbasis [incorrect CHI] (t_VEC).
@eprog In the final example both $\chi = (8/.)$ and $\chi \cdot (-4/.)$
have conductor $8$, which does not divide N/4 = 10.
The library syntax is \fun{GEN}{mfkohnenbasis}{GEN mf}.
\subsec{mfkohnenbijection$(\var{mf})$}\kbdsidx{mfkohnenbijection}\label{se:mfkohnenbijection}
Let \kbd{mf} be a cuspidal space of half-integral weight and weight $4N$,
with $N$ squarefree and let $S_{k}^{+}(\Gamma_{0}(4N),\chi)$ be the Kohnen
$+$-space. Returns \kbd{[mf2,M,K,shi]}, where
\item \kbd{mf2} gives the cuspidal space $S_{2k-1}(\Gamma_{0}(N),\chi^{2})$;
\item $M$ is a matrix giving a Hecke-module isomorphism from that space to the
Kohnen $+$-space $S_{k}^{+}(\Gamma_{0}(4N),\chi)$;
\item \kbd{K} represents a basis $B$ of the Kohnen $+$-space as a matrix
whose columns are the coefficients of $B$ on the basis of \kbd{mf};
\item \kbd{shi} is a vector of pairs $(t_{i},n_{i})$ gives the linear
combination of Shimura lifts giving $M^{-1}$: $t_{i}$ is a squarefree positive
integer and $n_{i}$ is a small nonzero integer.
\bprog
? mf=mfinit([60,5/2],1); [mf2,M,K,shi]=mfkohnenbijection(mf); M
%2 =
[-3 0 5/2 7/2]
[ 1 -1/2 -7 -7]
[ 1 1/2 0 -3]
[ 0 0 5/2 5/2]
? shi
%2 = [[1, 1], [2, 1]]
@eprog
This last command shows that the map giving the bijection is the sum of the
Shimura lift with $t=1$ and the one with $t=2$.
Since it gives a bijection of Hecke modules, this matrix can be used to
transport modular form data from the easily computed space of level $N$
and weight $2k-1$ to the more difficult space of level $4N$ and weight
$k$: matrices of Hecke operators, new space, splitting into eigenspaces and
eigenforms. Examples:
\bprog
? K^(-1)*mfheckemat(mf,121)*K /* matrix of T_11^2 on K. Slowish. */
time = 1,280 ms.
%1 =
[ 48 24 24 24]
[ 0 32 0 -20]
[-48 -72 -40 -72]
[ 0 0 0 52]
? M*mfheckemat(mf2,11)*M^(-1) /* instantaneous via T_11 on S_{2k-1} */
time = 0 ms.
%2 =
[ 48 24 24 24]
[ 0 32 0 -20]
[-48 -72 -40 -72]
[ 0 0 0 52]
? mf20=mfinit(mf2,0); [mftobasis(mf2,b) | b<-mfbasis(mf20)]
%3 = [[0, 0, 1, 0]~, [0, 0, 0, 1]~]
? F1=M*[0,0,1,0]~
%4 = [1/2, 1/2, -3/2, -1/2]~
? F2=M*[0,0,0,1]~
%5 = [3/2, 1/2, -9/2, -1/2]
? K*F1
%6 = [1, 0, 0, 1, 1, 0, 0, 1, -3, 0, 0, -3, 0, 0]~
? K*F2
%7 = [3, 0, 0, 3, 1, 0, 0, 1, -9, 0, 0, -3, 0, 0]~
@eprog
This gives a basis of the new space of $S_{5/2}^{+}(\Gamma_{0}(60))$ expressed
on the initial basis of $S_{5/2}(\Gamma_{0}(60))$. To obtain the eigenforms,
we write instead:
\bprog
? BE=mfeigenbasis(mf20);[E1,E2]=apply(x->K*M*mftobasis(mf2,x),BE)
%1 = [[1, 0, 0, 1, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0]~,\
[0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, -3, 0, 0]~
? EI1 = mflinear(mf, E1); EI2=mflinear(mf, E2);
@eprog\noindent
These are the two eigenfunctions in the space \kbd{mf}, the first (resp.,
second) will have Shimura image a multiple of $BE[1]$ (resp., $BE[2]$).
The function \kbd{mfkohneneigenbasis} does this directly.
The library syntax is \fun{GEN}{mfkohnenbijection}{GEN mf}.
\subsec{mfkohneneigenbasis$(\var{mf},\var{bij})$}\kbdsidx{mfkohneneigenbasis}\label{se:mfkohneneigenbasis}
\kbd{mf} being a cuspidal space of half-integral weight $k\ge3/2$ and
\kbd{bij} being the output of \kbd{mfkohnenbijection(mf)}, outputs a
$3$-component vector \kbd{[mf0,BNEW,BEIGEN]}, where \kbd{BNEW} and
\kbd{BEIGEN} are two matrices whose columns are the coefficients
of a basis of the Kohnen new space and of the eigenforms on the basis of
\kbd{mf} respectively, and \kbd{mf0} is the corresponding new space of
integral weight $2k-1$.
\bprog
? mf=mfinit([44,5/2],1);bij=mfkohnenbijection(mf);
? [mf0,BN,BE]=mfkohneneigenbasis(mf,bij);
? BN~
%2 =
[2 0 0 -2 2 0 -8]
[2 0 0 4 14 0 -32]
? BE~
%3 = [1 0 0 Mod(y-1, y^2-3) Mod(2*y+1, y^2-3) 0 Mod(-4*y-4, y^2-3)]
? lift(mfcoefs(mf,20)*BE[,1])
%4 = [0, 1, 0, 0, y - 1, 2*y + 1, 0, 0, 0, -4*y - 4, 0, 0,\
-5*y + 3, 0, 0, 0, -6, 0, 0, 0, 7*y + 9]~
@eprog
The library syntax is \fun{GEN}{mfkohneneigenbasis}{GEN mf, GEN bij}.
\subsec{mflinear$(\var{vF},v)$}\kbdsidx{mflinear}\label{se:mflinear}
\kbd{vF} being a vector of generalized modular forms and \kbd{v}
a vector of coefficients of same length, compute the linear
combination of the entries of \kbd{vF} with coefficients \kbd{v}.
\misctitle{Note} Use this in particular to subtract two forms $F$ and $G$
(with $vF=[F,G]$ and $v=[1,-1]$), or to multiply an form by
a scalar $\lambda$ (with $vF=[F]$ and $v=[\lambda]$).
\bprog
? D = mfDelta(); G = mflinear([D],[-3]);
? mfcoefs(G,4)
%2 = [0, -3, 72, -756, 4416]
@eprog For user convenience, we allow
\item a modular form space \kbd{mf} as a \kbd{vF} argument, which is
understood as \kbd{mfbasis(mf)};
\item in this case, we also allow a modular form $f$ as $v$, which
is understood as \kbd{mftobasis}$(\var{mf}, f)$.
\bprog
? T = mfpow(mfTheta(),7); F = mfShimura(T,-3); \\ Shimura lift for D=-3
? mfcoefs(F,8)
%2 = [-5/9, 280, 9240, 68320, 295960, 875280, 2254560, 4706240, 9471000]
? mf = mfinit(F); G = mflinear(mf,F);
? mfcoefs(G,8)
%4 = [-5/9, 280, 9240, 68320, 295960, 875280, 2254560, 4706240, 9471000]
@eprog\noindent This last construction allows to replace a general modular
form by a simpler linear combination of basis functions, which is often
more efficient:
\bprog
? T10=mfpow(mfTheta(),10); mfcoef(T10, 10^4) \\ direct evaluation
time = 399 ms.
%5 = 128205250571893636
? mf=mfinit(T10); F=mflinear(mf,T10); \\ instantaneous
? mfcoef(F, 10^4) \\ after linearization
time = 67 ms.
%7 = 128205250571893636
@eprog
The library syntax is \fun{GEN}{mflinear}{GEN vF, GEN v}.
\subsec{mfmanin$(\var{FS})$}\kbdsidx{mfmanin}\label{se:mfmanin}
Given the modular symbol $FS$ associated to an eigenform $F$ by
\kbd{mfsymbol(mf,F)}, computes the odd and even special polynomials as well
as the odd and even periods $\omega^{-}$ and $\omega^{+}$ as a vector
$[[P^{-},P^{+}],[\omega^{-},\omega^{+},r]]$, where
$r=\Im(\omega^{+}\overline{\omega^{-}})/<F,F>$. If $F$ has several embeddings
into $\C$, give the vector of results corresponding to each embedding.
\bprog
? D=mfDelta(); mf=mfinit(D); DS=mfsymbol(mf,D);
? [pols,oms]=mfmanin(DS); pols
%2 = [[4*x^9 - 25*x^7 + 42*x^5 - 25*x^3 + 4*x],\
[-36*x^10 + 691*x^8 - 2073*x^6 + 2073*x^4 - 691*x^2 + 36]]
? oms
%3 = [0.018538552324740326472516069364750571812,\
-0.00033105361053212432521308691198949874026*I, 4096/691]
? mf=mfinit([11,2],0); F=mfeigenbasis(mf)[1]; FS=mfsymbol(mf,F);
? [pols,oms]=mfmanin(FS);pols
%5 = [[0, 0, 0, 1, 1, 0, 0, -1, -1, 0, 0, 0],\
[2, 0, 10, 5, -5, -10, -10, -5, 5, 10, 0, -2]]
? oms[3]
%6 = 24/5
@eprog
The library syntax is \fun{GEN}{mfmanin}{GEN FS, long bitprec}.
\subsec{mfmul$(F,G)$}\kbdsidx{mfmul}\label{se:mfmul}
Multiply the two generalized modular forms $F$ and $G$.
\bprog
? E4 = mfEk(4); G = mfmul(mfmul(E4,E4),E4);
? mfcoefs(G, 4)
%2 = [1, 720, 179280, 16954560, 396974160]
? mfcoefs(mfpow(E4,3), 4)
%3 = [1, 720, 179280, 16954560, 396974160]
@eprog
The library syntax is \fun{GEN}{mfmul}{GEN F, GEN G}.
\subsec{mfnumcusps$(N)$}\kbdsidx{mfnumcusps}\label{se:mfnumcusps}
Number of cusps of $\Gamma_{0}(N)$
\bprog
? mfnumcusps(24)
%1 = 8
? mfcusps(24)
%1 = [0, 1/2, 1/3, 1/4, 1/6, 1/8, 1/12, 1/24]
@eprog
The library syntax is \fun{GEN}{mfnumcusps}{GEN N}.
\subsec{mfparams$(F)$}\kbdsidx{mfparams}\label{se:mfparams}
If $F$ is a modular form space, returns \kbd{[N,k,CHI,space,$\Phi$]},
level, weight, character $\chi$, and space code; where $\Phi$ is the
cyclotomic polynomial
defining the field of values of \kbd{CHI}. If $F$ is a generalized modular
form, returns \kbd{[N,k,CHI,P,$\Phi$]}, where $P$ is the (polynomial giving
the) field of definition of $F$ as a relative extension of the cyclotomic field
$\Q(\chi) = \Q[t]/(\Phi)$: in that case the level $N$ may be a multiple of the
level of $F$ and the polynomial $P$ may define a larger field than $\Q(F)$.
If you want the true level of $F$ from this result, use
\kbd{mfconductor(mfinit(F),F)}. The polynomial $P$ defines an extension of
$\Q(\chi) = \Q[t]/(\Phi(t))$; it has coefficients in that number field
(polmods in $t$).
In contrast with \kbd{mfparams(F)[4]} which always gives the polynomial
$P$ defining the relative extension $\Q(F)/\Q(\chi)$, the member function
\kbd{$F$.mod} returns the polynomial used to define $\Q(F)$ over $\Q$
(either a cyclotomic polynomial or a polynomial with cyclotomic
coefficients).
\bprog
? E1 = mfeisenstein(4,-3,-4); E2 = mfeisenstein(3,5,-7); E3 = mfmul(E1,E2);
? apply(mfparams, [E1,E2,E3])
%2 = [[12, 4, 12, y, t-1], [35, 3, -35, y, t-1], [420, 7, -420, y, t-1]]
? mf = mfinit([36,2,Mod(13,36)],0); [f] = mfeigenbasis(mf); mfparams(mf)
%3 = [36, 2, Mod(13, 36), 0, t^2 + t + 1]
? mfparams(f)
%4 = [36, 2, Mod(13, 36), y, t^2 + t + 1]
? f.mod
%5 = t^2 + t + 1
? mf = mfinit([36,4,Mod(13,36)],0); [f] = mfeigenbasis(mf);
? lift(mfparams(f))
%7 = [36, 4, 13, y^3 + (2*t-2)*y^2 + (-4*t+6)*y + (10*t-1), t^2+t+1]
@eprog
The library syntax is \fun{GEN}{mfparams}{GEN F}.
\subsec{mfperiodpol$(\var{mf},f,\{\fl=0\})$}\kbdsidx{mfperiodpol}\label{se:mfperiodpol}
Period polynomial of the cuspidal part of the form $f$, in other words
$\int_{0}^{i\infty}(X-\tau)^{k-2}f(\tau)\,d\tau$. If $\fl=0$,
ordinary period polynomial. If it is $1$ or $-1$, even or odd part of that
polynomial. $f$ can also be the modular symbol output by \kbd{mfsymbol}(mf,f).
\bprog
? D = mfDelta(); mf = mfinit(D,0);
? PP = mfperiodpol(mf, D, -1); PP/=polcoef(PP, 1); bestappr(PP)
%1 = x^9 - 25/4*x^7 + 21/2*x^5 - 25/4*x^3 + x
? PM = mfperiodpol(mf, D, 1); PM/=polcoef(PM, 0); bestappr(PM)
%2 = -x^10 + 691/36*x^8 - 691/12*x^6 + 691/12*x^4 - 691/36*x^2 + 1
@eprog
The library syntax is \fun{GEN}{mfperiodpol}{GEN mf, GEN f, long flag, long bitprec}.
\subsec{mfperiodpolbasis$(k,\{\fl=0\})$}\kbdsidx{mfperiodpolbasis}\label{se:mfperiodpolbasis}
Basis of period polynomials for weight $k$. If $\fl=1$ or $-1$, basis of
odd or even period polynomials.
\bprog
? mfperiodpolbasis(12,1)
%1 = [x^8 - 3*x^6 + 3*x^4 - x^2, x^10 - 1]
? mfperiodpolbasis(12,-1)
%2 = [4*x^9 - 25*x^7 + 42*x^5 - 25*x^3 + 4*x]
@eprog
The library syntax is \fun{GEN}{mfperiodpolbasis}{long k, long flag}.
\subsec{mfpetersson$(\var{fs},\{\var{gs}\})$}\kbdsidx{mfpetersson}\label{se:mfpetersson}
Petersson scalar product of the modular forms $f$ and $g$ belonging to
the same modular form space \kbd{mf}, given by the corresponding
``modular symbols'' \kbd{fs} and \kbd{gs} output by \kbd{mfsymbol}
(also in weight $1$ and half-integral weight, where symbols do not exist).
If \kbd{gs} is omitted it is understood to be equal to \kbd{fs}.
The scalar product is normalized by the factor $1/[\Gamma:\Gamma_{0}(N)]$.
Note that $f$ and $g$ can both be noncuspidal, in which case the program
returns an error if the product is divergent.
If the fields of definition $\Q(f)$ and $\Q(g)$ are equal to $\Q(\chi)$
the result is a scalar. If $[\Q(f):\Q(\chi)]=d>1$ and
$[\Q(g):\Q(\chi)]=e>1$ the result is a $d\times e$ matrix corresponding
to all the embeddings of $f$ and $g$. In the intermediate cases $d=1$ or
$e=1$ the result is a row or column vector.
\bprog
? D=mfDelta(); mf=mfinit(D); DS=mfsymbol(mf,D); mfpetersson(DS)
%1 = 1.0353620568043209223478168122251645932 E-6
? mf=mfinit([11,6],0);B=mfeigenbasis(mf);BS=vector(#B,i,mfsymbol(mf,B[i]));
? mfpetersson(BS[1])
%3 = 1.6190120685220988139111708455305245466 E-5
? mfpetersson(BS[1],BS[2])
%4 = [-3.826479006582967148 E-42 - 2.801547395385577002 E-41*I,\
1.6661127341163336125 E-41 + 1.1734725972345985061 E-41*I,\
0.E-42 - 6.352626992842664490 E-41*I]~
? mfpetersson(BS[2])
%5 =
[ 2.7576133733... E-5 2.0... E-42 6.3... E-43 ]
[ -4.1... E-42 6.77837030070... E-5 3.3...E-42 ]
[ -6.32...E-43 3.6... E-42 2.27268958069... E-5]
? mf=mfinit([23,2],0); F=mfeigenbasis(mf)[1]; FS=mfsymbol(mf,F);
? mfpetersson(FS)
%5 =
[0.0039488965740025031688548076498662860143 -3.56 ... E-40]
[ -3.5... E-40 0.0056442542987647835101583821368582485396]
@eprog
Noncuspidal example:
\bprog
? E1=mfeisenstein(5,1,-3);E2=mfeisenstein(5,-3,1);
? mf=mfinit([12,5,-3]); cusps=mfcusps(12);
? apply(x->mfcuspval(mf,E1,x),cusps)
%3 = [0, 0, 1, 0, 1, 1]
? apply(x->mfcuspval(mf,E2,x),cusps)
%4 = [1/3, 1/3, 0, 1/3, 0, 0]
? E1S=mfsymbol(mf,E1);E2S=mfsymbol(mf,E2);
? mfpetersson(E1S,E2S)
%6 = -1.884821671646... E-5 - 1.9... E-43*I
@eprog
Weight 1 and 1/2-integral weight example:
\bprog
? mf=mfinit([23,1,-23],1);F=mfbasis(mf)[1];FS=mfsymbol(mf,F);
? mfpetersson(mf,FS)
%2 = 0.035149946790370230814006345508484787443
? mf=mfinit([4,9/2],1);F=mfbasis(mf)[1];FS=mfsymbol(mf,F);
? mfpetersson(FS)
%4 = 0.00015577084407139192774373662467908966030
@eprog
The library syntax is \fun{GEN}{mfpetersson}{GEN fs, GEN gs = NULL}.
\subsec{mfpow$(F,n)$}\kbdsidx{mfpow}\label{se:mfpow}
Compute $F^{n}$, where $n$ is an integer and $F$ is a generalized modular
form:
\bprog
? G = mfpow(mfEk(4), 3); \\ E4^3
? mfcoefs(G, 4)
%2 = [1, 720, 179280, 16954560, 396974160]
@eprog
The library syntax is \fun{GEN}{mfpow}{GEN F, long n}.
\subsec{mfsearch$(\var{NK},V,\{\var{space}\})$}\kbdsidx{mfsearch}\label{se:mfsearch}
\kbd{NK} being of the form \kbd{[N,k]} with $k$ possibly half-integral,
search for a modular form with rational coefficients, of weight $k$ and
level $N$, whose initial coefficients $a(0)$,... are equal to $V$;
\kbd{space} specifies the modular form spaces in which to search, in
\kbd{mfinit} or \kbd{mfdim} notation. The output is a list of matching forms
with that given level and weight. Note that the character is of the form
$(D/.)$, where $D$ is a (positive or negative) fundamental discriminant
dividing $N$. The forms are sorted by increasing $|D|$.
The parameter $N$ can be replaced by a vector of allowed levels, in which
case the list of forms is sorted by increasing level, then increasing $|D|$.
If a form is found at level $N$, any multiple of $N$ with the same $D$ is not
considered. Some useful possibilities are
\item \kbd{[$N_{1}$..$N_{2}$]}: all levels between $N_{1}$ and $N_{2}$,
endpoints included;
\item \kbd{$F$ * [$N_{1}$..$N_{2}$]}: same but levels divisible by $F$;
\item \kbd{divisors}$(N_{0})$: all levels dividing $N_{0}$.
Note that this is different from \kbd{mfeigensearch}, which only searches
for rational eigenforms.
\bprog
? F = mfsearch([[1..40], 2], [0,1,2,3,4], 1); #F
%1 = 3
? [ mfparams(f)[1..3] | f <- F ]
%2 = [[38, 2, 1], [40, 2, 8], [40, 2, 40]]
? mfcoefs(F[1],10)
%3 = [0, 1, 2, 3, 4, -5, -8, 1, -7, -5, 7]
@eprog
The library syntax is \fun{GEN}{mfsearch}{GEN NK, GEN V, long space}.
\subsec{mfshift$(F,s)$}\kbdsidx{mfshift}\label{se:mfshift}
Divide the generalized modular form $F$ by $q^{s}$, omitting the remainder
if there is one. One can have $s<0$.
\bprog
? D=mfDelta(); mfcoefs(mfshift(D,1), 4)
%1 = [1, -24, 252, -1472, 4830]
? mfcoefs(mfshift(D,2), 4)
%2 = [-24, 252, -1472, 4830, -6048]
? mfcoefs(mfshift(D,-1), 4)
%3 = [0, 0, 1, -24, 252]
@eprog
The library syntax is \fun{GEN}{mfshift}{GEN F, long s}.
\subsec{mfshimura$(\var{mf},F,\{D=1\})$}\kbdsidx{mfshimura}\label{se:mfshimura}
$F$ being a modular form of half-integral weight $k\geq 3/2$ and $D$ a
positive squarefree integer, returns the Shimura lift $G$ of weight $2k-1$
corresponding to $D$. This function returns $[\var{mf2},G,v]$
where \var{mf2} is a modular form space containing $G$ and $v$ expresses $G$
in terms of \kbd{mfbasis}$(\var{mf2})$; so that $G$ is
\kbd{mflinear}$(\var{mf2},v)$.
\bprog
? F = mfpow(mfTheta(), 7); mf = mfinit(F);
? [mf2, G, v] = mfshimura(mf, F, 3); mfcoefs(G,5)
%2 = [-5/9, 280, 9240, 68320, 295960, 875280]
? mfparams(G) \\ the level may be lower than expected
%3 = [1, 6, 1, y, t - 1]
? mfparams(mf2)
%4 = [2, 6, 1, 4, t - 1]
? v
%5 = [280, 0]~
? mfcoefs(mf2, 5)
%6 =
[-1/504 -1/504]
[ 1 0]
[ 33 1]
[ 244 0]
[ 1057 33]
[ 3126 0]
? mf = mfinit([60,5/2],1); F = mflinear(mf,mfkohnenbasis(mf)[,1]);
? mfparams(mfshimura(mf,F)[2])
%8 = [15, 4, 1, y, t - 1]
? mfparams(mfshimura(mf,F,6)[2])
%9 = [15, 4, 1, y, t - 1]
@eprog
The library syntax is \fun{GEN}{mfshimura}{GEN mf, GEN F, long D}.
\subsec{mfslashexpansion$(\var{mf},f,g,n,\var{flrat},\{\&\var{params}\})$}\kbdsidx{mfslashexpansion}\label{se:mfslashexpansion}
Let \var{mf} be a modular form space in level $N$, $f$ a modular form
belonging to \var{mf} and let $g$ be in $M_{2}^{+}(Q)$. This function
computes the Fourier expansion of $f|_{k} g$ to $n$ terms. We first describe
the behaviour when \kbd{flrat} is 0: the result is a
vector $v$ of floating point complex numbers such that
$$f|_{k} g(\tau) = q^{\alpha} \sum_{m\ge0} v[m+1] q^{m/w},$$
where $q = e(\tau)$, $w$ is the width of the cusp $g(i\infty)$
(namely $(N/(c^{2},N)$ if $g$ is integral) and $\alpha$ is a rational number.
If \kbd{params} is given, it is set to the parameters $[\alpha,w,
\kbd{matid}(2)]$.
If \kbd{flrat} is 1, the program tries to rationalize the expression, i.e.,
to express the coefficients as rational numbers or polmods. We
write $g = \lambda \cdot M \cdot A$ where $\lambda \in \Q^{*}$,
$M\in \text{SL}_{2}(\Z)$ and $A = [a,b;0,d]$ is upper triangular,
integral and primitive with $a > 0$, $d > 0$ and $0 \leq b < d$. Let
$\alpha$ and $w$ by the parameters attached to the expansion of
$F := f |_{k} M$ as above, i.e.
$$ F(\tau) = q^{\alpha} \sum_{m\ge0} v[m+1] q^{m/w}.$$
The function returns the expansion $v$ of $F = f |_{k} M$ and sets
the parameters to $[\alpha, w, A]$. Finally, the desired expansion is
$(a/d)^{k/2} F(\tau + b/d)$. The latter is identical to the returned
expansion when $A$ is the identity, i.e. when $g\in \text{PSL}_{2}(\Z)$.
If this is not the case, the expansion differs from $v$ by the multiplicative
constant $(a/d)^{k/2} e(\alpha b/(dw))$ and a twist by a root of unity
$q^{1/w} \to e(b/(dw)) q^{1/w}$. The complications introduced by this extra
matrix $A$ allow to recognize the coefficients in a much smaller cyclotomic
field, hence to obtain a simpler description overall. (Note that this
rationalization step may result in an error if the program cannot perform it.)
\bprog
? mf = mfinit([32,4],0); f = mfbasis(mf)[1];
? mfcoefs(f, 10)
%2 = [0, 3, 0, 0, 0, 2, 0, 0, 0, 47, 0]
? mfatk = mfatkininit(mf,32); mfcoefs(mfatkin(mfatk,f),10) / mfatk[3]
%3 = [0, 1, 0, 16, 0, 22, 0, 32, 0, -27, 0]
? mfatk[3] \\ here normalizing constant C = 1, but need in general
%4 = 1
? mfslashexpansion(mf,f,[0,-1;1,0],10,1,¶ms) * 32^(4/2)
%5 = [0, 1, 0, 16, 0, 22, 0, 32, 0, -27, 0]
? params
%6 = [0, 32, [1, 0; 0, 1]]
? mf = mfinit([12,8],0); f = mfbasis(mf)[1];
? mfslashexpansion(mf,f,[1,0;2,1],7,0)
%7 = [0, 0, 0, 0.6666666... + 0.E-38*I, 0, -3.999999... + 6.92820...*I, 0,\
-11.99999999... - 20.78460969...*I]
? mfslashexpansion(mf,f,[1,0;2,1],7,1, ¶ms)
%8 = [0, 0, 0, 2/3, 0, Mod(8*t, t^2+t+1), 0, Mod(-24*t-24, t^2+t+1)]
? params
%9 = [0, 3, [1, 0; 0, 1]]
@eprog
If $[\Q(f):\Q(\chi)]>1$, the coefficients may be polynomials in $y$,
where $y$ is any root of the polynomial giving the field of definition of
$f$ (\kbd{f.mod} or \kbd{mfparams(f)[4]}).
\bprog
? mf=mfinit([23,2],0);f=mfeigenbasis(mf)[1];
? mfcoefs(f,5)
%1 = [Mod(0, y^2 - y - 1), Mod(1, y^2 - y - 1), Mod(-y, y^2 - y - 1),\
Mod(2*y - 1, y^2 - y - 1), Mod(y - 1, y^2 - y - 1), Mod(-2*y, y^2 - y - 1)]
? mfslashexpansion(mf,f,[1,0;0,1],5,1)
%2 = [0, 1, -y, 2*y - 1, y - 1, -2*y]
? mfslashexpansion(mf,f,[0,-1;1,0],5,1)
%3 = [0, -1/23, 1/23*y, -2/23*y + 1/23, -1/23*y + 1/23, 2/23*y]
@eprog
\misctitle{Caveat} In half-integral weight, we \emph{define} the ``slash''
operation as
$$(f |_{k} g)(\tau) := \big((c \tau + d)^{-1/2}\big)^{2k} f( g\cdot \tau),$$
with the principal determination of the square root. In particular,
the standard cocycle condition is no longer satisfied and we only
have $f | (gg') = \pm (f | g) | g'$.
The library syntax is \fun{GEN}{mfslashexpansion}{GEN mf, GEN f, GEN g, long n, long flrat, GEN *params = NULL, long prec}.
\subsec{mfspace$(\var{mf},\{f\})$}\kbdsidx{mfspace}\label{se:mfspace}
Identify the modular space \var{mf}, resp.~the modular form $f$ in
\var{mf} if present, as the flag given to \kbd{mfinit}.
Returns 0 (newspace), 1 (cuspidal space), 2 (old space),
3 (Eisenstein space) or 4 (full space).
\bprog
? mf = mfinit([1,12],1); mfspace(mf)
%1 = 1
? mfspace(mf, mfDelta())
%2 = 0 \\ new space
@eprog\noindent This function returns $-1$ when the form $f$ is modular
but does not belong to the space.
\bprog
? mf = mfinit([1,2]; mfspace(mf, mfEk(2))
%3 = -1
@eprog When $f$ is not modular and is for instance only quasi-modular, the
function returns nonsense:
\bprog
? M6 = mfinit([1,6]);
? dE4 = mfderiv(mfEk(4)); \\ not modular !
? mfspace(M6,dE4) \\ asserts (wrongly) that E4' belongs to new space
%3 = 0
@eprog
The library syntax is \fun{long}{mfspace}{GEN mf, GEN f = NULL}.
\subsec{mfsplit$(\var{mf},\{\var{dimlim}=0\},\{\fl=0\})$}\kbdsidx{mfsplit}\label{se:mfsplit}
\kbd{mf} from \kbd{mfinit} with integral weight containing the new space
(either the new space itself or the cuspidal space or the full space), and
preferably the newspace itself for efficiency, split the space into Galois
orbits of eigenforms of the newspace, satisfying various restrictions.
The functions returns $[vF, vK]$, where $vF$ gives (Galois orbit of)
eigenforms and $vK$ is a list of polynomials defining each Galois orbit.
The eigenforms are given in \kbd{mftobasis} format, i.e. as a matrix
whose columns give the forms with respect to \kbd{mfbasis(mf)}.
If \kbd{dimlim} is set, only the Galois orbits of dimension $\leq \kbd{dimlim}$
are computed (i.e. the rational eigenforms if $\kbd{dimlim} = 1$ and the
character is real). This can considerably speed up the function when a Galois
orbit is defined over a large field.
$\fl$ speeds up computations when the dimension is large: if $\fl=d>0$,
when the dimension of the eigenspace is $>d$, only the Galois polynomial is
computed.
Note that the function \kbd{mfeigenbasis} returns all eigenforms in an
easier to use format (as modular forms which can be input as is in other
functions); \kbd{mfsplit} is only useful when you can restrict
to orbits of small dimensions, e.g. rational eigenforms.
\bprog
? mf=mfinit([11,2],0); f=mfeigenbasis(mf)[1]; mfcoefs(f,16)
%1 = [0, 1, -2, -1, ...]
? mf=mfinit([23,2],0); f=mfeigenbasis(mf)[1]; mfcoefs(f,16)
%2 = [Mod(0, z^2 - z - 1), Mod(1, z^2 - z - 1), Mod(-z, z^2 - z - 1), ...]
? mf=mfinit([179,2],0); apply(poldegree, mffields(mf))
%3 = [1, 3, 11]
? mf=mfinit([719,2],0);
? [vF,vK] = mfsplit(mf, 5); \\ fast when restricting to small orbits
time = 192 ms.
? #vF \\ a single orbit
%5 = 1
? poldegree(vK[1]) \\ of dimension 5
%6 = 5
? [vF,vK] = mfsplit(mf); \\ general case is slow
time = 2,104 ms.
? apply(poldegree,vK)
%8 = [5, 10, 45] \\ because degree 45 is large...
@eprog
The library syntax is \fun{GEN}{mfsplit}{GEN mf, long dimlim, long flag}.
\subsec{mfsturm$(\var{NK})$}\kbdsidx{mfsturm}\label{se:mfsturm}
Gives the Sturm bound for modular forms on $\Gamma_{0}(N)$ and
weight $k$, i.e., an upper bound for the order of the zero at infinity of
a nonzero form. \kbd{NK} is either
\item a pair $[N,k]$, in which case the bound is the floor of $(kN/12) \cdot \prod_{p\mid N} (1+1/p)$;
\item or the output of \tet{mfinit} in which case the exact upper bound is returned.
\bprog
? NK = [96,6]; mfsturm(NK)
%1 = 97
? mf=mfinit(NK,1); mfsturm(mf)
%2 = 76
? mfdim(NK,0) \\ new space
%3 = 72
@eprog
The library syntax is \fun{long}{mfsturm}{GEN NK}.
\subsec{mfsymbol$(\var{mf},f)$}\kbdsidx{mfsymbol}\label{se:mfsymbol}
Initialize data for working with all period polynomials of the modular
form $f$: this is essential for efficiency for functions such as
\kbd{mfsymboleval}, \kbd{mfmanin}, and \kbd{mfpetersson}. An \kbd{mfsymbol}
contains an \kbd{mf} structure and can always be used whenever an \kbd{mf}
would be needed.
\bprog
? mf=mfinit([23,2],0);F=mfeigenbasis(mf)[1];
? FS=mfsymbol(mf,F);
? mfsymboleval(FS,[0,oo])
%3 = [8.762565143790690142 E-39 + 0.0877907874...*I,
-5.617375463602574564 E-39 + 0.0716801031...*I]
? mfpetersson(FS)
%4 =
[0.0039488965740025031688548076498662860143 1.2789721111175127425 E-40]
[1.2630501762985554269 E-40 0.0056442542987647835101583821368582485396]
@eprog\noindent
By abuse of language, initialize data for working with \kbd{mfpetersson} in
weight $1$ and half-integral weight (where no symbol exist); the \kbd{mf}
argument may be an \kbd{mfsymbol} attached to a form on the space,
which avoids recomputing data independent of the form.
\bprog
? mf=mfinit([12,9/2],1); F=mfbasis(mf);
? fs=mfsymbol(mf,F[1]);
time = 476 ms
? mfpetersson(fs)
%2 = 1.9722437519492014682047692073275406145 E-5
? f2s = mfsymbol(mf,F[2]);
time = 484 ms.
? mfpetersson(f2s)
%4 = 1.2142222531326333658647877864573002476 E-5
? gs = mfsymbol(fs,F[2]); \\ re-use existing symbol, a little faster
time = 430 ms.
? mfpetersson(gs) == %4 \\ same value
%6 = 1
@eprog For simplicity, we also allow \kbd{mfsymbol(f)} instead of
\kbd{mfsymbol(mfinit(f), f)}:
The library syntax is \fun{GEN}{mfsymbol}{GEN mf, GEN f = NULL, long bitprec}.
\subsec{mfsymboleval$(\var{fs},\var{path},\{\var{ga}=\var{id}\})$}\kbdsidx{mfsymboleval}\label{se:mfsymboleval}
Evaluation of the modular symbol $fs$ (corresponding to the modular
form $f$) output by \kbd{mfsymbol} on the given path \kbd{path}, where
\kbd{path} is either a vector $[s_{1},s_{2}]$ or an integral matrix $[a,b;c,d]$
representing the path $[a/c,b/d]$. In both cases $s_{1}$ or $s_{2}$
(or $a/c$ or $b/d$) can also be elements of the upper half-plane.
To avoid possibly lengthy \kbd{mfsymbol} computations, the program also
accepts $fs$ of the form \kbd{[mf,F]}, but in that case $s_{1}$ and $s_{2}$
are limited to \kbd{oo} and elements of the upper half-plane.
The result is the polynomial equal to
$\int_{s_{1}}^{s_{2}}(X-\tau)^{k-2}F(\tau)\,d\tau$, the integral being
computed along a geodesic joining $s_{1}$ and $s_{2}$. If \kbd{ga} in
$GL_{2}^{+}(\Q)$
is given, replace $F$ by $F|_{k}\gamma$. Note that if the integral diverges,
the result will be a rational function.
If the field of definition $\Q(f)$ is larger than $\Q(\chi)$ then $f$ can be
embedded into $\C$ in $d=[\Q(f):\Q(\chi)]$ ways, in which case a vector of
the $d$ results is returned.
\bprog
? mf=mfinit([35,2],1);f=mfbasis(mf)[1];fs=mfsymbol(mf,f);
? mfsymboleval(fs,[0,oo])
%1 = 0.31404011074188471664161704390256378537*I
? mfsymboleval(fs,[1,3;2,5])
%2 = -0.1429696291... - 0.2619975641...*I
? mfsymboleval(fs,[I,2*I])
%3 = 0.00088969563028739893631700037491116258378*I
? E2=mfEk(2);E22=mflinear([E2,mfbd(E2,2)],[1,-2]);mf=mfinit(E22);
? E2S = mfsymbol(mf,E22);
? mfsymboleval(E2S,[0,1])
%6 = (-1.00000...*x^2 + 1.00000...*x - 0.50000...)/(x^2 - x)
@eprog
The rational function which is given in case the integral diverges is
easy to interpret. For instance:
\bprog
? E4=mfEk(4);mf=mfinit(E4);ES=mfsymbol(mf,E4);
? mfsymboleval(ES,[I,oo])
%2 = 1/3*x^3 - 0.928067...*I*x^2 - 0.833333...*x + 0.234978...*I
? mfsymboleval(ES,[0,I])
%3 = (-0.234978...*I*x^3 - 0.833333...*x^2 + 0.928067...*I*x + 0.333333...)/x
@eprog\noindent
\kbd{mfsymboleval(ES,[a,oo])} is the limit as $T\to\infty$ of
$$\int_{a}^{iT}(X-\tau)^{k-2}F(\tau)\,d\tau + a(0)(X-iT)^{k-1}/(k-1)\;,$$
where $a(0)$ is the $0$th coefficient of $F$ at infinity. Similarly,
\kbd{mfsymboleval(ES,[0,a])} is the limit as $T\to\infty$ of
$$\int_{i/T}^{a}(X-\tau)^{k-2}F(\tau)\,d\tau+b(0)(1+iTX)^{k-1}/(k-1)\;,$$
where $b(0)$ is the $0$th coefficient of $F|_{k} S$ at infinity.
The library syntax is \fun{GEN}{mfsymboleval}{GEN fs, GEN path, GEN ga = NULL, long bitprec}.
\subsec{mftaylor$(F,n,\{\var{flreal}=0\})$}\kbdsidx{mftaylor}\label{se:mftaylor}
$F$ being a form in $M_{k}(SL_{2}(\Bbb Z))$, computes the first $n+1$
canonical Taylor expansion of $F$ around $\tau=I$. If \kbd{flreal=0},
computes only an algebraic equivalence class. If \kbd{flreal} is set,
compute $p_{n}$ such that for $\tau$ close enough to $I$ we have
$$f(\tau)=(2I/(\tau+I))^{k}\sum_{n>=0}p_{n}((\tau-I)/(\tau+I))^{n}\;.$$
\bprog
? D=mfDelta();
? mftaylor(D,8)
%2 = [1/1728, 0, -1/20736, 0, 1/165888, 0, 1/497664, 0, -11/3981312]
@eprog
The library syntax is \fun{GEN}{mftaylor}{GEN F, long n, long flreal, long prec}.
\subsec{mftobasis$(\var{mf},F,\{\fl=0\})$}\kbdsidx{mftobasis}\label{se:mftobasis}
Coefficients of the form $F$ on the basis given by \kbd{mfbasis(mf)}.
A $q$-expansion or vector of coefficients
can also be given instead of $F$, but in this case an error message may occur
if the expansion is too short. An error message is also given if $F$ does not
belong to the modular form space. If $\fl$ is set, instead of
error messages the output is an affine space of solutions if a $q$-expansion
or vector of coefficients is given, or the empty column otherwise.
\bprog
? mf = mfinit([26,2],0); mfdim(mf)
%1 = 2
? F = mflinear(mf,[a,b]); mftobasis(mf,F)
%2 = [a, b]~
@eprog
A $q$-expansion or vector of coefficients can also be given instead of $F$.
\bprog
? Th = 1 + 2*sum(n=1, 8, q^(n^2), O(q^80));
? mf = mfinit([4,5,Mod(3,4)]);
? mftobasis(mf, Th^10)
%3 = [64/5, 4/5, 32/5]~
@eprog
If $F$ does not belong to the corresponding space, the result is incorrect
and simply matches the coefficients of $F$ up to some bound, and
the function may either return an empty column or an error message.
If $\fl$ is set, there are no error messages, and the result is
an empty column if $F$ is a modular form; if $F$ is supplied via a series
or vector of coefficients which does not contain enough information to force
a unique (potential) solution, the function returns $[v,K]$ where $v$ is a
solution and $K$ is a matrix of maximal rank describing the affine space of
potential solutions $v + K\cdot x$.
\bprog
? mf = mfinit([4,12],1);
? mftobasis(mf, q-24*q^2+O(q^3), 1)
%2 = [[43/64, -63/8, 800, 21/64]~, [1, 0; 24, 0; 2048, 768; -1, 0]]
? mftobasis(mf, [0,1,-24,252], 1)
%3 = [[1, 0, 1472, 0]~, [0; 0; 768; 0]]
? mftobasis(mf, [0,1,-24,252,-1472], 1)
%4 = [1, 0, 0, 0]~ \\ now uniquely determined
? mftobasis(mf, [0,1,-24,252,-1472,0], 1)
%5 = [1, 0, 0, 0]~ \\ wrong result: no such form exists
? mfcoefs(mflinear(mf,%), 5) \\ double check
%6 = [0, 1, -24, 252, -1472, 4830]
? mftobasis(mf, [0,1,-24,252,-1472,0])
*** at top-level: mftobasis(mf,[0,1,
*** ^--------------------
*** mftobasis: domain error in mftobasis: form does not belong to space
? mftobasis(mf, mfEk(10))
*** at top-level: mftobasis(mf,mfEk(
*** ^--------------------
*** mftobasis: domain error in mftobasis: form does not belong to space
? mftobasis(mf, mfEk(10), 1)
%7 = []~
@eprog
The library syntax is \fun{GEN}{mftobasis}{GEN mf, GEN F, long flag}.
\subsec{mftocoset$(N,M,\var{Lcosets})$}\kbdsidx{mftocoset}\label{se:mftocoset}
$M$ being a matrix in $SL_{2}(Z)$ and \kbd{Lcosets} being
\kbd{mfcosets(N)}, a list of right cosets of $\Gamma_{0}(N)$,
find the coset to which $M$ belongs. The output is a pair
$[\gamma,i]$ such that $M = \gamma \kbd{Lcosets}[i]$, $\gamma\in\Gamma_{0}(N)$.
\bprog
? N = 4; L = mfcosets(N);
? mftocoset(N, [1,1;2,3], L)
%2 = [[-1, 1; -4, 3], 5]
@eprog
The library syntax is \fun{GEN}{mftocoset}{ulong N, GEN M, GEN Lcosets}.
\subsec{mftonew$(\var{mf},F)$}\kbdsidx{mftonew}\label{se:mftonew}
\kbd{mf} being being a full or cuspidal space with parameters $[N,k,\chi]$
and $F$ a cusp form in that space, returns a vector of 3-component vectors
$[M,d,G]$, where $f(\chi)\mid M\mid N$, $d\mid N/M$, and $G$ is a form
in $S_{k}^{\text{new}}(\Gamma_{0}(M),\chi)$ such that $F$ is equal to the sum
of the $B(d)(G)$ over all these 3-component vectors.
\bprog
? mf = mfinit([96,6],1); F = mfbasis(mf)[60]; s = mftonew(mf,F); #s
%1 = 1
? [M,d,G] = s[1]; [M,d]
%2 = [48, 2]
? mfcoefs(F,10)
%3 = [0, 0, -160, 0, 0, 0, 0, 0, 0, 0, -14400]
? mfcoefs(G,5)
%4 = [0, -160, 0, 0, 0, -14400]
@eprog
The library syntax is \fun{GEN}{mftonew}{GEN mf, GEN F}.
\subsec{mftraceform$(\var{NK},\{\var{space}=0\})$}\kbdsidx{mftraceform}\label{se:mftraceform}
If $NK=[N,k,CHI,.]$ as in \kbd{mfinit} with $k$ integral, gives the
trace form in the corresponding subspace of $S_{k}(\Gamma_{0}(N),\chi)$.
The supported values for \kbd{space} are 0: the newspace (default),
1: the full cuspidal space.
\bprog
? F = mftraceform([23,2]); mfcoefs(F,16)
%1 = [0, 2, -1, 0, -1, -2, -5, 2, 0, 4, 6, -6, 5, 6, 4, -10, -3]
? F = mftraceform([23,1,-23]); mfcoefs(F,16)
%2 = [0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1]
@eprog
The library syntax is \fun{GEN}{mftraceform}{GEN NK, long space}.
\subsec{mftwist$(F,D)$}\kbdsidx{mftwist}\label{se:mftwist}
$F$ being a generalized modular form, returns the twist of $F$ by the
integer $D$, i.e., the form $G$ such that
\kbd{mfcoef(G,n)=}$(D/n)$\kbd{mfcoef(F,n)}, where $(D/n)$ is the Kronecker
symbol.
\bprog
? mf = mfinit([11,2],0); F = mfbasis(mf)[1]; mfcoefs(F, 5)
%1 = [0, 1, -2, -1, 2, 1]
? G = mftwist(F,-3); mfcoefs(G, 5)
%2 = [0, 1, 2, 0, 2, -1]
? mf2 = mfinit([99,2],0); mftobasis(mf2, G)
%3 = [1/3, 0, 1/3, 0]~
@eprog\noindent Note that twisting multiplies the level by $D^{2}$. In
particular it is not an involution:
\bprog
? H = mftwist(G,-3); mfcoefs(H, 5)
%4 = [0, 1, -2, 0, 2, 1]
? mfparams(G)
%5 = [99, 2, 1, y, t - 1]
@eprog
The library syntax is \fun{GEN}{mftwist}{GEN F, GEN D}.
\section{Modular symbols}
Let $\Delta_{0} := \text{Div}^{0}(\P^{1}(\Q))$ be the abelian group of
divisors of degree $0$ on the rational projective line. The standard
$\text{GL}(2,\Q)$ action on $\P^{1}(\Q)$ via homographies naturally extends to
$\Delta_{0}$. Given
\item $G$ a finite index subgroup of $\text{SL}(2,\Z)$,
\item a field $F$ and a finite dimensional representation $V/F$ of
$\text{GL}(2,\Q)$,
\noindent we consider the space of \emph{modular symbols} $M :=
\Hom_{G}(\Delta_{0}, V)$. This finite dimensional $F$-vector
space is a $G$-module, canonically isomorphic to $H^{1}_{c}(X(G), V)$,
and allows to compute modular forms for $G$.
Currently, we only support the groups $\Gamma_{0}(N)$ ($N > 0$ an integer)
and the representations $V_{k} = \Q[X,Y]_{k-2}$ ($k \geq 2$ an integer) over
$\Q$. We represent a space of modular symbols by an \var{ms} structure,
created by the function \tet{msinit}. It encodes basic data attached to the
space: chosen $\Z[G]$-generators $(g_{i})$ for $\Delta_{0}$
(and relations among
those) and an $F$-basis of $M$. A modular symbol $s$ is thus given either in
terms of this fixed basis, or as a collection of values $s(g_{i})$
satisfying certain relations.
A subspace of $M$ (e.g. the cuspidal or Eisenstein subspaces, the new or
old modular symbols, etc.) is given by a structure allowing quick projection
and restriction of linear operators; its first component is a matrix whose
columns form an $F$-basis of the subspace.
\subsec{msatkinlehner$(M,Q,\{H\})$}\kbdsidx{msatkinlehner}\label{se:msatkinlehner}
Let $M$ be a full modular symbol space of level $N$,
as given by \kbd{msinit}, let $Q \mid N$, $(Q,N/Q) = 1$,
and let $H$ be a subspace stable under the Atkin-Lehner involution $w_{Q}$.
Return the matrix of $w_{Q}$ acting on $H$ ($M$ if omitted).
\bprog
? M = msinit(36,2); \\ M_2(Gamma_0(36))
? w = msatkinlehner(M,4); w^2 == 1
%2 = 1
? #w \\ involution acts on a 13-dimensional space
%3 = 13
? M = msinit(36,2, -1); \\ M_2(Gamma_0(36))^-
? w = msatkinlehner(M,4); w^2 == 1
%5 = 1
? #w
%6 = 4
@eprog
The library syntax is \fun{GEN}{msatkinlehner}{GEN M, long Q, GEN H = NULL}.
\subsec{mscosets$(\var{gen},\var{inH})$}\kbdsidx{mscosets}\label{se:mscosets}
\kbd{gen} being a system of generators for a group $G$ and $H$ being a
subgroup of finite index in $G$, return a list of right cosets of
$H\backslash G$ and the right action of $G$ on $H\backslash G$. The subgroup
$H$ is given by a criterion \kbd{inH} (closure) deciding whether an element
of $G$ belongs to $H$. The group $G$ is restricted to types handled by generic
multiplication (\kbd{*}) and inversion (\kbd{g\pow (-1)}), such as matrix
groups or permutation groups.
Let $\kbd{gens} = [g_{1}, \dots, g_{r}]$. The function returns $[C,M]$ where $C$
lists the $h = [G:H]$ representatives $[\gamma_{1}, \dots, \gamma_{h}]$
for the right cosets $H\gamma_{1},\dots,H\gamma_{h}$; $\gamma_{1}$ is always
the neutral element in $G$. For all $i \leq h$, $j \leq r$, if $M[i][j] = k$
then $H \gamma_{i} g_{j} = H\gamma_{k}$.
\bprog
? PSL2 = [[0,1;-1,0], [1,1;0,1]]; \\ S and T
\\ G = PSL2, H = Gamma0(2)
? [C, M] = mscosets(PSL2, g->g[2,1] % 2 == 0);
? C \\ three cosets
%3 = [[1, 0; 0, 1], [0, 1; -1, 0], [0, 1; -1, -1]]
? M
%4 = [Vecsmall([2, 1]), Vecsmall([1, 3]), Vecsmall([3, 2])]
@eprog\noindent Looking at $M[1]$ we see that $S$ belongs to the second
coset and $T$ to the first (trivial) coset.
The library syntax is \fun{GEN}{mscosets0}{GEN gen, GEN inH}.
Also available is the function
\fun{GEN}{mscosets}{GEN G, void *E, long (*inH)(void *, GEN)}
\subsec{mscuspidal$(M,\{\fl=0\})$}\kbdsidx{mscuspidal}\label{se:mscuspidal}
$M$ being a full modular symbol space, as given by \kbd{msinit},
return its cuspidal part $S$. If $\fl = 1$, return
$[S,E]$ its decomposition into cuspidal and Eisenstein parts.
A subspace is given by a structure allowing quick projection and
restriction of linear operators; its first component is
a matrix with integer coefficients whose columns form a $\Q$-basis of
the subspace.
\bprog
? M = msinit(2,8, 1); \\ M_8(Gamma_0(2))^+
? [S,E] = mscuspidal(M, 1);
? E[1] \\ 2-dimensional
%3 =
[0 -10]
[0 -15]
[0 -3]
[1 0]
? S[1] \\ 1-dimensional
%4 =
[ 3]
[30]
[ 6]
[-8]
@eprog
The library syntax is \fun{GEN}{mscuspidal}{GEN M, long flag}.
\subsec{msdim$(M)$}\kbdsidx{msdim}\label{se:msdim}
$M$ being a full modular symbol space or subspace, for instance
as given by \kbd{msinit} or \kbd{mscuspidal}, return
its dimension as a $\Q$-vector space.
\bprog
? M = msinit(11,4); msdim(M)
%1 = 6
? M = msinit(11,4,1); msdim(M)
%2 = 4 \\ dimension of the '+' part
? [S,E] = mscuspidal(M,1);
? [msdim(S), msdim(E)]
%4 = [2, 2]
@eprog\noindent Note that \kbd{mfdim([N,k])} is going to be much faster if
you only need the dimension of the space and not really to work with it.
This function is only useful to quickly check the dimension of an existing
space.
The library syntax is \fun{long}{msdim}{GEN M}.
\subsec{mseisenstein$(M)$}\kbdsidx{mseisenstein}\label{se:mseisenstein}
$M$ being a full modular symbol space, as given by \kbd{msinit},
return its Eisenstein subspace.
A subspace is given by a structure allowing quick projection and
restriction of linear operators; its first component is
a matrix with integer coefficients whose columns form a $\Q$-basis of
the subspace.
This is the same basis as given by the second component of
\kbd{mscuspidal}$(M, 1)$.
\bprog
? M = msinit(2,8, 1); \\ M_8(Gamma_0(2))^+
? E = mseisenstein(M);
? E[1] \\ 2-dimensional
%3 =
[0 -10]
[0 -15]
[0 -3]
[1 0]
? E == mscuspidal(M,1)[2]
%4 = 1
@eprog
The library syntax is \fun{GEN}{mseisenstein}{GEN M}.
\subsec{mseval$(M,s,\{p\})$}\kbdsidx{mseval}\label{se:mseval}
Let $\Delta_{0}:=\text{Div}^{0}(\P^{1} (\Q))$.
Let $M$ be a full modular symbol space, as given by \kbd{msinit},
let $s$ be a modular symbol from $M$, i.e. an element
of $\Hom_{G}(\Delta_{0}, V)$, and let $p=[a,b] \in \Delta_{0}$ be a path between
two elements in $\P^{1}(\Q)$, return $s(p)\in V$. The path extremities $a$ and
$b$ may be given as \typ{INT}, \typ{FRAC} or $\kbd{oo} = (1:0)$; it
is also possible to describe the path by a $2 \times 2$ integral matrix
whose columns give the two cusps. The symbol $s$ is either
\item a \typ{COL} coding a modular symbol in terms of
the fixed basis of $\Hom_{G}(\Delta_{0},V)$ chosen in $M$; if $M$ was
initialized with a nonzero \emph{sign} ($+$ or $-$), then either the
basis for the full symbol space or the $\pm$-part can be used (the dimension
being used to distinguish the two).
\item a \typ{MAT} whose columns encode modular symbols as above. This is
much faster than evaluating individual symbols on the same path $p$
independently.
\item a \typ{VEC} $(v_{i})$ of elements of $V$, where the $v_{i} = s(g_{i})$
give
the image of the generators $g_{i}$ of $\Delta_{0}$, see \tet{mspathgens}.
We assume that $s$ is a proper symbol, i.e.~that the $v_{i}$ satisfy
the \kbd{mspathgens} relations.
If $p$ is omitted, convert a single symbol $s$ to the second form: a vector
of the $s(g_{i})$. A \typ{MAT} is converted to a vector of such.
\bprog
? M = msinit(2,8,1); \\ M_8(Gamma_0(2))^+
? g = mspathgens(M)[1]
%2 = [[+oo, 0], [0, 1]]
? N = msnew(M)[1]; #N \\ Q-basis of new subspace, dimension 1
%3 = 1
? s = N[,1] \\ t_COL representation
%4 = [-3, 6, -8]~
? S = mseval(M, s) \\ t_VEC representation
%5 = [64*x^6-272*x^4+136*x^2-8, 384*x^5+960*x^4+192*x^3-672*x^2-432*x-72]
? mseval(M,s, g[1])
%6 = 64*x^6 - 272*x^4 + 136*x^2 - 8
? mseval(M,S, g[1])
%7 = 64*x^6 - 272*x^4 + 136*x^2 - 8
@eprog\noindent Note that the symbol should have values in
$V = \Q[x,y]_{k-2}$, we return the de-homogenized values corresponding to $y
= 1$ instead.
The library syntax is \fun{GEN}{mseval}{GEN M, GEN s, GEN p = NULL}.
\subsec{msfarey$(F,\var{inH},\{\&\var{CM}\})$}\kbdsidx{msfarey}\label{se:msfarey}
$F$ being a Farey symbol attached to a group $G$ contained in
$\text{PSL}_{2}(\Z)$ and $H$ a subgroup of $G$, return a Farey symbol attached
to $H$. The subgroup $H$ is given by a criterion \kbd{inH} (closure) deciding
whether an element of $G$ belongs to $H$. The symbol $F$ can be created using
\item \kbd{mspolygon}: $G = \Gamma_{0}(N)$, which runs in time $\tilde{O}(N)$;
\item or \kbd{msfarey} itself, which runs in time $O([G:H]^{2})$.
If present, the argument \kbd{CM} is set to \kbd{mscosets(F[3])}, giving
the right cosets of $H \backslash G$ and the action of $G$ by right
multiplication. Since \kbd{msfarey}'s algorithm is quadratic in the index
$[G:H]$, it is advisable to construct subgroups by a chain of inclusions if
possible.
\bprog
\\ Gamma_0(N)
G0(N) = mspolygon(N);
\\ Gamma_1(N): direct construction, slow
G1(N) = msfarey(mspolygon(1), g -> my(a = g[1,1]%N, c = g[2,1]%N);\
c == 0 && (a == 1 || a == N-1));
\\ Gamma_1(N) via Gamma_0(N): much faster
G1(N) = msfarey(G0(N), g -> my(a=g[1,1]%N); a==1 || a==N-1);
@eprog\noindent Note that the simpler criterion \kbd{g[1,1]\%N == 1} would not
be correct since it must apply to elements of $\text{PSL}_{2}(\Z)$ hence be
invariant under $g \mapsto -g$. Here are other examples:
\bprog
\\ Gamma(N)
G(N) = msfarey(G1(N), g -> g[1,2]%N==0);
G_00(N) = msfarey(G0(N), x -> x[1,2]%N==0);
G1_0(N1,N2) = msfarey(G0(1), x -> x[2,1]%N1==0 && x[1,2]%N2==0);
\\ Gamma_0(91) has 4 elliptic points of order 3, Gamma_1(91) has none
D0 = mspolygon(G0(91), 2)[4];
D1 = mspolygon(G1(91), 2)[4];
write("F.tex","\\documentclass{article}\\usepackage{tikz}\\begin{document}",\
D0,"\n",D1,"\\end{document}");
@eprog
The library syntax is \fun{GEN}{msfarey0}{GEN F, GEN inH, GEN *CM = NULL}.
Also available is
\fun{GEN}{msfarey}{GEN F, void *E, long (*inH)(void *, GEN), GEN *pCM}.
\subsec{msfromcusp$(M,c)$}\kbdsidx{msfromcusp}\label{se:msfromcusp}
Returns the modular symbol attached to the cusp
$c$, where $M$ is a modular symbol space of level $N$, attached to
$G = \Gamma_{0}(N)$. The cusp $c$ in $\P^{1}(\Q)/G$ is given either as \kbd{oo}
($=(1:0)$) or as a rational number $a/b$ ($=(a:b)$). The attached symbol maps
the path $[b] - [a] \in \text{Div}^{0} (\P^{1}(\Q))$ to $E_{c}(b) - E_{c}(a)$,
where
$E_{c}(r)$ is $0$ when $r \neq c$ and $X^{k-2} \mid \gamma_{r}$ otherwise,
where
$\gamma_{r} \cdot r = (1:0)$. These symbols span the Eisenstein subspace
of $M$.
\bprog
? M = msinit(2,8); \\ M_8(Gamma_0(2))
? E = mseisenstein(M);
? E[1] \\ two-dimensional
%3 =
[0 -10]
[0 -15]
[0 -3]
[1 0]
? s = msfromcusp(M,oo)
%4 = [0, 0, 0, 1]~
? mseval(M, s)
%5 = [1, 0]
? s = msfromcusp(M,1)
%6 = [-5/16, -15/32, -3/32, 0]~
? mseval(M,s)
%7 = [-x^6, -6*x^5 - 15*x^4 - 20*x^3 - 15*x^2 - 6*x - 1]
@eprog
In case $M$ was initialized with a nonzero \emph{sign}, the symbol is given
in terms of the fixed basis of the whole symbol space, not the $+$ or $-$
part (to which it need not belong).
\bprog
? M = msinit(2,8, 1); \\ M_8(Gamma_0(2))^+
? E = mseisenstein(M);
? E[1] \\ still two-dimensional, in a smaller space
%3 =
[ 0 -10]
[ 0 3]
[-1 0]
? s = msfromcusp(M,oo) \\ in terms of the basis for M_8(Gamma_0(2)) !
%4 = [0, 0, 0, 1]~
? mseval(M, s) \\ same symbol as before
%5 = [1, 0]
@eprog
The library syntax is \fun{GEN}{msfromcusp}{GEN M, GEN c}.
\subsec{msfromell$(E,\{\var{sign}=0\})$}\kbdsidx{msfromell}\label{se:msfromell}
Let $E/\Q$ be an elliptic curve of conductor $N$. For $\varepsilon =
\pm1$, we define the (cuspidal, new) modular symbol $x^{\varepsilon}$ in
$H^{1}_{c}(X_{0}(N),\Q)^{\varepsilon}$ attached to $E$. For all primes $p$
not dividing $N$ we have
$T_{p}(x^{\varepsilon}) = a_{p} x^{\varepsilon}$, where $a_{p} =
p+1-\#E(\F_{p})$.
Let $\Omega^{+} = \kbd{E.omega[1]}$ be the real period of $E$
(integration of the N\'eron differential $dx/(2y+a_{1}x+a_{3})$ on the
connected
component of $E(\R)$, i.e.~the generator of $H_{1}(E,\Z)^{+}$) normalized by
$\Omega^{+}>0$. Let $i\Omega^{-}$ the integral on a generator of
$H_{1}(E,\Z)^{-}$ with
$\Omega^{-} \in \R_{>0}$. If $c_{\infty}$ is the number of connected components of
$E(\R)$, $\Omega^{-}$ is equal to $(-2/c_{\infty}) \times \kbd{imag(E.omega[2])}$.
The complex modular symbol is defined by
$$F: \delta \to 2i\pi \int_{\delta} f(z) dz$$
The modular symbols $x^{\varepsilon}$ are normalized so that
$ F = x^{+} \Omega^{+} + x^{-} i\Omega^{-}$. In particular, we have
$$ x^{+}([0]-[\infty]) = L(E,1) / \Omega^{+},$$
which defines $x^{\pm}$ unless $L(E,1)=0$. Furthermore, for all fundamental
discriminants $D$ such that $\varepsilon \cdot D > 0$, we also have
$$\sum_{0\leq a<|D|} (D|a) x^{\varepsilon}([a/|D|]-[\infty])
= L(E,(D|.),1) / \Omega^{\varepsilon},$$
where $(D|.)$ is the Kronecker symbol. The period $\Omega^{-}$ is also
$2/c_{\infty} \times$ the real period of the twist
$E^{(-4)} = \kbd{elltwist(E,-4)}$.
This function returns the pair $[M, x]$, where $M$ is
\kbd{msinit}$(N,2)$ and $x$ is $x^{\var{sign}}$ as above when $\var{sign}=
\pm1$, and $x = [x^{+},x^{-}, L_{E}]$ when \var{sign} is $0$, where $L_{E}$
is a matrix giving the canonical $\Z$-lattice attached to $E$ in the sense
of \kbd{mslattice} applied to $\Q x^{+} + \Q x^{-}$. Explicitly, it
is generated by $(x^{+},x^{-})$ when $E(\R)$ has two connected components
and by $(x^{+} - x^{-},2x^{-})$ otherwise.
The modular symbols $x^{\pm}$ are given as a \typ{COL} (in terms
of the fixed basis of $\Hom_{G}(\Delta_{0},\Q)$ chosen in $M$).
\bprog
? E=ellinit([0,-1,1,-10,-20]); \\ X_0(11)
? [M,xp]= msfromell(E,1);
? xp
%3 = [1/5, -1/2, -1/2]~
? [M,x]= msfromell(E);
? x \\ x^+, x^- and L_E
%5 = [[1/5, -1/2, -1/2]~, [0, 1/2, -1/2]~, [1/5, 0; -1, 1; 0, -1]]
? p = 23; (mshecke(M,p) - ellap(E,p))*x[1]
%6 = [0, 0, 0]~ \\ true at all primes, including p = 11; same for x[2]
? (mshecke(M,p) - ellap(E,p))*x[3] == 0
%7 = 1
@eprog
\noindent Instead of a single curve $E$, one may use instead a vector
of \emph{isogenous} curves. The function then returns $M$ and the
vector of attached modular symbols.
The library syntax is \fun{GEN}{msfromell}{GEN E, long sign}.
\subsec{msfromhecke$(M,v,\{H\})$}\kbdsidx{msfromhecke}\label{se:msfromhecke}
Given a msinit $M$ and a vector $v$ of pairs $[p, P]$ (where $p$ is prime
and $P$ is a polynomial with integer coefficients), return a basis of all
modular symbols such that $P(T_{p})(s) = 0$. If $H$ is present, it must
be a Hecke-stable subspace and we restrict to $s \in H$. When $T_{p}$ has
a rational eigenvalue and $P(x) = x-a_{p}$ has degree $1$, we also accept the
integer $a_{p}$ instead of $P$.
\bprog
? E = ellinit([0,-1,1,-10,-20]) \\11a1
? ellap(E,2)
%2 = -2
? ellap(E,3)
%3 = -1
? M = msinit(11,2);
? S = msfromhecke(M, [[2,-2],[3,-1]])
%5 =
[ 1 1]
[-5 0]
[ 0 -5]
? mshecke(M, 2, S)
%6 =
[-2 0]
[ 0 -2]
? M = msinit(23,4);
? S = msfromhecke(M, [[5, x^4-14*x^3-244*x^2+4832*x-19904]]);
? factor( charpoly(mshecke(M,5,S)) )
%9 =
[x^4 - 14*x^3 - 244*x^2 + 4832*x - 19904 2]
@eprog
The library syntax is \fun{GEN}{msfromhecke}{GEN M, GEN v, GEN H = NULL}.
\subsec{msgetlevel$(M)$}\kbdsidx{msgetlevel}\label{se:msgetlevel}
$M$ being a full modular symbol space, as given by \kbd{msinit}, return
its level $N$.
The library syntax is \fun{long}{msgetlevel}{GEN M}.
\subsec{msgetsign$(M)$}\kbdsidx{msgetsign}\label{se:msgetsign}
$M$ being a full modular symbol space, as given by \kbd{msinit}, return
its sign: $\pm1$ or 0 (unset).
\bprog
? M = msinit(11,4, 1);
? msgetsign(M)
%2 = 1
? M = msinit(11,4);
? msgetsign(M)
%4 = 0
@eprog
The library syntax is \fun{long}{msgetsign}{GEN M}.
\subsec{msgetweight$(M)$}\kbdsidx{msgetweight}\label{se:msgetweight}
$M$ being a full modular symbol space, as given by \kbd{msinit}, return
its weight $k$.
\bprog
? M = msinit(11,4);
? msgetweight(M)
%2 = 4
@eprog
The library syntax is \fun{long}{msgetweight}{GEN M}.
\subsec{mshecke$(M,p,\{H\})$}\kbdsidx{mshecke}\label{se:mshecke}
$M$ being a full modular symbol space, as given by \kbd{msinit},
$p$ being a prime number, and $H$ being a Hecke-stable subspace ($M$ if
omitted), return the matrix of $T_{p}$ acting on $H$
($U_{p}$ if $p$ divides $N$). Result is undefined if $H$ is not stable
by $T_{p}$ (resp.~$U_{p}$).
\bprog
? M = msinit(11,2); \\ M_2(Gamma_0(11))
? T2 = mshecke(M,2)
%2 =
[3 0 0]
[1 -2 0]
[1 0 -2]
? M = msinit(11,2, 1); \\ M_2(Gamma_0(11))^+
? T2 = mshecke(M,2)
%4 =
[ 3 0]
[-1 -2]
? N = msnew(M)[1] \\ Q-basis of new cuspidal subspace
%5 =
[-2]
[-5]
? p = 1009; mshecke(M, p, N) \\ action of T_1009 on N
%6 =
[-10]
? ellap(ellinit("11a1"), p)
%7 = -10
@eprog
The library syntax is \fun{GEN}{mshecke}{GEN M, long p, GEN H = NULL}.
\subsec{msinit$(G,V,\{\var{sign}=0\})$}\kbdsidx{msinit}\label{se:msinit}
Given $G$ a finite index subgroup of $\text{SL}(2,\Z)$
and a finite dimensional representation $V$ of $\text{GL}(2,\Q)$, creates a
space of modular symbols, the $G$-module
$\Hom_{G}(\text{Div}^{0}(\P^{1}(\Q)), V)$.
This is canonically isomorphic to $H^{1}_{c}(X(G), V)$, and allows to
compute modular forms for $G$. If \emph{sign} is present and nonzero, it
must be $\pm1$ and we consider the subspace defined by $\text{Ker} (\sigma -
\var{sign})$, where $\sigma$ is induced by \kbd{[-1,0;0,1]}. Currently the
only supported groups are the $\Gamma_{0}(N)$, coded by the integer $N > 0$.
The only supported representation is $V_{k} = \Q[X,Y]_{k-2}$, coded by the
integer $k \geq 2$.
\bprog
? M = msinit(11,2); msdim(M) \\ Gamma0(11), weight 2
%1 = 3
? mshecke(M,2) \\ T_2 acting on M
%2 =
[3 1 1]
[0 -2 0]
[0 0 -2]
? msstar(M) \\ * involution
%3 =
[1 0 0]
[0 0 1]
[0 1 0]
? Mp = msinit(11,2, 1); msdim(Mp) \\ + part
%4 = 2
? mshecke(Mp,2) \\ T_2 action on M^+
%5 =
[3 2]
[0 -2]
? msstar(Mp)
%6 =
[1 0]
[0 1]
@eprog
The library syntax is \fun{GEN}{msinit}{GEN G, GEN V, long sign}.
\subsec{msissymbol$(M,s)$}\kbdsidx{msissymbol}\label{se:msissymbol}
$M$ being a full modular symbol space, as given by \kbd{msinit},
check whether $s$ is a modular symbol attached to $M$. If $A$ is a matrix,
check whether its columns represent modular symbols and return a $0-1$
vector.
\bprog
? M = msinit(7,8, 1); \\ M_8(Gamma_0(7))^+
? A = msnew(M)[1];
? s = A[,1];
? msissymbol(M, s)
%4 = 1
? msissymbol(M, A)
%5 = [1, 1, 1]
? S = mseval(M,s);
? msissymbol(M, S)
%7 = 1
? [g,R] = mspathgens(M); g
%8 = [[+oo, 0], [0, 1/2], [1/2, 1]]
? #R \\ 3 relations among the generators g_i
%9 = 3
? T = S; T[3]++; \\ randomly perturb S(g_3)
? msissymbol(M, T)
%11 = 0 \\ no longer satisfies the relations
@eprog
The library syntax is \fun{GEN}{msissymbol}{GEN M, GEN s}.
\subsec{mslattice$(M,\{H\})$}\kbdsidx{mslattice}\label{se:mslattice}
Let $\Delta_{0}:=\text{Div}^{0}(\P^{1}(\Q))$ and $V_{k} = \Q[x,y]_{k-2}$.
Let $M$ be a full modular symbol space, as given by \kbd{msinit}
and let $H$ be a subspace, e.g. as given by \kbd{mscuspidal}.
This function returns a canonical $\Z$-structure on $H$ defined as follows.
Consider the map $c: M=\Hom_{\Gamma_{0}(N)}(\Delta_{0}, V_{k}) \to
H^{1}(\Gamma_{0}(N), V_{k})$ given by
$\phi \mapsto \var{class}(\gamma \to \phi(\{0, \gamma^{-1} 0\}))$.
Let $L_{k}=\Z[x,y]_{k-2}$ be the natural $\Z$-structure of $V_{k}$.
The result of
\kbd{mslattice} is a $\Z$-basis of the inverse image by $c$ of
$H^{1}(\Gamma_{0}(N), L_{k})$ in the space of modular symbols generated by $H$.
For user convenience, $H$ can be defined by a matrix representing the
$\Q$-basis of $H$ (in terms of the canonical $\Q$-basis of $M$ fixed by
\kbd{msinit} and used to represent modular symbols).
If omitted, $H$ is the cuspidal part of $M$ as given by \kbd{mscuspidal}.
The Eisenstein part $\Hom_{\Gamma_{0}(N)}(\text{Div}(\P^{1}(\Q)), V_{k})$ is in
the kernel of $c$, so the result has no meaning for the Eisenstein part
\kbd{H}.
\bprog
? M=msinit(11,2);
? [S,E] = mscuspidal(M,1); S[1] \\ a primitive Q-basis of S
%2 =
[ 1 1]
[-5 0]
[ 0 -5]
? mslattice(M,S)
%3 =
[-1/5 -1/5]
[ 1 0]
[ 0 1]
? mslattice(M,E)
%4 =
[1]
[0]
[0]
? M=msinit(5,4);
? S=mscuspidal(M); S[1]
%6 =
[ 7 20]
[ 3 3]
[-10 -23]
[-30 -30]
? mslattice(M,S)
%7 =
[-1/10 -11/130]
[ 0 -1/130]
[ 1/10 6/65]
[ 0 1/13]
@eprog
The library syntax is \fun{GEN}{mslattice}{GEN M, GEN H = NULL}.
\subsec{msnew$(M)$}\kbdsidx{msnew}\label{se:msnew}
$M$ being a full modular symbol space, as given by \kbd{msinit},
return the \emph{new} part of its cuspidal subspace. A subspace is given by
a structure allowing quick projection and restriction of linear operators;
its first component is a matrix with integer coefficients whose columns form
a $\Q$-basis of the subspace.
\bprog
? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+
? N = msnew(M);
? #N[1] \\ 6-dimensional
%3 = 6
@eprog
The library syntax is \fun{GEN}{msnew}{GEN M}.
\subsec{msomseval$(\var{Mp},\var{PHI},\var{path})$}\kbdsidx{msomseval}\label{se:msomseval}
Return the vectors of moments of the $p$-adic distribution attached
to the path \kbd{path} by the overconvergent modular symbol \kbd{PHI}.
\bprog
? M = msinit(3,6,1);
? Mp= mspadicinit(M,5,10);
? phi = [5,-3,-1]~;
? msissymbol(M,phi)
%4 = 1
? PHI = mstooms(Mp,phi);
? ME = msomseval(Mp,PHI,[oo, 0]);
@eprog
The library syntax is \fun{GEN}{msomseval}{GEN Mp, GEN PHI, GEN path}.
\subsec{mspadicL$(\var{mu},\{s=0\},\{r=0\})$}\kbdsidx{mspadicL}\label{se:mspadicL}
Returns the value (or $r$-th derivative)
on a character $\chi^{s}$ of $\Z_{p}^{*}$ of the $p$-adic $L$-function
attached to \kbd{mu}.
Let $\Phi$ be the $p$-adic distribution-valued overconvergent symbol
attached to a modular symbol $\phi$ for $\Gamma_{0}(N)$ (eigenvector for
$T_{N}(p)$ for the eigenvalue $a_{p}$).
Then $L_{p}(\Phi,\chi^{s})=L_{p}(\mu,s)$ is the
$p$-adic $L$ function defined by
$$L_{p}(\Phi,\chi^{s})= \int_{\Z_{p}^{*}} \chi^{s}(z) d\mu(z)$$
where $\mu$ is the distribution on $\Z_{p}^{*}$ defined by the restriction of
$\Phi([\infty]-[0])$ to $\Z_{p}^{*}$. The $r$-th derivative is taken in
direction $\langle \chi\rangle$:
$$L_{p}^{(r)}(\Phi,\chi^{s})= \int_{\Z_{p}^{*}} \chi^{s}(z)
(\log z)^{r} d\mu(z).$$
In the argument list,
\item \kbd{mu} is as returned by \tet{mspadicmoments} (distributions
attached to $\Phi$ by restriction to discs $a + p^{\nu}\Z_{p}$, $(a,p)=1$).
\item $s=[s_{1},s_{2}]$ with $s_{1} \in \Z \subset \Z_{p}$ and
$s_{2} \bmod p-1$ or
$s_{2} \bmod 2$ for $p=2$, encoding the $p$-adic character $\chi^{s} :=
\langle \chi \rangle^{s_{1}} \tau^{s_{2}}$; here $\chi$ is the cyclotomic
character from $\text{Gal}(\Q_{p}(\mu_{p^{\infty}})/\Q_{p})$ to $\Z_{p}^{*}$,
and $\tau$ is the Teichm\"uller character (for $p>2$ and the character of
order 2 on $(\Z/4\Z)^{*}$ if $p=2$); for convenience, the character $[s,s]$
can also be represented by the integer $s$.
When $a_{p}$ is a $p$-adic unit, $L_{p}$ takes its values in $\Q_{p}$.
When $a_{p}$ is not a unit, it takes its values in the
two-dimensional $\Q_{p}$-vector space $D_{cris}(M(\phi))$ where $M(\phi)$ is
the ``motive'' attached to $\phi$, and we return the two $p$-adic components
with respect to some fixed $\Q_{p}$-basis.
\bprog
? M = msinit(3,6,1); phi=[5, -3, -1]~;
? msissymbol(M,phi)
%2 = 1
? Mp = mspadicinit(M, 5, 4);
? mu = mspadicmoments(Mp, phi); \\ no twist
\\ End of initializations
? mspadicL(mu,0) \\ L_p(chi^0)
%5 = 5 + 2*5^2 + 2*5^3 + 2*5^4 + ...
? mspadicL(mu,1) \\ L_p(chi), zero for parity reasons
%6 = [O(5^13)]~
? mspadicL(mu,2) \\ L_p(chi^2)
%7 = 3 + 4*5 + 4*5^2 + 3*5^5 + ...
? mspadicL(mu,[0,2]) \\ L_p(tau^2)
%8 = 3 + 5 + 2*5^2 + 2*5^3 + ...
? mspadicL(mu, [1,0]) \\ L_p(<chi>)
%9 = 3*5 + 2*5^2 + 5^3 + 2*5^7 + 5^8 + 5^10 + 2*5^11 + O(5^13)
? mspadicL(mu,0,1) \\ L_p'(chi^0)
%10 = 2*5 + 4*5^2 + 3*5^3 + ...
? mspadicL(mu, 2, 1) \\ L_p'(chi^2)
%11 = 4*5 + 3*5^2 + 5^3 + 5^4 + ...
@eprog
Now several quadratic twists: \tet{mstooms} is indicated.
\bprog
? PHI = mstooms(Mp,phi);
? mu = mspadicmoments(Mp, PHI, 12); \\ twist by 12
? mspadicL(mu)
%14 = 5 + 5^2 + 5^3 + 2*5^4 + ...
? mu = mspadicmoments(Mp, PHI, 8); \\ twist by 8
? mspadicL(mu)
%16 = 2 + 3*5 + 3*5^2 + 2*5^4 + ...
? mu = mspadicmoments(Mp, PHI, -3); \\ twist by -3 < 0
? mspadicL(mu)
%18 = O(5^13) \\ always 0, phi is in the + part and D < 0
@eprog
One can locate interesting symbols of level $N$ and weight $k$ with
\kbd{msnew} and \kbd{mssplit}. Note that instead of a symbol, one can
input a 1-dimensional Hecke-subspace from \kbd{mssplit}: the function will
automatically use the underlying basis vector.
\bprog
? M=msinit(5,4,1); \\ M_4(Gamma_0(5))^+
? L = mssplit(M, msnew(M)); \\ list of irreducible Hecke-subspaces
? phi = L[1]; \\ one Galois orbit of newforms
? #phi[1] \\... this one is rational
%4 = 1
? Mp = mspadicinit(M, 3, 4);
? mu = mspadicmoments(Mp, phi);
? mspadicL(mu)
%7 = 1 + 3 + 3^3 + 3^4 + 2*3^5 + 3^6 + O(3^9)
? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+
? Mp = mspadicinit(M, 3, 4);
? L = mssplit(M, msnew(M));
? phi = L[1]; #phi[1] \\ ... this one is two-dimensional
%11 = 2
? mu = mspadicmoments(Mp, phi);
*** at top-level: mu=mspadicmoments(Mp,ph
*** ^--------------------
*** mspadicmoments: incorrect type in mstooms [dim_Q (eigenspace) > 1]
@eprog
The library syntax is \fun{GEN}{mspadicL}{GEN mu, GEN s = NULL, long r}.
\subsec{mspadicinit$(M,p,n,\{\fl\})$}\kbdsidx{mspadicinit}\label{se:mspadicinit}
$M$ being a full modular symbol space, as given by \kbd{msinit}, and $p$
a prime, initialize technical data needed to compute with overconvergent
modular symbols, modulo $p^{n}$. If $\fl$ is unset, allow
all symbols; else initialize only for a restricted range of symbols
depending on $\fl$: if $\fl = 0$ restrict to ordinary symbols, else
restrict to symbols $\phi$ such that $T_{p}(\phi) = a_{p} \phi$,
with $v_{p}(a_{p}) \geq \fl$, which is faster as $\fl$ increases.
(The fastest initialization is obtained for $\fl = 0$ where we only allow
ordinary symbols.) For supersingular eigensymbols, such that $p\mid a_{p}$, we
must further assume that $p$ does not divide the level.
\bprog
? E = ellinit("11a1");
? [M,phi] = msfromell(E,1);
? ellap(E,3)
%3 = -1
? Mp = mspadicinit(M, 3, 10, 0); \\ commit to ordinary symbols
? PHI = mstooms(Mp,phi);
@eprog
If we restrict the range of allowed symbols with \fl (for faster
initialization), exceptions will occur if $v_{p}(a_{p})$ violates this bound:
\bprog
? E = ellinit("15a1");
? [M,phi] = msfromell(E,1);
? ellap(E,7)
%3 = 0
? Mp = mspadicinit(M,7,5,0); \\ restrict to ordinary symbols
? PHI = mstooms(Mp,phi)
*** at top-level: PHI=mstooms(Mp,phi)
*** ^---------------
*** mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag] (t_VEC).
? Mp = mspadicinit(M,7,5); \\ no restriction
? PHI = mstooms(Mp,phi);
@eprog\noindent This function uses $O(N^{2}(n+k)^{2}p)$ memory,
where $N$ is the level of $M$.
The library syntax is \fun{GEN}{mspadicinit}{GEN M, long p, long n, long flag}.
\subsec{mspadicmoments$(\var{Mp},\var{PHI},\{D=1\})$}\kbdsidx{mspadicmoments}\label{se:mspadicmoments}
Given \kbd{Mp} from \kbd{mspadicinit}, an overconvergent
eigensymbol \kbd{PHI} from \kbd{mstooms} and a fundamental discriminant
$D$ coprime to $p$,
let $\kbd{PHI}^{D}$ denote the twisted symbol. This function computes
the distribution $\mu = \kbd{PHI}^{D}([0] - \infty]) \mid \Z_{p}^{*}$
restricted
to $\Z_{p}^{*}$. More precisely, it returns
the moments of the $p-1$ distributions $\kbd{PHI}^{D}([0]-[\infty])
\mid (a + p\Z_{p})$, $0 < a < p$.
We also allow \kbd{PHI} to be given as a classical
symbol, which is then lifted to an overconvergent symbol by \kbd{mstooms};
but this is wasteful if more than one twist is later needed.
The returned data $\mu$ ($p$-adic distributions attached to \kbd{PHI})
can then be used in \tet{mspadicL} or \tet{mspadicseries}.
This precomputation allows to quickly compute derivatives of different
orders or values at different characters.
\bprog
? M = msinit(3,6, 1);
? phi = [5,-3,-1]~;
? msissymbol(M, phi)
%3 = 1
? p = 5; mshecke(M,p) * phi \\ eigenvector of T_5, a_5 = 6
%4 = [30, -18, -6]~
? Mp = mspadicinit(M, p, 10, 0); \\ restrict to ordinary symbols, mod p^10
? PHI = mstooms(Mp, phi);
? mu = mspadicmoments(Mp, PHI);
? mspadicL(mu)
%8 = 5 + 2*5^2 + 2*5^3 + ...
? mu = mspadicmoments(Mp, PHI, 12); \\ twist by 12
? mspadicL(mu)
%10 = 5 + 5^2 + 5^3 + 2*5^4 + ...
@eprog
The library syntax is \fun{GEN}{mspadicmoments}{GEN Mp, GEN PHI, long D}.
\subsec{mspadicseries$(\var{mu},\{i=0\})$}\kbdsidx{mspadicseries}\label{se:mspadicseries}
Let $\Phi$ be the $p$-adic distribution-valued overconvergent symbol
attached to a modular symbol $\phi$ for $\Gamma_{0}(N)$ (eigenvector for
$T_{N}(p)$ for the eigenvalue $a_{p}$).
If $\mu$ is the distribution on $\Z_{p}^{*}$ defined by the restriction of
$\Phi([\infty]-[0])$ to $\Z_{p}^{*}$, let
$$\hat{L}_{p}(\mu,\tau^{i})(x)
= \int_{\Z_{p}^{*}} \tau^{i}(t) (1+x)^{\log_{p}(t)/\log_{p}(u)}d\mu(t)$$
Here, $\tau$ is the Teichm\"uller character and $u$ is a specific
multiplicative generator of $1+2p\Z_{p}$, namely $1+p$ if $p>2$ or $5$
if $p=2$. To explain
the formula, let $G_{\infty} := \text{Gal}(\Q(\mu_{p^{\infty}})/ \Q)$,
let $\chi:G_{\infty}\to \Z_{p}^{*}$ be the cyclotomic character (isomorphism)
and $\gamma$ the element of $G_{\infty}$ such that $\chi(\gamma)=u$;
then
$\chi(\gamma)^{\log_{p}(t)/\log_{p}(u)}= \langle t \rangle$.
The $p$-padic precision of individual terms is maximal given the precision of
the overconvergent symbol $\mu$.
\bprog
? [M,phi] = msfromell(ellinit("17a1"),1);
? Mp = mspadicinit(M, 5,7);
? mu = mspadicmoments(Mp, phi,1); \\ overconvergent symbol
? mspadicseries(mu)
%4 = (4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + 4*5^6 + 3*5^7 + O(5^9)) \
+ (3 + 3*5 + 5^2 + 5^3 + 2*5^4 + 5^6 + O(5^7))*x \
+ (2 + 3*5 + 5^2 + 4*5^3 + 2*5^4 + O(5^5))*x^2 \
+ (3 + 4*5 + 4*5^2 + O(5^3))*x^3 \
+ (3 + O(5))*x^4 + O(x^5)
@eprog\noindent
An example with nonzero Teichm\"uller:
\bprog
? [M,phi] = msfromell(ellinit("11a1"),1);
? Mp = mspadicinit(M, 3,10);
? mu = mspadicmoments(Mp, phi,1);
? mspadicseries(mu, 2)
%4 = (2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + 3^7 + 3^10 + 3^11 + O(3^12)) \
+ (1 + 3 + 2*3^2 + 3^3 + 3^5 + 2*3^6 + 2*3^8 + O(3^9))*x \
+ (1 + 2*3 + 3^4 + 2*3^5 + O(3^6))*x^2 \
+ (3 + O(3^2))*x^3 + O(x^4)
@eprog\noindent
Supersingular example (not checked)
\bprog
? E = ellinit("17a1"); ellap(E,3)
%1 = 0
? [M,phi] = msfromell(E,1);
? Mp = mspadicinit(M, 3,7);
? mu = mspadicmoments(Mp, phi,1);
? mspadicseries(mu)
%5 = [(2*3^-1 + 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + O(3^7)) \
+ (2 + 3^3 + O(3^5))*x \
+ (1 + 2*3 + O(3^2))*x^2 + O(x^3),\
(3^-1 + 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + O(3^7)) \
+ (1 + 2*3 + 2*3^2 + 3^3 + 2*3^4 + O(3^5))*x \
+ (3^-2 + 3^-1 + O(3^2))*x^2 + O(3^-2)*x^3 + O(x^4)]
@eprog\noindent
Example with a twist:
\bprog
? E = ellinit("11a1");
? [M,phi] = msfromell(E,1);
? Mp = mspadicinit(M, 3,10);
? mu = mspadicmoments(Mp, phi,5); \\ twist by 5
? L = mspadicseries(mu)
%5 = (2*3^2 + 2*3^4 + 3^5 + 3^6 + 2*3^7 + 2*3^10 + O(3^12)) \
+ (2*3^2 + 2*3^6 + 3^7 + 3^8 + O(3^9))*x \
+ (3^3 + O(3^6))*x^2 + O(3^2)*x^3 + O(x^4)
? mspadicL(mu)
%6 = [2*3^2 + 2*3^4 + 3^5 + 3^6 + 2*3^7 + 2*3^10 + O(3^12)]~
? ellpadicL(E,3,10,,5)
%7 = 2 + 2*3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^6 + 2*3^7 + O(3^10)
? mspadicseries(mu,1) \\ must be 0
%8 = O(3^12) + O(3^9)*x + O(3^6)*x^2 + O(3^2)*x^3 + O(x^4)
@eprog
The library syntax is \fun{GEN}{mspadicseries}{GEN mu, long i}.
\subsec{mspathgens$(M)$}\kbdsidx{mspathgens}\label{se:mspathgens}
Let $\Delta_{0}:=\text{Div}^{0}(\P^{1}(\Q))$.
Let $M$ being a full modular symbol space, as given by \kbd{msinit},
return a set of $\Z[G]$-generators for $\Delta_{0}$. The output
is $[g,R]$, where $g$ is a minimal system of generators and $R$
the vector of $\Z[G]$-relations between the given generators. A
relation is coded by a vector of pairs $[a_{i},i]$ with $a_{i}\in \Z[G]$
and $i$ the index of a generator, so that $\sum_{i} a_{i} g[i] = 0$.
An element $[v]-[u]$ in $\Delta_{0}$ is coded by the ``path'' $[u,v]$,
where \kbd{oo} denotes the point at infinity $(1:0)$ on the projective
line.
An element of $\Z[G]$ is either an integer $n$ ($= n [\text{id}_{2}]$) or a
``factorization matrix'': the first column contains distinct elements $g_{i}$
of $G$ and the second integers $n_{i}$ and the matrix codes
$\sum_{i} n_{i} [g_{i}]$:
\bprog
? M = msinit(11,8); \\ M_8(Gamma_0(11))
? [g,R] = mspathgens(M);
? g
%3 = [[+oo, 0], [0, 1/3], [1/3, 1/2]] \\ 3 paths
? #R \\ a single relation
%4 = 1
? r = R[1]; #r \\ ...involving all 3 generators
%5 = 3
? r[1]
%6 = [[1, 1; [1, 1; 0, 1], -1], 1]
? r[2]
%7 = [[1, 1; [7, -2; 11, -3], -1], 2]
? r[3]
%8 = [[1, 1; [8, -3; 11, -4], -1], 3]
@eprog\noindent
The given relation is of the form $\sum_{i} (1-\gamma_{i}) g_{i} = 0$, with
$\gamma_{i}\in \Gamma_{0}(11)$. There will always be a single relation
involving
all generators (corresponding to a round trip along all cusps), then
relations involving a single generator (corresponding to $2$ and $3$-torsion
elements in the group:
\bprog
? M = msinit(2,8); \\ M_8(Gamma_0(2))
? [g,R] = mspathgens(M);
? g
%3 = [[+oo, 0], [0, 1]]
@eprog\noindent
Note that the output depends only on the group $G$, not on the
representation $V$.
The library syntax is \fun{GEN}{mspathgens}{GEN M}.
\subsec{mspathlog$(M,p)$}\kbdsidx{mspathlog}\label{se:mspathlog}
Let $\Delta_{0}:=\text{Div}^{0}(\P^{1}(\Q))$.
Let $M$ being a full modular symbol space, as given by \kbd{msinit},
encoding fixed $\Z[G]$-generators $(g_{i})$ of $\Delta_{0}$
(see \tet{mspathgens}).
A path $p=[a,b]$ between two elements in $\P^{1}(\Q)$ corresponds to
$[b]-[a]\in \Delta_{0}$. The path extremities $a$ and $b$ may be given as
\typ{INT}, \typ{FRAC} or $\kbd{oo} = (1:0)$. Finally, we also allow
to input a path as a $2\times 2$ integer matrix, whose first
and second column give $a$ and $b$ respectively, with the convention
$[x,y]\til = (x:y)$ in $\P^{1}(\Q)$.
Returns $(p_{i})$ in $\Z[G]$ such that $p = \sum_{i} p_{i} g_{i}$.
\bprog
? M = msinit(2,8); \\ M_8(Gamma_0(2))
? [g,R] = mspathgens(M);
? g
%3 = [[+oo, 0], [0, 1]]
? p = mspathlog(M, [1/2,2/3]);
? p[1]
%5 =
[[1, 0; 2, 1] 1]
? p[2]
%6 =
[[1, 0; 0, 1] 1]
[[3, -1; 4, -1] 1]
? mspathlog(M, [1,2;2,3]) == p \\ give path via a 2x2 matrix
%7 = 1
@eprog\noindent
Note that the output depends only on the group $G$, not on the
representation $V$.
The library syntax is \fun{GEN}{mspathlog}{GEN M, GEN p}.
\subsec{mspetersson$(M,\{F\},\{G=F\})$}\kbdsidx{mspetersson}\label{se:mspetersson}
$M$ being a full modular symbol space for $\Gamma = \Gamma_{0}(N)$,
as given by \kbd{msinit},
calculate the intersection product $\{F, G\}$ of modular symbols $F$ and $G$
on $M=\Hom_{\Gamma}(\Delta_{0}, V_{k})$ extended to an hermitian bilinear
form on $M \otimes \C$ whose radical is the Eisenstein subspace of $M$.
Suppose that $f_{1}$ and $f_{2}$ are two parabolic forms. Let $F_{1}$
and $F_{2}$ be the attached modular symbols
$$ F_{i}(\delta)= \int_{\delta} f_{i}(z) \cdot (z X + Y)^{k-2} \,dz$$
and let $F^{\R}_{1}$, $F^{\R}_{2}$ be the attached real modular symbols
$$ F^{\R}_{i}(\delta)= \int_{\delta}
\Re\big(f_{i}(z) \cdot (z X + Y)^{k-2} \,dz\big) $$
Then we have
$$
\{ F^{\R}_{1}, F^{\R}_{2} \} = -2 (2i)^{k-2} \cdot
\Im(<f_{1},f_{2}>_{\var{Petersson}}) $$
and
$$\{ F_{1}, \bar{F_{2}} \} = (2i)^{k-2} <f_{1},f_{2}>_{\var{Petersson}}$$
In weight 2, the intersection product $\{F, G\}$ has integer values on the
$\Z$-structure on $M$ given by \kbd{mslattice} and defines a Riemann form on
$H^{1}_{par}(\Gamma,\R)$.
For user convenience, we allow $F$ and $G$ to be matrices and return the
attached Gram matrix. If $F$ is omitted: treat it as the full modular space
attached to $M$; if $G$ is omitted, take it equal to $F$.
\bprog
? M = msinit(37,2);
? C = mscuspidal(M)[1];
? mspetersson(M, C)
%3 =
[ 0 -17 -8 -17]
[17 0 -8 -25]
[ 8 8 0 -17]
[17 25 17 0]
? mspetersson(M, mslattice(M,C))
%4 =
[0 -1 0 -1]
[1 0 0 -1]
[0 0 0 -1]
[1 1 1 0]
? E = ellinit("33a1");
? [M,xpm] = msfromell(E); [xp,xm,L] = xpm;
? mspetersson(M, mslattice(M,L))
%7 =
[0 -3]
[3 0]
? ellmoddegree(E)
%8 = [3, -126]
@eprog
\noindent The coefficient $3$ in the matrix is the degree of the
modular parametrization.
The library syntax is \fun{GEN}{mspetersson}{GEN M, GEN F = NULL, GEN G = NULL}.
\subsec{mspolygon$(M,\{\fl=0\})$}\kbdsidx{mspolygon}\label{se:mspolygon}
$M$ describes a subgroup $G$ of finite index in the modular group
$\text{PSL}_{2}(\Z)$, as given by \kbd{msinit} or a positive integer $N$
(encoding the group $G = \Gamma_{0}(N)$), or by \kbd{msfarey} (arbitrary
subgroup). Return an hyperbolic polygon (Farey symbol) attached to $G$.
More precisely:
\item Its vertices are an ordered list in $\P^{1}(\Q)$ and contain
a representatives of all cusps.
\item Its edges are hyperbolic arcs joining two consecutive vertices;
each edge $e$ is labelled by an integer $\mu(e) \in \{\infty,2,3\}$.
\item Given a path $(a,b)$ between two elements of $\P^{1}(\Q)$, let
$\overline{(a,b)} = (b,a)$ be the opposite path. There is an involution $e
\to e^{*}$ on the edges. We have $\mu(e) = \infty$ if and only if $e\neq
e^{*}$;
when $\mu(e) \neq 3$, $e$ is $G$-equivalent to $\overline{e^{*}}$, i.e. there
exists $\gamma_{e} \in G$ such that $e = \gamma_{e} \overline{e^{*}}$;
if $\mu(e)=3$
there exists $\gamma_{e} \in G$ of order $3$ such that the hyperbolic triangle
$(e, \gamma_{e} e, \gamma_{e}^{2} e)$ is invariant by $\gamma_{e}$.
In all cases,
to each edge we have attached $\gamma_{e} \in G$ of order $\mu(e)$.
\noindent The polygon is given by a triple $[E, A, g]$
\item The list $E$ of its consecutive edges as matrices in $M_{2}(\Z)$.
\item The permutation $A$ attached to the involution: if $e = E[i]$ is the
$i$-th edge, then \kbd{A[i]} is the index of $e^{*}$ in $E$.
\item The list $g$ of pairing matrices $\gamma_{e}$.
Remark that $\gamma_{e^{*}}=\gamma_{e}^{-1}$ if $\mu(e) \neq 3$,
i.e., $g[i]^{-1} = g[A[i]]$ whenever $i\neq A[i]$ ($\mu(g[i]) = 1$) or
$\mu(g[i]) = 2$ ($g[i]^{2} = 1$). Modulo these trivial relations,
the pairing matrices form a system of independant generators of $G$. Note
that $\gamma_{e}$ is elliptic if and only if $e^{*} = e$.
\noindent The above data yields a fundamental domain for $G$ acting
on Poincar\'e's half-plane: take the convex hull of the polygon defined by
\item The edges in $E$ such that $e \neq e^{*}$ or $e^{*}=e$, where the pairing
matrix $\gamma_{e}$ has order $2$;
\item The edges $(r,t)$ and $(t,s)$ where the edge $e = (r,s) \in E$ is such
that $e = e^{*}$ and $\gamma_{e}$ has order $3$ and the triangle $(r,t,s)$
is the image of $(0,\exp(2i\pi/3), \infty)$ by some element of $PSL_{2}(\Q)$
formed around the edge.
Binary digits of flag mean:
1: return a normalized hyperbolic polygon if set, else a polygon with
unimodular edges (matrices of determinant $1$). A polygon is normalized
in the sense of compact orientable surfaces if the distance $d(a,a^{*})$
between
an edge $a$ and its image by the involution $a^{*}$ is less than 2, with
equality if and only if $a$ is \emph{linked} with another edge $b$
($a$, $b$, $a^{*}$ et $b^{*}$ appear consecutively in $E$ up to cyclic
permutation). In particular, the vertices of all edges such that that
$d(a,a^{*}) \neq 1$ (distance is 0 or 2) are all equivalent to $0$ modulo
$G$. The external vertices of $a a^{*}$ such that $d(a,a^{*}) = 1$ are
also equivalent to $0$; the internal vertices $a\cap a^{*}$ (a single point),
together with $0$, form a system of representatives of the cusps of
$G\bs \P^{1}(\Q)$. This is useful to compute the homology group
$H_{1}(G,\Z)$ as it gives a symplectic basis for the intersection pairing.
In this case, the number of parabolic matrices (trace 2) in the system of
generators $G$ is $2(t-1)$, where $t$ is the number of non equivalent cusps
for $G$. This is currently only implemented for $G = \Gamma_{0}(N)$.
2: add graphical representations (in LaTeX form) for the hyperbolic polygon
in Poincar\'e's half-space and the involution $a\to a^{*}$ of the Farey symbol.
The corresponding character strings can be included in a LaTeX document
provided the preamble contains \kbd{\bs usepackage\obr tikz\cbr}.
\bprog
? [V,A,g] = mspolygon(3);
? V
%2 = [[-1, 1; -1, 0], [1, 0; 0, 1], [0, 1; -1, 1]]
? A
%3 = Vecsmall([2, 1, 3])
? g
%4 = [[-1, -1; 0, -1], [1, -1; 0, 1], [1, -1; 3, -2]]
? [V,A,g, D1,D2] = mspolygon(11,2); \\ D1 and D2 contains pictures
? {write("F.tex",
"\\documentclass{article}\\usepackage{tikz}\\begin{document}"
D1, "\n", D2,
"\\end{document}");}
? [V1,A1] = mspolygon(6,1); \\ normalized
? V1
%8 = [[-1, 1; -1, 0], [1, 0; 0, 1], [0, 1; -1, 3],
[1, -2; 3, -5], [-2, 1; -5, 2], [1, -1; 2, -1]]
? A1
%9 = Vecsmall([2, 1, 4, 3, 6, 5])
? [V0,A0] = mspolygon(6); \\ not normalized V[3]^* = V[6], d(V[3],V[6]) = 3
? A0
%11 = Vecsmall([2, 1, 6, 5, 4, 3])
? [V,A] = mspolygon(14, 1);
? A
%13 = Vecsmall([2, 1, 4, 3, 6, 5, 9, 10, 7, 8])
@eprog
One can see from this last example that the (normalized) polygon has the form
$$(a_{1}, a_{1}^{*}, a_{2}, a_{2}^{*}, a_{3}, a_{3}^{*}, a_{4}, a_{5}, a_{4}^{*}, a_{5}^{*}),$$
that $X_{0}(14)$ is of genus 1 (in general the genus is the number of blocks
of the form $aba^{*}b^{*}$), has no elliptic points ($A$ has no fixed point)
and 4 cusps (number of blocks of the form $aa^{*}$ plus 1). The vertices
of edges $a_{4}$ and $a_{5}$ all project to $0$ in $X_{0}(14)$: the paths $a_{4}$
and $a_{5}$ project as loops in $X_{0}(14)$ and give a symplectic basis of the
homology $H_{1}(X_{0}(14),\Z)$.
\bprog
? [V,A] = mspolygon(15);
? apply(matdet, V) \\ all unimodular
%2 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
? [V,A] = mspolygon(15,1);
? apply(matdet, V) \\ normalized polygon but no longer unimodular edges
%4 = [1, 1, 1, 1, 2, 2, 47, 11, 47, 11]
@eprog
The library syntax is \fun{GEN}{mspolygon}{GEN M, long flag}.
\subsec{msqexpansion$(M,\var{projH},\{B = \var{seriesprecision}\})$}\kbdsidx{msqexpansion}\label{se:msqexpansion}
$M$ being a full modular symbol space, as given by \kbd{msinit},
and \var{projH} being a projector on a Hecke-simple subspace (as given
by \tet{mssplit}), return the Fourier coefficients $a_{n}$, $n\leq B$ of the
corresponding normalized newform. If $B$ is omitted, use
\kbd{seriesprecision}.
This function uses a naive $O(B^{2} d^{3})$
algorithm, where $d = O(kN)$ is the dimension of $M_{k}(\Gamma_{0}(N))$.
\bprog
? M = msinit(11,2, 1); \\ M_2(Gamma_0(11))^+
? L = mssplit(M, msnew(M));
? msqexpansion(M,L[1], 20)
%3 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2]
? ellan(ellinit("11a1"), 20)
%4 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2]
@eprog\noindent The shortcut \kbd{msqexpansion(M, s, B)} is available for
a symbol $s$, provided it is a Hecke eigenvector:
\bprog
? E = ellinit("11a1");
? [M,S] = msfromell(E); [sp,sm] = S;
? msqexpansion(M,sp,10) \\ in the + eigenspace
%3 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
? msqexpansion(M,sm,10) \\ in the - eigenspace
%4 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
? ellan(E, 10)
%5 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
@eprog
The library syntax is \fun{GEN}{msqexpansion}{GEN M, GEN projH, long precdl}.
\subsec{mssplit$(M,\{H\},\{\var{dimlim}\})$}\kbdsidx{mssplit}\label{se:mssplit}
Let $M$ denote a full modular symbol space, as given by \kbd{msinit}$(N,k,1)$
or $\kbd{msinit}(N,k,-1)$ and let $H$ be a Hecke-stable subspace of
\kbd{msnew}$(M)$ (the full new subspace if $H$ is omitted). This function
splits $H$ into Hecke-simple subspaces. If \kbd{dimlim} is present and
positive, restrict to subspaces of dimension $\leq \kbd{dimlim}$. A subspace
is given by a structure allowing quick projection and restriction of linear
operators; its first component is a matrix with integer coefficients whose
columns form a $\Q$-basis of the subspace.
\bprog
? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+
? L = mssplit(M); \\ split msnew(M)
? #L
%3 = 2
? f = msqexpansion(M,L[1],5); f[1].mod
%4 = x^2 + 8*x - 44
? lift(f)
%5 = [1, x, -6*x - 27, -8*x - 84, 20*x - 155]
? g = msqexpansion(M,L[2],5); g[1].mod
%6 = x^4 - 558*x^2 + 140*x + 51744
@eprog\noindent To a Hecke-simple subspace corresponds an orbit of
(normalized) newforms, defined over a number field. In the above example,
we printed the polynomials defining the said fields, as well as the first
5 Fourier coefficients (at the infinite cusp) of one such form.
The library syntax is \fun{GEN}{mssplit}{GEN M, GEN H = NULL, long dimlim}.
\subsec{msstar$(M,\{H\})$}\kbdsidx{msstar}\label{se:msstar}
$M$ being a full modular symbol space, as given by \kbd{msinit},
return the matrix of the \kbd{*} involution, induced by complex conjugation,
acting on the (stable) subspace $H$ ($M$ if omitted).
\bprog
? M = msinit(11,2); \\ M_2(Gamma_0(11))
? w = msstar(M);
? w^2 == 1
%3 = 1
@eprog
The library syntax is \fun{GEN}{msstar}{GEN M, GEN H = NULL}.
\subsec{mstooms$(\var{Mp},\var{phi})$}\kbdsidx{mstooms}\label{se:mstooms}
Given \kbd{Mp} from \kbd{mspadicinit}, lift the (classical) eigen symbol
\kbd{phi} to a $p$-adic distribution-valued overconvergent symbol in the
sense of Pollack and Stevens. More precisely, let $\phi$ belong to the space
$W$ of modular symbols of level $N$, $v_{p}(N) \leq 1$, and weight $k$ which is
an eigenvector for the Hecke operator $T_{N}(p)$ for a nonzero eigenvalue
$a_{p}$ and let $N_{0} = \text{lcm}(N,p)$.
Under the action of $T_{N_{0}}(p)$, $\phi$ generates a subspace $W_{\phi}$ of
dimension $1$ (if $p\mid N$) or $2$ (if $p$ does not divide $N$) in the
space of modular symbols of level $N_{0}$.
Let $V_{p}=[p,0;0,1]$ and $C_{p}=[a_{p},p^{k-1};-1,0]$.
When $p$ does not divide $N$ and $a_{p}$ is divisible by $p$, \kbd{mstooms}
returns the lift $\Phi$ of $(\phi,\phi|_{k} V_{p})$ such that
$$T_{N_{0}}(p) \Phi = C_{p} \Phi$$
When $p$ does not divide $N$ and $a_{p}$ is not divisible by $p$, \kbd{mstooms}
returns the lift $\Phi$ of $\phi - \alpha^{-1} \phi|_{k} V_{p}$
which is an eigenvector of $T_{N_{0}}(p)$ for the unit eigenvalue
where $\alpha^{2} - a_{p} \alpha + p^{k-1}=0$.
The resulting overconvergent eigensymbol can then be used in
\tet{mspadicmoments}, then \tet{mspadicL} or \tet{mspadicseries}.
\bprog
? M = msinit(3,6, 1); p = 5;
? Tp = mshecke(M, p); factor(charpoly(Tp))
%2 =
[x - 3126 2]
[ x - 6 1]
? phi = matker(Tp - 6)[,1] \\ generator of p-Eigenspace, a_p = 6
%3 = [5, -3, -1]~
? Mp = mspadicinit(M, p, 10, 0); \\ restrict to ordinary symbols, mod p^10
? PHI = mstooms(Mp, phi);
? mu = mspadicmoments(Mp, PHI);
? mspadicL(mu)
%7 = 5 + 2*5^2 + 2*5^3 + ...
@eprog
A non ordinary symbol.
\bprog
? M = msinit(4,6,1); p = 3;
? Tp = mshecke(M, p); factor(charpoly(Tp))
%2 =
[x - 244 3]
[ x + 12 1]
? phi = matker(Tp + 12)[,1] \\ a_p = -12 is divisible by p = 3
%3 = [-1/32, -1/4, -1/32, 1]~
? msissymbol(M,phi)
%4 = 1
? Mp = mspadicinit(M,3,5,0);
? PHI = mstooms(Mp,phi);
*** at top-level: PHI=mstooms(Mp,phi)
*** ^---------------
*** mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag] (t_VEC).
? Mp = mspadicinit(M,3,5,1);
? PHI = mstooms(Mp,phi);
@eprog
The library syntax is \fun{GEN}{mstooms}{GEN Mp, GEN phi}.
\section{Plotting functions}
Although plotting is not even a side purpose of PARI, a number of plotting
functions are provided. There are three types of graphic functions.
\subsec{High-level plotting functions} (all the functions starting with
\kbd{ploth}) in which the user has little to do but explain what type of plot
he wants, and whose syntax is similar to the one used in the preceding
section.
\subsec{Low-level plotting functions} (called \var{rectplot} functions,
sharing the prefix \kbd{plot}), where every drawing primitive (point, line,
box, etc.) is specified by the user. These low-level functions work as
follows. You have at your disposal 16 virtual windows which are filled
independently, and can then be physically ORed on a single window at
user-defined positions. These windows are numbered from 0 to 15, and must be
initialized before being used by the function \kbd{plotinit}, which specifies
the height and width of the virtual window (called a \var{rectwindow} in the
sequel). At all times, a virtual cursor (initialized at $[0,0]$) is attached
to the window, and its current value can be obtained using the function
\kbd{plotcursor}.
A number of primitive graphic objects (called \var{rect} objects) can then
be drawn in these windows, using a default color attached to that window
(which can be changed using the \kbd{plotcolor} function) and only the part
of the object which is inside the window will be drawn, with the exception of
polygons and strings which are drawn entirely. The ones sharing the prefix
\kbd{plotr} draw relatively to the current position of the virtual cursor,
the others use absolute coordinates. Those having the prefix \kbd{plotrecth}
put in the rectwindow a large batch of rect objects corresponding to the
output of the related \kbd{ploth} function.
Finally, the actual physical drawing is done using \kbd{plotdraw}. The
rectwindows are preserved so that further drawings using the same windows at
different positions or different windows can be done without extra work. To
erase a window, use \kbd{plotkill}. It is not possible to partially erase a
window: erase it completely, initialize it again, then fill it with the
graphic objects that you want to keep.
In addition to initializing the window, you may use a scaled window to
avoid unnecessary conversions. For this, use \kbd{plotscale}. As long as this
function is not called, the scaling is simply the number of pixels, the
origin being at the upper left and the $y$-coordinates going downwards.
Plotting functions are platform independent, but a number of graphical
drivers are available for screen output: X11-windows (including
Openwindows and Motif), Windows's Graphical Device Interface, and the
FLTK graphical libraries and one may even write the graphical objects to a
PostScript or SVG file and use an external viewer to open it. The physical
window opened by \kbd{plotdraw} or any of the \kbd{ploth*} functions is
completely separated from \kbd{gp} (technically, a \kbd{fork} is done, and
all memory unrelated to the graphics engine is immediately freed in the child
process), which means you can go on working in the current \kbd{gp} session,
without having to kill the window first. This window can be closed, enlarged
or reduced using the standard window manager functions. No zooming procedure is
implemented though.
\subsec{Functions for PostScript or SVG output} in the same way that
\kbd{printtex} allows you to have a \TeX\ output
corresponding to printed results, the functions \kbd{plotexport},
\kbd{plothexport} and \kbd{plothrawexport} convert a plot to a character
string in either \tet{PostScript} or \tet{Scalable Vector Graphics} format.
This string can then be written to a file in the customary way, using
\kbd{write}. These export routines are available even if no Graphic Library is.
\smallskip
\subsec{parploth$(X=a,b,\var{expr},\{\var{flags}=0\},\{n=0\})$}\kbdsidx{parploth}\label{se:parploth}
Parallel version of \kbd{ploth}. High precision plot of the function
$y=f(x)$ represented by the expression \var{expr}, $x$ going from $a$ to $b$.
This opens a specific window (which is killed whenever you click on it), and
returns a four-component vector giving the coordinates of the bounding box in
the form $[\var{xmin},\var{xmax},\var{ymin},\var{ymax}]$.
\misctitle{Important note} \kbd{parploth} may evaluate \kbd{expr} thousands of
times; given the relatively low resolution of plotting devices, few
significant digits of the result will be meaningful. Hence you should keep
the current precision to a minimum (e.g.~9) before calling this function.
The parameter $n$ specifies the number of reference point on the graph, where
a value of 0 means we use the hardwired default values; the binary digits of
\fl\ have the same meaning
as in \kbd{ploth}: $1 = \kbd{Parametric}$; $2 = \kbd{Recursive}$;
$4 = \kbd{no\_Rescale}$; $8 = \kbd{no\_X\_axis}$; $16 = \kbd{no\_Y\_axis}$;
$32 = \kbd{no\_Frame}$; $64 = \kbd{no\_Lines}$; $128 = \kbd{Points\_too}$;
$256 = \kbd{Splines}$; $512 = \kbd{no\_X\_ticks}$;
$1024 = \kbd{no\_Y\_ticks}$; $2048 = \kbd{Same\_ticks}$;
$4096 = \kbd{Complex}$.
For instance:
\bprog
\\ circle
parploth(X=0,2*Pi,[sin(X),cos(X)], "Parametric")
\\ two entwined sinusoidal curves
parploth(X=0,2*Pi,[sin(X),cos(X)])
\\ circle cut by the line y = x
parploth(X=0,2*Pi,[X,X,sin(X),cos(X)], "Parametric")
\\ circle
parploth(X=0,2*Pi,exp(I*X), "Complex")
\\ circle cut by the line y = x
parploth(X=0,2*Pi,[(1+I)*X,exp(I*X)], "Complex")
@eprog
\synt{parploth}{GEN a,GEN b,GEN code, long flag, long n, long prec}.
\subsec{parplothexport$(\var{fmt},X=a,b,\var{expr},\{\var{flags}=0\},\{n=0\})$}\kbdsidx{parplothexport}\label{se:parplothexport}
Parallel version of \kbd{plothexport}. Plot of expression \var{expr}, $X$
goes from $a$ to $b$ in high resolution, returning the resulting picture as
a character string which can then be written to a file.
The format \kbd{fmt} is either \kbd{"ps"} (PostScript output) or \kbd{"svg"}
(Scalable Vector Graphics). All other parameters and flags are as in
\kbd{ploth}.
\bprog
? s = parplothexport("svg", x=1,10, x^2+3);
? write("graph.svg", s);
@eprog\noindent The above only works if \kbd{graph.svg} does not already
exist, otherwise \kbd{write} will append to the existing file and produce
an invalid \kbd{svg}. Here is a version that truncates an existing file
(beware!):
\bprog
? n = fileopen("graph.svg", "w");
? filewrite(n, s);
? fileclose(n);
@eprog\noindent This is intentionally more complicated.
\synt{parplothexport}{GEN fmt, GEN a, GEN b, GEN code, long flags, long n, long prec},
\subsec{plot$(X=a,b,\var{expr},\{\var{Ymin}\},\{\var{Ymax}\})$}\kbdsidx{plot}\label{se:plot}
Crude ASCII plot of the function represented by expression \var{expr}
from $a$ to $b$, with \var{Y} ranging from \var{Ymin} to \var{Ymax}. If
\var{Ymin} (resp. \var{Ymax}) is not given, the minimum (resp. the maximum)
of the computed values of the expression is used instead.
\synt{pariplot}{void *E, GEN (*eval)(void*, GEN), GEN a, GEN b, GEN ymin, GEN ymax, long prec}
\subsec{plotarc$(w,\var{x2},\var{y2},\{\var{filled}=0\})$}\kbdsidx{plotarc}\label{se:plotarc}
Let $(x1,y1)$ be the current position of the virtual cursor. Draws in the
rectwindow $w$ the outline of the ellipse that fits inside the box such that the points
$(x1,y1)$ and $(x2,y2)$ are opposite corners. The virtual cursor does \emph{not} move.
If $\var{filled}=1$, fills the ellipse.
\bprog
? plotinit(1);plotmove(1,0,0);
? plotarc(1,50,50); plotdraw([1,100,100]);
@eprog
The library syntax is \fun{void}{plotarc}{long w, GEN x2, GEN y2, long filled}.
\subsec{plotbox$(w,\var{x2},\var{y2},\{\var{filled}=0\})$}\kbdsidx{plotbox}\label{se:plotbox}
Let $(x1,y1)$ be the current position of the virtual cursor. Draw in the
rectwindow $w$ the outline of the rectangle which is such that the points
$(x1,y1)$ and $(x2,y2)$ are opposite corners. Only the part of the rectangle
which is in $w$ is drawn. The virtual cursor does \emph{not} move.
If $\var{filled}=1$, fill the box.
The library syntax is \fun{void}{plotbox}{long w, GEN x2, GEN y2, long filled}.
\subsec{plotclip$(w)$}\kbdsidx{plotclip}\label{se:plotclip}
`clips' the content of rectwindow $w$, i.e remove all parts of the
drawing that would not be visible on the screen. Together with
\tet{plotcopy} this function enables you to draw on a scratchpad before
committing the part you're interested in to the final picture.
The library syntax is \fun{void}{plotclip}{long w}.
\subsec{plotcolor$(w,c)$}\kbdsidx{plotcolor}\label{se:plotcolor}
Set default color to $c$ in rectwindow $w$. Return [R,G,B] value attached
to color. Possible values for $c$ are
\item a \typ{VEC} or \typ{VECSMALL} $[R,G,B]$ giving the color RGB value
(all 3 values are between 0 and 255), e.g. \kbd{[250,235,215]} or
equivalently \kbd{[0xfa, 0xeb, 0xd7]} for \kbd{antiquewhite};
\item a \typ{STR} giving a valid colour name (see the \kbd{rgb.txt}
file in X11 distributions), e.g. \kbd{"antiquewhite"} or an RGV
value given by a \kbd{\#} followed by 6 hexadecimal digits, e.g.
\kbd{"\#faebd7"} for \kbd{antiquewhite};
\item a \typ{INT}, an index in the \tet{graphcolormap} default, factory
setting are
0=white, 1=black, 2=blue, 3=violetred, 4=red, 5=green, 6=grey, 7=gainsborough
and the color index is a non-negative integer in $[0,7]$.
But this can be changed (see \kbd{??graphcolormap}); note that for historical
reasons, \kbd{graphcolormap} is 0-based, so the color $c$ is a non-negative
integer, strictly less than the length of the colormap.
\bprog
? plotinit(0,100,100);
? plotcolor(0, "turquoise")
%2 = [64, 224, 208]
? plotbox(0, 50,50,1);
? plotmove(0, 50,50);
? plotcolor(0, 2) \\ blue
%4 = [0, 0, 255]
? plotbox(0, 50,50,1);
? plotdraw(0);
@eprog
The library syntax is \fun{GEN}{plotcolor}{long w, GEN c}.
\subsec{plotcopy$(\var{sourcew},\var{destw},\var{dx},\var{dy},\{\fl=0\})$}\kbdsidx{plotcopy}\label{se:plotcopy}
Copy the contents of rectwindow \var{sourcew} to rectwindow \var{destw}
with offset (dx,dy). If $\fl$'s bit 1 is set, dx and dy express fractions of
the size of the current output device, otherwise dx and dy are in pixels. dx
and dy are relative positions of northwest corners if other bits of $\fl$
vanish, otherwise of: 2: southwest, 4: southeast, 6: northeast corners.
The library syntax is \fun{void}{plotcopy}{long sourcew, long destw, GEN dx, GEN dy, long flag}.
\subsec{plotcursor$(w)$}\kbdsidx{plotcursor}\label{se:plotcursor}
Give as a 2-component vector the current
(scaled) position of the virtual cursor corresponding to the rectwindow $w$.
The library syntax is \fun{GEN}{plotcursor}{long w}.
\subsec{plotdraw$(w,\{\fl=0\})$}\kbdsidx{plotdraw}\label{se:plotdraw}
Physically draw the rectwindow $w$. More generally,
$w$ can be of the form $[w_{1},x_{1},y_{1},w_{2},x_{2},y_{2},\dots]$
(number of components must be divisible by $3$; the windows $w_{1}$, $w_{2}$,
etc.~are physically placed with their upper left corner at physical position
$(x_{1},y_{1})$, $(x_{2},y_{2})$,\dots\ respectively, and are then drawn
together.
Overlapping regions will thus be drawn twice, and the windows are considered
transparent. Then display the whole drawing in a window on your screen.
If $\fl \neq 0$, $x_{1}$, $y_{1}$ etc. express fractions of the size of the
current output device
The library syntax is \fun{void}{plotdraw}{GEN w, long flag}.
\subsec{plotexport$(\var{fmt},\var{list},\{\fl=0\})$}\kbdsidx{plotexport}\label{se:plotexport}
Draw list of rectwindows as in \kbd{plotdraw(list,flag)}, returning
the resulting picture as a character string which can then be written to
a file. The format \kbd{fmt} is either \kbd{"ps"} (PostScript output)
or \kbd{"svg"} (Scalable Vector Graphics).
\bprog
? plotinit(0, 100, 100);
? plotbox(0, 50, 50);
? plotcolor(0, 2);
? plotbox(0, 30, 30);
? plotdraw(0); \\ watch result on screen
? s = plotexport("svg", 0);
? write("graph.svg", s); \\ dump result to file
@eprog
The library syntax is \fun{GEN}{plotexport}{GEN fmt, GEN list, long flag}.
\subsec{ploth$(X=a,b,\var{expr},\{\fl=0\},\{n=0\})$}\kbdsidx{ploth}\label{se:ploth}
High precision plot of the function $y=f(x)$ represented by the expression
\var{expr}, $x$ going from $a$ to $b$. This opens a specific window (which is
killed whenever you click on it), and returns a four-component vector giving
the coordinates of the bounding box in the form
$[\var{xmin},\var{xmax},\var{ymin},\var{ymax}]$.
\misctitle{Important note} \kbd{ploth} may evaluate \kbd{expr} thousands of
times; given the relatively low resolution of plotting devices, few
significant digits of the result will be meaningful. Hence you should keep
the current precision to a minimum (e.g.~9) before calling this function.
$n$ specifies the number of reference point on the graph, where a value of 0
means we use the hardwired default values (1000 for general plot, 1500 for
parametric plot, and 8 for recursive plot).
If no $\fl$ is given, \var{expr} is either a scalar expression $f(X)$, in which
case the plane curve $y=f(X)$ will be drawn, or a vector
$[f_{1}(X),\dots,f_{k}(X)]$, and then all the curves $y=f_{i}(X)$ will be
drawn in the same window.
\noindent The binary digits of $\fl$ mean:
\item $1 = \kbd{Parametric}$: \tev{parametric plot}. Here \var{expr} must
be a vector with an even number of components. Successive pairs are then
understood as the parametric coordinates of a plane curve. Each of these are
then drawn.
For instance:
\bprog
ploth(X=0,2*Pi,[sin(X),cos(X)], "Parametric")
ploth(X=0,2*Pi,[sin(X),cos(X)])
ploth(X=0,2*Pi,[X,X,sin(X),cos(X)], "Parametric")
@eprog\noindent draw successively a circle, two entwined sinusoidal curves
and a circle cut by the line $y=x$.
\item $2 = \kbd{Recursive}$: \tev{recursive plot}. If this is set,
only \emph{one} curve can be drawn at a time, i.e.~\var{expr} must be either a
two-component vector (for a single parametric curve, and the parametric flag
\emph{has} to be set), or a scalar function. The idea is to choose pairs of
successive reference points, and if their middle point is not too far away
from the segment joining them, draw this as a local approximation to the
curve. Otherwise, add the middle point to the reference points. This is
fast, and usually more precise than usual plot. Compare the results of
\bprog
\pb 32
ploth(X=-1,1, sin(1/X))
ploth(X=-1,1, sin(1/X), "Recursive")
@eprog\noindent
for instance. Note that this example is pathological as it is impossible to
evaluate $\sin(1/X)$ close to~$0$. It is better to avoid the singularity as
follows.
\bprog
ploth(X=1e-10,1, sin(1/X), "Recursive")
@eprog
Beware that if you are extremely unlucky, or choose too few
reference points, you may draw some nice polygon bearing little resemblance
to the original curve. For instance you should \emph{never} plot recursively
an odd function in a symmetric interval around 0. Try
\bprog
ploth(x = -20, 20, sin(x), "Recursive")
@eprog\noindent
to see why. Hence, it's usually a good idea to try and plot the same curve
with slightly different parameters.
The other values toggle various display options:
\item $4 = \kbd{no\_Rescale}$: do not rescale plot according to the
computed extrema. This is used in conjunction with \tet{plotscale} when
graphing multiple functions on a rectwindow (as a \tet{plotrecth} call):
\bprog
s = plothsizes();
plotinit(0, s[2]-1, s[2]-1);
plotscale(0, -1,1, -1,1);
plotrecth(0, t=0,2*Pi, [cos(t),sin(t)], "Parametric|no_Rescale")
plotdraw([0, -1,1]);
@eprog\noindent
This way we get a proper circle instead of the distorted ellipse produced by
\bprog
ploth(t=0,2*Pi, [cos(t),sin(t)], "Parametric")
@eprog
\item $8 = \kbd{no\_X\_axis}$: do not print the $x$-axis.
\item $16 = \kbd{no\_Y\_axis}$: do not print the $y$-axis.
\item $32 = \kbd{no\_Frame}$: do not print frame.
\item $64 = \kbd{no\_Lines}$: only plot reference points, do not join them.
\item $128 = \kbd{Points\_too}$: plot both lines and points.
\item $256 = \kbd{Splines}$: use splines to interpolate the points.
\item $512 = \kbd{no\_X\_ticks}$: plot no $x$-ticks.
\item $1024 = \kbd{no\_Y\_ticks}$: plot no $y$-ticks.
\item $2048 = \kbd{Same\_ticks}$: plot all ticks with the same length.
\item $4096 = \kbd{Complex}$: is a parametric plot but where each member of
\kbd{expr} is considered a complex number encoding the two coordinates of a
point. For instance:
\bprog
ploth(X=0,2*Pi,exp(I*X), "Complex")
ploth(X=0,2*Pi,[(1+I)*X,exp(I*X)], "Complex")
@eprog\noindent will draw respectively a circle and a circle cut by the line
$y=x$.
\item $8192 = \kbd{no\_MinMax}$: do not print the boundary numbers (in both
directions).
\synt{ploth}{void *E, GEN (*eval)(void*, GEN), GEN a, GEN b, long flag, long n, long prec},
\subsec{plothexport$(\var{fmt},X=a,b,\var{expr},\{\var{flags}=0\},\{n=0\})$}\kbdsidx{plothexport}\label{se:plothexport}
Plot of expression \var{expr}, $X$ goes from $a$ to $b$ in high
resolution, returning the resulting picture as a character string which can
then be written to a file.
The format \kbd{fmt} is either \kbd{"ps"} (PostScript output) or \kbd{"svg"}
(Scalable Vector Graphics). All other parameters and flags are as in
\kbd{ploth}.
\bprog
? s = plothexport("svg", x=1,10, x^2+3);
? write("graph.svg", s);
@eprog
\synt{plothexport}{GEN fmt, void *E, GEN (*eval)(void*, GEN), GEN a, GEN b, long flags, long n, long prec},
\subsec{plothraw$(X,Y,\{\fl=0\})$}\kbdsidx{plothraw}\label{se:plothraw}
Given $X$ and $Y$ two vectors of equal length, plots (in
high precision) the points whose $(x,y)$-coordinates are given in
$X$ and $Y$. Automatic positioning and scaling is done, but
with the same scaling factor on $x$ and $y$. If $\fl$ is 1, join points,
other nonzero flags toggle display options and should be combinations of bits
$2^{k}$, $k \geq 3$ as in \kbd{ploth}.
The library syntax is \fun{GEN}{plothraw}{GEN X, GEN Y, long flag}.
\subsec{plothrawexport$(\var{fmt},X,Y,\{\fl=0\})$}\kbdsidx{plothrawexport}\label{se:plothrawexport}
Given $X$ and $Y$ two vectors of equal length, plots (in high precision)
the points whose $(x,y)$-coordinates are given in $X$ and $Y$, returning the
resulting picture as a character string which can then be written to a file.
The format \kbd{fmt} is either \kbd{"ps"} (PostScript output) or \kbd{"svg"}
(Scalable Vector Graphics).
Automatic positioning and scaling is done, but with the same scaling factor
on $x$ and $y$. If $\fl$ is 1, join points, other nonzero flags toggle display
options and should be combinations of bits $2^{k}$, $k \geq 3$ as in
\kbd{ploth}.
The library syntax is \fun{GEN}{plothrawexport}{GEN fmt, GEN X, GEN Y, long flag}.
\subsec{plothsizes$(\{\fl=0\})$}\kbdsidx{plothsizes}\label{se:plothsizes}
Return data corresponding to the output window
in the form of a 8-component vector: window width and height, sizes for ticks
in horizontal and vertical directions (this is intended for the \kbd{gnuplot}
interface and is currently not significant), width and height of characters,
width and height of display, if applicable. If display has no sense, e.g.
for svg plots or postscript plots, then width and height of display are set
to 0.
If $\fl = 0$, sizes of ticks and characters are in
pixels, otherwise are fractions of the screen size
The library syntax is \fun{GEN}{plothsizes}{long flag}.
\subsec{plotinit$(w,\{x\},\{y\},\{\fl=0\})$}\kbdsidx{plotinit}\label{se:plotinit}
Initialize the rectwindow $w$,
destroying any rect objects you may have already drawn in $w$. The virtual
cursor is set to $(0,0)$. The rectwindow size is set to width $x$ and height
$y$; omitting either $x$ or $y$ means we use the full size of the device
in that direction.
If $\fl=0$, $x$ and $y$ represent pixel units. Otherwise, $x$ and $y$
are understood as fractions of the size of the current output device (hence
must be between $0$ and $1$) and internally converted to pixels.
The plotting device imposes an upper bound for $x$ and $y$, for instance the
number of pixels for screen output. These bounds are available through the
\tet{plothsizes} function. The following sequence initializes in a portable
way (i.e independent of the output device) a window of maximal size, accessed
through coordinates in the $[0,1000] \times [0,1000]$ range:
\bprog
s = plothsizes();
plotinit(0, s[1]-1, s[2]-1);
plotscale(0, 0,1000, 0,1000);
@eprog
The library syntax is \fun{void}{plotinit}{long w, GEN x = NULL, GEN y = NULL, long flag}.
\subsec{plotkill$(w)$}\kbdsidx{plotkill}\label{se:plotkill}
Erase rectwindow $w$ and free the corresponding memory. Note that if you
want to use the rectwindow $w$ again, you have to use \kbd{plotinit} first
to specify the new size. So it's better in this case to use \kbd{plotinit}
directly as this throws away any previous work in the given rectwindow.
The library syntax is \fun{void}{plotkill}{long w}.
\subsec{plotlines$(w,X,Y,\{\fl=0\})$}\kbdsidx{plotlines}\label{se:plotlines}
Draw on the rectwindow $w$
the polygon such that the (x,y)-coordinates of the vertices are in the
vectors of equal length $X$ and $Y$. For simplicity, the whole
polygon is drawn, not only the part of the polygon which is inside the
rectwindow. If $\fl$ is nonzero, close the polygon. In any case, the
virtual cursor does not move.
$X$ and $Y$ are allowed to be scalars (in this case, both have to).
There, a single segment will be drawn, between the virtual cursor current
position and the point $(X,Y)$. And only the part thereof which
actually lies within the boundary of $w$. Then \emph{move} the virtual cursor
to $(X,Y)$, even if it is outside the window. If you want to draw a
line from $(x1,y1)$ to $(x2,y2)$ where $(x1,y1)$ is not necessarily the
position of the virtual cursor, use \kbd{plotmove(w,x1,y1)} before using this
function.
The library syntax is \fun{void}{plotlines}{long w, GEN X, GEN Y, long flag}.
\subsec{plotlinetype$(w,\var{type})$}\kbdsidx{plotlinetype}\label{se:plotlinetype}
This function is obsolete and currently a no-op.
Change the type of lines subsequently plotted in rectwindow $w$.
\var{type} $-2$ corresponds to frames, $-1$ to axes, larger values may
correspond to something else. $w = -1$ changes highlevel plotting.
The library syntax is \fun{void}{plotlinetype}{long w, long type}.
\subsec{plotmove$(w,x,y)$}\kbdsidx{plotmove}\label{se:plotmove}
Move the virtual cursor of the rectwindow $w$ to position $(x,y)$.
The library syntax is \fun{void}{plotmove}{long w, GEN x, GEN y}.
\subsec{plotpoints$(w,X,Y)$}\kbdsidx{plotpoints}\label{se:plotpoints}
Draw on the rectwindow $w$ the
points whose $(x,y)$-coordinates are in the vectors of equal length $X$ and
$Y$ and which are inside $w$. The virtual cursor does \emph{not} move. This
is basically the same function as \kbd{plothraw}, but either with no scaling
factor or with a scale chosen using the function \kbd{plotscale}.
As was the case with the \kbd{plotlines} function, $X$ and $Y$ are allowed to
be (simultaneously) scalar. In this case, draw the single point $(X,Y)$ on
the rectwindow $w$ (if it is actually inside $w$), and in any case
\emph{move} the virtual cursor to position $(x,y)$.
If you draw few points in the rectwindow, they will be hard to see; in
this case, you can use filled boxes instead. Compare:
\bprog
? plotinit(0, 100,100); plotpoints(0, 50,50);
? plotdraw(0)
? plotinit(1, 100,100); plotmove(1,48,48); plotrbox(1, 4,4, 1);
? plotdraw(1)
@eprog
The library syntax is \fun{void}{plotpoints}{long w, GEN X, GEN Y}.
\subsec{plotpointsize$(w,\var{size})$}\kbdsidx{plotpointsize}\label{se:plotpointsize}
This function is obsolete. It is currently a no-op.
Changes the ``size'' of following points in rectwindow $w$. If $w = -1$,
change it in all rectwindows.
The library syntax is \fun{void}{plotpointsize}{long w, GEN size}.
\subsec{plotpointtype$(w,\var{type})$}\kbdsidx{plotpointtype}\label{se:plotpointtype}
This function is obsolete and currently a no-op.
change the type of points subsequently plotted in rectwindow $w$.
$\var{type} = -1$ corresponds to a dot, larger values may correspond to
something else. $w = -1$ changes highlevel plotting.
The library syntax is \fun{void}{plotpointtype}{long w, long type}.
\subsec{plotrbox$(w,\var{dx},\var{dy},\{\var{filled}\})$}\kbdsidx{plotrbox}\label{se:plotrbox}
Draw in the rectwindow $w$ the outline of the rectangle which is such
that the points $(x1,y1)$ and $(x1+dx,y1+dy)$ are opposite corners, where
$(x1,y1)$ is the current position of the cursor. Only the part of the
rectangle which is in $w$ is drawn. The virtual cursor does \emph{not} move.
If $\var{filled}=1$, fill the box.
The library syntax is \fun{void}{plotrbox}{long w, GEN dx, GEN dy, long filled}.
\subsec{plotrecth$(w,X=a,b,\var{expr},\{\fl=0\},\{n=0\})$}\kbdsidx{plotrecth}\label{se:plotrecth}
Writes to rectwindow $w$ the curve output of
\kbd{ploth}$(w,X=a,b,\var{expr},\fl,n)$. Returns a vector for the bounding box.
%\syn{NO}
\subsec{plotrecthraw$(w,\var{data},\{\var{flags}=0\})$}\kbdsidx{plotrecthraw}\label{se:plotrecthraw}
Plot graph(s) for \var{data} in rectwindow $w$; $\fl$ has the same
meaning here as in \kbd{ploth}, though recursive plot is no longer
significant.
The argument \var{data} is a vector of vectors, each corresponding to a list
a coordinates. If parametric plot is set, there must be an even number of
vectors, each successive pair corresponding to a curve. Otherwise, the first
one contains the $x$ coordinates, and the other ones contain the
$y$-coordinates of curves to plot.
The library syntax is \fun{GEN}{plotrecthraw}{long w, GEN data, long flags}.
\subsec{plotrline$(w,\var{dx},\var{dy})$}\kbdsidx{plotrline}\label{se:plotrline}
Draw in the rectwindow $w$ the part of the segment
$(x1,y1)-(x1+dx,y1+dy)$ which is inside $w$, where $(x1,y1)$ is the current
position of the virtual cursor, and move the virtual cursor to
$(x1+dx,y1+dy)$ (even if it is outside the window).
The library syntax is \fun{void}{plotrline}{long w, GEN dx, GEN dy}.
\subsec{plotrmove$(w,\var{dx},\var{dy})$}\kbdsidx{plotrmove}\label{se:plotrmove}
Move the virtual cursor of the rectwindow $w$ to position
$(x1+dx,y1+dy)$, where $(x1,y1)$ is the initial position of the cursor
(i.e.~to position $(dx,dy)$ relative to the initial cursor).
The library syntax is \fun{void}{plotrmove}{long w, GEN dx, GEN dy}.
\subsec{plotrpoint$(w,\var{dx},\var{dy})$}\kbdsidx{plotrpoint}\label{se:plotrpoint}
Draw the point $(x1+dx,y1+dy)$ on the rectwindow $w$ (if it is inside
$w$), where $(x1,y1)$ is the current position of the cursor, and in any case
move the virtual cursor to position $(x1+dx,y1+dy)$.
If you draw few points in the rectwindow, they will be hard to see; in
this case, you can use filled boxes instead. Compare:
\bprog
? plotinit(0, 100,100); plotrpoint(0, 50,50); plotrpoint(0, 10,10);
? plotdraw(0)
? thickpoint(w,x,y)= plotmove(w,x-2,y-2); plotrbox(w,4,4,1);
? plotinit(1, 100,100); thickpoint(1, 50,50); thickpoint(1, 60,60);
? plotdraw(1)
@eprog
The library syntax is \fun{void}{plotrpoint}{long w, GEN dx, GEN dy}.
\subsec{plotscale$(w,\var{x1},\var{x2},\var{y1},\var{y2})$}\kbdsidx{plotscale}\label{se:plotscale}
Scale the local coordinates of the rectwindow $w$ so that $x$ goes from
$x1$ to $x2$ and $y$ goes from $y1$ to $y2$ ($x2<x1$ and $y2<y1$ being
allowed). Initially, after the initialization of the rectwindow $w$ using
the function \kbd{plotinit}, the default scaling is the graphic pixel count,
and in particular the $y$ axis is oriented downwards since the origin is at
the upper left. The function \kbd{plotscale} allows to change all these
defaults and should be used whenever functions are graphed.
The library syntax is \fun{void}{plotscale}{long w, GEN x1, GEN x2, GEN y1, GEN y2}.
\subsec{plotstring$(w,x,\{\var{flags}=0\})$}\kbdsidx{plotstring}\label{se:plotstring}
Draw on the rectwindow $w$ the String $x$ (see \secref{se:strings}), at
the current position of the cursor.
$\fl$ is used for justification: bits 1 and 2 regulate horizontal alignment:
left if 0, right if 2, center if 1. Bits 4 and 8 regulate vertical
alignment: bottom if 0, top if 8, v-center if 4. Can insert additional small
gap between point and string: horizontal if bit 16 is set, vertical if bit
32 is set (see the tutorial for an example).
The library syntax is \fun{void}{plotstring}{long w, const char *x, long flags}.
\subsec{psdraw$(\var{list},\{\fl=0\})$}\kbdsidx{psdraw}\label{se:psdraw}
This function is obsolete, use plotexport and write the result to file.
The library syntax is \fun{void}{psdraw}{GEN list, long flag}.
\subsec{psploth$(X=a,b,\var{expr},\{\var{flags}=0\},\{n=0\})$}\kbdsidx{psploth}\label{se:psploth}
This function is obsolete, use plothexport and write the result to file.
The library syntax is \fun{GEN}{psploth0}{GEN X, GEN b, GEN expr, long flags, long prec}.
\subsec{psplothraw$(\var{listx},\var{listy},\{\fl=0\})$}\kbdsidx{psplothraw}\label{se:psplothraw}
This function is obsolete, use plothrawexport and write the result to file.
The library syntax is \fun{GEN}{psplothraw}{GEN listx, GEN listy, long flag}.
\vfill\eject
|