File: SAMPrinter.cpp

package info (click to toggle)
pbseqlib 5.3.5%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 7,020 kB
  • sloc: cpp: 77,250; python: 331; sh: 103; makefile: 41
file content (229 lines) | stat: -rw-r--r-- 8,262 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#include <alignment/format/SAMPrinter.hpp>

#include <algorithm>  //reverse

using namespace SAMOutput;

void SAMOutput::BuildFlag(T_AlignmentCandidate &alignment, AlignmentContext &context,
                          uint16_t &flag)
{

    /*
     *  Much of the flags are commented out for now since they do not
     *  generate PICARD compliant SAM.  This needs to be worked out.
     */

    //
    // Without supporting strobe, assume 1 segment per template.
    flag = 0;
    /*
       if (context.nSubreads > 1) {
       flag |= MULTI_SEGMENTS;
       }*/

    //    if (context.AllSubreadsAligned() and context.nSubreads > 1) {
    //      flag |= ALL_SEGMENTS_ALIGNED;
    //    }

    if (alignment.tStrand == 1) {
        flag |= SEQ_REVERSED;
    }
    /*
       if (context.hasNextSubreadPos == false and context.nSubreads > 1) {
       flag |= NEXT_SEGMENT_UNMAPPED;
       }
       if (context.nextSubreadDir == 1) {
       flag |= SEQ_NEXT_REVERSED;
       }
       if (context.IsFirst() and context.nSubreads > 1) {
       flag |= FIRST_SEGMENT;
       }
       */
    else if (context.nSubreads > 1) {
        /*
            * Remember, if you're not first, you're last.
            */
        //      flag |= LAST_SEGMENT;
    }
    if (context.isPrimary == false) {
        flag |= SECONDARY_ALIGNMENT;
    }
}

void SAMOutput::CreateDNAString(DNASequence &seq, DNASequence &clippedSeq,
                                //
                                // Trimming is used for both hard non-clipping
                                // so it is called trim instead of clip.
                                //
                                DNALength trimFront, DNALength trimEnd)
{
    assert(seq.length >= trimEnd and seq.length - trimEnd >= trimFront);

    clippedSeq.seq = &seq.seq[trimFront];
    clippedSeq.length = seq.length - trimEnd - trimFront;
}

void SAMOutput::AddGaps(T_AlignmentCandidate &alignment, int gapIndex, std::vector<int> &opSize,
                        std::vector<char> &opChar)
{
    for (size_t g = 0; g < alignment.gaps[gapIndex].size(); g++) {
        if (alignment.gaps[gapIndex][g].seq == blasr::Gap::Query) {
            opSize.push_back(alignment.gaps[gapIndex][g].length);
            opChar.push_back('D');
        } else if (alignment.gaps[gapIndex][g].seq == blasr::Gap::Target) {
            opSize.push_back(alignment.gaps[gapIndex][g].length);
            opChar.push_back('I');
        }
    }
}

void SAMOutput::AddMatchBlockCigarOps(DNASequence &qSeq, DNASequence &tSeq, blasr::Block &b,
                                      DNALength &qSeqPos, DNALength &tSeqPos,
                                      std::vector<int> &opSize, std::vector<char> &opChar)
{
    DNALength qPos = qSeqPos + b.qPos, tPos = tSeqPos + b.tPos;
    bool started = false, prevSeqMatch = false;
    for (DNALength i = 0; i < b.length; i++) {
        bool curSeqMatch = (qSeq[qPos + i] == tSeq[tPos + i]);
        if (started) {
            if (curSeqMatch == prevSeqMatch)
                opSize[opSize.size() - 1]++;
            else {
                opSize.push_back(1);
                opChar.push_back(curSeqMatch ? '=' : 'X');
            }
        } else {
            started = true;
            opSize.push_back(1);
            opChar.push_back(curSeqMatch ? '=' : 'X');
        }
        prevSeqMatch = curSeqMatch;
    }
}

void SAMOutput::MergeAdjacentIndels(std::vector<int> &opSize, std::vector<char> &opChar,
                                    const char mismatchChar)
{
    assert(opSize.size() == opChar.size() and not opSize.empty());
    size_t i, j;
    for (i = 0, j = 1; i < opSize.size() and j < opSize.size(); j++) {
        const int ni = opSize[i], nj = opSize[j];
        const char ci = opChar[i], cj = opChar[j];
        if (ci == cj) {
            opSize[i] = ni + nj;  // merge i and j to i
        } else {
            if ((ci == 'I' and cj == 'D') or (ci == 'D' and cj == 'I')) {
                opSize[i] = std::min(ni, nj);
                opChar[i] = mismatchChar;  // merge 'I' and 'D' to Mismatch
                if (i != 0 and i != opSize.size() and opChar[i] == opChar[i - 1]) {
                    assert(i >= 1);
                    opSize[i - 1] += opSize[i];  // merge with i - 1?
                    i--;
                }
                if (ni != nj) {
                    i++;  // the remaining 'I' or 'D'
                    opSize[i] = std::abs(ni - nj);
                    opChar[i] = (ni > nj) ? ci : cj;
                }
            } else {
                i++;  // move forward.
                opSize[i] = nj;
                opChar[i] = cj;
            }
        }
    }
    assert(i < opSize.size());
    opSize.erase(opSize.begin() + i + 1, opSize.end());
    opChar.erase(opChar.begin() + i + 1, opChar.end());
}

void SAMOutput::CreateNoClippingCigarOps(T_AlignmentCandidate &alignment, std::vector<int> &opSize,
                                         std::vector<char> &opChar, bool cigarUseSeqMatch,
                                         const bool allowAdjacentIndels)
{
    //
    // Create the cigar string for the aligned region of a read,
    // excluding the clipping.
    //
    int b;
    // Each block creates a match NM (N=block.length)
    int nBlocks = alignment.blocks.size();
    int nGaps = alignment.gaps.size();
    opSize.clear();
    opChar.clear();
    //
    // Add gaps at the beginning of the alignment.
    //
    if (nGaps > 0) {
        AddGaps(alignment, 0, opSize, opChar);
    }
    for (b = 0; b < nBlocks; b++) {
        //
        // Determine the gap before printing the match, since it is
        // possible that the qurey and target are gapped at the same
        // time, which merges into a mismatch.
        //
        int qGap = 0, tGap = 0;
        int matchLength = alignment.blocks[b].length;
        if (nGaps == 0) {
            if (b + 1 < nBlocks) {
                qGap = alignment.blocks[b + 1].qPos - alignment.blocks[b].qPos -
                       alignment.blocks[b].length;
                tGap = alignment.blocks[b + 1].tPos - alignment.blocks[b].tPos -
                       alignment.blocks[b].length;
                int commonGap;
                commonGap = std::abs(qGap - tGap);
                qGap -= commonGap;
                tGap -= commonGap;
                matchLength += commonGap;
                if (cigarUseSeqMatch) {
                    AddMatchBlockCigarOps(alignment.qAlignedSeq, alignment.tAlignedSeq,
                                          alignment.blocks[b], alignment.qPos, alignment.tPos,
                                          opSize, opChar);
                } else {
                    opSize.push_back(matchLength);
                    opChar.push_back('M');
                }
                assert((qGap > 0 and tGap == 0) or (qGap == 0 and tGap > 0));
                if (qGap > 0) {
                    opSize.push_back(qGap);
                    opChar.push_back('I');
                }
                if (tGap > 0) {
                    opSize.push_back(tGap);
                    opChar.push_back('D');
                }
            }
        } else {
            if (cigarUseSeqMatch) {
                AddMatchBlockCigarOps(alignment.qAlignedSeq, alignment.tAlignedSeq,
                                      alignment.blocks[b], alignment.qPos, alignment.tPos, opSize,
                                      opChar);
            } else {
                opSize.push_back(matchLength);
                opChar.push_back('M');
            }
            int gapIndex = b + 1;
            AddGaps(alignment, gapIndex, opSize, opChar);
        }
    }
    if (alignment.tStrand == 1) {
        std::reverse(opSize.begin(), opSize.end());
        std::reverse(opChar.begin(), opChar.end());
    }

    if (not allowAdjacentIndels) {
        MergeAdjacentIndels(opSize, opChar, (cigarUseSeqMatch ? 'X' : 'M'));
    }
}

void SAMOutput::CigarOpsToString(std::vector<int> &opSize, std::vector<char> &opChar,
                                 std::string &cigarString)
{
    std::stringstream sstrm;
    int i, nElem;
    for (i = 0, nElem = opSize.size(); i < nElem; i++) {
        sstrm << opSize[i] << opChar[i];
    }
    cigarString = sstrm.str();
}