File: HSpots.py

package info (click to toggle)
pbsuite 15.8.24%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 14,512 kB
  • ctags: 1,951
  • sloc: python: 10,962; sh: 147; xml: 21; makefile: 14
file content (1246 lines) | stat: -rwxr-xr-x 48,609 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
#!/usr/bin/python
import gc
import os
import re
import sys
import copy
import h5py
import math
import time
import numpy
import pysam
import random
import logging
import argparse 
import traceback
import multiprocessing

from contextlib import contextmanager
from tempfile import NamedTemporaryFile
from collections import defaultdict, Counter

from pbsuite.utils.setupLogging import *
from pbsuite.utils.CommandRunner import exe
from pbsuite.banana.Polish import consensus
from pbsuite.utils.FileHandlers import M5File, revComp
from pbsuite.honey.bampie import BLASRPARAMS, EEBLASRPARAMS
from pbsuite.utils.VCFIO import VCFFile, VCFEntry, HONTEMPLATE

VERSION = "15.01.08"
AUTHOR = "Adam English"

USAGE = """\
Detect 'smaller' SVs via measuring discordance between sample and reference in long reads.
"""

#########################
## --- Global Vars --- ##
#########################

#Biggest integer I want to deal with
BIGINT  = 2000 # Greatest Coverage we deal with (limited by BIGINTY)
BIGINTY = numpy.float32
# NUMPY ARRAY HDF5 COLUMNS AND SIZES
COLUMNS = ["coverage", "matches", "insertions", "deletions"]
#Index of columns
COV  = 0
MAT  = 1
INS  = 2  
DEL  = 3  
#Must not exceed 300,000 data points
CHUNKSHAPE = (4, 70000)
#Size of match stretches that can be ignored
#Explore is for raw reads, confirm is for consenus validation
EXPLORECOLLAPSE = 1
CONFIRMCOLLAPSE = 5
##############################
## --- Helper Functions --- ##
##############################

#{{{ http://code.activestate.com/recipes/511478/ (r1)
import math
import functools

def percentile(N, percent):
    """
    Find the percentile of a list of values.

    @parameter N - is a list of values. Note N MUST BE already sorted.
    @parameter percent - a float value from 0.0 to 1.0.

    @return - the percentile of the values
    """
    if not N:
        return None
    k = (len(N)-1) * percent
    f = math.floor(k)
    c = math.ceil(k)
    if f == c:
        return N[int(k)]
    d0 = N[int(f)] * (c-k)
    d1 = N[int(c)] * (k-f)
    return d0+d1
# median is 50th percentile.
## end of http://code.activestate.com/recipes/511478/ }}}


#{{{ Adapted fromColby Chiang's svtyper https://github.com/cc2qe/svtyper
#I lower the priors here because it seems reasonable that some reads are
# variant supporting but do not make it through all the filtering I perform
def genotype(spot, avgCov=None, priors=[['0/0',0.05], ['0/1',0.45], ['1/1',0.9]]):
    def log_choose(n, k):
        # swap for efficiency if k is more than half of n
        r = 0.0
        if k * 2 > n:
            k = n - k
            
        for  d in xrange(1,k+1):
            r += math.log(n, 10)
            r -= math.log(d, 10)
            n -= 1
        
        return r
    
    total = int(spot.tags["coverage"]) if avgCov is None else avgCov
    alt = int(spot.tags["szCount"])
    ref = total - alt
    gtList = []
    for gt, p_alt in priors:
        gtList.append(log_choose(total, alt) + alt * math.log(p_alt, 10) + ref * math.log(1 - p_alt, 10))
    gt_idx = gtList.index(max(gtList))
    GL = gtList[gt_idx]
    gtList.remove(GL)
    GT = priors[gt_idx][0]
    GQ = -10 * (GL - sum(10**x for x in gtList))
    
    return GT, GQ
## end of https://github.com/cc2qe/svtyper }}}

def expandCigar(read, minSize, collapse=-1, makeAlt=False):
    """
    Turns the abbreviated cigar into the full array
    0 = M; 1 = I; 2 = D

    collapse set of Ms if they are <= collapse#
    They become 'null' 3s
    and flanks are same error >= collapse
    
    returns hasVar, svs
    where svs equals [(start, size, svtype),...]
    svtypes are MAT INS and DEL
    hasVar says if we found any insertion or deletion. good for short circuiting
    """
    ret = []
    qseq = []
    qpos = 0
    pmat = False
    pmatz = 0
    pdel = False
    pdelz = 0
    pins = False
    pinsz = 0
    
    def pmatLoad(start, size):
        if pmat:
            ret.append((start-size, size, "MAT"))
        return False, 0
        
    def pinsLoad(start, size):
        if pins and size >= minSize:
            if makeAlt:
                ret.append((start, size, "INS", "".join(qseq)))
            else:
                ret.append((start, size, "INS"))
        return False, 0
    
    def pdelLoad(start, size):
        if pdel and size >= minSize:
            if makeAlt:
                ret.append((start-size, size, "DEL", None))
            else:
                ret.append((start-size, size, "DEL"))
        return False, 0
    
    basePosition = read.pos
    for code, size in read.cigar:
        if code == 0:
            pmat = True
            pmatz += 1
            if size > collapse: #break pindel if this isn't collapse noise
                pins, pinsz = pinsLoad(basePosition, pinsz)
                pdel, pdelz = pdelLoad(basePosition, pdelz)
                if makeAlt:
                    qseq = []
            basePosition += size 
            qpos += size
        elif code == 1: #ins
            if size >= minSize:
                pins = True
                pinsz += size
                if makeAlt:
                    qseq.append(read.query[qpos - 1 : qpos - 1 + size])
            pdel, pdelz = pdelLoad(basePosition, pdelz)
            qpos += size
            #pmat, pmatz = pmatLoad(basePosition, pmatz)
        elif code == 2: #del
            if size >= minSize:
                pdel = True
                pdelz += size
                pins, pinsz = pinsLoad(basePosition, pinsz)
                if makeAlt:
                    qseq = []
            #pmat, pmatz = pmatLoad(basePosition, pmatz)
            basePosition += size
        #elif code == 4:
            #qpos += size
        
    return ret

def blasr(query, target, format, nproc = 1, outname = "out.m5", consensus=True):
    """
    Simple mapper
    """
    cmd = ("blasr %s %s %s --nproc %d --bestn 1 --out %s ") \
           % (query, target, format, nproc, outname)
    #need to figure out how to m5-pie it...maybe
    if consensus:
        r, o, e = exe(cmd + " --noSplitSubreads --minMatch 5 " + \
                     "--nCandidates 20 --sdpTupleSize 6 --insertion 1 --deletion 1 --bestn 1")
    else:
        r, o, e = exe(cmd + " --maxAnchorsPerPosition 100 "
               "--affineAlign --affineOpen 100 --affineExtend 0 "
               "--insertion 10 --deletion 10 "
               "--noSplitSubreads --nCandidates 20 ")
        
    logging.debug("blasr - %d - %s - %s" % (r, o, e))

def parseArgs(argv, established=False):
    parser = argparse.ArgumentParser(prog="Honey.py spots", description=USAGE, \
            formatter_class=argparse.RawDescriptionHelpFormatter)
    
    ioGroup = parser.add_argument_group("I/O Arguments")
    ioGroup.add_argument("bam", metavar="BAM", type=str, \
                        help="BAM containing mapped reads")
    ioGroup.add_argument("--hon", metavar="HON.H5", type=str, default=None, \
                        help="HON.h5 containing Error data. Skips ErrorCouting.")
    ioGroup.add_argument("-r", "--region", type=str, default=None,\
                        help="Only call spots in region.bed")
    ioGroup.add_argument("--chrom", type=str, default=None, \
                        help="Only call spots on specified chromosomes (comma-separated) (%(default)s)")
    ioGroup.add_argument("-n", "--nproc", type=int, default=1, \
                        help="Number of processors to use (only for consensus) (%(default)s)")
    ioGroup.add_argument("-o", "--output", type=str, default=None, \
                        help="Basename for output (BAM.hon)")
    ioGroup.add_argument("--readFile", action="store_true", \
                        help="Create a file with what reads support what events (%(default)s)")
                        
    pGroup = parser.add_argument_group("Spot-Calling Threshold/Filtering Arguments")
    pGroup.add_argument("-b", "--binsize", type=int, default=50, \
                        help="Binsize for window averaging (%(default)s)")
    pGroup.add_argument("-e", "--threshold",  type=float, default=3,
                        help="Minimum Spot Threshold (%(default)s)")
    pGroup.add_argument("-c", "--minCoverage", type=int, default=2, \
                        help="Minimum coverage of a region (%(default)s)")
    pGroup.add_argument("-C", "--maxCoverage", type=int, default=BIGINT, \
                        help="Maximum coverage of a region (%(default)s)")
    pGroup.add_argument("-q", "--minMapQ", type=int, default=1, \
                        help="Minimum map quality of reads considered (%(default)s)")
    pGroup.add_argument("-m", "--minIndelErr", type=int, default=5,
                        help="Minimum size of an indel error to be counted (%(default)s)")
    pGroup.add_argument("-i", "--minIndelSize", type=int, default=50, \
                        help="Minimum indel SV size (%(default)s)")
    pGroup.add_argument("-E", "--minErrReads", type=int, default=3, \
                        help="Minimum number of reads with indel (%(default)s)")
    pGroup.add_argument("--spanMax", type=int, default=3000, \
                        help="Maximum Size of spot to be called (%(default)s)")
    #pGroup.add_argument("-I", "--minIndelPct", type=float, default=0.20, \
                        #help="Minimum pct of reads with indel (max(%(default)s*cov,minErrReads)")
    
    aGroup = parser.add_argument_group("Consensus Arguments")
    aGroup.add_argument("--consensus", type=str, default="pbdagcon", choices=["pbdagcon", "pbbanana", "None"], \
                        help="Method for polishing consensus. (%(default)s)")
    aGroup.add_argument("--buffer", default=1000, type=int, \
                        help="Buffer around SV to consense (%(default)s)")
    aGroup.add_argument("--reference", default=None, type=str, \
                        help="Sample reference. Required with consensus calling (None)")
    aGroup.add_argument("--reportContig", action="store_true", \
                        help="Report the contig created that called the spot")
    #aGroup.add_argument("--blasr", default="blasr", \
                        #help="Path to blasr if it's not in the env")
    #aGroup.add_argument("--contig", default="store_false", \
                        #help="Report the full contig sequences and QVs in INFO (False)")
    parser.add_argument("--debug", action="store_true", \
                        help="Verbose logging")
    
    args = parser.parse_args(argv)
    setupLogging(args.debug)
    if args.maxCoverage > BIGINT:
        logging.error("Max Coverge must be less than %d" % (BIGINT))
        exit(0)
    
    #check bam is bamfile
    
    if args.output is None:
        #args.output = args.bam.filename[:-4]+".hon"
        if args.hon is not None:
            args.output = args.hon.rstrip(".h5")
        else:
            args.output = args.bam[:-4]+".hon"
    
    if args.consensus != "None":
        if args.reference is None:
            logging.error("Reference is required with consensus calling")
            exit(0)
        #Check is fastafile
    if args.chrom is not None:
        args.chrom = args.chrom.split(',')
    return args


class SpotResult():
    """
    Represents an SVP style entry with structure
    #CHROM	OUTERSTART	START	INNERSTART	INNEREND	END	OUTEREND	TYPE	SIZE	INFO
    I want to change this to output a .vcf entry
    """
    def __init__(self, chrom=None, start=None,  end=None,  \
                 svtype=None, size=None, tags=None):
        self.chrom = chrom
        self.start = start
        self.end = end
        self.svtype = "UNK" if svtype is None else svtype
        self.size = -1 if size is None else size
        self.tags = tags if tags is not None else {}
        self.varReads = []
        self.varReadsSize = []
        self.refReads = []
   
    @classmethod
    def parseLine(cls, line):
        """
        Turn a line into a spot result
        """
        data = line.strip().split('\t')
        tags = {}
        for i in data[9].split(';'):
            k, v = i.split('=')
            try:
                v = int(v)
            except ValueError:
                try:
                    v = float(v)
                except ValueError:
                    pass
            tags[k] = v
        
        return cls(chrom=data[0], start=int(data[2]), end=int(data[5]), \
                   svtype=data[7], size=int(data[8]), tags=tags)
    
    def offset(self, start):
        """
        moves the spot to an offset
        """
        if self.start is not None:
            self.start += start
        if self.end is not None:
            self.end += start
    
    def fetchbounds(self):
        """
        return (start,end) tuple of spot's boundaries
        """
        return self.start, self.end
    
    def estimateSize(self):
        """
        estimate the sv's size by using the mean or bounds
        """
        if 'szMean' in self.tags:
            self.size = self.tags["szMean"]
        else:
            s,e = self.fetchbounds()
            self.size = e-s
    
    def qregstr(self):
        """
        returns quick region string chrom:start-end
        """
        return "%s:%d-%d" % (self.chrom, self.start, self.end)
    
    def toVCFRecord(self):
        #make
        #CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	SAMPLE
        CHROM = self.chrom
        POS = self.pos
        ID = '.'
        REF = '.' if self.svtype == "INS" else self.tags["seq"]
        ALT = '.' if self.svtype == "DEL" else self.tags["seq"]
        FILTER = "PASS" if "noSpan" not in self.tags else "NoSpan" #0/0?
        INFO = OrderedDict()
        #Based on what we have, populate info
        
        infos = OrderedDict({"SVTYPE":self.svtype, \
                             "SVLEN":len(self.tags["seq"])})
        
        #myRecord = vcf.model._Record(CHROM, POS, ID, REF, ALT, QUAL, FILTER, INFO,
        #FORMAT, sample_indexes, samples=None)
   
    def __cmp__(self, other):
        if self.chrom == other.chrom and self.start == other.start and \
          self.end == other.end and self.svtype == other.svtype and \
          self.size == other.size:
            return 0
        return self.start - other.start
        
    def __str__(self):
        """
        changes a spot named tuple to a svp string
        """
        tag = []
        for key in self.tags:
            try:
                tag.append("%s=%0.3f" % (str(key), self.tags[key]))
            except TypeError:
                tag.append("%s=%s" % (str(key), str(self.tags[key])))
        
        
        tag = ";".join(tag)
        dat = [self.chrom, self.start, self.end, self.svtype, self.size, tag]

        return "{0}\t{1}\t{2}\t{3}\t{4}\t{5}".format(*dat).replace("None", ".")

class SpotH5():
    """
    Holds a HoneySport h5 file.
    Keeps a multiprocess.Lock to help prevent multiple access
    """
    def __init__(self, filename, version=None, columns=None, parameters=None, mode='r'):
        if mode not in ['r', 'w', 'a']:
            logging.error("Mode must be r(ead), w(rite), or (a)ppend!")
            logging.error("Forcing 'r'")
        self.filename = filename
        if mode == 'w' and os.path.exists(self.filename):
            logging.error("Ouput H5 %s already exists!" % self.filename)
            exit(1)
        if mode == 'r' and not os.path.exists(self.filename):
            logging.error("Output H5 %s doesn't exist!" % self.filename)
            exit(1)
        if mode != 'r':
            self.__reopen(mode)
            self.__results.attrs["version"] = version
            self.__results.attrs["columns"] = columns
            self.__results.attrs["parameters"] = parameters
            self.__close()   
            
        self.__lock = multiprocessing.Lock()

    @contextmanager
    def acquireH5(self, mode='r'):
        with self.__lock:
            self.__reopen(mode)
            yield self.__results
            self.__close()
    
    def lockH5(self):
        """
        You can only lock the h5 in read-only
        """
        self.__lock.acquire()
        self.__results = h5py.File(self.filename, 'r')
        return self.__results

    def releaseH5(self):
        """
        You can only lock the h5 in read-onely
        """
        self.__close()
        self.__lock.release()
        
    def __reopen(self, mode='r'):
        self.__results = h5py.File(self.filename, mode)
        
    def __close(self):
        self.__results.close()
        
###################################
## --- Consumer/Task Objects --- ##
###################################

class Consumer(multiprocessing.Process):
    """
    Basic Consumer. Follow the two queues with your *args and **kwargs that should be sent
    to the task when __call__ 'd

    NOTE! args can't hold anything that isn't pickle-able for the subprocess
    """
    def __init__(self, task_queue, result_queue, bamName, referenceName, honH5): #*args, **kwargs):
        multiprocessing.Process.__init__(self)
        self.task_queue = task_queue
        self.result_queue = result_queue
        self.bam = pysam.Samfile(bamName)
        if referenceName is not None:
            self.reference = pysam.Fastafile(referenceName)
        else:
            self.reference = None
        self.honH5 = honH5
        #self.args = args
        #self.kwargs = kwargs
        
    def run(self):
        try: 
            proc_name = self.name
            while True:
                next_task = self.task_queue.get()
                if next_task is None:
                    # Poison pill means shutdown
                    logging.info('Thread %s: Exiting' % proc_name)
                    self.task_queue.task_done()
                    break
                try:
                    next_task(self.bam, self.reference, self.honH5)
                except Exception as e:
                    logging.error("Exception raised in task %s - %s" % (next_task.name, str(e)))
                    
                    exc_type, exc_value, exc_traceback = sys.exc_info()
                    logging.error("Dumping Traceback:")
                    traceback.print_exception(exc_type, exc_value, exc_traceback, file=sys.stdout)

                    next_task.failed = True
                    next_task.errMessage = str(e)
                
                self.result_queue.put(next_task)
                self.task_queue.task_done()
            
            return
        except Exception as e:
            logging.error("Consumer %s Died\nERROR: %s" % (self.name, e))
            return

#I can probably have a generic task class...
class ErrorCounter(): 
    """
    Counts all the errors in the region
    """
    def __init__(self, groupName, chrom, start, end, args):
        self.groupName = groupName
        self.chrom = chrom
        self.start = start
        self.end = end
        self.args = args #I think I'm sending these twice.. whoops
        self.name = groupName + ":ErrorCounter"
        self.failed = False
        self.errMessage = ""
    
    def countErrors(self, reads, offset, regsize, args):
        """
        Sum the errors over any particular reference base
        """
        container = numpy.zeros( ( len(COLUMNS), regsize ), dtype=BIGINTY )
        mqFilt = 0
        progress = .05
        for align in reads:
            if align.mapq < args.minMapQ:
                mqFilt += 1
                continue
            regionStart = 0 if align.pos < offset else align.pos - offset
            regionEnd = regsize if align.aend > (offset + regsize) else align.aend - offset
            container[COV, regionStart:regionEnd] += BIGINTY(1)
            #progress monitoring
            pct = float(regionStart)/container.shape[1]
            if pct >= progress:
                logging.info("%d%% complete" % (pct*100))
                progress += 0.05
                
            for svstart, svsize, svtype in expandCigar(align, args.minIndelErr, EXPLORECOLLAPSE):
                if svstart >= offset and svstart <= offset + regsize:
                    if svtype == "MAT":#depricated
                        begin = max(0, svstart - svsize - offset)
                        end = min(begin - offset, container.shape[1])
                        container[MAT, begin:end] += BIGINTY(1)
                    elif svtype == "DEL":
                        begin = max(0, svstart - offset)
                        end = min(begin + svsize, container.shape[1])
                        container[DEL, begin:end] += BIGINTY(1)
                    elif svtype == "INS":
                        begin = max(0, svstart - (svsize/2) - offset)
                        end = min(begin + (svsize/2), container.shape[1])
                        container[INS, begin:end] += BIGINTY(1)
                     
        logging.debug("%d reads filtered for low mapq in %s" % (mqFilt, self.groupName))
        return container

    def __call__(self, bam, reference, honH5):
        """
        Takes a pysam.Samfile
        """
        logging.info("Starting %s" % (self.name))
        size = self.end - self.start
        regName =  "%s:%d-%d" % (self.chrom, self.start, self.end)
        
        logging.debug("Making container for %s (%s %d bp)" % (self.groupName, regName, size))
                        
        logging.debug("Parsing bam" )
        st = max(0, self.start)
        readCount = bam.count(self.chrom, st, self.end)
        reads = bam.fetch(self.chrom, st, self.end)
        if readCount == 0:
            logging.warning("No reads found in %s" % self.groupName)
            self.failed = True
            self.errMessage = "No reads found in %s" % self.groupName
            return
        else:
            logging.info("%d reads to parse in %s" % (readCount, self.groupName))
        
        myData = self.countErrors(reads, self.start, size, self.args)
        
        #request loc on honH5 and flush results
        with honH5.acquireH5('a') as h5dat:
            out = h5dat.create_group(self.groupName)
            
            out.attrs["reference"] = self.chrom
            out.attrs["start"] = self.start
            out.attrs["end"] = self.end
            
            if size < CHUNKSHAPE[1]:
                chunk = (CHUNKSHAPE[0], size-1)
            else:
                chunk = CHUNKSHAPE
            
            container = out.create_dataset("data", data = myData, \
                                    chunks=chunk, compression="gzip")
            h5dat.flush()

class SpotCaller():
    """
    Takes a full matrix from ErrorCounter and calls/filters spots
    """
    def __init__(self,  groupName, chrom, start, end, args):
        self.groupName = groupName
        self.chrom = chrom
        self.start = start
        self.end = end
        self.args = args
        self.name = groupName + ":SpotCaller"
        self.failed = False
        self.errMessage = ""
        
        #Signal stats are None by default
        self.maxCov = None
        self.avgCov = None
        self.stdCov = None
        self.minCov = None
        
    def preprocessSignal(self, signal, coverage):
        """
        Normalize and print stats returning data and it's std
        """
        #rate = numpy.convolve(signal/coverage, self.avgWindow, "same")
        rate = numpy.convolve(signal, self.avgWindow, "same")
        rate[numpy.any([numpy.isinf(rate), numpy.isnan(rate)], axis=0)] = 0
        mu = numpy.mean(numpy.any([rate != 0], axis=0))
        sd = numpy.std(numpy.any([rate != 0], axis=0))
        logging.info("|%s|RateMean %f  -- RateStd  %f" % (self.name, mu, sd))
        return rate, mu, sd
        
    def callHotSpots(self, data, offset, bam, args): #threshPct, covThresh, binsize, offset):
        """
        """
        ret = []
        self.avgWindow = numpy.ones(args.binsize, dtype=numpy.float16)/float(args.binsize)
        
        #coverage
        cov = numpy.convolve(data[COV], self.avgWindow, "same")
        covTruth = numpy.all([cov >= args.minCoverage, cov <= args.maxCoverage], axis=0)
        
        self.maxCov = numpy.max(data[COV])
        self.avgCov = numpy.mean(data[COV])
        self.stdCov = numpy.std(data[COV])
        self.minCov = numpy.std(data[COV])
        logging.info("|%s|COV processing" % (self.name))
        logging.info("|%s|MaxCov:%d MeanCov:%d StdCov:%d MinCov:%d" \
                % (self.name, self.maxCov, self.avgCov, self.stdCov, self.minCov))
        del(cov)
        
        #ins
        logging.info("|%s|INS processing" % self.name)
        ins, mu, sd = self.preprocessSignal(data[INS], data[COV])
        startPoints = self.makeSpots(ins, mu, sd, covTruth, args.threshold, args.buffer)
        for start, end, zscore in startPoints:
            mySpot = SpotResult(chrom=self.chrom, start=start, end=end, svtype="INS")
            mySpot.tags["groupName"] = self.groupName
            mySpot.offset(self.start)
            if self.supportingReadsFilter(mySpot, bam, args):
                mySpot.tags["zscore"] = zscore
                ret.append(mySpot)
        del(ins)
        
        #dele
        logging.info("|%s|DEL processing" % self.name)
        dele, mu, sd = self.preprocessSignal(data[DEL], data[COV])
        startPoints = self.makeSpots(dele, mu, sd, covTruth, args.threshold, args.buffer)
        for start, end, zscore in startPoints:
            mySpot = SpotResult(chrom=self.chrom, start=start, end=end, svtype="DEL")
            mySpot.tags["groupName"] = self.groupName
            mySpot.offset(self.start)
            if self.supportingReadsFilter(mySpot, bam, args):
                mySpot.tags["zscore"] = zscore
                ret.append(mySpot)
        del(dele)
        
        return ret
        
    def makeSpots(self, data, mu, sd, covTruth, threshold, buffer):
        """
        make the points for the truth set made from the data container
        truth = numpy.array() with boolean values
        return start,end and zscore
        """
        #prevent weirdness
        #truth = numpy.all([data >= mu+threshold*sd, covTruth], axis=0)
        truth = numpy.all([data >= threshold, covTruth], axis=0)
        truth[-1] = False
        shift = numpy.roll(truth, 1)
        
        starts = truth & ~shift
        ends = ~truth & shift
        
        points = zip(numpy.nonzero(starts)[0], numpy.nonzero(ends)[0])
        npoints = []
        if len(points) == 0:
            return npoints
        
        curStart, curEnd = points[0]
        for start, end in points[1:]:
            if start - curEnd <= buffer:
                curEnd = end
            else:
                zscore = (mu - data[curStart:curEnd].mean())/sd
                npoints.append((curStart, curEnd, zscore))
                curStart = start
                curEnd = end
        
        zscore = (mu - data[curStart:curEnd].mean())/sd
        npoints.append((curStart, curEnd, zscore))
        return npoints
    
    def supportingReadsFilter(self, spot, bam, args):
        """
        filters insertions or deletion spots based on errors
        """
        if spot.svtype == "INS":
            errId = 1
            errLab = 'insertion'
        elif spot.svtype == "DEL":
            errId = 2
            errLab = 'deletion'
        else:#don't worry about other types
            return True
        
        begin, ending = spot.fetchbounds()
        buff = abs(begin-ending) * 2#area we allow read errors to exist
        
        reads = bam.fetch(str(spot.chrom), max(0, begin - 1000), ending + 1000)
        totSizes = []
        coverage = 0
        nReadsErr = 0
        #For tandem
        strandCnt = {True: 0, False: 0}
        
        #count reads and errSizes
        mqFilt = 0
        for read in reads:
            #must span -- still worried about this
            if not (read.pos < begin and read.aend > ending):
                continue
            if read.mapq < args.minMapQ: #mq filt
                mqFilt += 1
                continue

            coverage += 1
            readHasErr = False
            totErrSize = 0
            for svstart, svsize, svtype in expandCigar(read, args.minIndelErr, EXPLORECOLLAPSE):
                if svtype != spot.svtype:
                    continue
                #contained
                if  svstart >= begin - buff and svstart < ending + buff:
                    totErrSize += svsize
                #overlaps
                elif svtype == 'DEL' and begin-buff <= svstart + svsize < ending+buff:
                    totErrSize += svsize
                
                
            if totErrSize >= args.minIndelSize:
                readHasErr = True
                nReadsErr += 1
                totSizes.append(totErrSize)
                strandCnt[read.is_reverse] += 1
                spot.varReads.append(read.qname)
                spot.varReadsSize.append(totErrSize)
            else:
                spot.refReads.append(read.qname)
                
        spot.tags["mqfilt"] = mqFilt
        spot.tags["strandCnt"] = "%d,%d" % (strandCnt[False], strandCnt[True])
        if len(totSizes) < args.minErrReads:
            return False # false - you should filter
        
        totSizes.sort()
        totSizes = numpy.array(totSizes)
        mean = totSizes.mean()
        median = numpy.percentile(totSizes, 50)
        firstQ = numpy.percentile(totSizes, 25)
        thirdQ = numpy.percentile(totSizes, 75)
        
        logging.debug("PassFilt %s" % (str(spot)))   
        logging.debug("cov    %d" % coverage )
        logging.debug("size %d %s" % (len(totSizes), str(totSizes)))
        logging.debug("mean   %d" % mean )
        logging.debug("median %d" % median)
        logging.debug("firstQ %d" % firstQ)
        logging.debug("thirdQ %d" % thirdQ)
        
        spot.tags["coverage"] = coverage
        spot.tags["szCount"]  = int(nReadsErr)
        spot.tags["szMean"]   = int(mean)
        spot.tags["szMedian"] = int(median)
        spot.tags["sz1stQ"]   = int(firstQ)
        spot.tags["sz3rdQ"]   = int(thirdQ)
        return True
    
    def __call__(self, bam, reference, honH5):
        """
        """
        logging.info("Starting %s" % (self.name))
        with honH5.acquireH5('r') as h5dat:
            #if self.end - self.start != len(h5dat[self.groupName]["data"]
            #I don't know how to subregion a full h5 anymore...
            #if self.start == 0 and self.end == len(h5dat[self.groupName]["data"][0,:]):
            #myData = numpy.array(h5dat[self.groupName]["data"])[:,self.start:self.end])
            myData = numpy.array(h5dat[self.groupName]["data"])#[:,self.start:self.end])
        
        self.calledSpots = self.callHotSpots(myData, self.start, bam, self.args)
        
        with honH5.acquireH5('a') as h5dat:
            if "max_coverage" not in h5dat[self.groupName].attrs:
                #I don't want to overwrite incase I'm recalling over a region
                h5dat[self.groupName].attrs["max_coverage"] = self.maxCov
                h5dat[self.groupName].attrs["avg_coverage"] = self.avgCov
                h5dat[self.groupName].attrs["std_coverage"] = self.stdCov
                h5dat[self.groupName].attrs["min_coverage"] = self.minCov

class ConsensusCaller():
    """
    For any particular spot, create a consensus
    """
    def __init__(self, spot, args):
        self.spot = spot
        self.args = args
        self.name = spot.qregstr() + ":ConsensusCaller"
        self.failed = False
        self.errMessage = ""
        
    def readTrim(self, read, start, end):
        """
        Trims a pysam.AlignedRead to only include the sequence that's aligned (or should be aligned)
        between start and end on reference
        returns the sequence and quality
        """
        score = 0
        if not read.is_unmapped:
            regTrim = 0
            #upS = read.cigar[0][1] if read.cigar[0][0] == 4 else 0
            #dnS = read.cigar[-1][1] if read.cigar[-1][0] == 4 else 0
            
            trimS = None
            trimE = None
            
            if start > read.pos:
                for queryPos, targetPos in read.aligned_pairs:
                    
                    if trimS is None and targetPos is not None and targetPos >= start:
                        trimS = queryPos
            else:
                score += abs(read.pos - start)
            if end < read.aend:
                for queryPos, targetPos in read.aligned_pairs[::-1]:
                    if trimE is None and targetPos is not None and targetPos <= end:
                        trimE = queryPos
            else:
                score += abs(read.aend-end)
            
            if trimS is not None:
                #trimS = max(0, trimS) + upS
                trimS = max(0, trimS)
            else:
                trimS = 0
                    
            if trimE is not None:
                #trimE = min(len(read.seq), trimE)  - dnS
                trimE = min(len(read.seq), trimE)  
            else:
                trimE = len(read.seq)
            seq = read.query[trimS:trimE]
            qual = read.qqual[trimS:trimE]
            if not read.is_reverse:
                seq = seq.translate(revComp)[::-1]
                qual = qual[::-1]
        
        return seq, qual
    
    def consensusCalling(self, spot, bam, reference, args):
        """
        Make a consensus of all the reads in the region and identify all of the SVs in the region
        """
        #
        MAXNUMREADS = 100 #I don't think we'll need more than this many reads
        MAXATTEMPTS = 5   #MAXNUMREADS/2 #I don't feel like trying 100 times
        SPANBUFFER  = 100 #number of bases I want a read to span
        
        chrom, start, end = spot.chrom, spot.start, spot.end
        buffer = args.buffer
        
        supportReads = []
        spanReads = []
        #Fetch reads and trim
        totCnt = 0
        for read in bam.fetch(chrom, max(0, start-buffer-SPANBUFFER), end+buffer+SPANBUFFER):
            if read.qname not in spot.varReads:
                continue
            seq, qual = self.readTrim(read, start-buffer, end+buffer)
            if read.pos < start-SPANBUFFER and read.aend > end+SPANBUFFER:
                sz = spot.varReadsSize[spot.varReads.index(read.qname)]
                spanReads.append((abs(sz - spot.tags["szMedian"]), seq, qual))
            else:
                supportReads.append((seq, qual))
            totCnt += 1
            
        if len(spanReads) == 0:
            logging.debug("noone spans - consensus aborted. %s" % (str(spot)))
            spot.tags["noSpan"] = True
            return [spot]
            
        #spanReads.sort(reverse=True)
        spanReads.sort()
        if len(spanReads) > MAXNUMREADS:
            origSupportReads = [(x[1], x[2]) for x in spanReads[:MAXNUMREADS]]
        elif len(spanReads) + len(supportReads) > MAXNUMREADS:
            origSupportReads = [(x[1], x[2]) for x in spanReads] + supportReads[:MAXNUMREADS-len(spanReads)]
        else:
            origSupportReads = [(x[1], x[2]) for x in spanReads] + supportReads
        mySpots = []
        refReadId = 0
        haveVar = False
        #Attempt each spanRead until we get one that passes
        while refReadId < len(spanReads) and not haveVar and refReadId < MAXATTEMPTS:
            refread = spanReads[refReadId]
            supportReads = origSupportReads[:refReadId] + origSupportReads[refReadId+1:] 
            refReadId += 1
            
            #read that spans most of the region goes first
            #use the rest for cleaning
            
            #building consensus sequence
            foutreads = NamedTemporaryFile(suffix=".fastq")
            for id, i in enumerate(supportReads):
                foutreads.write("@%d\n%s\n+\n%s\n" % (id, i[0], i[1]))
            foutreads.flush()
            foutref = NamedTemporaryFile(suffix=".fasta")
            foutref.write(">%s:%d-%d\n%s" % (spot.chrom, start, end, refread[1]))
            foutref.flush()
            
            alignOut = NamedTemporaryFile(suffix=".m5")
            logging.debug("making the contig....")
            #run it through phrap

            #then run it through consensus
            blasr(foutreads.name, foutref.name, format="-m 5", nproc=1, outname=alignOut.name)
            if args.consensus == "pbbanana":
                aligns = M5File(alignOut.name)
                con = ">con\n%s\n" % consensus(aligns).sequence
                conName = "pbbanana"
            elif args.consensus == "pbdagcon":
                logging.debug("pbdagcon is running")
                #using minerreads - 1 because one f them is already being used as seed!
                #I want to be sure I get something out... so just require somebody on there
                #r, con, e = exe("pbdagcon -c %d -t 0 %s" % (1, alignOut.name), timeout=1)
                #r, con, e = exe("pbdagcon -m 100 -c %d -t 0 %s" % (max(args.minErrReads - 1, 0), alignOut.name), timeout=1)
                r, con, e = exe("pbdagcon -m 100 -c %d -t 0 %s" % (3, alignOut.name), timeout=1)
                logging.debug("back from pbdagcon")
                logging.debug((r,e))
                #raw_input("press ent")
                if con is not None:
                    con = con[con.index("\n")+1:]
                else:
                    con = ""
                conName = "pbdagcon"
            alignOut.close()
            foutref.close()
            foutreads.close()
            #we don't have a consensus - retry
            if len(con) == 0:
                logging.debug("Trying another seed read for consensus")
                continue
            logging.debug("%s %d bp seq" % (conName, len(con.split('\n')[1])))
            
            #try improving consensus
            conOut = NamedTemporaryFile(suffix=".fasta")
            conOut.write(con)
            #conOut.close()
            conOut.flush()
            
            refOut = NamedTemporaryFile(suffix=".fasta")
            #j = reference.fetch(chrom, max(0, start-buffer), end+buffer)
            #fout = open("fuckme.ref.fasta",'w')
            #fout.write(j)
            #fout.close()
            refOut.write(">%s:%d-%d\n%s\n" % (chrom, start, end, \
                        reference.fetch(chrom, max(0, start-(buffer*2)), end+(buffer*2))))
            refOut.flush()
            
            #map consensus to refregion
            varSam = NamedTemporaryFile(suffix=".sam")
            blasr(conOut.name, refOut.name, format="--sam", outname=varSam.name,\
                consensus=False) #-- would this help?
                #or what if I fed it through leftalign?
            #os.system("cp %s ." % (refOut.name))
            #os.system("cp %s ." % (varSam.name))
            sam = pysam.Samfile(varSam.name)
            
            matches = 0.0
            bases = 0.0
            nReads = 0
            minVarDiff = 10000
            for read in sam:
                localSpots = []
                nReads += 1
                spot.tags["consensusCreated"] = True
                for svstart, svsize, svtype, altseq in expandCigar(read, args.minIndelSize, CONFIRMCOLLAPSE, True):
                    newspot = copy.deepcopy(spot)
                    
                    if spot.svtype == svtype and svtype == "INS":
                        #haveVar = True
                        newspot.start = svstart + start - (buffer*2)
                        newspot.end = svstart + start - (buffer*2)
                        newspot.tags["seq"] = altseq
                        newspot.size = svsize
                        gt, gq = genotype(newspot)
                        newspot.tags["GT"] = gt
                        newspot.tags["GQ"] = gq
                        if abs(spot.tags["szMedian"] - newspot.size) < minVarDiff:
                            minVarDiff = abs(spot.tags["szMedian"] - newspot.size)
                        if args.reportContig:
                            newspot.tags["contigseq"] = read.seq
                            newspot.tags["contigqual"] = read.qual
                        localSpots.append(newspot)
                    
                    elif spot.svtype == svtype and svtype == "DEL":
                        #haveVar = True
                        newspot.start = svstart + start - (buffer*2)
                        newspot.end = svstart + svsize + start - (buffer*2)
                        newspot.size = svsize
                        gt, gq = genotype(newspot)
                        newspot.tags["GT"] = gt
                        newspot.tags["GQ"] = gq
                        newspot.tags["seq"] = reference.fetch(chrom, newspot.start, newspot.end)
                        if abs(spot.tags["szMedian"] - newspot.size) < minVarDiff:
                            minVarDiff = abs(spot.tags["szMedian"] - newspot.size)
                        if args.reportContig:
                            newspot.tags["contigseq"] = read.seq
                            newspot.tags["contigqual"] = read.qual
                        localSpots.append(newspot)
                if len(localSpots) > 0:
                    mySpots.append((minVarDiff, localSpots))
            
            #identity = matches/bases
            #If no var, nothing is returned.
            #for newspot in mySpots:
                #newspot.tags["alnIdentityEstimate"] = identity
                #Keep reporting the actual contigs out until we 
                #find a reason to need it (and also we can get quals...)
                #vbam.reset()
                #for id, read in enumerate(vbam):
                    #newspot.tags["contigSeq%d" % (id)] = read.seq 
                    #newspot.tags["contigQual%d" % (id)] = read.qual 
            
            #vbam.close()
            #varBam.close()
            refOut.close()
            
            #logging.debug("%d consensus reads created %d spots" % (nReads, len(localSpots)))

        if len(mySpots) == 0:
            return []
        
        mySpots.sort()
        return mySpots[0][1]
    
    def __call__(self, bam, reference, honH5):
        """
        """
        logging.info("Starting %s" % (self.name))
        self.newSpots = self.consensusCalling(self.spot, bam, reference, self.args)

############################
## --- Execution Code --- ##
############################

def run(argv):
    numpy.seterr(all="ignore")
    args = parseArgs(argv)
    
    bam = pysam.Samfile(args.bam)
    try:
        if bam.header["HD"]["SO"] != "coordinate":
            logging.warning("BAM is not sorted by coordinates! Performance may be slower")
    except KeyError:
        logging.warning("Assuming BAM is sorted by coordinate. Be sure this is correct")
   
    hotSpots = open(args.output+".spots", 'w')
    hotSpots.write("#CHROM\tOUTERSTART\tSTART\tINNERSTART\tINNEREND\tEND\tOUTEREND\tTYPE\tSIZE\tINFO\n")
    if args.readFile:
        readFile = open(args.output + ".reads", 'w')
        readFile.write("#CHROM\tOUTERSTART\tSTART\tINNERSTART\tINNEREND\tEND\tOUTEREND\tTYPE\tSIZE\tINFO\n")
        
    regions = {}
    if args.region:
        fh = open(args.region,'r')
        for line in fh.readlines():
            data = line.strip().split('\t')
            if args.chrom is None or data[0] in args.chrom:
                regions[data[3]] = (data[3], data[0], int(data[1]), int(data[2]))
                #regions.append((data[3], data[0], int(data[1]), int(data[2])))
        fh.close()
    else:
        for chrom, size in zip(bam.references, bam.lengths):
            if args.chrom is None or chrom in args.chrom:
                regions[chrom] = (chrom, chrom, 0, size)
    
        
    tasks = multiprocessing.JoinableQueue();
    results = multiprocessing.Queue();
    
    if args.hon is not None:
        honH5 = SpotH5(args.hon)
        gotoQueue = results
    else:
        honH5 = SpotH5(args.output + ".h5", \
                       VERSION, \
                       COLUMNS, \
                       str(args), mode='w')
        gotoQueue = tasks

    #ErrorCounting
    errConsumers = [ Consumer(tasks, results, args.bam, args.reference, honH5) for i in xrange(args.nproc) ]
    for w in errConsumers:
        w.start()
           
    num_jobs = 0
    for groupName, chrom, start, end in regions.values():
        gotoQueue.put(ErrorCounter( groupName, chrom, start, end, args))
        num_jobs += 1
               
    while num_jobs:
        result = results.get()
        num_jobs -= 1
        
        if result.failed:
            logging.error("Task %s Failed (%s)" % (result.name, result.errMessage))
        
        elif result.name.endswith("ErrorCounter"):#counted -> call
            logging.info("%s -> spot" % (result.name))
            groupName, chrom, start, end = regions[result.groupName]
            tasks.put(SpotCaller( groupName, chrom, start, end, args ))
            num_jobs += 1
            
        elif result.name.endswith("SpotCaller"):#call -> consensus
            nspot = 0
            for spot in result.calledSpots:
                spot.estimateSize()
                if spot.size < args.minIndelSize or spot.size > args.spanMax:
                    continue 
                
                nspot += 1
                if args.consensus == "None":
                    hotSpots.write(str(spot) + '\n')
                    if args.readFile:
                        readFile.write(str(spot) + '\n')
                        if len(x.varReads) > 0:
                            readFile.write("\n".join(['var ' + j for j in x.varReads]) + '\n')
                        if len(x.refReads) > 0:
                            readFile.write("\n".join(['ref ' + j for j in x.refReads]) + '\n')
                else:
                    tasks.put(ConsensusCaller(spot, args))
                    num_jobs += 1
            if nspot > 0:
                logging.info("%s -> %d consensus" % (result.name, nspot))
            
        elif result.name.endswith("ConsensusCaller"):#consensus -> finish
            logging.info("Task %s -> finish" % (result.name))
            for x in result.newSpots:
                hotSpots.write(str(x)+'\n')
                if args.readFile:
                        readFile.write(str(x) + '\n')
                        if len(x.varReads) > 0:
                            readFile.write("\n".join(['var ' + j for j in x.varReads]) + '\n')
                        if len(x.refReads) > 0:
                            readFile.write("\n".join(['ref ' + j for j in x.refReads]) + '\n')
    
    #Poison the Consumers.. I'm done with them
    for i in xrange(args.nproc):
        tasks.put(None)
    
    logging.info("Finished")

def test(argv):
    numpy.seterr(all="ignore")
    args = parseArgs(argv)
    setupLogging(True)#keep debug on.. you're testing!
    logging.critical(("Running HSpots.py directly implements testing mode. "
                      "If you're trying to run the full, actual program, use "
                      "Honey.py spots"))
       
    bam = pysam.Samfile(args.bam)
    reference = pysam.Fastafile(args.reference)
    try:
        if bam.header["HD"]["SO"] != "coordinate":
            logging.warning("BAM is not sorted by coordinates! Performance may be slower")
    except KeyError:
        logging.warning("Assuming BAM is sorted by coordinate. Be sure this is correct")
    logging.info("Running in test mode")
    
    #do what you will.. from here
    # This is what I need to start with
    #spot = SpotResult(chrom="7", start=138402727, end=138402830, svtype="INS", size=113)
    chrom="3"      
    start,end = (195498264, 195498609)
    start -=200
    end +=200
    spot = SpotResult(chrom=chrom, start=start, end=end, svtype="DEL", size=100)
    
    #fh = open("possible.bed")
    #for line in fh.readlines():
        #data = line.strip().split('\t')
        #spot = SpotResult(chrom=data[0], start=int(data[8]), end = int(data[9]), \
                          #size=int(data[5]), svtype=data[4])
        
    j = SpotCaller('group', spot.chrom, spot.start, spot.end, args)
    if j.supportingReadsFilter(spot, bam, args):
        consen = ConsensusCaller(spot, args)
        consen(bam, reference, 'none')
        for i in consen.newSpots:
            i.tags["seqmade"] = True
            print i
        if len(consen.newSpots) == 0:
            spot.tags["noseq"] = True
            print str(spot)
    else:
        spot.tags["filtfail"] = True
        print str(spot)
    #done with test code
    logging.info("Finished testing")
    
if __name__ == '__main__':
    #run(sys.argv[1:]) 
    test(sys.argv[1:])