File: spotViz.py

package info (click to toggle)
pbsuite 15.8.24%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 14,512 kB
  • ctags: 1,951
  • sloc: python: 10,962; sh: 147; xml: 21; makefile: 14
file content (135 lines) | stat: -rwxr-xr-x 4,381 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#!/usr/bin/env python
import h5py, sys, numpy, random
from pbsuite.honey.HSpots import *
import matplotlib.pyplot as plt


#transposon
#start = 1976517 - buffer
#end   = 1977304 + buffer
#tandem duplication
#start = 1096192 - buffer
#end   = 1096825 + buffer
#tandem deletion
#start = 4294209 - buffer
#end   = 4294314 + buffer    
#p-element inversion
#appx 8192387
#start, end = 304417-buffer, 304460+buffer #tails
#start, end = 1456604 - buffer, 1456650 + buffer
#start, end = 3255896 - buffer, 3255932 + buffer

avgWindow = numpy.ones(50, dtype=numpy.float16) / 50

def makeTransformPlots(key, data, start, end, buffer, binsize, fignum, normalize=True):
    orig = numpy.convolve(data, avgWindow, "same") #smooth
    if normalize:
        norm = orig / cov
    else:
        norm = orig
        
    slopeT = numpy.convolve(norm, slopWindow, "same") #slope transform
    abs = numpy.abs(slopeT) # absolute value
    smo = numpy.convolve(abs, avgWindow, "same") #smooth
    space = numpy.convolve(smo * orig, avgWindow, "same") # Take back to absolute space and smooth again
    win = range(start-buffer, end+buffer)
    plt.figure(fignum)
    
    plt.subplot(711)
    plt.plot(win, data, 'b-')
    plt.axhline(1, color='k'); plt.axvline(start, color='k'); plt.axvline(end, color='k')
    
    plt.subplot(712)
    plt.plot(win, orig, 'b-')
    plt.axhline(1, color='k'); plt.axvline(start, color='k'); plt.axvline(end, color='k')
    
    plt.subplot(713)
    plt.plot(win, norm, 'b-')
    plt.axhline(1, color='k'); plt.axvline(start, color='k'); plt.axvline(end, color='k')
    
    plt.subplot(714)
    plt.plot(win, slopeT, 'b-')
    plt.axhline(1, color='k'); plt.axvline(start, color='k'); plt.axvline(end, color='k')
    
    plt.subplot(715)
    plt.plot(win, abs, 'b-')
    plt.axhline(1, color='k'); plt.axvline(start, color='k'); plt.axvline(end, color='k')
    
    plt.subplot(716)
    plt.plot(win, smo, 'b-')
    plt.axhline(1, color='k'); plt.axvline(start, color='k'); plt.axvline(end, color='k')
    
    plt.subplot(717)
    plt.plot(win, space,  'b-')
    plt.axhline(1, color='k'); plt.axvline(start, color='k'); plt.axvline(end, color='k')
    
    plt.show()
    plt.savefig("transform_%s.png" % key)

def makeLinePlots(dataOrig, start, end, offset):
    plt.figure()
    print start, end, offset
    print len(dataOrig)
    cov  = numpy.convolve(data[COV], avgWindow, "same") 
    print "cov", numpy.max(numpy.abs(data[COV][10:-10])), numpy.mean(cov)
    
    
    insR, imu, isd = preprocessSignal(data[INS], data[COV])
    insS = signalTransform(insR)
    
    delR, dmu, dsd = preprocessSignal(data[DEL], data[COV])
    delS = signalTransform(delR)
    
    win = range(start, end)
    
    covRg = plt.plot(win, cov,  'k-')
    misRg = plt.plot(win, misR * cov, 'r-')
    insRg = plt.plot(win, insR * cov, 'g-')
    delRg = plt.plot(win, delR * cov, 'b-')
    
    
    ticks = range(start, end, (end-start)/6)#[:-1]
    labels = range(offset, offset + (end-start)+1, (end-start)/6)
    print ticks, labels
    plt.xticks(ticks, ticks, horizontalalignment="left", rotation=17)
    plt.xlabel("position")
    plt.ylabel("rate")
    plt.legend([covRg, insRg, delRg], ["COV", "INS", "DEL"],)
    plt.suptitle("%d bp sv (%d - %d)" % (end - start, start, end))
    plt.show()
    plt.savefig("rates.png")

    plt.figure()
    
    insSg = plt.plot(win, insS, 'g-')
    delSg = plt.plot(win, delS, 'b-')
    
    ticks = range(start, end+1, (end-start)/6)#[:-1]
    #labels = range(offset, offset + (end-start)+1, (end-start)/6)
    plt.xticks(ticks, ticks, horizontalalignment="center", rotation=17)
    plt.xlabel("position")
    plt.ylabel("signal")
    plt.legend([insSg, delSg], ["INS", "DEL"])
    plt.suptitle("%d bp sv (%d - %d)" % (end - start, start, end))
    plt.show()
    plt.savefig("signals.png")

    
    
if __name__ == '__main__':
    h5    = h5py.File(sys.argv[1], 'r')
    cols  = h5.attrs["columns"]
    key   = sys.argv[2]
    offset = int(sys.argv[3])
    start = int(sys.argv[3]) - h5[key].attrs["start"]
    end   = int(sys.argv[4]) - h5[key].attrs["start"]
    
    #buffer = int((start-end) *.1)
    buffer = 100
    start  = max(0, start-buffer)
    end    = min(h5[key].attrs["end"], end+buffer)
    data   = h5[key]["data"][: , start:end]
    h5.close()
    makeKernals()
    makeLinePlots(data, start, end, offset)