1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
|
/*
Copyright (C) 2006-2011 Nasca Octavian Paul
Author: Nasca Octavian Paul
This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License
as published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License (version 2) for more details.
You should have received a copy of the GNU General Public License (version 2)
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "Stretch.h"
#include <stdlib.h>
#include <math.h>
unsigned int FFT::start_rand_seed=1;
FFT::FFT(int nsamples_){
nsamples=nsamples_;
if (nsamples%2!=0) {
nsamples+=1;
printf("WARNING: Odd sample size on FFT::FFT() (%d)",nsamples);
};
smp=new REALTYPE[nsamples];for (int i=0;i<nsamples;i++) smp[i]=0.0;
freq=new REALTYPE[nsamples/2+1];for (int i=0;i<nsamples/2+1;i++) freq[i]=0.0;
window.data=new REALTYPE[nsamples];for (int i=0;i<nsamples;i++) window.data[i]=0.707;
window.type=W_RECTANGULAR;
#ifdef KISSFFT
datar=new kiss_fft_scalar[nsamples+2];
for (int i=0;i<nsamples+2;i++) datar[i]=0.0;
datac=new kiss_fft_cpx[nsamples/2+2];
for (int i=0;i<nsamples/2+2;i++) datac[i].r=datac[i].i=0.0;
plankfft = kiss_fftr_alloc(nsamples,0,0,0);
plankifft = kiss_fftr_alloc(nsamples,1,0,0);
#else
data=new REALTYPE[nsamples];for (int i=0;i<nsamples;i++) data[i]=0.0;
planfftw=fftwf_plan_r2r_1d(nsamples,data,data,FFTW_R2HC,FFTW_ESTIMATE);
planifftw=fftwf_plan_r2r_1d(nsamples,data,data,FFTW_HC2R,FFTW_ESTIMATE);
#endif
rand_seed=start_rand_seed;
start_rand_seed+=161103;
};
FFT::~FFT(){
delete []smp;
delete []freq;
delete []window.data;
#ifdef KISSFFT
delete []datar;
delete []datac;
free(plankfft);
free(plankifft);
#else
delete []data;
fftwf_destroy_plan(planfftw);
fftwf_destroy_plan(planifftw);
#endif
};
void FFT::smp2freq(){
#ifdef KISSFFT
for (int i=0;i<nsamples;i++) datar[i]=smp[i];
kiss_fftr(plankfft,datar,datac);
#else
for (int i=0;i<nsamples;i++) data[i]=smp[i];
fftwf_execute(planfftw);
#endif
for (int i=1;i<nsamples/2;i++) {
#ifdef KISSFFT
REALTYPE c=datac[i].r;
REALTYPE s=datac[i].i;
#else
REALTYPE c=data[i];
REALTYPE s=data[nsamples-i];
#endif
freq[i]=sqrt(c*c+s*s);
};
freq[0]=0.0;
};
void FFT::freq2smp(){
REALTYPE inv_2p15_2pi=1.0/16384.0*M_PI;
for (int i=1;i<nsamples/2;i++) {
rand_seed=(rand_seed*1103515245+12345);
unsigned int rand=(rand_seed>>16)&0x7fff;
REALTYPE phase=rand*inv_2p15_2pi;
#ifdef KISSFFT
datac[i].r=freq[i]*cos(phase);
datac[i].i=freq[i]*sin(phase);
#else
data[i]=freq[i]*cos(phase);
data[nsamples-i]=freq[i]*sin(phase);
#endif
};
#ifdef KISSFFT
datac[0].r=datac[0].i=0.0;
kiss_fftri(plankifft,datac,datar);
for (int i=0;i<nsamples;i++) smp[i]=datar[i]/nsamples;
#else
data[0]=data[nsamples/2+1]=data[nsamples/2]=0.0;
fftwf_execute(planifftw);
for (int i=0;i<nsamples;i++) smp[i]=data[i]/nsamples;
#endif
};
void FFT::applywindow(FFTWindow type){
if (window.type!=type){
window.type=type;
switch (type){
case W_RECTANGULAR:
for (int i=0;i<nsamples;i++) window.data[i]=0.707;
break;
case W_HAMMING:
for (int i=0;i<nsamples;i++) window.data[i]=0.53836-0.46164*cos(2*M_PI*i/(nsamples+1.0));
break;
case W_HANN:
for (int i=0;i<nsamples;i++) window.data[i]=0.5*(1.0-cos(2*M_PI*i/(nsamples-1.0)));
break;
case W_BLACKMAN:
for (int i=0;i<nsamples;i++) window.data[i]=0.42-0.5*cos(2*M_PI*i/(nsamples-1.0))+0.08*cos(4*M_PI*i/(nsamples-1.0));
break;
case W_BLACKMAN_HARRIS:
for (int i=0;i<nsamples;i++) window.data[i]=0.35875-0.48829*cos(2*M_PI*i/(nsamples-1.0))+0.14128*cos(4*M_PI*i/(nsamples-1.0))-0.01168*cos(6*M_PI*i/(nsamples-1.0));
break;
};
};
for (int i=0;i<nsamples;i++) smp[i]*=window.data[i];
};
/*******************************************/
Stretch::Stretch(REALTYPE rap_,int bufsize_,FFTWindow w,bool bypass_,REALTYPE samplerate_,int stereo_mode_){
freezing=false;
onset_detection_sensitivity=0.0;
samplerate=samplerate_;
rap=rap_;
bufsize=bufsize_;
bypass=bypass_;
stereo_mode=stereo_mode_;
if (bufsize<8) bufsize=8;
out_buf=new REALTYPE[bufsize];
old_freq=new REALTYPE[bufsize];
very_old_smps=new REALTYPE[bufsize];
new_smps=new REALTYPE[bufsize];
old_smps=new REALTYPE[bufsize];
old_out_smps=new REALTYPE[bufsize*2];
for (int i=0;i<bufsize*2;i++) {
old_out_smps[i]=0.0;
};
for (int i=0;i<bufsize;i++) {
old_freq[i]=0.0;
new_smps[i]=0.0;
old_smps[i]=0.0;
very_old_smps[i]=0.0;
};
infft=new FFT(bufsize*2);
fft=new FFT(bufsize*2);
outfft=new FFT(bufsize*2);
remained_samples=0.0;
window_type=w;
require_new_buffer=false;
c_pos_percents=0.0;
extra_onset_time_credit=0.0;
skip_samples=0;
};
Stretch::~Stretch(){
delete [] old_freq;
delete [] out_buf;
delete [] new_smps;
delete [] old_smps;
delete [] very_old_smps;
delete [] old_out_smps;
delete fft;
delete infft;
delete outfft;
};
void Stretch::set_rap(REALTYPE newrap){
//if ((rap>=1.0)&&(newrap>=1.0))
rap=newrap;
};
void Stretch::do_analyse_inbuf(REALTYPE *smps){
//get the frequencies
for (int i=0;i<bufsize;i++) {
infft->smp[i]=old_smps[i];
infft->smp[i+bufsize]=smps[i];
old_freq[i]=infft->freq[i];
};
infft->applywindow(window_type);
infft->smp2freq();
};
void Stretch::do_next_inbuf_smps(REALTYPE *smps){
for (int i=0;i<bufsize;i++) {
very_old_smps[i]=old_smps[i];
old_smps[i]=new_smps[i];
new_smps[i]=smps[i];
};
};
REALTYPE Stretch::do_detect_onset(){
REALTYPE result=0.0;
if (onset_detection_sensitivity>1e-3){
REALTYPE os=0.0,osinc=0.0;
REALTYPE osincold=1e-5;
int maxk=1+(int)(bufsize*500.0/(samplerate*0.5));
int k=0;
for (int i=0;i<bufsize;i++) {
osinc+=infft->freq[i]-old_freq[i];
osincold+=old_freq[i];
if (k>=maxk) {
k=0;
os+=osinc/osincold;
osinc=0;
};
k++;
};
os+=osinc;
if (os<0.0) os=0.0;
//if (os>1.0) os=1.0;
REALTYPE os_strength=pow(20.0,1.0-onset_detection_sensitivity)-1.0;
REALTYPE os_strength_h=os_strength*0.75;
if (os>os_strength_h){
result=(os-os_strength_h)/(os_strength-os_strength_h);
if (result>1.0) result=1.0;
};
if (result>1.0) result=1.0;
};
return result;
};
REALTYPE Stretch::process(REALTYPE *smps,int nsmps){
REALTYPE onset=0.0;
if (bypass){
for (int i=0;i<bufsize;i++) out_buf[i]=smps[i];
return 0.0;
};
if (smps!=NULL){
if ((nsmps!=0)&&(nsmps!=bufsize)&&(nsmps!=get_max_bufsize())){
printf("Warning wrong nsmps on Stretch::process() %d,%d\n",nsmps,bufsize);
return 0.0;
};
if (nsmps!=0){//new data arrived: update the frequency components
do_analyse_inbuf(smps);
if (nsmps==get_max_bufsize()) {
for (int k=bufsize;k<get_max_bufsize();k+=bufsize) do_analyse_inbuf(smps+k);
};
if (onset_detection_sensitivity>1e-3) onset=do_detect_onset();
};
//move the buffers
if (nsmps!=0){//new data arrived: update the frequency components
do_next_inbuf_smps(smps);
if (nsmps==get_max_bufsize()) {
for (int k=bufsize;k<get_max_bufsize();k+=bufsize) do_next_inbuf_smps(smps+k);
};
};
//construct the input fft
int start_pos=(int)(floor(remained_samples*bufsize));
if (start_pos>=bufsize) start_pos=bufsize-1;
for (int i=0;i<bufsize-start_pos;i++) fft->smp[i]=very_old_smps[i+start_pos];
for (int i=0;i<bufsize;i++) fft->smp[i+bufsize-start_pos]=old_smps[i];
for (int i=0;i<start_pos;i++) fft->smp[i+2*bufsize-start_pos]=new_smps[i];
//compute the output spectrum
fft->applywindow(window_type);
fft->smp2freq();
for (int i=0;i<bufsize;i++) outfft->freq[i]=fft->freq[i];
//for (int i=0;i<bufsize;i++) outfft->freq[i]=infft->freq[i]*remained_samples+old_freq[i]*(1.0-remained_samples);
process_spectrum(outfft->freq);
outfft->freq2smp();
//make the output buffer
REALTYPE tmp=1.0/(float) bufsize*M_PI;
REALTYPE hinv_sqrt2=0.853553390593;//(1.0+1.0/sqrt(2))*0.5;
REALTYPE ampfactor=2.0;
//remove the resulted unwanted amplitude modulation (caused by the interference of N and N+1 windowed buffer and compute the output buffer
for (int i=0;i<bufsize;i++) {
REALTYPE a=(0.5+0.5*cos(i*tmp));
REALTYPE out=outfft->smp[i+bufsize]*(1.0-a)+old_out_smps[i]*a;
out_buf[i]=out*(hinv_sqrt2-(1.0-hinv_sqrt2)*cos(i*2.0*tmp))*ampfactor;
};
//copy the current output buffer to old buffer
for (int i=0;i<bufsize*2;i++) old_out_smps[i]=outfft->smp[i];
};
if (!freezing){
long double used_rap=rap*get_stretch_multiplier(c_pos_percents);
long double r=1.0/used_rap;
if (extra_onset_time_credit>0){
REALTYPE credit_get=0.5*r;//must be smaller than r
extra_onset_time_credit-=credit_get;
if (extra_onset_time_credit<0.0) extra_onset_time_credit=0.0;
r-=credit_get;
};
long double old_remained_samples_test=remained_samples;
remained_samples+=r;
int result=0;
if (remained_samples>=1.0){
skip_samples=(int)(floor(remained_samples-1.0)*bufsize);
remained_samples=remained_samples-floor(remained_samples);
require_new_buffer=true;
}else{
require_new_buffer=false;
};
};
// long double rf_test=remained_samples-old_remained_samples_test;//this value should be almost like "rf" (for most of the time with the exception of changing the "ri" value) for extremely long stretches (otherwise the shown stretch value is not accurate)
//for stretch up to 10^18x "long double" must have at least 64 bits in the fraction part (true for gcc compiler on x86 and macosx)
return onset;
};
void Stretch::here_is_onset(REALTYPE onset){
if (freezing) return;
if (onset>0.5){
require_new_buffer=true;
extra_onset_time_credit+=1.0-remained_samples;
remained_samples=0.0;
skip_samples=0;
};
};
int Stretch::get_nsamples(REALTYPE current_pos_percents){
if (bypass) return bufsize;
if (freezing) return 0;
c_pos_percents=current_pos_percents;
return require_new_buffer?bufsize:0;
};
int Stretch::get_nsamples_for_fill(){
return get_max_bufsize();
};
int Stretch::get_skip_nsamples(){
if (freezing||bypass) return 0;
return skip_samples;
};
REALTYPE Stretch::get_stretch_multiplier(REALTYPE pos_percents){
return 1.0;
};
|