1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
|
#!/usr/bin/python
import re, os, sys, logging, json, copy
from bisect import bisect_left, bisect_right
from optparse import OptionParser
from collections import defaultdict
from pbsuite.utils.setupLogging import *
from pbsuite.utils.FileHandlers import *
from networkx import Graph
USAGE = """Support.py <alignmentFile> <gapInfo> <outFile>
Parses an .m4 or .m5 alignment file and determines which gaps in gapInfo are
supported by reads. As well as Results reported in outFile"""
"""
TODO
Need ability to place scaffolds within captured gaps
>scaf1
====.....====
>scaf2
---
Actual Genome
====.---.====
That plus the pacbio evidence could polish off that entire gap
"""
#Max Distance a read's alignment can stop from a gap and still be considered
#for support of the gap
MAXFLANK = 50
#Min number of bases a read needs to reach into a gap to be considered for
#support of the gap
MINCOVERS = 25
SUPPORTFLAGS = enum(none = 0, \
left = 1, \
right = 2, \
span = 3, \
contain = 8 )
ALIGNFLAGS = enum(uniqueMapping = 1, \
multiMapping = 2, \
lqpa = 4, \
mostAccurate = 8, \
bestScore = 16 )
class AlignmentConnector():
"""
Helper object that will group hits, connect alignments, identify
missed adapters, test if a read maps concordantly or discordantly,
and test if alignments are within regions
Takes a set of alignments, and parses multi-mapping information
in order to produce a single alignment.
"""
def __init__(self):
"""
Only has static methods
"""
pass
def parseAlignments(self, alignments, minMapq, idAdapters = True):
"""
Given a set of alignments (from one or more read) put them through the paces
and return a list of lists of alignments.
"""
groups = self.groupReadHits(alignments, minMapq)
ret = {}
for key in groups:
r = self.connect(groups[key])
if idAdapters and self.idAdapters(r):
# if it has adapters, I'll need to
# separate the pieces -- idAdapters renames them
for i in r:
logging.debug("About to set qname on %s" % (i))
logging.debug(r)
try:
i.qname = i.qname + "##%d#%d##" % i.trim
except TypeError:
#didn't get trimmed (happens with 3 subreads per
#a single read - only one missed adapter)
pass
ret[i.qname] = [i]
else:
ret[key] = r
return ret.values()
def connect(self, hits, sameStrand=False, sameTar=False):
"""
Standard procedure to take a group of alignments and
connect concordant hits while also using ALIGNFLAGS to characterize
each read
Input: a list of hits from a read
Return: Concordant Reads classified
Use sameStrand and sameTar(get) to restrict the definition of
concordant
"""
ret = copy.deepcopy(hits)
con = True
for h in ret:
if h.flag != 0:
con = False
if con:#Don't group compare twice
self.groupComparison(ret)
ret = self.untangle(ret)
return ret
def groupComparison(self, hits, flag=True):
"""
Find the best LQPA, ACC, and HISCORE
if flag == False:
we don't change the flag, we just return a list of lists
[ [bestScore], [mostAccurate], [lqpa] ]
"""
#The number behind the best; the list of bests (Cause there can be ties)
LQPA = hits[0].queryPctAligned; lqpas = [hits[0]]
ACC = hits[0].pctsimilarity; accs = [hits[0]]
SCORE = hits[0].score; scores = [hits[0]]
#Find the bests
for align in hits[1:]:
if align.queryPctAligned == LQPA:
lqpas.append(align)
elif align.queryPctAligned > LQPA:
LQPA = align.queryPctAligned
lqpas = [align]
if align.pctsimilarity == ACC:
accs.append(align)
elif align.pctsimilarity > ACC:
ACC = align.pctsimilarity
accs = [align]
if align.score == SCORE:
scores.append(align)
elif align.score < SCORE:
SCORE = align.score
scores = [align]
#Set the apropriate flags
if not flag:
return [scores, accs, lqpas]
for align in lqpas:
align.flag += ALIGNFLAGS.lqpa
for align in accs:
align.flag += ALIGNFLAGS.mostAccurate
for align in scores:
align.flag += ALIGNFLAGS.bestScore
def mappingType(self, hits):
"""
Sets Reads flag based on Alignment
"UniqueMapping", "MultiMapping"
"""
logging.debug("Determining Read's mapping type from hits")
fInc = 0
if len(hits) == 1:
fInc = ALIGNFLAGS.uniqueMapping
else:
fInc = ALIGNFLAGS.multiMapping
for i in hits:
i.flag += fInc
def isQueryConcordant(self, A, B, sameStrand=False):
"""
Takes two reads (A,B) and checks their mapping concordancy
meaning the query alignment positions are reasonable
given a sequencing read
for example:
concordant
q ===--- ---===
t ===============
!concordant
q ---=== ---===
t ===============
sameStrand == True:
read's hits need to be on the sameStrand
Return 0 for False
Return 1 for A is upstream (5' - 3') of B
Return -1 for B is upstream
"""
if sameStrand and A.tstrand != B.tstrand:
return 0
if A.qstart < A.qend < B.qstart < B.qend:#
return 1
if B.qstart < B.qend < A.qstart < A.qend:
return -1
return 0
def isTargetConcordant(self, A, B, sameStrand=False, sameTar=False):
"""
Takes two alignments and checks if they're concordant.
if sameStrand:
hits must be on the same strand
if sameTar:
hits must be on the same target
Return 0 for False
Return 1 for A is upstream (5' - 3') of B
Return -1 for B is upstream
Question:
Can you have hits that are target concordant but not
query concordant?
queryA ==-
queryB -==
target ----
A deletion?
"""
if sameStrand and a.tstrand != B.tstrand:
return 0
if sameTar and A.tname != B.tname:
return 0
if A.tend < B.tstart and A.qend < B.qstart:
return 1
if B.tend < A.tstart and B.qend < A.qstart:
return -1
return 0
def extendsTarget(self, alignment, maxFlank=50, minCovers=25):
"""
Checks to see if a read extends it's target
Returns the direction to which the target is
extended using SUPPORTFLAGS
"""
ret = SUPPORTFLAGS.none
logging.debug("maxFlank %d - minCovers %d" % (maxFlank, minCovers))
logging.debug("Checking 5End of Scaff %s %s" % (alignment.tname, alignment.qname))
ret += self.supportsRegion(alignment, alignment.tname, \
-sys.maxint, 0, maxFlank, minCovers)
logging.debug("Checking 3End of Scaff %s %s" % (alignment.tname, alignment.qname))
ret += self.supportsRegion(alignment, alignment.tname, \
alignment.tseqlength, sys.maxint, maxFlank, minCovers)
#Orientation correct - how we're extending target
if ret == SUPPORTFLAGS.right:
ret = SUPPORTFLAGS.left
elif ret == SUPPORTFLAGS.left:
ret = SUPPORTFLAGS.right
return ret
def supportsRegion(self, alignment, rName, rStart, rEnd, maxFlank=50, minCovers=25):
"""
Checks if read's alignment supports a region.
if r(egion)Name/Start/End is not specified the target sequence's boundaries are used
The region of support can be extended using:
maxFlank = Max distance from end query alignment can stop to still be a candiate
minCovers = Min amount of sequence that extends the target
Uses the SUPPORTFLAGS eunum for return values
Returns "left" for covering the region's left most point
Returns "right" for covering the region's right most point
Returns "span" for covering left and right
Returns "contain" for being within left and right point
Returns "none" if no relation (different targets - contained - otherwise)
"""
ret = SUPPORTFLAGS.none
if rName != alignment.tname:
return ret
if alignment.tstrand == "0":
#Moving into Region from left
#Meaning we extend the region into the left (to the right)
distanceFromEnd = rStart - alignment.tend
remainingReadSeq3 = (alignment.qseqlength - alignment.qend) - minCovers
logging.debug("+ Strand on " + alignment.qname)
logging.debug("LeftDist %d remainSeq %d" % (distanceFromEnd, remainingReadSeq3))
if distanceFromEnd >= 0 and \
distanceFromEnd < remainingReadSeq3 and \
distanceFromEnd <= maxFlank :
#Positive Strand Maps on Left Contig and enters gap
ret += SUPPORTFLAGS.left
logging.debug("left")
#moving out of Region to right
#meaning we extend into the right (to the left)
distanceFromBeginning = alignment.tstart - rEnd
remainingReadSeq5 = alignment.qstart - minCovers
logging.debug("RightDist %d remainSeq %d" % (distanceFromBeginning,remainingReadSeq5))
if distanceFromBeginning >= 0 and \
distanceFromBeginning < remainingReadSeq5 and \
distanceFromBeginning <= maxFlank :
#Positive Strand Maps on Right Contig and Exits Gap
ret += SUPPORTFLAGS.right
logging.debug("right support")
if alignment.tstart <= (rStart - maxFlank) and alignment.tend >= (rEnd + maxFlank):
ret = SUPPORTFLAGS.span
logging.debug("span support")
elif alignment.tstart >= rStart and alignment.tend <= rEnd:
ret = SUPPORTFLAGS.contain
logging.debug("contain support")
elif alignment.tstrand == "1":
#Moving into region from left on - strand
#Meaning we extend to the right on + strand
distanceFromBeginning = alignment.tstart - rEnd
remainingReadSeq3 = (alignment.qseqlength - alignment.qend) - minCovers
logging.debug("- Strand on "+alignment.qname)
logging.debug("RightDist %d remainSeq %d" % (distanceFromBeginning,remainingReadSeq3))
if distanceFromBeginning >= 0 and \
distanceFromBeginning < remainingReadSeq3 and \
distanceFromBeginning <= maxFlank :
ret += SUPPORTFLAGS.right
logging.debug("right support")
#Moving out of region to the right on - strand
#Meaning we extend to the left on + strand
distanceFromEnd = rStart - alignment.tend
remainingReadSeq5 = alignment.qstart - minCovers
logging.debug("LeftDist %d remainSeq %d" % (distanceFromEnd,remainingReadSeq5))
if distanceFromEnd >= 0 and \
distanceFromEnd < remainingReadSeq5 and \
distanceFromEnd <= maxFlank :
ret += SUPPORTFLAGS.left
logging.debug("left support")
if alignment.tstart <= rStart - minCovers and alignment.tend >= rEnd + minCovers:
ret = SUPPORTFLAGS.span
logging.debug("span support")
elif alignment.tstart >= rStart and alignment.tend <= rEnd:
ret = SUPPORTFLAGS.contain
logging.debug("contain support")
logging.debug("")
return ret
def groupReadHits(self, alignments, minMapq):
logging.debug("Grouping Read Hits")
reads = defaultdict(list)#readname: [hit hit hit]
for line in alignments:
if line.mapqv >= minMapq:
reads[line.qname].append(line)
else:
logging.debug("Hit for %s has mapq %d - below threshold %d" % (line.qname, line.mapqv, minMapq))
return reads
def getBestScore(self, reads):
"""
Gets the read with the best score.
parses all of the reads and returns the best hit of the group
best hit is the alignment with the best score
and if there is a tie, the tie break is based
on alignment score
and the to just take the first of the remaining alignments
"""
if len(reads) == 1:
return reads[0]
#Get who we're using
bestScore = []
mostAccurate = []
for read in reads:
if read.flag & ALIGNFLAGS.bestScore:
bestScore.append(read)
if read.flag & ALIGNFLAGS.mostAccurate:
mostAccurate.append(read)
if len(bestScore) == 0:
#Actually have to hunt it down, we're looking at some weiners
bestScore, mostAccurate, lqpa = self.groupComparison(reads, False)
#return None
#Tie breaking
anchor = None
if len(bestScore) != 1:
if len(mostAccurate) == 1:
for i in bestScore:
if i == mostAccurate[0]:
anchor = mostAccurate[0]
#Just arbiturarily take one
if anchor is None:
anchor = bestScore[0]
return anchor
def untangle(self, reads):
"""
Given a group of subread's hits, see if we can eliminate the
spurious repeat matches
Find LQPA
recursively call(give me all the concordant neighbors to the left and to the right)
continue until there isn't exactly one neighbor
"""
if len(reads) < 2:
return reads
anchor = self.getBestScore(reads)
#I don't like this happening.. something is strange
if anchor == None:
logging.warning("Read %s doesn't have a best hit" % (reads[0].qname))
return []
newReads = self.layout(anchor, list(reads))
newReads.sort(cmp=lambda x,y: x.qstart < y.qstart)
return newReads
"""
after I have my anchor, I want to find queryConcordant reads.
I'm going to find all the reads that are queryConcordant outside of the anchor.
If there is more than one read per side, I'll tie break those by
getting the one that is considered the best hit
1 - Anchor solution is above.
2 - layout 1
3 - layout -1
"""
def layout(self, anchor, allReads):
"""
uses the anchor to find all unique concordant hits from the anchor
side = -1, check UpStream(5') of anchor
side = 1, check DownStream (3') of anchor
"""
foundNew = True
#holds the min/max used qstart qend
regionHolder = copy.deepcopy(anchor)
ret = [anchor]
while foundNew:
foundNew = False
reads = filter(lambda x: x not in ret, allReads)
if len(reads) == 0:
continue
sides = { 1: [],
-1: []}
for read in reads:
side = self.isQueryConcordant(regionHolder, read)
if side != 0:
foundNew = True
sides[side].append(read)
if len(sides[1]) == 1:
regionHolder.qstart = sides[1][0].qstart
#region update (upstream)
ret.append(sides[1][0])
elif len(sides[1]) > 1:#Let all these guys duke it out
bestHit = self.getBestScore(sides[1])
if bestHit is None:
logging.warning("Here")
logging.warning("\n"+"\n".join([str(x) for x in sides[1]]))
newGuys = self.layout(bestHit, sides[1])
regionHolder.qstart = newGuys[0].qstart
ret.extend(newGuys)
#region update (upstream)
if len(sides[-1]) == 1:
bestHit = sides[-1]
#region update (downstream)
regionHolder.qend = sides[-1][0].qend
ret.append(sides[-1][0])
elif len(sides[-1]) > 1:
bestHit = self.getBestScore(sides[-1])
newGuys = self.layout(bestHit, sides[-1])
regionHolder.qend = newGuys[-1].qend
ret.extend(newGuys)
ret.sort(cmp=lambda x,y: x.qstart < y.qstart)
return ret
def isDiscordant(self, alignment, tailAllowed=150):
"""
If a read maps with long tails that don't map off the target's ends, call it discordant
tailAllowed = max tail length allowed to not map to the reference
Note - This doesn't check a reaason for the discordantcy (sp) -
- Only checks for long tails.
Deprecated again
"""
orientation = self.extendsTarget(alignment)
if orientation == SUPPORTFLAGS.span:
#Not much to prove here.
return False
isDiscord = True
if alignment.tstrand == "0":
threeLen = alignment.qseqlength - alignment.qend
fiveLen = alignment.qstart
if orientation == SUPPORTFLAGS.left and fiveLen <= tailAllowed:
isDiscord = False
elif orientation == SUPPORTFLAGS.right and threeLen <= tailAllowed:
isDiscord = False
elif alignment.tstrand == "1":
threeLen = alignment.qstart
fiveLen = alignment.qseqlength - alignment.qend
if orientation == SUPPORTFLAGS.left and fiveLen <= tailAllowed:
isDiscord = False
elif orientation == SUPPORTFLAGS.right and threeLen <= tailAllowed:
isDiscord = False
return isDiscord
def idAdapters(self, reads):
"""
Using the alignments for a particular read,
Identify adapters and return a new list of reads that have been split up
I'll rename the reads that have adapters
##split those subreads into two alignments
Consider a subread that overlaps with itself as a missed adapter, split it.
example - for a single read
hit1:
qstart 0: qend 100: tstart = 400: tend=500: strand = 0
hit2:
qstart = 150: qend = 250: tstart = 400: tend = 500: strand = 1
this is highly indicitive of a missed adapter
reads is a list of alignments that must be sorted in query concordant order
(meaning the hits are in order of how they should have been sequenced...
return of AlignmentConnector.untangle makes this sort)
"""
split = False
for i in range(1, len(reads)):
a = reads[i-1]
b = reads[i]
#Major chacteristics of missed adapter
#Same target - different strand
#Aligns in the same area
if a.tname == b.tname and a.tstrand != b.tstrand \
and (abs(a.tstart - b.tstart) <= 75 or abs(a.tend - b.tend) <= 75)\
and (b.qstart - a.qend) <= 50:
#Do some more tests to make sure that they overlap in the
#Way we expect missed addapters to overlap
ovl = self.supportsRegion(a, b.tname, b.tstart, b.tend)
if a.tstrand == '0' and (ovl & SUPPORTFLAGS.right or \
ovl & SUPPORTFLAGS.contain or\
ovl & SUPPORTFLAGS.span):
split = True
logging.debug("Missed adapter in read! %s" % a.qname)
#We have a missed adapter
a.trim = (0, a.qend)
a.qseqlength = a.qend
#a.qname += "##%d#%d##" % a.trim
b.trim = (b.qstart, b.qseqlength)
shift = b.qend - b.qstart
b.qstart = 0
b.qend -= shift
b.qseqlength -= shift
#b.qname += "##%d#%d##" % b.trim
elif a.tstrand == '1' and (ovl & SUPPORTFLAGS.left or \
ovl & SUPPORTFLAGS.contain or\
ovl & SUPPORTFLAGS.span):
split = True
logging.debug("Missed adapter in read! %s" % a.qname)
b.trim = (0, b.qend)
b.qseqlength = b.qend
a.trim = (a.qstart, a.qseqlength)
shift = a.qend - a.qstart
a.qstart = 0
a.qend -= shift
a.qseqlength -= shift
return split
class GapSupporter():
"""
Holds a gapInfo file, as you feed self.support reads,
it'll figure out the support and then keep track of it.
you can add an existing alignCon to the GapSupporter if you've
made one elsewhere and want to save space. But another will
be automatically made if you don't
Also, this does the bookkeeping to track what gaps are supported
by what reads and how.
Can run summary statistics on how many gaps are supported and such
"""
def __init__(self, gapInfo, alignCon=None):
self.gapInfo = gapInfo
try:
self.gapIndex = self.gapInfo.getSortedGaps()
except Exception:#For any reason
self.gapIndex = None
self.alignCon = AlignmentConnector() if alignCon is None else alignCon
self.gapGraph= GapGraph()
#{ readName: [(alignment, [nodeName, nodeName]), ] }
#Same as that weird name manipulation as before.
#see if it is a span
#self.readSupport = {}
def classifyRead(self, alignmentGroup, capturedOnly=False):
"""
For each alignment in a read, add information about read supporting
gaps
alignmentGroup must be in order
spanOnly == True:
only add span support
capturedOnly == False
ignore scaffold gaps
"""
self.capturedGapSupport(alignmentGroup)
if not capturedOnly:
self.scaffoldGapSupport(alignmentGroup)
#self.consolidate spport
def capturedGapSupport(self, alignmentGroup):
"""
returns a list of nodes in the graph the read supports
"""
# gapName : SUPPORTFLAG
ret = defaultdict(int)
#Finding gaps to support and classifying
for alignment in alignmentGroup:
candidates = []
scaffold = alignment.tname.split('|')[-1]
if self.gapIndex is not None:
try:
#Find range of gaps we can potentially support
#I play it safe and get up to 2 extra gaps we could support
startIndex = max(0, bisect_left(self.gapIndex[scaffold], alignment.tstart) - 1)
endIndex = bisect_right(self.gapIndex[scaffold], alignment.tend) + 1
candidates = self.gapIndex[scaffold][startIndex:endIndex]
except KeyError:
pass#No gaps
else:#never happens?
gaps = filter(lambda x: x.startswith(scaffold), self.gapInfo.keys())
for key in gaps:
candidates.append(self.gapInfo[key])
for gap in candidates:
logging.debug("gapSup")
supType = self.alignCon.supportsRegion(alignment, \
rName=gap.scaffold, \
rStart=gap.start,\
rEnd = gap.end)
if supType == SUPPORTFLAGS.none:
continue
ret[gap.name] += supType
#Adding support to graph
readName = alignmentGroup[0].qname
for gapName in ret:
#New way
gap = self.gapInfo[gapName]
supType = ret[gapName]
lftNode = gap.leftContig + "e3"
rhtNode = gap.rightContig + "e5"
#Extends gap to left or rightContig to right
if supType == SUPPORTFLAGS.left:
self.gapGraph.add_extend(lftNode, readName)
elif supType == SUPPORTFLAGS.right:
self.gapGraph.add_extend(rhtNode, readName)
elif supType == SUPPORTFLAGS.span:
self.gapGraph.add_evidence(lftNode, rhtNode, readName)
return ret
def scaffoldGapSupport(self, alignmentGroup):
"""
Checks to see if and how an alignment supports between scaffolding gaps
alignmentGroup must be sorted by query portion used
sourceA is alignmentGroup[0] support
sourceB is alignmentGroup[1] support
add a link between A and B
sourceC is alignmentGroup[2] support
"""
readName = alignmentGroup[0].qname
logging.debug("looking at: " + readName + " for scaffold extension/unification")
alignmentGroup.sort(cmp=lambda x,y: x.qstart - y.qstart)
anchor = self.alignCon.getBestScore(alignmentGroup)
flags = []
logging.debug("Building flags table")
logging.debug("%d - %s" % (len(alignmentGroup), " ".join(map(str, alignmentGroup))))
for alignment in alignmentGroup:
#[(Flag, lftNode, rhtNode),..]
base = alignment.tname.split('|')[-1]
flag = self.alignCon.extendsTarget(alignment)
flags.append((flag, #SupFlag
base+"e5", #LftNode
base+"e3", #RhtNode
alignment.tstrand)) #Strand
logging.debug(str(base) + " " + str(flag) + " " + str(alignment))
#Solo..
if len(alignmentGroup) == 1:
logging.debug("Solo alignment comparison")
flag1, lftNode1, rhtNode1, strand1 = flags[0]
if flag1 == SUPPORTFLAGS.span:
#This can't happen...
self.gapGraph.add_extend(lftNode1, readName)
self.gapGraph.add_extend(rhtNode1, readName)
elif flag1 == SUPPORTFLAGS.right:
self.gapGraph.add_extend(rhtNode1, readName)
elif flag1 == SUPPORTFLAGS.left:
self.gapGraph.add_extend(lftNode1, readName)
return
index = alignmentGroup.index(anchor)
#go upstream of anchor
pairs = []
for i in range(index, 0, -1):
#pairs.append((alignmentGroup[i], flags[i], alignmentGroup[i-1], flags[i-1]))
pairs.append((alignmentGroup[i-1], flags[i-1], alignmentGroup[i], flags[i]))
logging.debug("made pair upstream")
logging.debug(" ".join(map(str,[alignmentGroup[i], flags[i], alignmentGroup[i-1], flags[i-1]])))
self.__scaffRangeDo__(pairs)
#Go downstream of anchor
pairs = []
for i in range(index, len(alignmentGroup) - 1, 1):
pairs.append((alignmentGroup[i], flags[i], alignmentGroup[i+1], flags[i+1]))
logging.debug("made pair downstream")
logging.debug(" ".join(map(str,[alignmentGroup[i], flags[i], alignmentGroup[i+1], flags[i+1]])))
self.__scaffRangeDo__(pairs)
def __scaffRangeDo__(self, pairs):
"""
Go through the pairs and see if there is a link between the them
"""
if len(pairs) == 0:
return
readName = pairs[0][0].qname
i = 1
for align1, flags1, align2, flags2 in pairs:
logging.debug(flags1)
logging.debug(flags2)
flag1, lftNode1, rhtNode1, strand1 = flags1
flag2, lftNode2, rhtNode2, strand2 = flags2
#Super Conservative, I'm not going to let
#ends of multi-mappers extend scaffolds
if strand1 == '0':
if flag1 == SUPPORTFLAGS.right or flag1 == SUPPORTFLAGS.span:#extend correctly
if strand2 == '0':
if flag2 == SUPPORTFLAGS.left or flag2 == SUPPORTFLAGS.span:
self.gapGraph.add_evidence(rhtNode1, lftNode2, readName)
elif strand2 == '1':
if flag2 == SUPPORTFLAGS.right or flag2 == SUPPORTFLAGS.span:
self.gapGraph.add_evidence(rhtNode1, rhtNode2, readName)
else:
return; #We've broken from the anchor
else:
return; #we've broken the anchor chain
elif strand1 == '1':
#I never strand corrected? left means right, right means left
if flag1 == SUPPORTFLAGS.left or flag1 == SUPPORTFLAGS.span:#extend correctly
if strand2 == '0':
if flag2 == SUPPORTFLAGS.left or flag2 == SUPPORTFLAGS.span:
self.gapGraph.add_evidence(lftNode1, lftNode2, readName)
elif strand2 == '1':
if flag2 == SUPPORTFLAGS.right or flag2 == SUPPORTFLAGS.span:
self.gapGraph.add_evidence(lftNode1, rhtNode2, readName)
else:
return; #We've broken from the anchor
else:
return; #we've broken the anchor chain
class Support():
"""
Worker for this script
Takes Reads, Connects the Alignments, Classifies the Gap Support
"""
def __init__(self):
self.parseArgs()
setupLogging(self.options.debug)
def parseArgs(self):
parser = OptionParser(USAGE)
parser.add_option("-m", "--minMapq", default=200, type=int, \
help=("Minimum MapQ of a read to be considered "
"for support (200)"))
parser.add_option("--spanOnly", action="store_true", \
help=("Only allow support by reads that span an"
" entire gap. i.e. no contig extension."))
parser.add_option("--capturedOnly", action="store_true", \
help=("Only find support for captured gaps. "\
" i.e. no between-scaffold gap-filling"))
parser.add_option("--debug", action="store_true", \
help="Increases verbosity of logging" )
self.options, args = parser.parse_args()
if len(args) != 3:
parser.error("Error! Incorrect number of arguments")
if not os.path.isfile(args[0]):
parser.error("Error! Alignment File Does Not Exist")
self.alignmentFileName = args[0]
if not os.path.isfile(args[1]):
parser.error("Error! Gap Info File Does Not Exist")
self.gapFileName = args[1]
if os.path.isfile(args[2]):
sys.stderr.write("[WARNING] Output File Being Overwritten!")
self.outputFileName = args[2]
self.gapInfo = GapInfoFile(self.gapFileName)
if os.path.splitext(self.alignmentFileName)[1] == '.m4':
self.alignments = M4File(self.alignmentFileName)
elif os.path.splitext(self.alignmentFileName)[1] == '.m5':
self.alignments = M5File(self.alignmentFileName)
else:
parser.error("Error! Alignment File Extension (%s) not recognized." \
% os.path.splitext(self.alignmentFileName)[1])
def run(self):
"""
Given an alignment file, put it through the paces that will figure out what
gaps each read supports
"""
logging.info("Building Helper Objects")
connector = AlignmentConnector()
supporter = GapSupporter(self.gapInfo, alignCon = connector)
logging.info("Connecting Alignments")
alignments = connector.parseAlignments(self.alignments, self.options.minMapq)
logging.info("Classifying Alignments' Support")
for readGroup in alignments:
supporter.classifyRead(readGroup, self.options.capturedOnly)
logging.info("Saving Support Graph")
supporter.gapGraph.saveGraph(self.outputFileName, self.options.spanOnly)
logging.info("Finished")
if __name__ == '__main__':
main = Support()
main.run()
pass
|