1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
|
/*
libparted - a library for manipulating disk partitions
Copyright (C) 2000-2001, 2007, 2009-2014, 2019-2023 Free Software
Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* \addtogroup PedConstraint
*
* \brief Constraint solver interface.
*
* Constraints are used to communicate restrictions on operations Constraints
* are restrictions on the location and alignment of the start and end of a
* partition, and the minimum and maximum size.
*
* Constraints are closed under intersection (for the proof see the source
* code). For background information see the Chinese Remainder Theorem.
*
* This interface consists of construction constraints, finding the intersection
* of constraints, and finding solutions to constraints.
*
* The constraint solver allows you to specify constraints on where a partition
* or file system (or any PedGeometry) may be placed/resized/etc. For example,
* you might want to make sure that a file system is at least 10 Gb, or that it
* starts at the beginning of new cylinder.
*
* The constraint solver in this file unifies solver in geom.c (which allows you
* to specify constraints on ranges) and natmath.c (which allows you to specify
* alignment constraints).
*
* @{
*/
#include <config.h>
#include <parted/parted.h>
#include <parted/debug.h>
#include <assert.h>
/**
* Initializes a pre-allocated piece of memory to contain a constraint
* with the supplied default values.
*
* \return \c 0 on failure.
*/
int
ped_constraint_init (
PedConstraint* constraint,
const PedAlignment* start_align,
const PedAlignment* end_align,
const PedGeometry* start_range,
const PedGeometry* end_range,
PedSector min_size,
PedSector max_size)
{
PED_ASSERT (constraint != NULL);
PED_ASSERT (start_range != NULL);
PED_ASSERT (end_range != NULL);
PED_ASSERT (min_size > 0);
PED_ASSERT (max_size > 0);
constraint->start_align = ped_alignment_duplicate (start_align);
constraint->end_align = ped_alignment_duplicate (end_align);
constraint->start_range = ped_geometry_duplicate (start_range);
constraint->end_range = ped_geometry_duplicate (end_range);
constraint->min_size = min_size;
constraint->max_size = max_size;
return 1;
}
/**
* Convenience wrapper for ped_constraint_init().
*
* Allocates a new piece of memory and initializes the constraint.
*
* \return \c NULL on failure.
*/
PedConstraint*
ped_constraint_new (
const PedAlignment* start_align,
const PedAlignment* end_align,
const PedGeometry* start_range,
const PedGeometry* end_range,
PedSector min_size,
PedSector max_size)
{
PedConstraint* constraint;
constraint = (PedConstraint*) ped_malloc (sizeof (PedConstraint));
if (!constraint)
goto error;
if (!ped_constraint_init (constraint, start_align, end_align,
start_range, end_range, min_size, max_size))
goto error_free_constraint;
return constraint;
error_free_constraint:
free (constraint);
error:
return NULL;
}
/**
* Return a constraint that requires a region to be entirely contained inside
* \p max, and to entirely contain \p min.
*
* \return \c NULL on failure.
*/
PedConstraint*
ped_constraint_new_from_min_max (
const PedGeometry* min,
const PedGeometry* max)
{
PedGeometry start_range;
PedGeometry end_range;
PED_ASSERT (min != NULL);
PED_ASSERT (max != NULL);
PED_ASSERT (ped_geometry_test_inside (max, min));
ped_geometry_init (&start_range, min->dev, max->start,
min->start - max->start + 1);
ped_geometry_init (&end_range, min->dev, min->end,
max->end - min->end + 1);
return ped_constraint_new (
ped_alignment_any, ped_alignment_any,
&start_range, &end_range,
min->length, max->length);
}
/**
* Return a constraint that requires a region to entirely contain \p min.
*
* \return \c NULL on failure.
*/
PedConstraint*
ped_constraint_new_from_min (const PedGeometry* min)
{
PedGeometry full_dev;
PED_ASSERT (min != NULL);
ped_geometry_init (&full_dev, min->dev, 0, min->dev->length);
return ped_constraint_new_from_min_max (min, &full_dev);
}
/**
* Return a constraint that requires a region to be entirely contained inside
* \p max.
*
* \return \c NULL on failure.
*/
PedConstraint*
ped_constraint_new_from_max (const PedGeometry* max)
{
PED_ASSERT (max != NULL);
return ped_constraint_new (
ped_alignment_any, ped_alignment_any,
max, max, 1, max->length);
}
/**
* Duplicate a constraint.
*
* \return \c NULL on failure.
*/
PedConstraint*
ped_constraint_duplicate (const PedConstraint* constraint)
{
PED_ASSERT (constraint != NULL);
return ped_constraint_new (
constraint->start_align,
constraint->end_align,
constraint->start_range,
constraint->end_range,
constraint->min_size,
constraint->max_size);
}
/**
* Return a constraint that requires a region to satisfy both \p a and \p b.
*
* Moreover, any region satisfying \p a and \p b will also satisfy the returned
* constraint.
*
* \return \c NULL if no solution could be found (note that \c NULL is a valid
* PedConstraint).
*/
PedConstraint*
ped_constraint_intersect (const PedConstraint* a, const PedConstraint* b)
{
PedAlignment* start_align;
PedAlignment* end_align;
PedGeometry* start_range;
PedGeometry* end_range;
PedSector min_size;
PedSector max_size;
PedConstraint* constraint;
if (!a || !b)
return NULL;
start_align = ped_alignment_intersect (a->start_align, b->start_align);
if (!start_align)
goto empty;
end_align = ped_alignment_intersect (a->end_align, b->end_align);
if (!end_align)
goto empty_destroy_start_align;
start_range = ped_geometry_intersect (a->start_range, b->start_range);
if (!start_range)
goto empty_destroy_end_align;
end_range = ped_geometry_intersect (a->end_range, b->end_range);
if (!end_range)
goto empty_destroy_start_range;
min_size = PED_MAX (a->min_size, b->min_size);
max_size = PED_MIN (a->max_size, b->max_size);
constraint = ped_constraint_new (
start_align, end_align, start_range, end_range,
min_size, max_size);
if (!constraint)
goto empty_destroy_end_range;
ped_alignment_destroy (start_align);
ped_alignment_destroy (end_align);
ped_geometry_destroy (start_range);
ped_geometry_destroy (end_range);
return constraint;
empty_destroy_end_range:
ped_geometry_destroy (end_range);
empty_destroy_start_range:
ped_geometry_destroy (start_range);
empty_destroy_end_align:
ped_alignment_destroy (end_align);
empty_destroy_start_align:
ped_alignment_destroy (start_align);
empty:
return NULL;
}
/**
* Release the memory allocated for a PedConstraint constructed with
* ped_constraint_init().
*/
void
ped_constraint_done (PedConstraint* constraint)
{
PED_ASSERT (constraint != NULL);
ped_alignment_destroy (constraint->start_align);
ped_alignment_destroy (constraint->end_align);
ped_geometry_destroy (constraint->start_range);
ped_geometry_destroy (constraint->end_range);
}
/**
* Release the memory allocated for a PedConstraint constructed with
* ped_constraint_new().
*/
void
ped_constraint_destroy (PedConstraint* constraint)
{
if (constraint) {
ped_constraint_done (constraint);
free (constraint);
}
}
/*
* Return the region within which the start must lie
* in order to satisfy a constriant. It takes into account
* constraint->start_range, constraint->min_size and constraint->max_size.
* All sectors in this range that also satisfy alignment requirements have
* an end, such that the (start, end) satisfy the constraint.
*/
static PedGeometry*
_constraint_get_canonical_start_range (const PedConstraint* constraint)
{
PedSector first_end_soln;
PedSector last_end_soln;
PedSector min_start;
PedSector max_start;
PedGeometry start_min_max_range;
if (constraint->min_size > constraint->max_size)
return NULL;
first_end_soln = ped_alignment_align_down (
constraint->end_align, constraint->end_range,
constraint->end_range->start);
last_end_soln = ped_alignment_align_up (
constraint->end_align, constraint->end_range,
constraint->end_range->end);
if (first_end_soln == -1 || last_end_soln == -1
|| first_end_soln > last_end_soln
|| last_end_soln < constraint->min_size)
return NULL;
min_start = first_end_soln - constraint->max_size + 1;
if (min_start < 0)
min_start = 0;
max_start = last_end_soln - constraint->min_size + 1;
if (max_start < 0)
return NULL;
ped_geometry_init (
&start_min_max_range, constraint->start_range->dev,
min_start, max_start - min_start + 1);
return ped_geometry_intersect (&start_min_max_range,
constraint->start_range);
}
/*
* Return the nearest start that will have at least one other end that
* together satisfy the constraint.
*/
static PedSector
_constraint_get_nearest_start_soln (const PedConstraint* constraint,
PedSector start)
{
PedGeometry* start_range;
PedSector result;
start_range = _constraint_get_canonical_start_range (constraint);
if (!start_range)
return -1;
result = ped_alignment_align_nearest (
constraint->start_align, start_range, start);
ped_geometry_destroy (start_range);
return result;
}
/*
* Given a constraint and a start ("half of the solution"), find the
* range of all possible ends, such that all (start, end) are solutions
* to constraint (subject to additional alignment requirements).
*/
static PedGeometry*
_constraint_get_end_range (const PedConstraint* constraint, PedSector start)
{
PedDevice* dev = constraint->end_range->dev;
PedSector first_min_max_end;
PedSector last_min_max_end;
PedGeometry end_min_max_range;
if (start + constraint->min_size - 1 > dev->length - 1)
return NULL;
first_min_max_end = start + constraint->min_size - 1;
last_min_max_end = start + constraint->max_size - 1;
if (last_min_max_end > dev->length - 1)
last_min_max_end = dev->length - 1;
ped_geometry_init (&end_min_max_range, dev,
first_min_max_end,
last_min_max_end - first_min_max_end + 1);
return ped_geometry_intersect (&end_min_max_range,
constraint->end_range);
}
/*
* Given "constraint" and "start", find the end that is nearest to
* "end", such that ("start", the end) together form a solution to
* "constraint".
*/
static PedSector
_constraint_get_nearest_end_soln (const PedConstraint* constraint,
PedSector start, PedSector end)
{
PedGeometry* end_range;
PedSector result;
end_range = _constraint_get_end_range (constraint, start);
if (!end_range)
return -1;
result = ped_alignment_align_nearest (constraint->end_align, end_range,
end);
ped_geometry_destroy (end_range);
return result;
}
/**
* Return the nearest region to \p geom that satisfy a \p constraint.
*
* Note that "nearest" is somewhat ambiguous. This function makes
* no guarantees about how this ambiguity is resovled.
*
* \return PedGeometry, or NULL when a \p constrain cannot be satisfied
*/
PedGeometry*
ped_constraint_solve_nearest (
const PedConstraint* constraint, const PedGeometry* geom)
{
PedSector start;
PedSector end;
PedGeometry* result;
if (constraint == NULL)
return NULL;
PED_ASSERT (geom != NULL);
PED_ASSERT (constraint->start_range->dev == geom->dev);
start = _constraint_get_nearest_start_soln (constraint, geom->start);
if (start == -1)
return NULL;
end = _constraint_get_nearest_end_soln (constraint, start, geom->end);
if (end == -1)
return NULL;
result = ped_geometry_new (geom->dev, start, end - start + 1);
if (!result)
return NULL;
PED_ASSERT (ped_constraint_is_solution (constraint, result));
return result;
}
/**
* Find the largest region that satisfies a constraint.
*
* There might be more than one solution. This function makes no
* guarantees about which solution it will choose in this case.
*/
PedGeometry*
ped_constraint_solve_max (const PedConstraint* constraint)
{
PedDevice* dev;
PedGeometry full_dev;
if (!constraint)
return NULL;
dev = constraint->start_range->dev;
ped_geometry_init (&full_dev, dev, 0, dev->length);
return ped_constraint_solve_nearest (constraint, &full_dev);
}
/**
* Check whether \p geom satisfies the given constraint.
*
* \return \c 1 if it does.
**/
int
ped_constraint_is_solution (const PedConstraint* constraint,
const PedGeometry* geom)
{
PED_ASSERT (constraint != NULL);
PED_ASSERT (geom != NULL);
if (!ped_alignment_is_aligned (constraint->start_align, NULL,
geom->start))
return 0;
if (!ped_alignment_is_aligned (constraint->end_align, NULL, geom->end))
return 0;
if (!ped_geometry_test_sector_inside (constraint->start_range,
geom->start))
return 0;
if (!ped_geometry_test_sector_inside (constraint->end_range, geom->end))
return 0;
if (geom->length < constraint->min_size)
return 0;
if (geom->length > constraint->max_size)
return 0;
return 1;
}
/**
* Return a constraint that any region on the given device will satisfy.
*/
PedConstraint*
ped_constraint_any (const PedDevice* dev)
{
PedGeometry full_dev;
if (!ped_geometry_init (&full_dev, dev, 0, dev->length))
return NULL;
return ped_constraint_new (
ped_alignment_any,
ped_alignment_any,
&full_dev,
&full_dev,
1,
dev->length);
}
/**
* Return a constraint that only the given region will satisfy.
*/
PedConstraint*
ped_constraint_exact (const PedGeometry* geom)
{
PedAlignment start_align;
PedAlignment end_align;
PedGeometry start_sector;
PedGeometry end_sector;
int ok;
/* With grain size of 0, it always succeeds. */
ok = ped_alignment_init (&start_align, geom->start, 0);
assert (ok);
ok = ped_alignment_init (&end_align, geom->end, 0);
assert (ok);
ok = ped_geometry_init (&start_sector, geom->dev, geom->start, 1);
if (!ok)
return NULL;
ok = ped_geometry_init (&end_sector, geom->dev, geom->end, 1);
if (!ok)
return NULL;
return ped_constraint_new (&start_align, &end_align,
&start_sector, &end_sector, 1,
geom->dev->length);
}
/**
* @}
*/
|