File: adaptgraph.c

package info (click to toggle)
parmetis 3.1-4
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 24,692 kB
  • ctags: 1,686
  • sloc: ansic: 27,735; makefile: 212
file content (171 lines) | stat: -rw-r--r-- 4,599 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/*
 * Copyright 1998, Regents of the University of Minnesota
 *
 * tstadpt.c
 * 
 * This file contains code for testing teh adaptive partitioning routines
 *
 * Started 5/19/97
 * George
 *
 * $Id: adaptgraph.c,v 1.2 2003/07/21 17:50:22 karypis Exp $
 *
 */

#include <parmetisbin.h>


/*************************************************************************
* This function implements a simple graph adaption strategy.
**************************************************************************/
void AdaptGraph(GraphType *graph, int afactor, MPI_Comm comm)
{
  int i, nvtxs, nadapt, firstvtx, lastvtx;
  int npes, mype, mypwgt, max, min, sum;
  idxtype *vwgt, *xadj, *adjncy, *adjwgt, *perm;

  MPI_Comm_size(comm, &npes);
  MPI_Comm_rank(comm, &mype);

  srand(mype*afactor);
  srand48(mype*afactor);

  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  adjncy = graph->adjncy;
  if (graph->adjwgt == NULL)
    adjwgt = graph->adjwgt = idxsmalloc(graph->nedges, 1, "AdaptGraph: adjwgt");
  else
    adjwgt = graph->adjwgt;
  vwgt = graph->vwgt;

  firstvtx = graph->vtxdist[mype];
  lastvtx = graph->vtxdist[mype+1];

  perm = idxmalloc(nvtxs, "AdaptGraph: perm");
  FastRandomPermute(nvtxs, perm, 1);

  nadapt = RandomInRange(nvtxs);
  nadapt = RandomInRange(nvtxs);
  nadapt = RandomInRange(nvtxs);

  for (i=0; i<nadapt; i++)
    vwgt[perm[i]] = afactor*vwgt[perm[i]];

/*
  for (i=0; i<nvtxs; i++) {
    for (j=xadj[i]; j<xadj[i+1]; j++) {
      k = adjncy[j];
      if (k >= firstvtx && k < lastvtx) {
	adjwgt[j] = (int)pow(1.0*(amin(vwgt[i],vwgt[k-firstvtx])), .6667);
        if (adjwgt[j] == 0)
          adjwgt[j] = 1;
      }
    }
  }
*/

  mypwgt = idxsum(nvtxs, vwgt);

  MPI_Allreduce((void *)&mypwgt, (void *)&max, 1, MPI_INT, MPI_MAX, comm);
  MPI_Allreduce((void *)&mypwgt, (void *)&min, 1, MPI_INT, MPI_MIN, comm);
  MPI_Allreduce((void *)&mypwgt, (void *)&sum, 1, MPI_INT, MPI_SUM, comm);

  if (mype == 0)
    printf("Initial Load Imbalance: %5.4f, [%5d %5d %5d] for afactor: %d\n", (1.0*max*npes)/(1.0*sum), min, max, sum, afactor);

  free(perm);
}


/*************************************************************************
* This function implements a simple graph adaption strategy.
**************************************************************************/
void AdaptGraph2(GraphType *graph, int afactor, MPI_Comm comm)
{
  int i, j, k, nvtxs, firstvtx, lastvtx;
  int npes, mype, mypwgt, max, min, sum;
  idxtype *vwgt, *xadj, *adjncy, *adjwgt;

  MPI_Comm_size(comm, &npes);
  MPI_Comm_rank(comm, &mype);

  srand(mype*afactor);
  srand48(mype*afactor);

  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  adjncy = graph->adjncy;
  if (graph->adjwgt == NULL)
    adjwgt = graph->adjwgt = idxsmalloc(graph->nedges, 1, "AdaptGraph: adjwgt");
  else
    adjwgt = graph->adjwgt;
  vwgt = graph->vwgt;

  firstvtx = graph->vtxdist[mype];
  lastvtx = graph->vtxdist[mype+1];


/*  if (RandomInRange(npes+1) < .05*npes) { */ 
  if (RandomInRange(npes+1) < 2) { 
    printf("[%d] is adapting\n", mype);
    for (i=0; i<nvtxs; i++)
      vwgt[i] = afactor*vwgt[i];
  }

  for (i=0; i<nvtxs; i++) {
    for (j=xadj[i]; j<xadj[i+1]; j++) {
      k = adjncy[j];
      if (k >= firstvtx && k < lastvtx) {
	adjwgt[j] = (int)pow(1.0*(amin(vwgt[i],vwgt[k-firstvtx])), .6667);
        if (adjwgt[j] == 0)
          adjwgt[j] = 1;
      }
    }
  }
      
  mypwgt = idxsum(nvtxs, vwgt);

  MPI_Allreduce((void *)&mypwgt, (void *)&max, 1, MPI_INT, MPI_MAX, comm);
  MPI_Allreduce((void *)&mypwgt, (void *)&min, 1, MPI_INT, MPI_MIN, comm);
  MPI_Allreduce((void *)&mypwgt, (void *)&sum, 1, MPI_INT, MPI_SUM, comm);

  if (mype == 0)
    printf("Initial Load Imbalance: %5.4f, [%5d %5d %5d]\n", (1.0*max*npes)/(1.0*sum), min, max, sum);

}


/*************************************************************************
* This function implements a simple graph adaption strategy.
**************************************************************************/
void Mc_AdaptGraph(GraphType *graph, idxtype *part, int ncon, int nparts, MPI_Comm comm)
{
  int h, i;
  int nvtxs;
  int npes, mype;
  idxtype *vwgt, *pwgts;
  MPI_Comm_size(comm, &npes);
  MPI_Comm_rank(comm, &mype);

  nvtxs = graph->nvtxs;
  vwgt = graph->vwgt;
  pwgts = idxsmalloc(nparts*ncon, 1, "pwgts");

  if (mype == 0) {
    for (i=0; i<nparts; i++)
      for (h=0; h<ncon; h++)
        pwgts[i*ncon+h] = RandomInRange(20)+1;
  }

  MPI_Bcast((void *)pwgts, nparts*ncon, IDX_DATATYPE, 0, comm);

  for (i=0; i<nvtxs; i++)
    for (h=0; h<ncon; h++)
      vwgt[i*ncon+h] = pwgts[part[i]*ncon+h];

  free(pwgts);
  return;
}