1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
/*
* Copyright 1998, Regents of the University of Minnesota
*
* tstadpt.c
*
* This file contains code for testing teh adaptive partitioning routines
*
* Started 5/19/97
* George
*
* $Id: adaptgraph.c,v 1.2 2003/07/21 17:50:22 karypis Exp $
*
*/
#include <parmetisbin.h>
/*************************************************************************
* This function implements a simple graph adaption strategy.
**************************************************************************/
void AdaptGraph(graph_t *graph, idx_t afactor, MPI_Comm comm)
{
idx_t i, nvtxs, nadapt, firstvtx, lastvtx;
idx_t npes, mype, mypwgt, max, min, sum;
idx_t *vwgt, *xadj, *adjncy, *adjwgt, *perm;
gkMPI_Comm_size(comm, &npes);
gkMPI_Comm_rank(comm, &mype);
srand(mype*afactor);
nvtxs = graph->nvtxs;
xadj = graph->xadj;
adjncy = graph->adjncy;
if (graph->adjwgt == NULL)
adjwgt = graph->adjwgt = ismalloc(graph->nedges, 1, "AdaptGraph: adjwgt");
else
adjwgt = graph->adjwgt;
vwgt = graph->vwgt;
firstvtx = graph->vtxdist[mype];
lastvtx = graph->vtxdist[mype+1];
perm = imalloc(nvtxs, "AdaptGraph: perm");
FastRandomPermute(nvtxs, perm, 1);
nadapt = RandomInRange(nvtxs);
nadapt = RandomInRange(nvtxs);
nadapt = RandomInRange(nvtxs);
for (i=0; i<nadapt; i++)
vwgt[perm[i]] = afactor*vwgt[perm[i]];
/*
for (i=0; i<nvtxs; i++) {
for (j=xadj[i]; j<xadj[i+1]; j++) {
k = adjncy[j];
if (k >= firstvtx && k < lastvtx) {
adjwgt[j] = (int)pow(1.0*(gk_min(vwgt[i],vwgt[k-firstvtx])), .6667);
if (adjwgt[j] == 0)
adjwgt[j] = 1;
}
}
}
*/
mypwgt = isum(nvtxs, vwgt, 1);
MPI_Allreduce((void *)&mypwgt, (void *)&max, 1, IDX_T, MPI_MAX, comm);
MPI_Allreduce((void *)&mypwgt, (void *)&min, 1, IDX_T, MPI_MIN, comm);
MPI_Allreduce((void *)&mypwgt, (void *)&sum, 1, IDX_T, MPI_SUM, comm);
if (mype == 0)
printf("Initial Load Imbalance: %5.4"PRREAL", [%5"PRIDX" %5"PRIDX" %5"PRIDX"] for afactor: %"PRIDX"\n", (1.0*max*npes)/(1.0*sum), min, max, sum, afactor);
free(perm);
}
/*************************************************************************
* This function implements a simple graph adaption strategy.
**************************************************************************/
void AdaptGraph2(graph_t *graph, idx_t afactor, MPI_Comm comm)
{
idx_t i, j, k, nvtxs, firstvtx, lastvtx;
idx_t npes, mype, mypwgt, max, min, sum;
idx_t *vwgt, *xadj, *adjncy, *adjwgt;
gkMPI_Comm_size(comm, &npes);
gkMPI_Comm_rank(comm, &mype);
srand(mype*afactor);
nvtxs = graph->nvtxs;
xadj = graph->xadj;
adjncy = graph->adjncy;
if (graph->adjwgt == NULL)
adjwgt = graph->adjwgt = ismalloc(graph->nedges, 1, "AdaptGraph: adjwgt");
else
adjwgt = graph->adjwgt;
vwgt = graph->vwgt;
firstvtx = graph->vtxdist[mype];
lastvtx = graph->vtxdist[mype+1];
/* if (RandomInRange(npes+1) < .05*npes) { */
if (RandomInRange(npes+1) < 2) {
printf("[%"PRIDX"] is adapting\n", mype);
for (i=0; i<nvtxs; i++)
vwgt[i] = afactor*vwgt[i];
}
for (i=0; i<nvtxs; i++) {
for (j=xadj[i]; j<xadj[i+1]; j++) {
k = adjncy[j];
if (k >= firstvtx && k < lastvtx) {
adjwgt[j] = (int)pow(1.0*(gk_min(vwgt[i],vwgt[k-firstvtx])), .6667);
if (adjwgt[j] == 0)
adjwgt[j] = 1;
}
}
}
mypwgt = isum(nvtxs, vwgt, 1);
gkMPI_Allreduce((void *)&mypwgt, (void *)&max, 1, IDX_T, MPI_MAX, comm);
gkMPI_Allreduce((void *)&mypwgt, (void *)&min, 1, IDX_T, MPI_MIN, comm);
gkMPI_Allreduce((void *)&mypwgt, (void *)&sum, 1, IDX_T, MPI_SUM, comm);
if (mype == 0)
printf("Initial Load Imbalance: %5.4"PRREAL", [%5"PRIDX" %5"PRIDX" %5"PRIDX"]\n", (1.0*max*npes)/(1.0*sum), min, max, sum);
}
/*************************************************************************
* This function implements a simple graph adaption strategy.
**************************************************************************/
void Mc_AdaptGraph(graph_t *graph, idx_t *part, idx_t ncon, idx_t nparts, MPI_Comm comm)
{
idx_t h, i;
idx_t nvtxs;
idx_t npes, mype;
idx_t *vwgt, *pwgts;
gkMPI_Comm_size(comm, &npes);
gkMPI_Comm_rank(comm, &mype);
nvtxs = graph->nvtxs;
vwgt = graph->vwgt;
pwgts = ismalloc(nparts*ncon, 1, "pwgts");
if (mype == 0) {
for (i=0; i<nparts; i++)
for (h=0; h<ncon; h++)
pwgts[i*ncon+h] = RandomInRange(20)+1;
}
MPI_Bcast((void *)pwgts, nparts*ncon, IDX_T, 0, comm);
for (i=0; i<nvtxs; i++)
for (h=0; h<ncon; h++)
vwgt[i*ncon+h] = pwgts[part[i]*ncon+h];
free(pwgts);
return;
}
|