1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
|
/*
libparted - a library for manipulating disk partitions
Copyright (C) 1999 - 2001, 2005, 2007-2010 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/** \file device.c */
/**
* \addtogroup PedDevice
*
* \brief Device access.
*
* When ped_device_probe_all() is called, libparted attempts to detect all
* devices. It constructs a list which can be accessed with
* ped_device_get_next().
*
* If you want to use a device that isn't on the list, use
* ped_device_get(). Also, there may be OS-specific constructors, for creating
* devices from file descriptors, stores, etc. For example,
* ped_device_new_from_store().
*
* @{
*/
#include <config.h>
#include <parted/parted.h>
#include <parted/debug.h>
#include <limits.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include "architecture.h"
static PedDevice* devices; /* legal advice says: initialized to NULL,
under section 6.7.8 part 10
of ISO/EIC 9899:1999 */
static void
_device_register (PedDevice* dev)
{
PedDevice* walk;
for (walk = devices; walk && walk->next; walk = walk->next);
if (walk)
walk->next = dev;
else
devices = dev;
dev->next = NULL;
}
static void
_device_unregister (PedDevice* dev)
{
PedDevice* walk;
PedDevice* last = NULL;
for (walk = devices; walk != NULL; last = walk, walk = walk->next) {
if (walk == dev) break;
}
/* This function may be called twice for the same device if a
libparted user explictly removes the device from the cache using
ped_device_cache_remove(), we get called and it then becomes the
user's responsibility to free the PedDevice by calling
ped_device_destroy().
ped_device_destroy() will then call us a second time, so if the
device is not found in the list do nothing. */
if (walk == NULL)
return;
if (last)
last->next = dev->next;
else
devices = dev->next;
}
/**
* Returns the next device that was detected by ped_device_probe_all(), or
* calls to ped_device_get_next().
* If dev is NULL, returns the first device.
*
* \return NULL if dev is the last device.
*/
PedDevice*
ped_device_get_next (const PedDevice* dev)
{
if (dev)
return dev->next;
else
return devices;
}
void
_ped_device_probe (const char* path)
{
PedDevice* dev;
PED_ASSERT (path != NULL);
ped_exception_fetch_all ();
dev = ped_device_get (path);
if (!dev)
ped_exception_catch ();
ped_exception_leave_all ();
}
/**
* Attempts to detect all devices.
*/
void
ped_device_probe_all ()
{
ped_architecture->dev_ops->probe_all ();
}
/**
* Close/free all devices.
* Called by ped_done(), so you do not need to worry about it.
*/
void
ped_device_free_all ()
{
while (devices)
ped_device_destroy (devices);
}
/**
* Gets the device "name", where name is usually the block device, e.g.
* /dev/sdb. If the device wasn't detected with ped_device_probe_all(),
* an attempt will be made to detect it again. If it is found, it will
* be added to the list.
*/
PedDevice*
ped_device_get (const char* path)
{
PedDevice* walk;
char* normal_path = NULL;
PED_ASSERT (path != NULL);
/* Don't canonicalize /dev/mapper or /dev/md/ paths, see
tests/symlink.c
*/
if (strncmp (path, "/dev/mapper/", 12) &&
strncmp (path, "/dev/md/", 8))
normal_path = canonicalize_file_name (path);
if (!normal_path)
/* Well, maybe it is just that the file does not exist.
* Try it anyway. */
normal_path = strdup (path);
if (!normal_path)
return NULL;
for (walk = devices; walk != NULL; walk = walk->next) {
if (!strcmp (walk->path, normal_path)) {
free (normal_path);
return walk;
}
}
walk = ped_architecture->dev_ops->_new (normal_path);
free (normal_path);
if (!walk)
return NULL;
_device_register (walk);
return walk;
}
/**
* Destroys a device and removes it from the device list, and frees
* all resources associated with the device (all resources allocated
* when the device was created).
*/
void
ped_device_destroy (PedDevice* dev)
{
_device_unregister (dev);
while (dev->open_count) {
if (!ped_device_close (dev))
break;
}
ped_architecture->dev_ops->destroy (dev);
}
void
ped_device_cache_remove(PedDevice *dev)
{
_device_unregister (dev);
}
int
ped_device_is_busy (PedDevice* dev)
{
return ped_architecture->dev_ops->is_busy (dev);
}
/**
* Attempt to open a device to allow use of read, write and sync functions.
*
* The meaning of "open" is architecture-dependent. Apart from requesting
* access to the device from the operating system, it does things like flushing
* caches.
* \note May allocate resources. Any resources allocated here will
* be freed by a final ped_device_close(). (ped_device_open() may be
* called multiple times -- it's a ref-count-like mechanism)
*
* \return zero on failure
*/
int
ped_device_open (PedDevice* dev)
{
int status;
PED_ASSERT (dev != NULL);
PED_ASSERT (!dev->external_mode);
if (dev->open_count)
status = ped_architecture->dev_ops->refresh_open (dev);
else
status = ped_architecture->dev_ops->open (dev);
if (status)
dev->open_count++;
return status;
}
/**
* Close dev.
* If this is the final close, then resources allocated by
* ped_device_open() are freed.
*
* \return zero on failure
*/
int
ped_device_close (PedDevice* dev)
{
PED_ASSERT (dev != NULL);
PED_ASSERT (!dev->external_mode);
PED_ASSERT (dev->open_count > 0);
if (--dev->open_count)
return ped_architecture->dev_ops->refresh_close (dev);
else
return ped_architecture->dev_ops->close (dev);
}
/**
* Begins external access mode. External access mode allows you to
* safely do IO on the device. If a PedDevice is open, then you should
* not do any IO on that device, e.g. by calling an external program
* like e2fsck, unless you put it in external access mode. You should
* not use any libparted commands that do IO to a device, e.g.
* ped_file_system_{open|resize|copy}, ped_disk_{read|write}), while
* a device is in external access mode.
* Also, you should not ped_device_close() a device, while it is
* in external access mode.
* Note: ped_device_begin_external_access_mode() does things like
* tell the kernel to flush its caches.
*
* Close a device while pretending it is still open.
* This is useful for temporarily suspending libparted access to the device
* in order for an external program to access it.
* (Running external programs while the device is open can cause cache
* coherency problems.)
*
* In particular, this function keeps track of dev->open_count, so that
* reference counting isn't screwed up.
*
* \return zero on failure.
*/
int
ped_device_begin_external_access (PedDevice* dev)
{
PED_ASSERT (dev != NULL);
PED_ASSERT (!dev->external_mode);
dev->external_mode = 1;
if (dev->open_count)
return ped_architecture->dev_ops->close (dev);
else
return 1;
}
/**
* \brief Complementary function to ped_device_begin_external_access.
*
* \note does things like tell the kernel to flush the device's cache.
*
* \return zero on failure.
*/
int
ped_device_end_external_access (PedDevice* dev)
{
PED_ASSERT (dev != NULL);
PED_ASSERT (dev->external_mode);
dev->external_mode = 0;
if (dev->open_count)
return ped_architecture->dev_ops->open (dev);
else
return 1;
}
/**
* \internal Read count sectors from dev into buffer, beginning with sector
* start.
*
* \return zero on failure.
*/
int
ped_device_read (const PedDevice* dev, void* buffer, PedSector start,
PedSector count)
{
PED_ASSERT (dev != NULL);
PED_ASSERT (buffer != NULL);
PED_ASSERT (!dev->external_mode);
PED_ASSERT (dev->open_count > 0);
return (ped_architecture->dev_ops->read) (dev, buffer, start, count);
}
/**
* \internal Write count sectors from buffer to dev, starting at sector
* start.
*
* \return zero on failure.
*
* \sa PedDevice::sector_size
* \sa PedDevice::phys_sector_size
*/
int
ped_device_write (PedDevice* dev, const void* buffer, PedSector start,
PedSector count)
{
PED_ASSERT (dev != NULL);
PED_ASSERT (buffer != NULL);
PED_ASSERT (!dev->external_mode);
PED_ASSERT (dev->open_count > 0);
return (ped_architecture->dev_ops->write) (dev, buffer, start, count);
}
PedSector
ped_device_check (PedDevice* dev, void* buffer, PedSector start,
PedSector count)
{
PED_ASSERT (dev != NULL);
PED_ASSERT (!dev->external_mode);
PED_ASSERT (dev->open_count > 0);
return (ped_architecture->dev_ops->check) (dev, buffer, start, count);
}
/**
* \internal Flushes all write-behind caches that might be holding up
* writes.
* It is slow because it guarantees cache coherency among all relevant caches.
*
* \return zero on failure
*/
int
ped_device_sync (PedDevice* dev)
{
PED_ASSERT (dev != NULL);
PED_ASSERT (!dev->external_mode);
PED_ASSERT (dev->open_count > 0);
return ped_architecture->dev_ops->sync (dev);
}
/**
* \internal Flushes all write-behind caches that might be holding writes.
* \warning Does NOT ensure cache coherency with other caches.
* If you need cache coherency, use ped_device_sync() instead.
*
* \return zero on failure
*/
int
ped_device_sync_fast (PedDevice* dev)
{
PED_ASSERT (dev != NULL);
PED_ASSERT (!dev->external_mode);
PED_ASSERT (dev->open_count > 0);
return ped_architecture->dev_ops->sync_fast (dev);
}
/**
* Get a constraint that represents hardware requirements on geometry.
* This function will return a constraint representing the limits imposed
* by the size of the disk, it will *not* provide any alignment constraints.
*
* Alignment constraints may be desirable when using media that have a physical
* sector size that is a multiple of the logical sector size, as in this case
* proper partition alignment can benefit disk performance signigicantly.
* When you want a constraint with alignment info, use
* ped_device_get_minimal_aligned_constraint() or
* ped_device_get_optimal_aligned_constraint().
*
* \return NULL on error, otherwise a pointer to a dynamically allocated
* constraint.
*/
PedConstraint*
ped_device_get_constraint (const PedDevice* dev)
{
PedGeometry *s, *e;
PedConstraint* c = ped_constraint_new (
ped_alignment_any, ped_alignment_any,
s = ped_geometry_new (dev, 0, dev->length),
e = ped_geometry_new (dev, 0, dev->length),
1, dev->length);
free (s);
free (e);
return c;
}
static PedConstraint*
_ped_device_get_aligned_constraint(const PedDevice *dev,
PedAlignment* start_align)
{
PedAlignment *end_align = NULL;
PedGeometry *whole_dev_geom = NULL;
PedConstraint *c = NULL;
if (start_align) {
end_align = ped_alignment_new(start_align->offset - 1,
start_align->grain_size);
if (!end_align)
goto free_start_align;
}
whole_dev_geom = ped_geometry_new (dev, 0, dev->length);
if (start_align)
c = ped_constraint_new (start_align, end_align,
whole_dev_geom, whole_dev_geom,
1, dev->length);
else
c = ped_constraint_new (ped_alignment_any, ped_alignment_any,
whole_dev_geom, whole_dev_geom,
1, dev->length);
free (whole_dev_geom);
free (end_align);
free_start_align:
free (start_align);
return c;
}
/**
* Get a constraint that represents hardware requirements on geometry and
* alignment.
*
* This function will return a constraint representing the limits imposed
* by the size of the disk and the minimal alignment requirements for proper
* performance of the disk.
*
* \return NULL on error, otherwise a pointer to a dynamically allocated
* constraint.
*/
PedConstraint*
ped_device_get_minimal_aligned_constraint(const PedDevice *dev)
{
return _ped_device_get_aligned_constraint(dev,
ped_device_get_minimum_alignment(dev));
}
/**
* Get a constraint that represents hardware requirements on geometry and
* alignment.
*
* This function will return a constraint representing the limits imposed
* by the size of the disk and the alignment requirements for optimal
* performance of the disk.
*
* \return NULL on error, otherwise a pointer to a dynamically allocated
* constraint.
*/
PedConstraint*
ped_device_get_optimal_aligned_constraint(const PedDevice *dev)
{
return _ped_device_get_aligned_constraint(dev,
ped_device_get_optimum_alignment(dev));
}
/**
* Get an alignment that represents minimum hardware requirements on alignment.
* When for example using media that has a physical sector size that is a
* multiple of the logical sector size, it is desirable to have disk accesses
* (and thus partitions) properly aligned. Having partitions not aligned to
* the minimum hardware requirements may lead to a performance penalty.
*
* The returned alignment describes the alignment for the start sector of the
* partition, the end sector should be aligned too, to get the end sector
* alignment decrease the returned alignment's offset by 1.
*
* \return the minimum alignment of partition start sectors, or NULL if this
* information is not available.
*/
PedAlignment*
ped_device_get_minimum_alignment(const PedDevice *dev)
{
PedAlignment *align = NULL;
if (ped_architecture->dev_ops->get_minimum_alignment)
align = ped_architecture->dev_ops->get_minimum_alignment(dev);
if (align == NULL)
align = ped_alignment_new(0,
dev->phys_sector_size / dev->sector_size);
return align;
}
/**
* Get an alignment that represents the hardware requirements for optimal
* performance.
*
* The returned alignment describes the alignment for the start sector of the
* partition, the end sector should be aligned too, to get the end sector
* alignment decrease the returned alignment's offset by 1.
*
* \return the optimal alignment of partition start sectors, or NULL if this
* information is not available.
*/
PedAlignment*
ped_device_get_optimum_alignment(const PedDevice *dev)
{
PedAlignment *align = NULL;
if (ped_architecture->dev_ops->get_optimum_alignment)
align = ped_architecture->dev_ops->get_optimum_alignment(dev);
/* If the arch specific code could not give as an alignment
return a default value based on the type of device. */
if (align == NULL) {
/* Align to a grain of 1MiB (like vista / win7) */
align = ped_alignment_new(0,
(PED_DEFAULT_ALIGNMENT
/ dev->sector_size));
}
return align;
}
/** @} */
|