File: RegionUtils.cpp

package info (click to toggle)
pbseqlib 5.3.1%2Bdfsg-2.1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 7,136 kB
  • sloc: cpp: 77,246; python: 570; makefile: 312; sh: 111; ansic: 9
file content (208 lines) | stat: -rw-r--r-- 8,208 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#include <alignment/utils/RegionUtils.hpp>

// General functions.
bool LookupHQRegion(int holeNumber, RegionTable &regionTable, int &start, int &end, int &score)
{

    if (regionTable.HasHoleNumber(holeNumber)) {
        RegionAnnotations zmwRegions = regionTable[holeNumber];
        if (zmwRegions.HasHQRegion()) {
            start = zmwRegions.HQStart();
            end = zmwRegions.HQEnd();
            score = zmwRegions.HQScore();
            return true;
        }
    }

    start = end = score = 0;
    return false;
}

// Given a vecotr of ReadInterval objects and their corresponding
// directions, intersect each object with an interval
// [hqStart, hqEnd), if there is no intersection or the intersected
// interval is less than minIntervalLength, remove this object and
// their corresponding directions; otherwise, replace this object
// with the intersected interval and keep their directions.
// Return index of the (left-most) longest subread interval in the
// updated vector.
int GetHighQualitySubreadsIntervals(std::vector<ReadInterval> &subreadIntervals,
                                    std::vector<int> &subreadDirections, int hqStart, int hqEnd,
                                    int minIntervalLength)
{

    // Avoid using vector.erase() when possible, as it is slow.
    int ret = -1;
    int maxLength = 0;
    assert(subreadIntervals.size() == subreadDirections.size());
    std::vector<ReadInterval> subreadIntervals2;
    std::vector<int> subreadDirections2;
    for (int i = 0; i < int(subreadIntervals.size()); i++) {
        int &thisStart = subreadIntervals[i].start;
        int &thisEnd = subreadIntervals[i].end;

        if (thisStart >= hqEnd or thisEnd <= hqStart) {
            continue;
        }
        if (thisStart < hqStart and thisEnd > hqStart) {
            thisStart = hqStart;
        }
        if (thisStart < hqEnd and thisEnd > hqEnd) {
            thisEnd = hqEnd;
        }
        if (thisEnd - thisStart >= minIntervalLength) {
            if (maxLength < thisEnd - thisStart) {
                ret = subreadIntervals2.size();
                maxLength = thisEnd - thisStart;
            }
            subreadIntervals2.push_back(subreadIntervals[i]);
            subreadDirections2.push_back(subreadDirections[i]);
        }
    }
    subreadIntervals = subreadIntervals2;
    subreadDirections = subreadDirections2;
    return ret;
}

// Given a vector of subreads and a vector of adapters, return
// indices of all fullpass subreads in the input subreads vector.
std::vector<int> GetFullPassSubreadIndices(std::vector<ReadInterval> &subreadIntervals,
                                           std::vector<ReadInterval> &adapterIntervals)
{
    std::vector<int> indices;  // Indices of fullpass subread.
    for (int i = 0; i < static_cast<int>(subreadIntervals.size()); i++) {
        ReadInterval &subread = subreadIntervals[i];
        bool ladapter = false, radapter = false;
        for (int j = 0; j < static_cast<int>(adapterIntervals.size()); j++) {
            ReadInterval &adapter = adapterIntervals[j];
            if (std::abs(subread.start - adapter.end) < 10) {
                ladapter = true;
            } else if (std::abs(subread.end - adapter.start) < 10) {
                radapter = true;
            }
            if (ladapter && radapter) {
                indices.push_back(i);
                break;
            }
        }
    }
    return indices;
}

bool cmp_index_len_pair(std::pair<int, int> x, std::pair<int, int> y)
{
    if (x.second == y.second) {
        return x.first < y.first;
    } else
        return x.second < y.second;
}

// Given a vector of subreads and a vector of adapters, return
// index of the (left-most) longest subread which has both
// adapters before & after itself. If no full-pass subread available,
// return -1;
int GetLongestFullSubreadIndex(std::vector<ReadInterval> &subreadIntervals,
                               std::vector<ReadInterval> &adapterIntervals)
{

    std::vector<int> indices = GetFullPassSubreadIndices(subreadIntervals, adapterIntervals);
    if (indices.size() == 0) return -1;
    std::vector<std::pair<int, int>> indices_lens;

    for (int i = 0; i < static_cast<int>(indices.size()); i++) {
        ReadInterval &subread = subreadIntervals[indices[i]];
        indices_lens.push_back(std::make_pair(indices[i], subread.end - subread.start));
    }

    std::sort(indices_lens.begin(), indices_lens.end(), cmp_index_len_pair);
    return indices_lens[int(indices_lens.size() - 1)].first;
}

// Given a vector of subreads and a vector of adapters, return
// index of the typical fullpass subread which can represent subreads
// of this zmw.
// * if there is no fullpass subread, return -1;
// * if number of fullpass subreads is less than 4, return index of the
//   left-most longest subread
// * if number of fullpass subreads is greater than or equal 4,
//   * if length of the longest read does not exceed
//      meanLength + 1.96 * deviationLength
//     then, return index of the longest left-most subread
//   * otherwise, return index of the second longest left-most subread
int GetTypicalFullSubreadIndex(std::vector<ReadInterval> &subreadIntervals,
                               std::vector<ReadInterval> &adapterIntervals)
{

    std::vector<int> indices = GetFullPassSubreadIndices(subreadIntervals, adapterIntervals);
    if (indices.size() == 0) return -1;  // no full-pass subread in this zmw
    std::vector<std::pair<int, int>> indices_lens;
    std::vector<int> lengths;

    for (int i = 0; i < static_cast<int>(indices.size()); i++) {
        ReadInterval &subread = subreadIntervals[indices[i]];
        indices_lens.push_back(std::make_pair(indices[i], subread.end - subread.start));
        lengths.push_back(subread.end - subread.start);
    }

    std::sort(indices_lens.begin(), indices_lens.end(), cmp_index_len_pair);

    int longestIndex = indices_lens[int(indices_lens.size() - 1)].first;
    int secondLongestIndex =
        (indices_lens.size() <= 1) ? (-1) : (indices_lens[int(indices_lens.size() - 2)].first);

    if (indices.size() < 4) {
        // very few fullpass subreads, use the longest subread anyway.
        return longestIndex;
    } else {
        // if length of the longest falls out of 95% CI of all other
        // fullpass subreads, use the second longest.
        sort(lengths.begin(), lengths.end());
        float meanLength, varLength;
        MeanVar(lengths, meanLength, varLength);
        if (lengths[int(lengths.size() - 1)] > meanLength + 1.96 * sqrt(varLength)) {
            return secondLongestIndex;
        } else {
            return longestIndex;
        }
    }
}

// Given a vector of subreads and a vector of adapters, return
// index of the median length subread which has both
// adapters before & after itself. If no full-pass subreads are
// available, return -1.
int GetMedianLengthFullSubreadIndex(std::vector<ReadInterval> &subreadIntervals,
                                    std::vector<ReadInterval> &adapterIntervals)
{

    std::vector<int> indices = GetFullPassSubreadIndices(subreadIntervals, adapterIntervals);
    if (indices.size() == 0) return -1;
    std::vector<std::pair<int, int>> indices_lens;

    for (int i = 0; i < static_cast<int>(indices.size()); i++) {
        ReadInterval &subread = subreadIntervals[indices[i]];
        indices_lens.push_back(std::make_pair(indices[i], subread.end - subread.start));
    }
    std::sort(indices_lens.begin(), indices_lens.end(), cmp_index_len_pair);
    return indices_lens[int(indices_lens.size() / 2)].first;
}

// Create a vector of n directions consisting of interleaved 0 and 1s.
void CreateDirections(std::vector<int> &directions, const int &n)
{
    directions.clear();
    directions.resize(n);
    for (int i = 0; i < n; i++) {
        directions[i] = i % 2;
    }
}

// Flop all directions in the given vector, if flop is true.
void UpdateDirections(std::vector<int> &directions, bool flop)
{
    if (not flop) return;
    for (int i = 0; i < int(directions.size()); i++) {
        assert(directions[i] == 0 or directions[i] == 1);
        directions[i] = (directions[i] == 0) ? 1 : 0;
    }
}