1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
|
/* Copyright (C) 2001-2007 Peter Selinger.
This file is part of Potrace. It is free software and it is covered
by the GNU General Public License. See the file COPYING for details. */
/* $Id: decompose.c 146 2007-04-09 00:43:46Z selinger $ */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include "config.h"
#include "potracelib.h"
#include "curve.h"
#include "lists.h"
#include "auxiliary.h"
#include "bitmap.h"
#include "decompose.h"
/*#include "progress.h"*/
/* ---------------------------------------------------------------------- */
/* auxiliary bitmap manipulations */
/* set the excess padding to 0 */
static void bm_clearexcess(potrace_bitmap_t * bm)
{
potrace_word mask;
int y;
if (bm->w % BM_WORDBITS != 0) {
mask = BM_ALLBITS << (BM_WORDBITS - (bm->w % BM_WORDBITS));
for (y = 0; y < bm->h; y++) {
*bm_index(bm, bm->w, y) &= mask;
}
}
}
struct bbox_s {
int x0, x1, y0, y1; /* bounding box */
};
typedef struct bbox_s bbox_t;
/* clear the bm, assuming the bounding box is set correctly (faster
than clearing the whole bitmap) */
static void clear_bm_with_bbox(potrace_bitmap_t * bm, bbox_t * bbox)
{
int imin = (bbox->x0 / BM_WORDBITS);
int imax = ((bbox->x1 + BM_WORDBITS - 1) / BM_WORDBITS);
int i, y;
for (y = bbox->y0; y < bbox->y1; y++) {
for (i = imin; i < imax; i++) {
bm_scanline(bm, y)[i] = 0;
}
}
}
/* ---------------------------------------------------------------------- */
/* auxiliary functions */
/* deterministically and efficiently hash (x,y) into a pseudo-random bit */
static inline int detrand(int x, int y)
{
unsigned int z;
static const unsigned char t[256] = {
/* non-linear sequence: constant term of inverse in GF(8),
mod x^8+x^4+x^3+x+1 */
0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1,
0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0,
0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1,
0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1,
1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0,
0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1,
1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
};
/* 0x04b3e375 and 0x05a8ef93 are chosen to contain every possible
5-bit sequence */
z = ((0x04b3e375 * x) ^ y) * 0x05a8ef93;
z = t[z & 0xff] ^ t[(z >> 8) & 0xff] ^ t[(z >> 16) & 0xff] ^ t[(z >> 24) & 0xff];
return z & 1;
}
/* return the "majority" value of bitmap bm at intersection (x,y). We
assume that the bitmap is balanced at "radius" 1. */
static int majority(potrace_bitmap_t * bm, int x, int y)
{
int i, a, ct;
for (i = 2; i < 5; i++) { /* check at "radius" i */
ct = 0;
for (a = -i + 1; a <= i - 1; a++) {
ct += BM_GET(bm, x + a, y + i - 1) ? 1 : -1;
ct += BM_GET(bm, x + i - 1, y + a - 1) ? 1 : -1;
ct += BM_GET(bm, x + a - 1, y - i) ? 1 : -1;
ct += BM_GET(bm, x - i, y + a) ? 1 : -1;
}
if (ct > 0) {
return 1;
}
else if (ct < 0) {
return 0;
}
}
return 0;
}
/* ---------------------------------------------------------------------- */
/* decompose image into paths */
/* efficiently invert bits [x,infty) and [xa,infty) in line y. Here xa
must be a multiple of BM_WORDBITS. */
static void xor_to_ref(potrace_bitmap_t * bm, int x, int y, int xa)
{
int xhi = x & -BM_WORDBITS;
int xlo = x & (BM_WORDBITS - 1); /* = x % BM_WORDBITS */
int i;
if (xhi < xa) {
for (i = xhi; i < xa; i += BM_WORDBITS) {
*bm_index(bm, i, y) ^= BM_ALLBITS;
}
}
else {
for (i = xa; i < xhi; i += BM_WORDBITS) {
*bm_index(bm, i, y) ^= BM_ALLBITS;
}
}
/* note: the following "if" is needed because x86 treats a<<b as
a<<(b&31). I spent hours looking for this bug. */
if (xlo) {
*bm_index(bm, xhi, y) ^= (BM_ALLBITS << (BM_WORDBITS - xlo));
}
}
/* a path is represented as an array of points, which are thought to
lie on the corners of pixels (not on their centers). The path point
(x,y) is the lower left corner of the pixel (x,y). Paths are
represented by the len/pt components of a path_t object (which
also stores other information about the path) */
/* xor the given pixmap with the interior of the given path. Note: the
path must be within the dimensions of the pixmap. */
static void xor_path(potrace_bitmap_t * bm, path_t * p)
{
int xa, x, y, k, y1;
if (p->priv->len <= 0) { /* a path of length 0 is silly, but legal */
return;
}
y1 = p->priv->pt[p->priv->len - 1].y;
xa = p->priv->pt[0].x & -BM_WORDBITS;
for (k = 0; k < p->priv->len; k++) {
x = p->priv->pt[k].x;
y = p->priv->pt[k].y;
if (y != y1) {
/* efficiently invert the rectangle [x,xa] x [y,y1] */
xor_to_ref(bm, x, min(y, y1), xa);
y1 = y;
}
}
}
/* Find the bounding box of a given path. Path is assumed to be of
non-zero length. */
static void setbbox_path(bbox_t * bbox, path_t * p)
{
int x, y;
int k;
bbox->y0 = INT_MAX;
bbox->y1 = 0;
bbox->x0 = INT_MAX;
bbox->x1 = 0;
for (k = 0; k < p->priv->len; k++) {
x = p->priv->pt[k].x;
y = p->priv->pt[k].y;
if (x < bbox->x0) {
bbox->x0 = x;
}
if (x > bbox->x1) {
bbox->x1 = x;
}
if (y < bbox->y0) {
bbox->y0 = y;
}
if (y > bbox->y1) {
bbox->y1 = y;
}
}
}
/* compute a path in the given pixmap, separating black from white.
Start path at the point (x0,x1), which must be an upper left corner
of the path. Also compute the area enclosed by the path. Return a
new path_t object, or NULL on error (note that a legitimate path
cannot have length 0). Sign is required for correct interpretation
of turnpolicies. */
static path_t *findpath(potrace_bitmap_t * bm, int x0, int y0, int sign, int turnpolicy)
{
int x, y, dirx, diry, len, size, area;
int c, d, tmp;
point_t *pt, *pt1;
path_t *p = NULL;
x = x0;
y = y0;
dirx = 0;
diry = -1;
len = size = 0;
pt = NULL;
area = 0;
while (1) {
/* add point to path */
if (len >= size) {
size += 100;
size = (int) (1.3 * size);
pt1 = (point_t *) realloc(pt, size * sizeof(point_t));
if (!pt1) {
goto error;
}
pt = pt1;
}
pt[len].x = x;
pt[len].y = y;
len++;
/* move to next point */
x += dirx;
y += diry;
area += x * diry;
/* path complete? */
if (x == x0 && y == y0) {
break;
}
/* determine next direction */
c = BM_GET(bm, x + (dirx + diry - 1) / 2, y + (diry - dirx - 1) / 2);
d = BM_GET(bm, x + (dirx - diry - 1) / 2, y + (diry + dirx - 1) / 2);
if (c && !d) { /* ambiguous turn */
if (turnpolicy == POTRACE_TURNPOLICY_RIGHT || (turnpolicy == POTRACE_TURNPOLICY_BLACK && sign == '+')
|| (turnpolicy == POTRACE_TURNPOLICY_WHITE && sign == '-')
|| (turnpolicy == POTRACE_TURNPOLICY_RANDOM && detrand(x, y))
|| (turnpolicy == POTRACE_TURNPOLICY_MAJORITY && majority(bm, x, y))
|| (turnpolicy == POTRACE_TURNPOLICY_MINORITY && !majority(bm, x, y))) {
tmp = dirx; /* right turn */
dirx = diry;
diry = -tmp;
}
else {
tmp = dirx; /* left turn */
dirx = -diry;
diry = tmp;
}
}
else if (c) { /* right turn */
tmp = dirx;
dirx = diry;
diry = -tmp;
}
else if (!d) { /* left turn */
tmp = dirx;
dirx = -diry;
diry = tmp;
}
} /* while this path */
/* allocate new path object */
p = path_new();
if (!p) {
goto error;
}
p->priv->pt = pt;
p->priv->len = len;
p->area = area;
p->sign = sign;
return p;
error:
free(pt);
return NULL;
}
/* Give a tree structure to the given path list, based on "insideness"
testing. I.e., path A is considered "below" path B if it is inside
path B. The input pathlist is assumed to be ordered so that "outer"
paths occur before "inner" paths. The tree structure is stored in
the "childlist" and "sibling" components of the path_t
structure. The linked list structure is also changed so that
negative path components are listed immediately after their
positive parent. Note: some backends may ignore the tree
structure, others may use it e.g. to group path components. We
assume that in the input, point 0 of each path is an "upper left"
corner of the path, as returned by bm_to_pathlist. This makes it
easy to find an "interior" point. The bm argument should be a
bitmap of the correct size (large enough to hold all the paths),
and will be used as scratch space. Return 0 on success or -1 on
error with errno set. */
static void pathlist_to_tree(path_t * plist, potrace_bitmap_t * bm)
{
path_t *p, *p1;
path_t *heap, *heap1;
path_t *cur;
path_t *head;
path_t **hook, **hook_in, **hook_out; /* for fast appending to linked list */
bbox_t bbox;
bm_clear(bm, 0);
/* save original "next" pointers */
list_forall(p, plist) {
p->sibling = p->next;
p->childlist = NULL;
}
heap = plist;
/* the heap holds a list of lists of paths. Use "childlist" field
for outer list, "next" field for inner list. Each of the sublists
is to be turned into a tree. This code is messy, but it is
actually fast. Each path is rendered exactly once. We use the
heap to get a tail recursive algorithm: the heap holds a list of
pathlists which still need to be transformed. */
while (heap) {
/* unlink first sublist */
cur = heap;
heap = heap->childlist;
cur->childlist = NULL;
/* unlink first path */
head = cur;
cur = cur->next;
head->next = NULL;
/* render path */
xor_path(bm, head);
setbbox_path(&bbox, head);
/* now do insideness test for each element of cur; append it to
head->childlist if it's inside head, else append it to
head->next. */
hook_in = &head->childlist;
hook_out = &head->next;
list_forall_unlink(p, cur) {
if (p->priv->pt[0].y <= bbox.y0) {
list_insert_beforehook(p, hook_out);
/* append the remainder of the list to hook_out */
*hook_out = cur;
break;
}
if (BM_GET(bm, p->priv->pt[0].x, p->priv->pt[0].y - 1)) {
list_insert_beforehook(p, hook_in);
}
else {
list_insert_beforehook(p, hook_out);
}
}
/* clear bm */
clear_bm_with_bbox(bm, &bbox);
/* now schedule head->childlist and head->next for further
processing */
if (head->next) {
head->next->childlist = heap;
heap = head->next;
}
if (head->childlist) {
head->childlist->childlist = heap;
heap = head->childlist;
}
}
/* copy sibling structure from "next" to "sibling" component */
p = plist;
while (p) {
p1 = p->sibling;
p->sibling = p->next;
p = p1;
}
/* reconstruct a new linked list ("next") structure from tree
("childlist", "sibling") structure. This code is slightly messy,
because we use a heap to make it tail recursive: the heap
contains a list of childlists which still need to be
processed. */
heap = plist;
if (heap) {
heap->next = NULL; /* heap is a linked list of childlists */
}
plist = NULL;
hook = &plist;
while (heap) {
heap1 = heap->next;
for (p = heap; p; p = p->sibling) {
/* p is a positive path */
/* append to linked list */
list_insert_beforehook(p, hook);
/* go through its children */
for (p1 = p->childlist; p1; p1 = p1->sibling) {
/* append to linked list */
list_insert_beforehook(p1, hook);
/* append its childlist to heap, if non-empty */
if (p1->childlist) {
list_append(path_t, heap1, p1->childlist);
}
}
}
heap = heap1;
}
return;
}
/* find the next set pixel in a row <= y. Pixels are searched first
left-to-right, then top-down. In other words, (x,y)<(x',y') if y>y'
or y=y' and x<x'. If found, return 0 and store pixel in
(*xp,*yp). Else return 1. Note that this function assumes that
excess bytes have been cleared with bm_clearexcess. */
static int findnext(potrace_bitmap_t * bm, int *xp, int *yp)
{
int x;
int y;
for (y = *yp; y >= 0; y--) {
for (x = 0; x < bm->w; x += BM_WORDBITS) {
if (*bm_index(bm, x, y)) {
while (!BM_GET(bm, x, y)) {
x++;
}
/* found */
*xp = x;
*yp = y;
return 0;
}
}
}
/* not found */
return 1;
}
/* Decompose the given bitmap into paths. Returns a linked list of
path_t objects with the fields len, pt, area, sign filled
in. Returns 0 on success with plistp set, or -1 on error with errno
set. */
int bm_to_pathlist(const potrace_bitmap_t * bm, path_t ** plistp, const potrace_param_t * param)
{
int x;
int y;
path_t *p;
path_t *plist = NULL; /* linked list of path objects */
path_t **hook = &plist; /* used to speed up appending to linked list */
potrace_bitmap_t *bm1 = NULL;
int sign;
bm1 = bm_dup(bm);
if (!bm1) {
goto error;
}
/* be sure the byte padding on the right is set to 0, as the fast
pixel search below relies on it */
bm_clearexcess(bm1);
/* iterate through components */
y = bm1->h - 1;
while (findnext(bm1, &x, &y) == 0) {
/* calculate the sign by looking at the original */
sign = BM_GET(bm, x, y) ? '+' : '-';
/* calculate the path */
p = findpath(bm1, x, y + 1, sign, param->turnpolicy);
if (p == NULL) {
goto error;
}
/* update buffered image */
xor_path(bm1, p);
/* if it's a turd, eliminate it, else append it to the list */
if (p->area <= param->turdsize) {
path_free(p);
}
else {
list_insert_beforehook(p, hook);
}
if (bm1->h > 0) { /* to be sure */
/*progress_update(1-y/(double)bm1->h, progress); */
}
}
pathlist_to_tree(plist, bm1);
bm_free(bm1);
*plistp = plist;
/* progress_update(1.0, progress);*/
return 0;
error:
bm_free(bm1);
list_forall_unlink(p, plist) {
path_free(p);
}
return -1;
}
|