File: LightweightSuffixArray.cpp

package info (click to toggle)
pbseqlib 5.3.1%2Bdfsg-2.1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 7,136 kB
  • sloc: cpp: 77,246; python: 570; makefile: 312; sh: 111; ansic: 9
file content (418 lines) | stat: -rw-r--r-- 13,945 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#include <alignment/algorithms/sorting/LightweightSuffixArray.hpp>
#include <pbdata/utils.hpp>

UInt DiffMod(UInt a, UInt b, UInt d)
{
    if (b > a) {
        return (d - ((b - a) % d)) % d;
    } else {
        return (a - b) % d;
    }
}

void BuildDiffCoverReverseLookup(UInt diffCover[], UInt diffCoverLength,
                                 UInt reverseDiffCover[]  // of size diffCoverSize
                                 )
{
    UInt i;
    for (i = 0; i < diffCoverLength; i++) {
        reverseDiffCover[diffCover[i]] = i;
    }
}

UInt DiffCoverFindH(UInt diffCover[], UInt diffCoverLength, UInt diffCoverSize, UInt textSize)
{
    (void)(diffCoverLength);
    UInt h;
    for (h = 0; h < diffCoverSize; h++) {
        UInt rem = textSize % diffCoverSize;
        if (rem == 0) return 0;
        if ((h < diffCoverSize - 1 and (diffCover[h] <= rem and rem < diffCover[h + 1])) or
            (h == diffCoverSize - 1 and (diffCover[h] <= rem and rem < diffCoverSize))) {
            return h;
        }
    }
    return h;
}

UInt DiffCoverMu::compute(UInt i, UInt j)
{
    return textSize / diffCoverSize * i + std::min(i, h + 1) + j;
}
UInt DiffCoverMu::operator()(const UInt k)
{
    //
    // k is from 0 .. n (size of string)
    //
    UInt di = k % diffCoverSize;
    UInt j = k / diffCoverSize;
    UInt i = diffCoverReverseLookup[di];
    //		return (textSize/diffCoverSize)*i + std::min(i,h) + j;
    //		return (textSize/diffCoverSize)*i + i + j;
    //		return std::min(i,h)*(1 + textSize / diffCoverSize) + (i > h ? i - h : 0)*(textSize/diffCoverSize) + j;
    return (textSize / diffCoverSize) * i + std::min(i, h + 1) + j;
}

DiffCoverMu::DiffCoverMu()
{
    diffCoverLength = diffCoverSize = textSize = h = 0;
    diffCoverReverseLookup = diffCover = NULL;
}

DiffCoverMu::~DiffCoverMu()
{
    if (diffCoverReverseLookup != NULL) delete[] diffCoverReverseLookup;
}

void DiffCoverMu::Initialize(UInt diffCoverP[], UInt diffCoverLengthP, UInt diffCoverSizeP,
                             UInt textSizeP)
{
    diffCoverReverseLookup = ProtectedNew<UInt>(diffCoverSizeP);
    diffCoverLength = diffCoverLengthP;
    textSize = textSizeP;
    diffCoverSize = diffCoverSizeP;
    diffCover = diffCoverP;
    UInt i;
    for (i = 0; i < diffCoverSize; i++) {
        diffCoverReverseLookup[i] = 9999999;
    }
    BuildDiffCoverReverseLookup(diffCoverP, diffCoverLength, diffCoverReverseLookup);
    h = DiffCoverFindH(diffCoverP, diffCoverLength, diffCoverSize, textSize);
}

void BuildDiffCoverLookup(UInt diffCover[], UInt diffCoverLength, UInt v, UInt diffCoverLookup[])
{
    UInt h;
    // Initialize with sentinal that shows a value has not been set (for small problems);
    for (h = 0; h < v; h++) {
        diffCoverLookup[h] = 99999999;
    }
    for (h = 0; h < v; h++) {
        //
        // For now, fill table via exhaustive search.
        //
        UInt hd;
        for (hd = 0; hd < diffCoverLength; hd++) {
            UInt dcm = (diffCover[hd] + h) % v;
            UInt hdi;
            for (hdi = 0; hdi < diffCoverLength; hdi++) {
                if (dcm == diffCover[hdi]) break;
            }
            if (hdi < diffCoverLength) {
                diffCoverLookup[h] = diffCover[hd];
                break;
            }
        }
    }
}

void DiffCoverDelta::Initialize(UInt diffCoverP[], UInt diffCoverLengthP, UInt diffCoverSizeP)
{
    diffCoverLookup = ProtectedNew<UInt>(diffCoverSizeP);
    diffCoverSize = diffCoverSizeP;
    BuildDiffCoverLookup(diffCoverP, diffCoverLengthP, diffCoverSizeP, diffCoverLookup);
}

UInt DiffCoverDelta::operator()(UInt i, UInt j)
{
    return DiffMod(diffCoverLookup[DiffMod(j, i, diffCoverSize)], i, diffCoverSize);
}

DiffCoverDelta::~DiffCoverDelta()
{
    if (diffCoverLookup) {
        delete[] diffCoverLookup;
        diffCoverLookup = NULL;
    }
}

UInt NCompareSuffices(unsigned char text[], UInt a, UInt b, UInt n)
{
    // not sure how to make lower amortized cost of the comparison.
    return (strncmp((const char *)&text[a], (const char *)&text[b], n));
}

UInt ComputeDSetSize(UInt diffCover, UInt diffCoverLength, UInt diffCoverSize, UInt textSize)
{
    (void)(diffCover);
    (void)(diffCoverLength);
    UInt div = textSize / diffCoverSize + 1;
    UInt rem = textSize % diffCoverSize;
    return div * diffCoverSize + rem;
}

void ComputeSufVNaming(UInt diffCover[], UInt diffCoverLength, UInt diffCoverN, UInt textSize,
                       UInt lexNaming[], DiffCoverMu &mu, UInt sufVNaming[])
{
    UInt nDiffCover = textSize / diffCoverN + 1;
    UInt cover;
    UInt d;
    UInt diffCoverIndex;
    UInt ln = 0;
    for (cover = 0; cover < nDiffCover; cover++) {
        for (d = 0; d < diffCoverLength; d++) {
            diffCoverIndex = cover * diffCoverN + diffCover[d];
            sufVNaming[mu(diffCoverIndex)] = lexNaming[ln];
            ln++;
        }
    }
}

UInt IndexToDiffCoverIndex(UInt index, UInt diffCoverlookup[], UInt diffCoverSize,
                           UInt diffCoverLength)
{
    UInt diff = index / diffCoverSize;
    UInt offset = index % diffCoverSize;
    return diff * diffCoverLength + diffCoverlookup[offset];
}

void DiffCoverComputeLOrder(UInt sufVNaming[], UInt sufVNamingLength, UInt maxVNaming,
                            UInt textLength, DiffCoverMu &mu, UInt lOrder[])
{
    //
    // the sufvnaming now contains the
    UInt i, di;
    UInt nDiffCover = textLength / mu.diffCoverSize + 1;
    UInt dci;
    for (i = 0; i < sufVNamingLength; i++) {
        lOrder[i] = 0;
    }

    for (dci = 0; dci < nDiffCover; dci++) {
        for (di = 0; di < mu.diffCoverLength; di++) {
            i = dci * mu.diffCoverSize + mu.diffCover[di];
            if (i >= textLength) {
                break;
            }
            UInt dsetIndex = IndexToDiffCoverIndex(i, mu.diffCoverReverseLookup, mu.diffCoverSize,
                                                   mu.diffCoverLength);
            UInt mui = mu(i);
            lOrder[mui] = sufVNaming[dsetIndex] + 1;
        }
    }
    lOrder[sufVNamingLength] = 0;
    //
    // The result of the sufsort function is to store the inverse suffix
    // array in the first parameter.
    //

    LarssonSuffixSort<UInt> sufsorter;
    sufsorter.INDEX_MAX = maxVNaming + 2;
    sufsorter(lOrder, sufVNaming, sufVNamingLength, maxVNaming + 2, 0);
    for (i = 0; i < sufVNamingLength; i++) {
        assert(lOrder[i] > 0);
        lOrder[i]--;
    }
}

/*
 * Build the lex naming of the v-ordered suffices.
 *
 * Input: textVOrder - the v-ordering of a subset of the text.
 *        textSize   - the size of the v-order set.
 *        diffCoverLength - diff cover length
 *        diffCoverSize - the size of the diff cover.
 * Output: lexNaming: the lex-naming of the v-order suffices.  The
 *        names are implemented as unsigned integers.
 * Returns: the largest value of the lex-ordering.
 */
UInt DiffCoverBuildLexNaming(unsigned char text[], UInt textSize, UInt textVOrder[], UInt dSetSize,
                             UInt diffCoverLength, UInt diffCoverSize, UInt diffCoverLookup[],
                             UInt lexNaming[])
{
    (void)(textSize);
    UInt d;
    UInt lexOrder = 0;
    //
    // Make sure there is something to do here.
    //
    if (dSetSize == 0) return 0;
    UInt dcindex;
    dcindex = IndexToDiffCoverIndex(textVOrder[0], diffCoverLookup, diffCoverSize, diffCoverLength);
    lexNaming[dcindex] = 0;
    for (d = 1; d < dSetSize; d++) {
        if (NCompareSuffices(text, textVOrder[d - 1], textVOrder[d], diffCoverSize) != 0) {
            lexOrder++;
        }
        dcindex =
            IndexToDiffCoverIndex(textVOrder[d], diffCoverLookup, diffCoverSize, diffCoverLength);
        lexNaming[dcindex] = lexOrder;
    }
    return lexOrder;
}

int DiffCoverCompareSuffices::operator()(UInt a, UInt b)
{
    UInt aDCIndex, bDCIndex;
    UInt dab = (*delta)(a, b);
    aDCIndex =
        IndexToDiffCoverIndex(a + dab, diffCoverReverseLookup, diffCoverSize, diffCoverLength);
    bDCIndex =
        IndexToDiffCoverIndex(b + dab, diffCoverReverseLookup, diffCoverSize, diffCoverLength);
    return (lOrder[aDCIndex] < lOrder[bDCIndex]);
}

bool LightweightSuffixSort(unsigned char text[], UInt textLength, UInt *index, int diffCoverSize)
{
    //
    // index is an array of length textLength that contains all
    // suffices.
    //

    //
    // Phase 0. Compute delta function for difference cover.
    //

    //  For now, use a very small hard wired diff cover for testing
    UInt *diffCover;
    UInt diffCoverLength;
    if (InitializeDifferenceCover(diffCoverSize, diffCoverLength, diffCover) == 0) {
        std::cout << "ERROR! There is no difference cover of size " << diffCoverSize
                  << " that is precomputed." << std::endl;
        std::exit(EXIT_FAILURE);
    }

    DiffCoverDelta delta;

    delta.Initialize(diffCover, diffCoverLength, diffCoverSize);

    //
    // Phase 1. Sort suffices whose starting position modulo v is in D.
    //

    // The set d is given by
    // Step 1.1 v-sort D-sample suffices
    UInt dIndex = 0;  // index in D-sample
    UInt tIndex = 0;  // index in text
    UInt nDiffCover;
    nDiffCover = textLength / diffCoverSize + 1;
    UInt coverIndex;
    UInt d;
    bool done = false;

    for (coverIndex = 0; coverIndex < nDiffCover and done == false; coverIndex++) {
        for (d = 0; d < diffCoverLength and done == false; d++) {
            tIndex = coverIndex * diffCoverSize + diffCover[d];
            if (tIndex >= textLength) {
                done = true;
                break;
            }
            index[dIndex] = tIndex;
            dIndex++;
        }
    }
    UInt dSetSize = dIndex;
    std::cout << "Sorting " << diffCoverSize << "-prefixes of the genome." << std::endl;
    MediankeyBoundedQuicksort(text, index, dIndex, 0, dSetSize, 0, diffCoverSize);
    UInt i;

    //
    // Step 1.2 Compute l^v(i) for all i \in D_n by traversing the
    // D-sample suffixes in lexicographic order and construct s^\prime
    // by setting s^\prime[\mu(i)] = l^v(i)
    //
    UInt *lexVNaming;
    lexVNaming = ProtectedNew<UInt>(dSetSize + 1);
    DiffCoverMu mu;
    mu.Initialize(diffCover, diffCoverLength, diffCoverSize, textLength);
    UInt largestLexName;
    std::cout << "Enumerating " << diffCoverSize << "-prefixes." << std::endl;
    largestLexName = DiffCoverBuildLexNaming(text, textLength, index, dSetSize, diffCoverLength,
                                             diffCoverSize, mu.diffCoverReverseLookup, lexVNaming);
    //
    // Step 1.3 Compute ISA' of lex-order.
    //

    UInt *lexOrder;
    //
    // lexVNaming is allocated space.  The suffix sorting needs an
    // auxiliary array.  Since the index is not being used right now,
    // use that as the extra space.
    //
    UInt dci, di;
    for (dci = 0; dci < nDiffCover; dci++) {
        for (di = 0; di < diffCoverLength; di++) {
            i = dci * diffCoverSize + diffCover[di];
            if (i > textLength) {
                break;
            }
            mu.compute(di, dci);
        }
    }

    UInt *tmpLexOrder = index;
    DiffCoverComputeLOrder(lexVNaming, dSetSize, largestLexName, textLength, mu, tmpLexOrder);
    lexOrder = lexVNaming;

    nDiffCover = textLength / diffCoverSize + 1;

    for (dci = 0; dci < nDiffCover; dci++) {
        for (di = 0; di < diffCoverLength; di++) {
            i = dci * diffCoverSize + diffCover[di];
            if (i >= textLength) {
                break;
            }
            UInt lexOrderIndex = mu(i);
            UInt diffCoverIndex =
                IndexToDiffCoverIndex(i, mu.diffCoverReverseLookup, diffCoverSize, diffCoverLength);
            lexOrder[diffCoverIndex] = tmpLexOrder[lexOrderIndex];
        }
    }

    //
    // Phase 2. Construct SA by exploiting the fact that for any i,j\in
    // [0,n-v], the relative order of the suffixes starting at
    // i+\delta(,j) and j+\delta(i,j) is already known.
    //
    std::cout << "Sorting suffices." << std::endl;
    // Step 2.1 v-order suffices using multikey quicksort
    for (i = 0; i < textLength; i++) {
        index[i] = i;
    }
    MediankeyBoundedQuicksort(text, index, textLength, 0, textLength, 0, diffCoverSize);

    // Step 2.2. For each group of suffixes that remains unsorted
    // (shares a prefix of length diffCoverSize, complete the sorting
    // with a comparison based on the sorting algorithm using
    // l(i+\delta(i,j)) nad l(j+\delta(i,j)) as keys when comparing
    // suffixes S_i and S_j.
    //
    DiffCoverCompareSuffices lOrderComparator;
    lOrderComparator.lOrder = lexOrder;
    lOrderComparator.delta = &delta;
    lOrderComparator.diffCoverSize = diffCoverSize;
    lOrderComparator.diffCoverLength = diffCoverLength;
    lOrderComparator.diffCoverReverseLookup = mu.diffCoverReverseLookup;
    UInt setBegin, setEnd;
    setBegin = setEnd = 0;
    std::cout << "Sorting buckets." << std::endl;
    int percentDone = 0;
    int curPercentage = 0;
    while (setBegin < textLength) {
        setEnd = setBegin;
        percentDone = (int)(((1.0 * setBegin) / textLength) * 100);
        if (percentDone > curPercentage) {
            std::cout << " " << percentDone << "% of buckets sorted." << std::endl;
            curPercentage = percentDone;
        }
        while (setEnd < textLength and
               NCompareSuffices(text, index[setBegin], index[setEnd], diffCoverSize) == 0) {
            setEnd++;
        }
        std::sort(&index[setBegin], &index[setEnd], lOrderComparator);
        setBegin = setEnd;
    }

    // diffCover was allocated in DifferenceCovers.cpp ->
    // InitializeDifferenceCover(...). Deallocate it.
    if (diffCover) {
        delete[] diffCover;
        diffCover = NULL;
    }
    if (lexVNaming) {
        delete[] lexVNaming;
        lexVNaming = NULL;
    }
    return true;
    // DONE!!!!!
}