File: refine.c

package info (click to toggle)
pcb 20140316-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 22,212 kB
  • ctags: 16,012
  • sloc: ansic: 123,955; sh: 7,306; yacc: 5,087; pascal: 4,118; makefile: 1,559; perl: 552; lex: 438; awk: 157; lisp: 86; tcl: 63; xml: 20
file content (423 lines) | stat: -rw-r--r-- 13,371 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
/* GTS - Library for the manipulation of triangulated surfaces
 * Copyright (C) 1999 Stphane Popinet
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

#include <math.h>
#include "gts.h"

/**
 * gts_vertex_encroaches_edge:
 * @v: a #GtsVertex.
 * @e: a #GtsEdge.
 *
 * Returns: %TRUE if @v is strictly contained in the diametral circle of @e,
 * %FALSE otherwise.
 */
gboolean gts_vertex_encroaches_edge (GtsVertex * v, GtsEdge * e)
{
  GtsPoint * p, * p1, * p2;

  g_return_val_if_fail (v != NULL, FALSE);
  g_return_val_if_fail (e != NULL, FALSE);

  p = GTS_POINT (v);
  p1 = GTS_POINT (GTS_SEGMENT (e)->v1);
  p2 = GTS_POINT (GTS_SEGMENT (e)->v2);

  if ((p1->x - p->x)*(p2->x - p->x) + (p1->y - p->y)*(p2->y - p->y) < 0.0)
    return TRUE;
  return FALSE;
}

/**
 * gts_edge_is_encroached:
 * @e: a #GtsEdge.
 * @s: a #GtsSurface describing a (constrained) Delaunay triangulation.
 * @encroaches: a #GtsEncroachFunc.
 * @data: user data to be passed to @encroaches.
 *
 * Returns: a #GtsVertex belonging to @s and encroaching upon @e
 * (as defined by @encroaches) or %NULL if there is none.  
 */
GtsVertex * gts_edge_is_encroached (GtsEdge * e,
				    GtsSurface * s,
				    GtsEncroachFunc encroaches,
				    gpointer data)
{
  GSList * i;

  g_return_val_if_fail (e != NULL, NULL);
  g_return_val_if_fail (s != NULL, NULL);
  g_return_val_if_fail (encroaches != NULL, NULL);

  i = e->triangles;
  while (i) {
    GtsFace * f = i->data;
    if (GTS_IS_FACE (f) && gts_face_has_parent_surface (f, s)) {
      GtsVertex * v = gts_triangle_vertex_opposite (GTS_TRIANGLE (f), e);
      if ((* encroaches) (v, e, s, data))
	return v;
    }
    i = i->next;
  }

  return NULL;
}

#define ALREADY_ENCROACHED(c) (GTS_OBJECT (c)->reserved)

static void vertex_encroaches (GtsVertex * v,
			       GtsSurface * surface,
			       GtsFifo * encroached,
			       GtsEncroachFunc encroaches,
			       gpointer data)
{
  GSList * triangles, * i;

  g_return_if_fail (v != NULL);
  g_return_if_fail (surface != NULL);
  g_return_if_fail (encroached != NULL);
  g_return_if_fail (encroaches != NULL);

  i = triangles = gts_vertex_triangles (v, NULL);
  while (i) {
    GtsFace * f = i->data;
    if (GTS_IS_FACE (f) && gts_face_has_parent_surface (f, surface)) {
      GtsEdge * e = gts_triangle_edge_opposite (i->data, v);
      if (!ALREADY_ENCROACHED (e) && 
	  GTS_IS_CONSTRAINT (e) &&
	  (* encroaches) (v, e, surface, data)) {
	gts_fifo_push (encroached, e);
	ALREADY_ENCROACHED (e) = encroached;
      }
    }
    i = i->next;
  }
  g_slist_free (triangles);
}

static void make_encroached_fifo (GtsEdge * e, gpointer * datas)
{
  GtsFifo * fifo = datas[0];
  GtsSurface * s = datas[1];
  GtsEncroachFunc encroaches = (GtsEncroachFunc) datas[2];
  gpointer data = datas[3];

  if (GTS_IS_CONSTRAINT (e) && 
      gts_edge_is_encroached (e, s, encroaches, data)) {
    gts_fifo_push (fifo, e);
    ALREADY_ENCROACHED (e) = fifo;
  }
}

#define SQUARE_ROOT_TWO 1.41421356237309504880168872420969807856967187
#define DISTANCE_2D(v1, v2) (sqrt ((GTS_POINT (v2)->x - GTS_POINT (v1)->x)*\
                                   (GTS_POINT (v2)->x - GTS_POINT (v1)->x) +\
                                   (GTS_POINT (v2)->y - GTS_POINT (v1)->y)*\
                                   (GTS_POINT (v2)->y - GTS_POINT (v1)->y)))

/* finds where to split the given edge to avoid infinite cycles. (see
   Shewchuk's thesis for details */
static GtsVertex * split_edge (GtsEdge * e,
			       GtsSurface * surface)
{
  GSList * i = e->triangles;
  GtsEdge * c = NULL;

  /* look for constraints touching e */
  while (i && !c) {
    GtsTriangle * t = i->data;
    if (GTS_IS_FACE (t) && 
	gts_face_has_parent_surface (GTS_FACE (t), surface)) {
      GtsEdge * e1, * e2;
      if (t->e1 == e) { e1 = t->e2; e2 = t->e3; }
      else if (t->e2 == e) { e1 = t->e1; e2 = t->e3; }
      else { e1 = t->e1; e2 = t->e2; }
      if (GTS_IS_CONSTRAINT (e1) && !GTS_IS_CONSTRAINT (e2))
	c = e1;
      else if (GTS_IS_CONSTRAINT (e2) && !GTS_IS_CONSTRAINT (e1))
	c = e2;
    }
    i = i->next;
  }
  if (c) {
    /* use power of two concentric shells */
    GtsVertex * v1 = GTS_SEGMENT (e)->v1;
    GtsVertex * v2 = GTS_SEGMENT (e)->v2;
    gdouble l = DISTANCE_2D (v1, v2);
    gdouble nearestpower = 1., split;

    while (l > SQUARE_ROOT_TWO*nearestpower)
      nearestpower *= 2.;
    while (l < SQUARE_ROOT_TWO*nearestpower/2.)
      nearestpower /= 2.;
    split = nearestpower/l/2.;

    if (GTS_SEGMENT (c)->v1 == v2 || GTS_SEGMENT (c)->v2 == v2)
      split = 1. - split;
    return gts_vertex_new (surface->vertex_class,
			   (1. - split)*GTS_POINT (v1)->x +
			   split*GTS_POINT (v2)->x,
			   (1. - split)*GTS_POINT (v1)->y +
			   split*GTS_POINT (v2)->y,
			   (1. - split)*GTS_POINT (v1)->z +
			   split*GTS_POINT (v2)->z);
  }
  else
    return gts_segment_midvertex (GTS_SEGMENT (e), surface->vertex_class);
}

static gint split_encroached (GtsSurface * surface, 
			      GtsFifo * encroached,
			      gint steiner_max,
			      GtsEncroachFunc encroaches,
			      gpointer data)
{
  GtsSegment * s;

  while (steiner_max-- != 0 && (s = gts_fifo_pop (encroached))) {
    GtsVertex *add_vertex_returned;
    GtsVertex * v = split_edge (GTS_EDGE (s), surface);
    GtsFace * boundary = gts_edge_is_boundary (GTS_EDGE (s), surface);
    GtsFace * f = boundary;
#if 1
    GtsEdge * e1 = GTS_EDGE (gts_object_clone (GTS_OBJECT (s)));
    GtsEdge * e2 = GTS_EDGE (gts_object_clone (GTS_OBJECT (s)));

    GTS_SEGMENT (e1)->v1 = s->v1;
    s->v1->segments = g_slist_prepend (s->v1->segments, e1);
    GTS_SEGMENT (e1)->v2 = v;
    v->segments = g_slist_prepend (v->segments, e1);

    GTS_SEGMENT (e2)->v1 = v;
    v->segments = g_slist_prepend (v->segments, e2);
    GTS_SEGMENT (e2)->v2 = s->v2;
    s->v2->segments = g_slist_prepend (s->v2->segments, e2);
#else
    GtsEdge * e1 = gts_edge_new (GTS_EDGE_CLASS (GTS_OBJECT (s)->klass),
				 s->v1, v);
    GtsEdge * e2 = gts_edge_new (GTS_EDGE_CLASS (GTS_OBJECT (s)->klass),
				 v, s->v2);
#endif

    GTS_OBJECT (s)->klass = GTS_OBJECT_CLASS (surface->edge_class);

    if (f == NULL)
      f = gts_edge_has_parent_surface (GTS_EDGE (s), surface);
    g_assert (f != NULL);
    add_vertex_returned = gts_delaunay_add_vertex_to_face (surface, v, f);
    g_assert (add_vertex_returned == NULL);

    if (boundary)
      gts_object_destroy (GTS_OBJECT (s));

    vertex_encroaches (v, surface, encroached, encroaches, data);

    if (gts_edge_is_encroached (e1, surface, encroaches, data)) {
      gts_fifo_push (encroached, e1);
      ALREADY_ENCROACHED (e1) = encroached;
    }
    if (gts_edge_is_encroached (e2, surface, encroaches, data)) {
      gts_fifo_push (encroached, e2);
      ALREADY_ENCROACHED (e2) = encroached;
    }
  }

  return steiner_max;
}

/**
 * gts_delaunay_conform:
 * @surface: a #GtsSurface describing a constrained Delaunay triangulation.
 * @steiner_max: maximum number of Steiner points.
 * @encroaches: a #GtsEncroachFunc.
 * @data: user-data to pass to @encroaches.
 *
 * Recursively split constraints of @surface which are encroached by
 * vertices of @surface (see Shewchuk 96 for details). The split
 * constraints are destroyed and replaced by a set of new constraints
 * of the same class. If gts_vertex_encroaches_edge() is used for
 * @encroaches, the resulting surface will be Delaunay conforming.
 *
 * If @steiner_max is positive or nul, the recursive splitting
 * procedure will stop when this maximum number of Steiner points is
 * reached. In that case the resulting surface will not necessarily be
 * Delaunay conforming.
 *
 * Returns: the number of remaining encroached edges. If @steiner_max
 * is set to a negative value and gts_vertex_encroaches_edge() is used
 * for @encroaches this should always be zero. 
 */
guint gts_delaunay_conform (GtsSurface * surface,
			    gint steiner_max,
			    GtsEncroachFunc encroaches,
			    gpointer data)
{
  GtsFifo * encroached;
  gpointer datas[4];
  guint encroached_number;

  g_return_val_if_fail (surface != NULL, 0);
  g_return_val_if_fail (surface != NULL, 0);
  g_return_val_if_fail (encroaches != NULL, 0);

  datas[0] = encroached = gts_fifo_new ();
  datas[1] = surface;
  datas[2] = encroaches;
  datas[3] = data;
  gts_surface_foreach_edge (surface, (GtsFunc) make_encroached_fifo, datas);

  split_encroached (surface, 
		    encroached, 
		    steiner_max,
		    encroaches, data);
  gts_fifo_foreach (encroached, (GtsFunc) gts_object_reset_reserved, NULL);
  encroached_number = gts_fifo_size (encroached);
  gts_fifo_destroy (encroached);
  return encroached_number;
}

#define EHEAP_PAIR(f) (GTS_OBJECT (f)->reserved)

static void heap_surface_add_face (GtsSurface * s, GtsFace * f)
{
  GtsEHeap * heap = GTS_OBJECT (s)->reserved;
  gdouble key = gts_eheap_key (heap, f);

  if (key != 0.)
    EHEAP_PAIR (f) = gts_eheap_insert_with_key (heap, f, key);
  
  if (GTS_SURFACE_CLASS (GTS_OBJECT (s)->klass->parent_class)->add_face)
    (* GTS_SURFACE_CLASS (GTS_OBJECT (s)->klass->parent_class)->add_face) 
      (s, f);
}

static void heap_surface_remove_face (GtsSurface * s, GtsFace * f)
{
  GtsEHeap * heap = GTS_OBJECT (s)->reserved;

  if (EHEAP_PAIR (f))
    gts_eheap_remove (heap, EHEAP_PAIR (f));

  if (GTS_SURFACE_CLASS (GTS_OBJECT (s)->klass->parent_class)->remove_face)
    (* GTS_SURFACE_CLASS (GTS_OBJECT (s)->klass->parent_class)->remove_face) 
      (s, f);
}

static void heap_surface_class_init (GtsSurfaceClass * klass)
{
  klass->add_face = heap_surface_add_face;
  klass->remove_face = heap_surface_remove_face;
}

static GtsObjectClass * heap_surface_class_new (GtsObjectClass * parent_class)
{
  GtsObjectClassInfo heap_surface_info;

  heap_surface_info = parent_class->info;
  heap_surface_info.class_init_func = (GtsObjectClassInitFunc)
    heap_surface_class_init;
  return gts_object_class_new (parent_class,
			       &heap_surface_info);
}

static void make_face_heap (GtsFace * f, GtsEHeap * heap)
{
  gdouble key = gts_eheap_key (heap, f);

  if (key != 0.)
    EHEAP_PAIR (f) = gts_eheap_insert_with_key (heap, f, key);
}

/**
 * gts_delaunay_refine:
 * @surface: a #GtsSurface describing a conforming Delaunay triangulation.
 * @steiner_max: maximum number of Steiner points.
 * @encroaches: a #GtsEncroachFunc.
 * @encroach_data: user-data to pass to @encroaches.
 * @cost: a #GtsKeyFunc used to sort the faces during refinement.
 * @cost_data: user-data to pass to @cost.
 *
 * An implementation of the refinement algorithm described in Ruppert
 * (1995) and Shewchuk (1996).
 * 
 * Returns: the number of unrefined faces of @surface left. Should be zero
 * if @steiner_max is set to a negative value.
 */
guint gts_delaunay_refine (GtsSurface * surface,
			   gint steiner_max,
			   GtsEncroachFunc encroaches,
			   gpointer encroach_data,
			   GtsKeyFunc cost,
			   gpointer cost_data)
{
  GtsObjectClass * heap_surface_class;
  GtsObjectClass * original_class;
  GtsEHeap * heap;
  GtsFifo * encroached;
  GtsFace * f;
  guint unrefined_number;

  g_return_val_if_fail (surface != NULL, 0);
  g_return_val_if_fail (encroaches != NULL, 0);
  g_return_val_if_fail (cost != NULL, 0);

  original_class = GTS_OBJECT (surface)->klass;
  heap_surface_class = heap_surface_class_new (original_class);
  GTS_OBJECT (surface)->klass = heap_surface_class;

  heap = gts_eheap_new (cost, cost_data);
  gts_surface_foreach_face (surface, (GtsFunc) make_face_heap, heap);
  encroached = gts_fifo_new ();
  
  GTS_OBJECT (surface)->reserved = heap;

  while (steiner_max-- != 0 && (f = gts_eheap_remove_top (heap, NULL))) {
    GtsVertex *add_vertex_returned;
    GtsVertex * c = 
      GTS_VERTEX (gts_triangle_circumcircle_center (GTS_TRIANGLE (f),
		  GTS_POINT_CLASS (surface->vertex_class)));
    EHEAP_PAIR (f) = NULL;
    g_assert (c != NULL);
    add_vertex_returned = gts_delaunay_add_vertex (surface, c, f);
    g_assert (add_vertex_returned == NULL);

    vertex_encroaches (c, surface, encroached, encroaches, encroach_data);
    if (!gts_fifo_is_empty (encroached)) {
      gts_delaunay_remove_vertex (surface, c);
      steiner_max = split_encroached (surface, 
				      encroached, 
				      steiner_max, 
				      encroaches, 
				      encroach_data);
    }
  }

  unrefined_number = gts_eheap_size (heap);
  gts_eheap_foreach (heap, (GFunc) gts_object_reset_reserved, NULL);
  gts_eheap_destroy (heap);

  gts_fifo_foreach (encroached, (GtsFunc) gts_object_reset_reserved, NULL);
  gts_fifo_destroy (encroached);

  GTS_OBJECT (surface)->klass = original_class;
  GTS_OBJECT (surface)->reserved = NULL;
  g_free (heap_surface_class);

  return unrefined_number;
}