1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
#include "tut.h"
#include "MessageChannel.h"
#include <boost/bind.hpp>
#include <boost/thread.hpp>
#include <cstring>
#include <cstdio>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
using namespace Passenger;
using namespace std;
namespace tut {
struct MessageChannelTest {
MessageChannel reader, writer;
int p[2];
MessageChannelTest() {
if (pipe(p) != 0) {
throw SystemException("Cannot create a pipe", errno);
}
reader = MessageChannel(p[0]);
writer = MessageChannel(p[1]);
}
~MessageChannelTest() {
close(p[0]);
close(p[1]);
}
};
DEFINE_TEST_GROUP(MessageChannelTest);
TEST_METHOD(1) {
// read() should be able to parse a message constructed by write(name, ...).
vector<string> args;
writer.write("hello", "world", "!", NULL);
ensure("End of file has not been reached", reader.read(args));
ensure_equals("read() returns the same number of arguments as passed to write()", args.size(), 3u);
ensure_equals(args[0], "hello");
ensure_equals(args[1], "world");
ensure_equals(args[2], "!");
}
TEST_METHOD(2) {
// read() should be able to parse a message constructed by write(list).
list<string> input;
vector<string> output;
input.push_back("hello");
input.push_back("world");
input.push_back("!");
writer.write(input);
ensure("End of file has not been reached", reader.read(output));
ensure_equals("read() returns the same number of arguments as passed to write()", input.size(), output.size());
list<string>::const_iterator it;
vector<string>::const_iterator it2;
for (it = input.begin(), it2 = output.begin(); it != input.end(); it++, it2++) {
ensure_equals(*it, *it2);
}
}
TEST_METHOD(3) {
// write() should be able to properly serialize arguments that contain whitespace.
vector<string> args;
writer.write("hello", "world with whitespaces", "!!!", NULL);
ensure("End of file has not been reached", reader.read(args));
ensure_equals(args[1], "world with whitespaces");
}
TEST_METHOD(4) {
// read() should be able to read messages constructed by the Ruby implementation.
// write() should be able to construct messages that can be read by the Ruby implementation.
// Multiple read() and write() calls should work (i.e. the MessageChannel should have stream properties).
// End of file should be properly detected.
int p1[2], p2[2];
pid_t pid;
pipe(p1);
pipe(p2);
pid = fork();
if (pid == 0) {
close(p[0]);
close(p[1]);
dup2(p1[0], 0);
dup2(p2[1], 1);
close(p1[0]);
close(p1[1]);
close(p2[0]);
close(p2[1]);
execlp("ruby", "ruby", "./stub/message_channel.rb", (char *) 0);
perror("Cannot execute ruby");
_exit(1);
} else {
MessageChannel input(p1[1]);
MessageChannel output(p2[0]);
close(p1[0]);
close(p2[1]);
input.write("hello", "my beautiful", "world", NULL);
input.write("you have", "not enough", "minerals", NULL);
input.close();
vector<string> message1, message2, message3;
ensure("End of stream has not been reached (1)", output.read(message1));
ensure("End of stream has not been reached (2)", output.read(message2));
ensure("End of file has been reached", !output.read(message3));
output.close();
waitpid(pid, NULL, 0);
ensure_equals("First message is correctly transformed by the mock object",
message1.size(), 4u);
ensure_equals(message1[0], "hello");
ensure_equals(message1[1], "my beautiful");
ensure_equals(message1[2], "world");
ensure_equals(message1[3], "!!");
ensure_equals("Second message is correctly transformed by the mock object",
message2.size(), 4u);
ensure_equals(message2[0], "you have");
ensure_equals(message2[1], "not enough");
ensure_equals(message2[2], "minerals");
ensure_equals(message2[3], "??");
}
}
TEST_METHOD(6) {
// write(name) should generate a correct message even if there are no additional arguments.
writer.write("hello", NULL);
vector<string> args;
reader.read(args);
ensure_equals(args.size(), 1u);
ensure_equals(args[0], "hello");
}
TEST_METHOD(7) {
// writeFileDescriptor() and receiveFileDescriptor() should work.
int s[2], my_pipe[2], fd;
socketpair(AF_UNIX, SOCK_STREAM, 0, s);
MessageChannel channel1(s[0]);
MessageChannel channel2(s[1]);
pipe(my_pipe);
boost::thread thr(boost::bind(
&MessageChannel::writeFileDescriptor,
&channel1,
my_pipe[1],
true
));
fd = channel2.readFileDescriptor();
thr.join();
char buf[5];
write(fd, "hello", 5);
close(fd);
read(my_pipe[0], buf, 5);
ensure(memcmp(buf, "hello", 5) == 0);
close(s[0]);
close(s[1]);
close(my_pipe[0]);
close(my_pipe[1]);
}
TEST_METHOD(8) {
// write() should be able to construct a message that consists of only an empty string.
// read() should be able to read a message that consists of only an empty string.
vector<string> args;
writer.write("", NULL);
reader.read(args);
ensure_equals(args.size(), 1u);
ensure_equals(args[0], "");
}
TEST_METHOD(9) {
// readScalar() should be able to read messages constructed by writeScalar().
// This also tests readRaw()/writeRaw() because readScalar()/writeScalar() uses
// them internally.
writer.writeScalar("hello\n\r world!!!");
writer.writeScalar(" and this is a second message");
string output;
ensure("End of stream has not been reached (1)", reader.readScalar(output));
ensure_equals(output, "hello\n\r world!!!");
ensure("End of stream has not been reached (2)", reader.readScalar(output));
ensure_equals(output, " and this is a second message");
}
TEST_METHOD(10) {
// writeScalar() should be able to produce messages that are compatible with the Ruby implementation.
// readScalar() should be able to read messages produced by the Ruby implementation.
int p1[2], p2[2];
pid_t pid;
pipe(p1);
pipe(p2);
pid = fork();
if (pid == 0) {
close(p[0]);
close(p[1]);
dup2(p1[0], 0);
dup2(p2[1], 1);
close(p1[0]);
close(p1[1]);
close(p2[0]);
close(p2[1]);
execlp("ruby", "ruby", "./stub/message_channel_2.rb", (void *) 0);
perror("Cannot execute ruby");
_exit(1);
} else {
MessageChannel reader(p2[0]);
MessageChannel writer(p1[1]);
string output;
close(p1[0]);
close(p2[1]);
writer.writeScalar("hello world\n!\r!");
ensure("End of file has not yet been reached (1)", reader.readScalar(output));
ensure_equals(output, "hello world\n!\r!!!");
writer.writeScalar("");
ensure("End of file has not yet been reached (2)", reader.readScalar(output));
ensure_equals(output, "??");
writer.close();
ensure("End of file has been reached", !reader.readScalar(output));
reader.close();
waitpid(pid, NULL, 0);
}
}
TEST_METHOD(11) {
// If we send a lot of different messages (including file descriptor passing),
// and the other side sends the same stuff back to us, then MessageChannel
// should be able to read them all, if done in the correct order.
// writeScalar() should be able to produce messages that are compatible with the Ruby implementation.
// readScalar() should be able to read messages produced by the Ruby implementation.
int fd[2];
pid_t pid;
socketpair(AF_UNIX, SOCK_STREAM, 0, fd);
pid = fork();
if (pid == 0) {
close(p[0]);
close(p[1]);
dup2(fd[0], 3);
close(fd[0]);
close(fd[1]);
execlp("ruby", "ruby", "./stub/message_channel_3.rb", (void *) 0);
perror("Cannot execute ruby");
_exit(1);
} else {
MessageChannel channel(fd[1]);
close(fd[0]);
vector<string> args;
string output;
int tmp[2];
channel.write("hello ", "my!", "world", NULL);
ensure("End of file has not yet been reached", channel.read(args));
ensure_equals(args.size(), 3u);
ensure_equals(args[0], "hello ");
ensure_equals(args[1], "my!");
ensure_equals(args[2], "world");
channel.writeScalar("testing 123");
ensure("End of file has not yet been reached", channel.readScalar(output));
ensure_equals(output, "testing 123");
pipe(tmp);
close(tmp[0]);
channel.writeFileDescriptor(tmp[1]);
close(tmp[1]);
int x = channel.readFileDescriptor();
close(x);
channel.write("the end", NULL);
ensure("End of file has not yet been reached", channel.read(args));
ensure_equals(args.size(), 1u);
ensure_equals(args[0], "the end");
ensure("End of file has been reached", !channel.read(args));
channel.close();
waitpid(pid, NULL, 0);
}
}
TEST_METHOD(12) {
// readScalar()/writeScalar() should be able to handle arbitrary binary data.
string data;
FILE *f = fopen("stub/garbage3.dat", "r");
while (!feof(f)) {
char buf[1024 * 32];
size_t ret = fread(buf, 1, sizeof(buf), f);
data.append(buf, ret);
}
fclose(f);
pid_t pid = fork();
if (pid == 0) {
reader.close();
writer.writeScalar(data);
_exit(0);
} else {
writer.close();
string result;
reader.readScalar(result);
ensure_equals(result, data);
waitpid(pid, NULL, 0);
}
}
}
|