File: triangle.c

package info (click to toggle)
pcb 20140316-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 22,212 kB
  • ctags: 16,012
  • sloc: ansic: 123,955; sh: 7,306; yacc: 5,087; pascal: 4,118; makefile: 1,559; perl: 552; lex: 438; awk: 157; lisp: 86; tcl: 63; xml: 20
file content (1094 lines) | stat: -rw-r--r-- 29,203 bytes parent folder | download | duplicates (15)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
/* GTS - Library for the manipulation of triangulated surfaces
 * Copyright (C) 1999 Stphane Popinet
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

#include <math.h>
#include "gts.h"

static void triangle_destroy (GtsObject * object)
{
  GtsTriangle * triangle = GTS_TRIANGLE (object);
  GtsEdge * e1 = triangle->e1;
  GtsEdge * e2 = triangle->e2;
  GtsEdge * e3 = triangle->e3;

  e1->triangles = g_slist_remove (e1->triangles, triangle);
  if (!GTS_OBJECT_DESTROYED (e1) &&
      !gts_allow_floating_edges && e1->triangles == NULL)
    gts_object_destroy (GTS_OBJECT (e1));
  
  e2->triangles = g_slist_remove (e2->triangles, triangle);
  if (!GTS_OBJECT_DESTROYED (e2) &&
      !gts_allow_floating_edges && e2->triangles == NULL)
    gts_object_destroy (GTS_OBJECT (e2));
  
  e3->triangles = g_slist_remove (e3->triangles, triangle);
  if (!GTS_OBJECT_DESTROYED (e3) &&
      !gts_allow_floating_edges && e3->triangles == NULL)
    gts_object_destroy (GTS_OBJECT (e3));

  (* GTS_OBJECT_CLASS (gts_triangle_class ())->parent_class->destroy) (object);
}

static void triangle_class_init (GtsObjectClass * klass)
{
  klass->destroy = triangle_destroy;
}

static void triangle_init (GtsTriangle * triangle)
{
  triangle->e1 = triangle->e2 = triangle->e3 = NULL;
}

/**
 * gts_triangle_class:
 *
 * Returns: the #GtsTriangleClass.
 */
GtsTriangleClass * gts_triangle_class (void)
{
  static GtsTriangleClass * klass = NULL;

  if (klass == NULL) {
    GtsObjectClassInfo triangle_info = {
      "GtsTriangle",
      sizeof (GtsTriangle),
      sizeof (GtsTriangleClass),
      (GtsObjectClassInitFunc) triangle_class_init,
      (GtsObjectInitFunc) triangle_init,
      (GtsArgSetFunc) NULL,
      (GtsArgGetFunc) NULL
    };
    klass = gts_object_class_new (gts_object_class (), 
				  &triangle_info);
  }

  return klass;
}

/**
 * gts_triangle_set:
 * @triangle: a #GtsTriangle.
 * @e1: a #GtsEdge.
 * @e2: another #GtsEdge touching @e1.
 * @e3: another #GtsEdge touching both @e1 and @e2.
 *
 * Sets the edge of @triangle to @e1, @e2 and @e3 while checking that they
 * define a valid triangle.
 */
void gts_triangle_set (GtsTriangle * triangle, 
		       GtsEdge * e1, 
		       GtsEdge * e2,
		       GtsEdge * e3)
{
  g_return_if_fail (e1 != NULL);
  g_return_if_fail (e2 != NULL);
  g_return_if_fail (e3 != NULL);
  g_return_if_fail (e1 != e2 && e1 != e3 && e2 != e3);

  triangle->e1 = e1;
  triangle->e2 = e2;
  triangle->e3 = e3;

  if (GTS_SEGMENT (e1)->v1 == GTS_SEGMENT (e2)->v1)
    g_return_if_fail (gts_segment_connect (GTS_SEGMENT (e3), 
					   GTS_SEGMENT (e1)->v2, 
					   GTS_SEGMENT (e2)->v2));
  else if (GTS_SEGMENT (e1)->v2 == GTS_SEGMENT (e2)->v1)
    g_return_if_fail (gts_segment_connect (GTS_SEGMENT (e3), 
					   GTS_SEGMENT (e1)->v1, 
					   GTS_SEGMENT (e2)->v2));
  else if (GTS_SEGMENT (e1)->v2 == GTS_SEGMENT (e2)->v2)
    g_return_if_fail (gts_segment_connect (GTS_SEGMENT (e3), 
					   GTS_SEGMENT (e1)->v1, 
					   GTS_SEGMENT (e2)->v1));
  else if (GTS_SEGMENT (e1)->v1 == GTS_SEGMENT (e2)->v2)
    g_return_if_fail (gts_segment_connect (GTS_SEGMENT (e3), 
					   GTS_SEGMENT (e1)->v2, 
					   GTS_SEGMENT (e2)->v1));
  else
    g_assert_not_reached ();

  e1->triangles = g_slist_prepend (e1->triangles, triangle);
  e2->triangles = g_slist_prepend (e2->triangles, triangle);
  e3->triangles = g_slist_prepend (e3->triangles, triangle);
}

/**
 * gts_triangle_new:
 * @klass: a #GtsTriangleClass.
 * @e1: a #GtsEdge.
 * @e2: another #GtsEdge touching @e1.
 * @e3: another #GtsEdge touching both @e1 and @e2.
 *
 * Returns: a new #GtsTriangle having @e1, @e2 and @e3 as edges.
 */
GtsTriangle * gts_triangle_new (GtsTriangleClass * klass,
				GtsEdge * e1,
				GtsEdge * e2,
				GtsEdge * e3)
{
  GtsTriangle * t;

  t = GTS_TRIANGLE (gts_object_new (GTS_OBJECT_CLASS (klass)));
  gts_triangle_set (t, e1, e2, e3);
  
  return t;
}

/**
 * gts_triangle_vertex_opposite:
 * @t: a #GtsTriangle.
 * @e: a #GtsEdge used by @t.
 *
 * This function fails if @e is not an edge of @t.
 * 
 * Returns: a #GtsVertex, vertex of @t which does not belong to @e.
 */
GtsVertex * gts_triangle_vertex_opposite (GtsTriangle * t, GtsEdge * e)
{
  g_return_val_if_fail (t != NULL, NULL);
  g_return_val_if_fail (e != NULL, NULL);

  if (t->e1 == e) {
    GtsVertex * v = GTS_SEGMENT (t->e2)->v1;
    if (v != GTS_SEGMENT (e)->v1 && v != GTS_SEGMENT (e)->v2)
      return v;
    return GTS_SEGMENT (t->e2)->v2;
  }
  if (t->e2 == e) {
    GtsVertex * v = GTS_SEGMENT (t->e1)->v1;
    if (v != GTS_SEGMENT (e)->v1 && v != GTS_SEGMENT (e)->v2)
      return v;
    return GTS_SEGMENT (t->e1)->v2;
  }
  if (t->e3 == e) {
    GtsVertex * v = GTS_SEGMENT (t->e2)->v1;
    if (v != GTS_SEGMENT (e)->v1 && v != GTS_SEGMENT (e)->v2)
      return v;
    return GTS_SEGMENT (t->e2)->v2;
  }
  g_assert_not_reached ();
  return NULL;
}

/**
 * gts_triangle_edge_opposite:
 * @t: a #GtsTriangle.
 * @v: a #GtsVertex of @t.
 *
 * Returns: the edge of @t opposite @v or %NULL if @v is not a vertice of @t.
 */
GtsEdge * gts_triangle_edge_opposite (GtsTriangle * t, GtsVertex * v)
{
  GtsSegment * s1, * s2, * s3;

  g_return_val_if_fail (t != NULL, NULL);
  g_return_val_if_fail (v != NULL, NULL);

  s1 = GTS_SEGMENT (t->e1);
  s2 = GTS_SEGMENT (t->e2);

  if (s1->v1 != v && s1->v2 != v) {
    if (s2->v1 != v && s2->v2 != v)
      return NULL;
    return t->e1;
  }
  if (s2->v1 != v && s2->v2 != v)
    return t->e2;
  s3 = GTS_SEGMENT (t->e3);
  g_assert (s3->v1 != v && s3->v2 != v);
  return t->e3;
}

/**
 * gts_triangles_angle:
 * @t1: a #GtsTriangle.
 * @t2: a #GtsTriangle.
 *
 * Returns: the value (in radians) of the angle between @t1 and @t2.
 */
gdouble gts_triangles_angle (GtsTriangle * t1,
			     GtsTriangle * t2)
{
  gdouble nx1, ny1, nz1, nx2, ny2, nz2;
  gdouble pvx, pvy, pvz;
  gdouble theta;

  g_return_val_if_fail (t1 != NULL && t2 != NULL, 0.0);

  gts_triangle_normal (t1, &nx1, &ny1, &nz1);
  gts_triangle_normal (t2, &nx2, &ny2, &nz2);

  pvx = ny1*nz2 - nz1*ny2;
  pvy = nz1*nx2 - nx1*nz2;
  pvz = nx1*ny2 - ny1*nx2;

  theta = atan2 (sqrt (pvx*pvx + pvy*pvy + pvz*pvz), 
		 nx1*nx2 + ny1*ny2 + nz1*nz2) - M_PI;
  return theta < - M_PI ? theta + 2.*M_PI : theta;
}

/**
 * gts_triangles_are_compatible:
 * @t1: a #GtsTriangle.
 * @t2: a #GtsTriangle.
 * @e: a #GtsEdge used by both @t1 and @t2.
 *
 * Checks if @t1 and @t2 have compatible orientations i.e. if @t1 and
 * @t2 can be part of the same surface without conflict in the surface
 * normal orientation.
 *
 * Returns: %TRUE if @t1 and @t2 are compatible, %FALSE otherwise.
 */
gboolean gts_triangles_are_compatible (GtsTriangle * t1, 
				       GtsTriangle * t2,
				       GtsEdge * e)
{
  GtsEdge * e1 = NULL, * e2 = NULL;

  g_return_val_if_fail (t1 != NULL, FALSE);
  g_return_val_if_fail (t2 != NULL, FALSE);
  g_return_val_if_fail (e != NULL, FALSE);

  if (t1->e1 == e) e1 = t1->e2;
  else if (t1->e2 == e) e1 = t1->e3;
  else if (t1->e3 == e) e1 = t1->e1;
  else
    g_assert_not_reached ();
  if (t2->e1 == e) e2 = t2->e2;
  else if (t2->e2 == e) e2 = t2->e3;
  else if (t2->e3 == e) e2 = t2->e1;
  else
    g_assert_not_reached ();
  if (GTS_SEGMENT (e1)->v1 == GTS_SEGMENT (e2)->v1 || 
      GTS_SEGMENT (e1)->v1 == GTS_SEGMENT (e2)->v2 || 
      GTS_SEGMENT (e1)->v2 == GTS_SEGMENT (e2)->v1 || 
      GTS_SEGMENT (e1)->v2 == GTS_SEGMENT (e2)->v2)
    return FALSE;
  return TRUE;
}

/**
 * gts_triangle_area:
 * @t: a #GtsTriangle.
 *
 * Returns: the area of the triangle @t.
 */
gdouble gts_triangle_area (GtsTriangle * t)
{
  gdouble x, y, z;
  
  g_return_val_if_fail (t != NULL, 0.0);
  
  gts_triangle_normal (t, &x, &y, &z);
  
  return sqrt (x*x + y*y + z*z)/2.;
}

/**
 * gts_triangle_perimeter:
 * @t: a #GtsTriangle.
 *
 * Returns: the perimeter of the triangle @t.
 */
gdouble gts_triangle_perimeter (GtsTriangle * t)
{
  GtsVertex * v;

  g_return_val_if_fail (t != NULL, 0.0);

  v = gts_triangle_vertex (t);
  return 
    gts_point_distance (GTS_POINT (GTS_SEGMENT (t->e1)->v1), 
			GTS_POINT (GTS_SEGMENT (t->e1)->v2)) +
    gts_point_distance (GTS_POINT (GTS_SEGMENT (t->e1)->v1), 
			GTS_POINT (v)) +
    gts_point_distance (GTS_POINT (GTS_SEGMENT (t->e1)->v2), 
			GTS_POINT (v));
}

/* perimeter of the equilateral triangle of area unity */
#define GOLDEN_PERIMETER 4.5590141139 

/**
 * gts_triangle_quality:
 * @t: a #GtsTriangle.
 *
 * The quality of a triangle is defined as the ratio of the square
 * root of its surface area to its perimeter relative to this same
 * ratio for an equilateral triangle with the same area. The quality
 * is then one for an equilateral triangle and tends to zero for a
 * very stretched triangle.
 *
 * Returns: the quality of the triangle @t.
 */
gdouble gts_triangle_quality (GtsTriangle * t)
{
  gdouble perimeter;

  g_return_val_if_fail (t != NULL, 0.0);

  perimeter = gts_triangle_perimeter (t);
  return perimeter > 0.0 ?
    GOLDEN_PERIMETER*sqrt (gts_triangle_area (t))/perimeter :
    0.0;
}

/**
 * gts_triangle_normal:
 * @t: a #GtsTriangle.
 * @x: the x coordinate of the normal.
 * @y: the y coordinate of the normal.
 * @z: the z coordinate of the normal.
 *
 * Computes the coordinates of the oriented normal of @t as the
 * cross-product of two edges, using the left-hand rule. The normal is
 * not normalized.  If this triangle is part of a closed and oriented
 * surface, the normal points to the outside of the surface.  
 */
void gts_triangle_normal (GtsTriangle * t, 
			  gdouble * x, 
			  gdouble * y, 
			  gdouble * z)
{
  GtsVertex * v1, * v2 = NULL, * v3 = NULL;
  GtsPoint * p1, * p2, * p3;
  gdouble x1, y1, z1, x2, y2, z2;

  g_return_if_fail (t != NULL);

  v1 = GTS_SEGMENT (t->e1)->v1;
  if (GTS_SEGMENT (t->e1)->v1 == GTS_SEGMENT (t->e2)->v1) {
    v2 = GTS_SEGMENT (t->e2)->v2;
    v3 = GTS_SEGMENT (t->e1)->v2;
  }
  else if (GTS_SEGMENT (t->e1)->v2 == GTS_SEGMENT (t->e2)->v2) {
    v2 = GTS_SEGMENT (t->e1)->v2;
    v3 = GTS_SEGMENT (t->e2)->v1;
  }
  else if (GTS_SEGMENT (t->e1)->v1 == GTS_SEGMENT (t->e2)->v2) {
    v2 = GTS_SEGMENT (t->e2)->v1;
    v3 = GTS_SEGMENT (t->e1)->v2;
  }
  else if (GTS_SEGMENT (t->e1)->v2 == GTS_SEGMENT (t->e2)->v1) {
    v2 = GTS_SEGMENT (t->e1)->v2;
    v3 = GTS_SEGMENT (t->e2)->v2;
  }
  else {
    fprintf (stderr, "t: %p t->e1: %p t->e2: %p t->e3: %p t->e1->v1: %p t->e1->v2: %p t->e2->v1: %p t->e2->v2: %p t->e3->v1: %p t->e3->v2: %p\n",
	 t, t->e1, t->e2, 
	 t->e3, GTS_SEGMENT (t->e1)->v1, GTS_SEGMENT (t->e1)->v2, 
	 GTS_SEGMENT (t->e2)->v1, GTS_SEGMENT (t->e2)->v2, 
	 GTS_SEGMENT (t->e3)->v1, GTS_SEGMENT (t->e3)->v2);
    g_assert_not_reached ();
  }

  p1 = GTS_POINT (v1);
  p2 = GTS_POINT (v2);
  p3 = GTS_POINT (v3);

  x1 = p2->x - p1->x;
  y1 = p2->y - p1->y;
  z1 = p2->z - p1->z;

  x2 = p3->x - p1->x;
  y2 = p3->y - p1->y;
  z2 = p3->z - p1->z;

  *x = y1*z2 - z1*y2;
  *y = z1*x2 - x1*z2;
  *z = x1*y2 - y1*x2;
}

/**
 * gts_triangle_orientation:
 * @t: a #GtsTriangle.
 * 
 * Checks for the orientation of the plane (x,y) projection of a
 * triangle. See gts_point_orientation() for details. This function
 * is geometrically robust.
 *
 * Returns: a number depending on the orientation of the vertices of @t.
 */
gdouble gts_triangle_orientation (GtsTriangle * t)
{
  GtsVertex * v1, * v2 = NULL, * v3 = NULL;

  g_return_val_if_fail (t != NULL, 0.0);

  v1 = GTS_SEGMENT (t->e1)->v1;
  if (GTS_SEGMENT (t->e1)->v1 == GTS_SEGMENT (t->e2)->v1) {
    v2 = GTS_SEGMENT (t->e2)->v2;
    v3 = GTS_SEGMENT (t->e1)->v2;
  }
  else if (GTS_SEGMENT (t->e1)->v2 == GTS_SEGMENT (t->e2)->v2) {
    v2 = GTS_SEGMENT (t->e1)->v2;
    v3 = GTS_SEGMENT (t->e2)->v1;
  }
  else if (GTS_SEGMENT (t->e1)->v1 == GTS_SEGMENT (t->e2)->v2) {
    v2 = GTS_SEGMENT (t->e2)->v1;
    v3 = GTS_SEGMENT (t->e1)->v2;
  }
  else if (GTS_SEGMENT (t->e1)->v2 == GTS_SEGMENT (t->e2)->v1) {
    v2 = GTS_SEGMENT (t->e1)->v2;
    v3 = GTS_SEGMENT (t->e2)->v2;
  }
  else
    g_assert_not_reached ();
  return gts_point_orientation (GTS_POINT (v1), 
				GTS_POINT (v2), 
				GTS_POINT (v3));
}

/**
 * gts_triangle_revert:
 * @t: a #GtsTriangle.
 * 
 * Changes the orientation of triangle @t, turning it inside out.
 */
void gts_triangle_revert (GtsTriangle * t)
{
  GtsEdge * e;

  g_return_if_fail (t != NULL);

  e = t->e1;
  t->e1 = t->e2;
  t->e2 = e;
}

/**
 * gts_triangles_from_edges:
 * @edges: a list of #GtsEdge.
 *
 * Builds a list of unique triangles which have one of their edges in @edges.
 * 
 * Returns: the list of triangles.
 */
GSList * gts_triangles_from_edges (GSList * edges)
{
  GHashTable * hash;
  GSList * triangles = NULL, * i;

  hash = g_hash_table_new (NULL, NULL);
  i = edges;
  while (i) {
    GSList * j = GTS_EDGE (i->data)->triangles;
    while (j) {
      GtsTriangle * t = j->data;
      if (g_hash_table_lookup (hash, t) == NULL) {
	triangles = g_slist_prepend (triangles, t);
	g_hash_table_insert (hash, t, i);
      }
      j = j->next;
    }
    i = i->next;
  }
  g_hash_table_destroy (hash);

  return triangles;
}

/**
 * gts_triangle_vertices_edges:
 * @t: a #GtsTriangle.
 * @e: a #GtsEdge belonging to the edges of @t or %NULL.
 * @v1: a #GtsVertex used by @t.
 * @v2: a #GtsVertex used by @t.
 * @v3: a #GtsVertex used by @t.
 * @e1: a #GtsEdge used by @t.
 * @e2: a #GtsEdge used by @t.
 * @e3: a #GtsEdge used by @t.
 *
 * Given @t and @e, returns @v1, @v2, @v3, @e1, @e2 and @e3. @e1
 * has @v1 and @v2 as vertices, @e2 has @v2 and @v3 as vertices
 * and @e3 has @v3 and @v1 as vertices. @v1, @v2 and @v3 respects
 * the orientation of @t. If @e is not NULL, @e1 and @e are
 * identical.
 */
void gts_triangle_vertices_edges (GtsTriangle * t, 
				  GtsEdge * e,
				  GtsVertex ** v1, 
				  GtsVertex ** v2, 
				  GtsVertex ** v3,
				  GtsEdge ** e1,
				  GtsEdge ** e2,
				  GtsEdge ** e3)
{
  GtsEdge * ee1, * ee2;

  g_return_if_fail (t != NULL);
  
  if (e == t->e1 || e == NULL) {
    *e1 = ee1 = t->e1; *e2 = ee2 = t->e2; *e3 = t->e3;    
  }
  else if (e == t->e2) {
    *e1 = ee1 = e; *e2 = ee2 = t->e3; *e3 = t->e1;
  }
  else if (e == t->e3) {
    *e1 = ee1 = e; *e2 = ee2 = t->e1; *e3 = t->e2;
  }
  else {
    g_assert_not_reached ();
    ee1 = ee2 = NULL; /* to avoid complaints from the compiler */
  }
  if (GTS_SEGMENT (ee1)->v2 == GTS_SEGMENT (ee2)->v1) {
    *v1 = GTS_SEGMENT (ee1)->v1; 
    *v2 = GTS_SEGMENT (ee1)->v2; 
    *v3 = GTS_SEGMENT (ee2)->v2;
  }
  else if (GTS_SEGMENT (ee1)->v2 == GTS_SEGMENT (ee2)->v2) {
    *v1 = GTS_SEGMENT (ee1)->v1; 
    *v2 = GTS_SEGMENT (ee1)->v2; 
    *v3 = GTS_SEGMENT (ee2)->v1;
  }
  else if (GTS_SEGMENT (ee1)->v1 == GTS_SEGMENT (ee2)->v1) {
    *v1 = GTS_SEGMENT (ee1)->v2; 
    *v2 = GTS_SEGMENT (ee1)->v1; 
    *v3 = GTS_SEGMENT (ee2)->v2;
  }
  else if (GTS_SEGMENT (ee1)->v1 == GTS_SEGMENT (ee2)->v2) {
    *v1 = GTS_SEGMENT (ee1)->v2; 
    *v2 = GTS_SEGMENT (ee1)->v1; 
    *v3 = GTS_SEGMENT (ee2)->v1;
  }
  else
    g_assert_not_reached ();
}

/* sqrt(3) */
#define SQRT3 1.73205080757

/**
 * gts_triangle_enclosing:
 * @klass: the class of the new triangle.
 * @points: a list of #GtsPoint.
 * @scale: a scaling factor (must be larger than one).
 * 
 * Builds a new triangle (including new vertices and edges) enclosing
 * the plane projection of all the points in @points. This triangle is
 * equilateral and encloses a rectangle defined by the maximum and
 * minimum x and y coordinates of the points. @scale is an homothetic
 * scaling factor. If equal to one, the triangle encloses exactly the
 * enclosing rectangle.
 * 
 * Returns: a new #GtsTriangle.  
 */
GtsTriangle * gts_triangle_enclosing (GtsTriangleClass * klass,
				      GSList * points, gdouble scale)
{
  gdouble xmax, xmin, ymax, ymin;
  gdouble xo, yo, r;
  GtsVertex * v1, * v2, * v3;
  GtsEdge * e1, * e2, * e3;

  if (points == NULL)
    return NULL;
  
  xmax = xmin = GTS_POINT (points->data)->x;
  ymax = ymin = GTS_POINT (points->data)->y;
  points = points->next;
  while (points) {
    GtsPoint * p = points->data;
    if (p->x > xmax) xmax = p->x;
    else if (p->x < xmin) xmin = p->x;
    if (p->y > ymax) ymax = p->y;
    else if (p->y < ymin) ymin = p->y;    
    points = points->next;
  }
  xo = (xmax + xmin)/2.;
  yo = (ymax + ymin)/2.;
  r = scale*sqrt((xmax - xo)*(xmax - xo) + (ymax - yo)*(ymax - yo));
  if (r == 0.0) r = scale;
  v1 = gts_vertex_new (gts_vertex_class (),
		       xo + r*SQRT3, yo - r, 0.0);
  v2 = gts_vertex_new (gts_vertex_class (),
		       xo, yo + 2.*r, 0.0);
  v3 = gts_vertex_new (gts_vertex_class (),
		       xo - r*SQRT3, yo - r, 0.0);
  e1 = gts_edge_new (gts_edge_class (), v1, v2);
  e2 = gts_edge_new (gts_edge_class (), v2, v3);
  e3 = gts_edge_new (gts_edge_class (), v3, v1);
  return gts_triangle_new (gts_triangle_class (), e1, e2, e3);
}

/**
 * gts_triangle_neighbor_number:
 * @t: a #GtsTriangle.
 *
 * Returns: the number of triangles neighbors of @t.
 */
guint gts_triangle_neighbor_number (GtsTriangle * t)
{
  GSList * i;
  guint nn = 0;
  GtsEdge * ee[4], ** e = ee;
  
  g_return_val_if_fail (t != NULL, 0);

  ee[0] = t->e1; ee[1] = t->e2; ee[2] = t->e3; ee[3] = NULL;
  while (*e) {
    i = (*e++)->triangles;
    while (i) {
      GtsTriangle * t1 = i->data;
      if (t1 != t)
	nn++;
      i = i->next;
    }
  }
  return nn;
}

/**
 * gts_triangle_neighbors:
 * @t: a #GtsTriangle.
 *
 * Returns: a list of #GtsTriangle neighbors of @t.
 */
GSList * gts_triangle_neighbors (GtsTriangle * t)
{
  GSList * i, * list = NULL;
  GtsEdge * ee[4], ** e = ee;
  
  g_return_val_if_fail (t != NULL, NULL);

  ee[0] = t->e1; ee[1] = t->e2; ee[2] = t->e3; ee[3] = NULL;
  while (*e) {
    i = (*e++)->triangles;
    while (i) {
      GtsTriangle * t1 = i->data;
      if (t1 != t)
	list = g_slist_prepend (list, t1);
      i = i->next;
    }
  }
  return list;
}

/**
 * gts_triangles_common_edge:
 * @t1: a #GtsTriangle.
 * @t2: a #GtsTriangle.
 *
 * Returns: a #GtsEdge common to both @t1 and @t2 or %NULL if @t1 and @t2
 * do not share any edge.
 */
GtsEdge * gts_triangles_common_edge (GtsTriangle * t1,
				     GtsTriangle * t2)
{
  g_return_val_if_fail (t1 != NULL, NULL);
  g_return_val_if_fail (t2 != NULL, NULL);

  if (t1->e1 == t2->e1 || t1->e1 == t2->e2 || t1->e1 == t2->e3)
    return t1->e1;
  if (t1->e2 == t2->e1 || t1->e2 == t2->e2 || t1->e2 == t2->e3)
    return t1->e2;
  if (t1->e3 == t2->e1 || t1->e3 == t2->e2 || t1->e3 == t2->e3)
    return t1->e3;
  return NULL;
}

/**
 * gts_triangle_is_duplicate:
 * @t: a #GtsTriangle.
 *
 * Returns: a #GtsTriangle different from @t but sharing all its edges 
 * with @t or %NULL if there is none.
 */
GtsTriangle * gts_triangle_is_duplicate (GtsTriangle * t)
{
  GSList * i;
  GtsEdge * e2, * e3;

  g_return_val_if_fail (t != NULL, NULL);

  e2 = t->e2;
  e3 = t->e3;
  i = t->e1->triangles;
  while (i) {
    GtsTriangle * t1 = i->data;
    if (t1 != t && 
	(t1->e1 == e2 || t1->e2 == e2 || t1->e3 == e2) &&
	(t1->e1 == e3 || t1->e2 == e3 || t1->e3 == e3))
      return t1;
    i = i->next;
  }
  
  return NULL;
}

/**
 * gts_triangle_use_edges:
 * @e1: a #GtsEdge.
 * @e2: a #GtsEdge.
 * @e3: a #GtsEdge.
 *
 * Returns: a #GtsTriangle having @e1, @e2 and @e3 as edges or %NULL if @e1,
 * @e2 and @e3 are not part of any triangle.
 */
GtsTriangle * gts_triangle_use_edges (GtsEdge * e1,
				      GtsEdge * e2,
				      GtsEdge * e3)
{
  GSList * i;
  
  g_return_val_if_fail (e1 != NULL, NULL);
  g_return_val_if_fail (e2 != NULL, NULL);
  g_return_val_if_fail (e3 != NULL, NULL);

  i = e1->triangles;
  while (i) {
    GtsTriangle * t = i->data;
    if ((t->e1 == e2 && (t->e2 == e3 || t->e3 == e3)) ||
	(t->e2 == e2 && (t->e1 == e3 || t->e3 == e3)) ||
	(t->e3 == e2 && (t->e1 == e3 || t->e2 == e3)))
      return t;
    i = i->next;
  }
  
  return NULL;
}

/**
 * gts_triangle_is_ok:
 * @t: a #GtsTriangle.
 *
 * Returns: %TRUE if @t is a non-degenerate, non-duplicate triangle,
 * %FALSE otherwise.
 */
gboolean gts_triangle_is_ok (GtsTriangle * t)
{
  g_return_val_if_fail (t != NULL, FALSE);
  g_return_val_if_fail (t->e1 != NULL, FALSE);
  g_return_val_if_fail (t->e2 != NULL, FALSE);
  g_return_val_if_fail (t->e3 != NULL, FALSE);
  g_return_val_if_fail (t->e1 != t->e2 && t->e1 != t->e3 && t->e2 != t->e3, 
			FALSE);
  g_return_val_if_fail (gts_segments_touch (GTS_SEGMENT (t->e1), 
					    GTS_SEGMENT (t->e2)),
			FALSE);
  g_return_val_if_fail (gts_segments_touch (GTS_SEGMENT (t->e1), 
					    GTS_SEGMENT (t->e3)), 
			FALSE);
  g_return_val_if_fail (gts_segments_touch (GTS_SEGMENT (t->e2), 
					    GTS_SEGMENT (t->e3)), 
			FALSE);
  g_return_val_if_fail (GTS_SEGMENT (t->e1)->v1 != GTS_SEGMENT (t->e1)->v2, 
			FALSE);
  g_return_val_if_fail (GTS_SEGMENT (t->e2)->v1 != GTS_SEGMENT (t->e2)->v2, 
			FALSE);
  g_return_val_if_fail (GTS_SEGMENT (t->e3)->v1 != GTS_SEGMENT (t->e3)->v2, 
			FALSE);
  g_return_val_if_fail (GTS_OBJECT (t)->reserved == NULL, FALSE);
  g_return_val_if_fail (!gts_triangle_is_duplicate (t), FALSE);
  return TRUE;
}

/**
 * gts_triangle_vertices:
 * @t: a #GtsTriangle.
 * @v1: a pointer on a #GtsVertex.
 * @v2: a pointer on a #GtsVertex.
 * @v3: a pointer on a #GtsVertex.
 *
 * Fills @v1, @v2 and @v3 with the oriented set of vertices, summits of @t.
 */
void gts_triangle_vertices (GtsTriangle * t,
			    GtsVertex ** v1, GtsVertex ** v2, GtsVertex ** v3)
{
  GtsSegment * e1, * e2;

  g_return_if_fail (t != NULL);
  g_return_if_fail (v1 != NULL && v2 != NULL && v3 != NULL);

  e1 = GTS_SEGMENT (t->e1);
  e2 = GTS_SEGMENT (t->e2);

  if (GTS_SEGMENT (e1)->v2 == GTS_SEGMENT (e2)->v1) {
    *v1 = GTS_SEGMENT (e1)->v1; 
    *v2 = GTS_SEGMENT (e1)->v2; 
    *v3 = GTS_SEGMENT (e2)->v2;
  }
  else if (GTS_SEGMENT (e1)->v2 == GTS_SEGMENT (e2)->v2) {
    *v1 = GTS_SEGMENT (e1)->v1; 
    *v2 = GTS_SEGMENT (e1)->v2; 
    *v3 = GTS_SEGMENT (e2)->v1;
  }
  else if (GTS_SEGMENT (e1)->v1 == GTS_SEGMENT (e2)->v1) {
    *v1 = GTS_SEGMENT (e1)->v2; 
    *v2 = GTS_SEGMENT (e1)->v1; 
    *v3 = GTS_SEGMENT (e2)->v2;
  }
  else {
    *v1 = GTS_SEGMENT (e1)->v2; 
    *v2 = GTS_SEGMENT (e1)->v1; 
    *v3 = GTS_SEGMENT (e2)->v1;
  }
}

/**
 * gts_triangle_circumcircle_center:
 * @t: a #GtsTriangle.
 * @point_class: a #GtsPointClass.
 *
 * Returns: a new #GtsPoint, center of the circumscribing circle of @t or
 * %NULL if the circumscribing circle is not defined.
 */
GtsPoint * gts_triangle_circumcircle_center (GtsTriangle * t,
					     GtsPointClass * point_class)
{
  GtsVertex * v1, * v2, * v3;
  gdouble xa, ya, xb, yb, xc, yc;
  gdouble xd, yd, xe, ye;
  gdouble xad, yad, xae, yae;
  gdouble det;
  
  g_return_val_if_fail (t != NULL, NULL);
  g_return_val_if_fail (point_class != NULL, NULL);

  gts_triangle_vertices (t, &v1, &v2, &v3);

  xa = GTS_POINT (v1)->x; ya = GTS_POINT (v1)->y;
  xb = GTS_POINT (v2)->x; yb = GTS_POINT (v2)->y;
  xc = GTS_POINT (v3)->x; yc = GTS_POINT (v3)->y;
  xd = (xa + xb)/2.; yd = (ya + yb)/2.;
  xe = (xa + xc)/2.; ye = (ya + yc)/2.;
  xad = xd - xa; yad = yd - ya;
  xae = xe - xa; yae = ye - ya;
  det = xad*yae - xae*yad;
  if (det == 0.)
    return NULL;
  return gts_point_new (point_class,
			(yae*yad*(yd - ye) + xad*yae*xd - xae*yad*xe)/det,
			-(xae*xad*(xd - xe) + yad*xae*yd - yae*xad*ye)/det,
			0.);
}

/* square of the maximum area ratio admissible */
#define AREA_RATIO_MAX2 1e8

static gboolean points_are_folded (GtsPoint * A,
				   GtsPoint * B,
				   GtsPoint * C,
				   GtsPoint * D,
				   gdouble max)
{
  GtsVector AB, AC, AD;
  GtsVector n1, n2;
  gdouble nn1, nn2, n1n2;

  gts_vector_init (AB, A, B);
  gts_vector_init (AC, A, C);
  gts_vector_init (AD, A, D);
  gts_vector_cross (n1, AB, AC);
  gts_vector_cross (n2, AD, AB);

  nn1 = gts_vector_scalar (n1, n1);
  nn2 = gts_vector_scalar (n2, n2);
  if (nn1 >= AREA_RATIO_MAX2*nn2 || nn2 >= AREA_RATIO_MAX2*nn1)
    return TRUE;
  n1n2 = gts_vector_scalar (n1, n2);
  if (n1n2 > 0.)
    return FALSE;
  if (n1n2*n1n2/(nn1*nn2) > max)
    return TRUE;
  return FALSE;
}

static GtsVertex * triangle_use_vertices (GtsTriangle * t,
					  GtsVertex * A, 
					  GtsVertex * B)
{
  GtsVertex 
    * v1 = GTS_SEGMENT (t->e1)->v1, 
    * v2 = GTS_SEGMENT (t->e1)->v2, 
    * v3 = gts_triangle_vertex (t);

  if (v1 == A) {
    if (v2 == B)
      return v3;
    g_assert (v3 == B);
    return v2;
  }
  if (v2 == A) {
    if (v1 == B)
      return v3;
    g_assert (v3 == B);
    return v1;
  }
  if (v3 == A) {
    if (v1 == B)
      return v2;
    g_assert (v2 == B);
    return v1;
  }
  g_assert_not_reached ();
  return NULL;
}

/**
 * gts_triangles_are_folded:
 * @triangles: a list of #GtsTriangle.
 * @A: a #GtsVertex.
 * @B: another #GtsVertex.
 * @max: the maximum value of the square of the cosine of the angle between
 * two triangles.
 *
 * Given a list of triangles sharing @A and @B as vertices, checks if any
 * two triangles in the list make an angle larger than a given value defined
 * by @max.
 * 
 * Returns: %TRUE if any pair of triangles in @triangles makes an angle larger 
 * than the maximum value, %FALSE otherwise.
 */
gboolean gts_triangles_are_folded (GSList * triangles,
				   GtsVertex * A, GtsVertex * B,
				   gdouble max)
{
  GSList * i;

  g_return_val_if_fail (A != NULL, TRUE);
  g_return_val_if_fail (B != NULL, TRUE);

  i = triangles;
  while (i) {
    GtsVertex * C = triangle_use_vertices (i->data, A, B);
    GSList * j = i->next;    
    while (j) {
      GtsVertex * D = triangle_use_vertices (j->data, A, B);
      if (points_are_folded (GTS_POINT (A), 
			     GTS_POINT (B), 
			     GTS_POINT (C), 
			     GTS_POINT (D), 
			     max))
	return TRUE;
      j = j->next;
    }
    i = i->next;
  }
  return FALSE;
}

/**
 * gts_triangle_is_stabbed:
 * @t: a #GtsTriangle.
 * @p: a #GtsPoint.
 * @orientation: a pointer or %NULL.
 *
 * Returns: one of the vertices of @t, one of the edges of @t or @t if
 * any of these are stabbed by the ray starting at @p (included) and
 * ending at (@p->x, @p->y, +infty), %NULL otherwise. If the ray is
 * contained in the plane of the triangle %NULL is also returned. If
 * @orientation is not %NULL, it is set to the value of the
 * orientation of @p relative to @t (as given by
 * gts_point_orientation_3d()).  
 */
GtsObject * gts_triangle_is_stabbed (GtsTriangle * t, 
				     GtsPoint * p,
				     gdouble * orientation)
{
  GtsVertex * v1, * v2, * v3, * inverted = NULL;
  GtsEdge * e1, * e2, * e3, * tmp;
  gdouble o, o1, o2, o3;

  g_return_val_if_fail (t != NULL, NULL);
  g_return_val_if_fail (p != NULL, NULL);

  gts_triangle_vertices_edges (t, NULL, &v1, &v2, &v3, &e1, &e2, &e3);
  o = gts_point_orientation (GTS_POINT (v1), GTS_POINT (v2), GTS_POINT (v3));
  if (o == 0.)
    return NULL;
  if (o < 0.) {
    inverted = v1;
    v1 = v2;
    v2 = inverted;
    tmp = e2;
    e2 = e3;
    e3 = tmp;
  }
  o = gts_point_orientation_3d (GTS_POINT (v1),
				GTS_POINT (v2), 
				GTS_POINT (v3), 
				p);
  if (o < 0.)
    return NULL;
  o1 = gts_point_orientation (GTS_POINT (v1), GTS_POINT (v2), p);
  if (o1 < 0.)
    return NULL;
  o2 = gts_point_orientation (GTS_POINT (v2), GTS_POINT (v3), p);
  if (o2 < 0.)
    return NULL;
  o3 = gts_point_orientation (GTS_POINT (v3), GTS_POINT (v1), p);
  if (o3 < 0.)
    return NULL;  
  if (orientation) *orientation = inverted ? -o : o;
  if (o1 == 0.) {
    if (o2 == 0.)
      return GTS_OBJECT (v2);
    if (o3 == 0.)
      return GTS_OBJECT (v1);
    return GTS_OBJECT (e1);
  }
  if (o2 == 0.) {
    if (o3 == 0.)
      return GTS_OBJECT (v3);
    return GTS_OBJECT (e2);
  }
  if (o3 == 0.)
    return GTS_OBJECT (e3);
  return GTS_OBJECT (t);
}

/**
 * gts_triangle_interpolate_height:
 * @t: a #GtsTriangle.
 * @p: a #GtsPoint.
 *
 * Fills the z-coordinate of point @p belonging to the plane
 * projection of triangle @t with the linearly interpolated value of
 * the z-coordinates of the vertices of @t.
 */
void gts_triangle_interpolate_height (GtsTriangle * t, GtsPoint * p)
{
  GtsPoint * p1, * p2, * p3;
  gdouble x1, x2, y1, y2, det;

  g_return_if_fail (t != NULL);
  g_return_if_fail (p != NULL);

  p1 = GTS_POINT (GTS_SEGMENT (t->e1)->v1);
  p2 = GTS_POINT (GTS_SEGMENT (t->e1)->v2);
  p3 = GTS_POINT (gts_triangle_vertex (t));

  x1 = p2->x - p1->x;
  y1 = p2->y - p1->y;
  x2 = p3->x - p1->x;
  y2 = p3->y - p1->y;
  det = x1*y2 - x2*y1;
  if (det == 0.)
    p->z = (p1->z + p2->z + p3->z)/3.;
  else {
    gdouble x = p->x - p1->x;
    gdouble y = p->y - p1->y;
    gdouble a = (x*y2 - y*x2)/det;
    gdouble b = (y*x1 - x*y1)/det;

    p->z = (1. - a - b)*p1->z + a*p2->z + b*p3->z;
  }
}