1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
|
static char rcsid[] = "$Id: ResultTable.cc 1082 2005-02-12 19:40:04Z bmah $";
//
// $Id: ResultTable.cc 1082 2005-02-12 19:40:04Z bmah $
//
// ResultTable.cc
// Bruce A. Mah <bmah@acm.org>
//
// This work was first produced by an employee of Sandia National
// Laboratories under a contract with the U.S. Department of Energy.
// Sandia National Laboratories dedicates whatever right, title or
// interest it may have in this software to the public. Although no
// license from Sandia is needed to copy and use this software,
// copying and using the software might infringe the rights of
// others. This software is provided as-is. SANDIA DISCLAIMS ANY
// WARRANTY OF ANY KIND, EXPRESS OR IMPLIED.
//
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "pc.h"
#include "ResultTable.h"
#include "Kendall.h"
//
// Constructor
//
// Input: Table parameters (i, m, b, r)
//
// Output: None
//
ResultTable::ResultTable(unsigned int inc, unsigned int m, unsigned int b,
unsigned int r) :
increment(inc), mtu(m), repetitions(r), burst(b), columns((burst+1)*mtu+1)
// Note the initialization of the columns member; we want to be
// able to hold the largest possible response packet. (burst+1)*MTU should
// work unless the user sets MTU to something small (then add one because
// packet sizes begin with 1, not 0).
{
int i;
// Stupid typedef hack for SparcWorks C++ compilier, which apparently
// can't handle "new (footype *)[bar]". We're trying to do:
// data = new (double *) [columns];
typedef double *DoublePtr;
data = new (double *[columns]);
if (data == NULL) {
fprintf(stderr, "Couldn't allocate data array for a ResultTable\n");
exit(1);
}
used = new int[columns];
if (used == NULL) {
fprintf(stderr, "Couldn't allocate used array for a ResultTable\n");
exit(1);
}
for (i = 0; i < columns; i++) {
data[i] = NULL;
used[i] = 0;
}
// Invalidate result caches
cacheSlrValid = false;
cacheTauValid = false;
cacheLmsValid = false;
cacheQueueingValid = false;
}
//
// ResultTable::~ResultTable
//
// Input: None
//
// Output None
//
ResultTable::~ResultTable() {
int i;
for (i = 0; i < columns; i++) {
if (data[i]) {
delete [] data[i];
data[i] = NULL;
}
}
delete data;
delete used;
}
//
// ResultTable::put
//
// Input: size, time pair
//
// Output: Success code in return value (negative if an error)
//
// Insert a new result into the table.
//
int ResultTable::put(int size, double time) {
int offset;
// Is the offset within the proper range for the table?
offset = size2column(size);
if ((offset < 0) || (offset >= columns)) {
fprintf(stderr, "Size %d out of bounds [0,%d)\n", offset, columns);
return -1;
}
// Any room left for more results in this column?
if (used[offset] == repetitions) {
fprintf(stderr,
"Too many repetitions for this size (%d >= %d)\n",
used[offset], repetitions);
return -1;
}
// Need to allocate more memory to hold this column?
if (data[offset] == NULL) {
data[offset] = new double[repetitions];
if (data[offset] == NULL) {
fprintf(stderr, "Couldn't allocate memory for new column\n");
return -1;
}
}
// Store data
data[offset][used[offset]] = time;
(used[offset])++;
return 0;
// Invalidate result caches
cacheSlrValid = false;
cacheTauValid = false;
cacheQueueingValid = false;
}
//
// ResultTable::getMin
//
// Input: none
//
// Output: Pointer to a new ResultTable (NULL if an error)
//
// Return a new ResultTable, which contains the minimum values
// of each packet size test.
//
ResultTable *ResultTable::getMin() {
// Get new ResultTable, but we only need room for one
// "repetition".
ResultTable *t2 = new ResultTable(increment, mtu, burst, 1);
if (t2 == NULL) {
return NULL;
}
// Iterate over columns (packet sizes)
int i;
for (i = 0; i < columns; i++) {
// If any values, then find the minimum and store it.
if (used[i]) {
int j;
double min = data[i][0];
for (j = 1; j < used[i]; j++) {
if (data[i][j] < min) {
min = data[i][j];
}
}
if (t2->put(column2size(i), min) < 0) {
return NULL;
}
}
}
return t2;
}
//
// ResultTable::queueing
//
// Input: None
//
// Output: Average queueing delay for this dataset (in return
// value). If there are no data points in this table, the result
// is 0.0.
//
// Compute average (?) queueing delay for this dataset.
// Found by computing, for each column, the difference from the column
// minimum.
//
// XXX we might want some better statistics too, such as getting
// a confidence interval.
//
double ResultTable::queueing()
{
// If we've cached a queueing figure, then just return it.
if (cacheQueueingValid) {
return cacheQueueing;
IF_DEBUG(1, fprintf(stderr, "ResultTable::queueing(): cache hit\n"));
}
// Results not valid, need to compute them.
else {
int i, j;
double sigmaY = 0.0;
int n = 0;
// Loop over columns
for (i = 0; i < columns; i++) {
// Only the ones with data points
if (used[i] > 0) {
double min;
double y;
// Find the minimum data point for this column
min = data[i][0];
for (j = 1; j < used[i]; j++) {
if (data[i][j] < min) {
min = data[i][j];
}
}
// Now compute the difference between each data
// point and the minimum and add it to the sum.
//
// NB: There are faster ways to get this result,
// but we do it this way so that we can get access
// to the individual data points, for example to
// compute some other statistics on them.
for (j = 0; j < used[i]; j++) {
y = data[i][j] - min;
sigmaY += y;
n++;
}
}
}
if (n > 0) {
cacheQueueing = sigmaY / n;
}
else {
cacheQueueing = 0.0;
}
cacheQueueingValid = true;
return cacheQueueing;
}
}
//
// ResultTable::slr
//
// Input: None
//
// Output: SLR parameters (a and b, where a is the linear constant
// and b is the X coeffecient), coefficient of determination R2,
// standard deviation of parameters sb and sb.
//
// Compute simple linear regression for all data points, based on
// a least-squares algorithm as described by
// text in Chapter 14 of "The Art of Computer Systems Performance
// Analysis", R. Jain, 1991.
//
void ResultTable::slr(double &a, double &b, double &R2, double &sa, double &sb)
{
// If cached results valid, use them
if (cacheSlrValid) {
a = cacheSlrA;
b = cacheSlrB;
R2 = cacheSlrR2;
sa = cacheSlrSA;
sb = cacheSlrSB;
IF_DEBUG(1, fprintf(stderr, "ResultTable::slr(): cache hit\n"));
return;
}
// Compute results
else {
double sigmaX = 0.0, sigmaY = 0.0,
sigmaXY = 0.0,
sigmaX2 = 0.0, sigmaY2 = 0.0;
double Xbar, Ybar;
double b0, b1;
double SSY, SS0, SST, SSE, SSR;
double se;
int n = 0;
int i, j;
// Iterate over columns
for (i = 0; i < columns; i++) {
// Iterate over points within a column
for (j = 0; j < used[i]; j++) {
double X = (double) column2size(i);
double Y = data[i][j];
sigmaX += X;
sigmaY += Y;
sigmaXY += (X*Y);
sigmaX2 += (X*X);
sigmaY2 += (Y*Y);
n++;
}
}
// We need at least three datapoints. If we don't have that
// many, return something that, while bogus, at least makes a
// little sense, to avoid getting divide-by-zero situations.
if (n == 0) {
a = 0.0;
b = 0.0;
R2 = 0.0;
sa = 0.0;
sb = 0.0;
return;
}
Xbar = sigmaX / n;
Ybar = sigmaY / n;
// b1 = b, b0 = a
b1 = (sigmaXY - (n * Xbar * Ybar)) / (sigmaX2 - (n * Xbar * Xbar));
b0 = Ybar - b1 * Xbar;
// Compute variation
SSY = sigmaY2;
SS0 = n * (Ybar * Ybar);
SST = SSY - SS0;
SSE = sigmaY2 - (b0 * sigmaY) - (b1 * sigmaXY);
SSR = SST - SSE;
// Compute regression parameters
a = b0;
b = b1;
// Compute coefficient of determination
R2 = SSR/SST;
// Compute standard deviation of errors
se = sqrt(SSE/(n-2));
// Compute Standard deviation of parameters
sa = se * sqrt( (1/n) + ((Xbar * Xbar) /
(sigmaX2 - (n * Xbar * Xbar))));
sb = se / sqrt( sigmaX2 - (n * Xbar * Xbar));
// Cache results for later
cacheSlrA = a;
cacheSlrB = b;
cacheSlrR2 = R2;
cacheSlrSA = sa;
cacheSlrSB = sb;
cacheSlrValid = true;
}
}
//
// ResultTable::tau
//
// Input: None
//
// Output: Linear regression parameters (a and b, where a is the
// linear constant and b is the X coeffecient), width of XXX% confidence
// interval for b.
//
// Compute linear fit based on Kendall's tau statistic, as described
// in "Practical Nonparametric Statistics", Third Edition, W. J. Conover,
// 1999, p. 335.
//
void ResultTable::tau(double &a, double &b, double &blower, double &bupper)
{
// Check for valid, cached results
if (cacheTauValid) {
}
else {
unsigned int maxSlopes; // maximum number of slopes to compute
unsigned int numSlopes; // actual number of slopes found
unsigned int maxValues; // max values in the table?
unsigned int numValues; // how many values in the table?
int i; // universal loop counter
unsigned int xcol, xitem, ycol, yitem;
// Compute number of slopes we might need to work with
maxSlopes = 0;
maxValues = 0;
for (i = 0; i < columns; i++) {
maxValues += used[i];
}
// If less than two values we can't compute a regression,
// so give up.
if (maxValues < 2) {
a = 0.0;
b = 0.0;
blower = 0.0;
bupper = 0.0;
return;
}
maxSlopes = maxValues * (maxValues - 1) / 2;
double *slopes;
slopes = new double[maxSlopes];
if (slopes == NULL) {
fprintf(stderr,
"Couldn't allocate slopes array for a ResultTable\n");
exit(1);
}
double *xvalues, *yvalues;
xvalues = new double[maxValues];
if (xvalues == NULL) {
fprintf(stderr,
"Couldn't allocate xvalues array for a ResultTable\n");
exit(1);
}
yvalues = new double[maxValues];
if (yvalues == NULL) {
fprintf(stderr,
"Couldn't allocate yvalues array for a ResultTable\n");
exit(1);
}
// Compute all the slopes. Basically, we try to treat the
// maxSlopes datapoints as being in a single, 1-D array,
// rather than being in a set of 1-D arrays of variable
// sizes. We refer to the two values being "pointed to"
// as x and y.
numSlopes = 0;
numValues = 0;
xcol = 0;
xitem = 0;
// Iterate through the items to find X values
while (xcol < columns) {
while (xitem < used[xcol]) {
// Record this X and Y value
xvalues[numValues] = (double)column2size(xcol);
yvalues[numValues] = data[xcol][xitem];
numValues++;
// Start looking for Y values, given a single X
// value. Start with the "next" item in sequence
// after the one we chose for X. Note that after
// the next two lines, ycol/yitem might point out
// of bounds. That's OK, because we check them
// immediately afterwards (incrementing if necessary).
ycol = xcol;
yitem = xitem + 1;
while (ycol < columns) {
while (yitem < used[ycol]) {
double xx, xy, yx, yy;
xx = column2size(xcol);
xy = data[xcol][xitem];
yx = column2size(ycol);
yy = data[ycol][yitem];
// Try to avoid divide-by-zero errors
if (yx != xx) {
double slope = (yy-xy) / (yx-xx);
slopes[numSlopes++] = slope;
}
else {
fprintf(stderr, "Warning: Duplicate x values (%f,%f) = (%f,%f)\n", xx, xy, yx, yy);
}
yitem++;
}
ycol++;
yitem = 0;
}
xitem++;
}
xcol++;
xitem = 0;
}
// If we had to throw away points because of duplicate X
// values, this could throw our confidence intervals off.
if (numSlopes != maxSlopes) {
fprintf(stderr, "Warning: duplicate X values forced discarding of data points\n");
}
// Compute slope
b = median(slopes, numSlopes);
// Compute intercept
double xmedian, ymedian;
xmedian = median(xvalues, numValues);
ymedian = median(yvalues, numValues);
a = ymedian - b * xmedian;
// Compute confidence interval on slope
unsigned int T, r, s;
T = Kendall::T(numValues, KendallP950); // 90% confidence for now
r = (numSlopes - T) / 2 - 1;
s = ((numSlopes + T + 1)) / 2;
bupper = slopes[r];
blower = slopes[s];
delete [] slopes;
delete [] xvalues;
delete [] yvalues;
}
}
//
// ResultTable::lms
//
// Input: None
//
// Output: Linear regression parameters (a and b, where a is the
// linear constant and b is the X coeffecient), coeffecient of
// determination R2.
//
// Compute linear fit based on a Least Median of Squares fit, as
// described in Peter J. Rousseeuw and Annick M. Leroy's
// "Robust Regression and Outlier Detection", John Wiley & Sons, Inc.,
// New York, NY, 1987.
//
void ResultTable::lms(double &a, double &b, double &r2)
{
// Check for valid, cached results
if (cacheLmsValid) {
}
else {
unsigned int maxSlopes; // maximum number of slopes to compute
unsigned int numSlopes; // actual number of slopes found
unsigned int maxValues; // max values in the table?
int i; // universal loop counter
unsigned int xcol, xitem, ycol, yitem, zcol, zitem;
bool estimatorFound; // flag to see if we've actually computed
// a residuals quantity yet
double minLMS, minLMSa, minLMSb; // LMS estimator and associated regression parameters
// Compute number of slopes we might need to work with
maxSlopes = 0;
maxValues = 0;
for (i = 0; i < columns; i++) {
maxValues += used[i];
}
// If less than two values we can't compute a regression,
// so give up.
if (maxValues < 2) {
a = 0.0;
b = 0.0;
r2 = 0.0;
return;
}
maxSlopes = maxValues * (maxValues - 1) / 2;
double *residuals;
double *ys;
residuals = new double[maxValues];
if (residuals == NULL) {
fprintf(stderr,
"Couldn't allocate residuals array for a ResultTable\n");
exit(1);
}
ys = new double[maxValues];
if (ys == NULL) {
fprintf(stderr,
"Couldn't allocate ys array for a ResultTable\n");
exit(1);
}
estimatorFound = false;
// Find all pairs of points, and use them to find a trial
// set of regression parameters. We then compute the LMS
// estimator given these regression parameters, and save
// the parameters that give us the minimum value of the
// estimator.
//
// Implementation note: As with ResultTable::tau (from which
// this code is derived), we try to treat the
// maxSlopes datapoints as being in a single, 1-D array,
// rather than being in a set of 1-D arrays of variable
// sizes. We refer to the two values being "pointed to"
// as x and y.
numSlopes = 0;
xcol = 0;
xitem = 0;
// Iterate through the items to find X values
while (xcol < columns) {
while (xitem < used[xcol]) {
// Start looking for Y values, given a single X
// value. Start with the "next" item in sequence
// after the one we chose for X. Note that after
// the next two lines, ycol/yitem might point out
// of bounds. That's OK, because we check them
// immediately afterwards (incrementing if necessary).
ycol = xcol;
yitem = xitem + 1;
while (ycol < columns) {
while (yitem < used[ycol]) {
double xx, xy, yx, yy;
xx = column2size(xcol);
xy = data[xcol][xitem];
yx = column2size(ycol);
yy = data[ycol][yitem];
// Try to avoid divide-by-zero errors
if (yx != xx) {
double slope = (yy-xy) / (yx-xx);
double intercept = xy - (slope * xx);
unsigned int numResiduals = 0;
double estimator;
// Compute residuals (well, actually
// we're computing the squares of the residuals)
zcol = 0;
zitem = 0;
while (zcol < columns) {
while (zitem < used[zcol]) {
residuals[numResiduals] =
pow(data[zcol][zitem] - (column2size(zcol) * slope + intercept), 2);
numResiduals++;
zitem++;
}
zcol++;
zitem = 0;
}
// Compute estimator. If it's less than our
// minimum, then save the current regression
// parameters.
estimator = median(residuals, numResiduals);
if ((!estimatorFound) ||
(estimator < minLMS)) {
minLMS = estimator;
minLMSa = intercept;
minLMSb = slope;
estimatorFound = true;
}
numSlopes++;
}
else {
fprintf(stderr, "Warning: Duplicate x values (%f,%f) = (%f,%f)\n", xx, xy, yx, yy);
}
yitem++;
}
ycol++;
yitem = 0;
}
xitem++;
}
xcol++;
xitem = 0;
}
// If we had to throw away points because of duplicate X
// values, note this. It shouldn't really affect results much.
if (numSlopes != maxSlopes) {
fprintf(stderr, "Warning: duplicate X values forced discarding of data points\n");
}
if (estimatorFound) {
a = minLMSa;
b = minLMSb;
// Coefficient of Determination computation
unsigned int numResiduals;
unsigned int numYs;
double medianRabs; // median of all absolute residuals
double medianY; // median of all Y values
double madY; // median absolute deviation
// We need to make two passes over the data. The first pass
// gathers the absolute values of the residuals, as well as
// all of the data values. The former will go to compute
// med|r sub i|, while the latter gives us med(y sub i).
xcol = 0;
xitem = 0;
numResiduals = 0;
numYs = 0;
while (xcol < columns) {
while (xitem < used[xcol]) {
residuals[numResiduals] =
fabs(data[xcol][xitem] -
(column2size(xcol) * minLMSb + minLMSa));
numResiduals++;
ys[numYs] = data[xcol][xitem];
numYs++;
xitem++;
}
xcol++;
xitem = 0;
}
medianRabs = median(residuals, numResiduals);
medianY = median(ys, numYs);
// In the second pass over the data, we use the median Y
// value we computed earlier to determine
// med|y sub i - med(y sub j)|.
xcol = 0;
xitem = 0;
numYs = 0;
while (xcol < columns) {
while (xitem < used[xcol]) {
ys[numYs] =
fabs(data[xcol][xitem] - medianY);
numYs++;
xitem++;
}
xcol++;
xitem = 0;
}
madY = median(ys, numYs);
r2 = 1.0 - pow((medianRabs / madY), 2);
}
else {
fprintf(stderr, "Warning: residual computation failed\n");
a = 0.0;
b = 0.0;
r2 = 0.0;
}
delete [] residuals;
delete [] ys;
}
}
//
// ResultTable::lmsint
//
// Input: None
//
// Output: Linear regression parameters (a and b, where a is the
// linear constant and b is the X coeffecient), coeffecient of
// determination R2.
//
// Compute linear fit based on a Least Median of Squares fit.
// The algorithm used is the same as ResultTable::lms, except that
// we do all computations using only int32 variables. This is a
// check of an IOS implementation of this algorithm.
//
void ResultTable::lmsint(double &a, double &b, double &r2)
{
unsigned int *partialmins; // We assume we've got minfiltered points
unsigned int *residuals; // Residuals
unsigned int *ys; // Copy of y values
int i, j, k, l; // loop counters
int currentslope;
int currentintercept;
unsigned int r2int; // coefficient of determination
const unsigned int timeoutresult = 0;
const unsigned int slopescale = 1000; // scaling factor for slope computations
const unsigned int codscale = 1000; // sqrt of scaling factor for coefficient of determination
ys = new unsigned int[columns];
if (ys == NULL) {
fprintf(stderr,
"Couldn't allocate ys array for a ResultTable\n");
exit(1);
}
partialmins = new unsigned int[columns];
if (partialmins == NULL) {
fprintf(stderr,
"Couldn't allocate partialmins array for a ResultTable\n");
exit(1);
}
for (i = 0; i < columns; i++) {
// Convert dataset to integers representing microseconds.
partialmins[i] = (unsigned int) (data[i][0] * 1000000.0);
}
residuals = new unsigned int[columns*columns];
if (residuals == NULL) {
fprintf(stderr,
"Couldn't allocate residuals array for a ResultTable\n");
exit(1);
}
// Following code comes from the IOS version of pchar, hence
// the C-style comments.
/*
* Linear regression happens on the minfiltered datapoints.
*/
{
/*
* Use the least median of squares regression. Slopes are in
* microseconds per byte but this may change.
*
* We need to do something here for the case that we didn't
* get any data points at all for one or more packet sizes.
*/
unsigned long testslope, testintercept;
unsigned long estimator;
unsigned long minestimator;
bool estimatorvalid;
minestimator = 0;
estimatorvalid = false;
testslope = 0;
testintercept = 0;
for (i = 0; i < columns; i++) {
for (j = i+1; j < columns; j++) {
if ((partialmins[i] != timeoutresult) &&
(partialmins[j] != timeoutresult)) {
/* Compute test slope and estimator */
testslope = (((partialmins[j] - partialmins[i])) *
slopescale) /
(column2size(j - i));
testintercept = partialmins[j] -
((partialmins[j] - partialmins[i]) *
(column2size(j)) /
(column2size(j - i)));
/* Compute squares of residuals */
for (k = 0, l = 0; k < columns; k++) {
if (partialmins[k] != timeoutresult) {
residuals[l] = partialmins[k] -
((testslope *
column2size(k) /
slopescale) +
testintercept);
residuals[l] *= residuals[l];
l++;
}
}
if (l > 0) {
/* Estimator is median of squared residuals */
estimator = median(residuals, l);
if ((estimator < minestimator) || (!estimatorvalid)) {
minestimator = estimator;
currentslope = testslope;
currentintercept = testintercept;
estimatorvalid = true;
}
}
}
}
}
}
/*
* Coeffecient of determination calculation...how good was
* the fit?
*/
r2int = 0;
if ((currentslope != 0) || (currentintercept != 0)) {
unsigned int medianr; /* median of all absolute residuals */
unsigned int mediany; /* median of all Y values */
unsigned int mady; /* median absolute deviation */
/*
* Make two passes over the data. The first pass gather
* the absolute values of the residuals, as well as all
* of the dependent variable values. The former goes to
* compute med|r|, while the latter gives med(y).
*/
l = 0;
for (i = 0; i < columns; i++) {
if (partialmins[i] != timeoutresult) {
residuals[l] = abs(partialmins[i] -
((currentslope *
column2size(i) /
slopescale) +
currentintercept));
ys[l] = partialmins[i];
l++;
}
}
medianr = median(residuals, l);
mediany = median(ys, l);
/*
* In the second pass over the data, we use the median Y
* value computed by the first pass to determine
* med|y sub i - med(y)|
*/
l = 0;
for (i = 0; i < columns; i++) {
if (partialmins[i] != timeoutresult) {
ys[l] = abs(partialmins[i] - mediany);
l++;
}
}
mady = median(ys, l);
/* r2 = 1.0 - pow((medianr / mady), 2); */
r2int = (codscale * codscale) -
((codscale * codscale * medianr * medianr) /
(mady * mady));
}
a = ((double) currentintercept) / 1000000.0;
b = ((double) currentslope / 1000000.0 / (double) slopescale);
r2 = ((double) r2int) / ((double) codscale * (double) codscale);
delete [] partialmins;
delete [] residuals;
delete [] ys;
}
//
// ResultTable::median
//
// Input:
//
// Output: Median value
//
// Compute the median of an array of doubles.
// As a side effect, the input array is sorted
//
double ResultTable::median(double *values, unsigned int numValues)
{
double medianValue;
// Sort the using qsort(3).
extern int doublecomp(const void *a, const void *b);
qsort((void *) values, numValues, sizeof(double), doublecomp);
// Find median value.
if (numValues & 1) {
// Odd number of samples
medianValue = values[(numValues-1)/2];
}
else {
// Even number of samples
medianValue = (values[(numValues/2)] + values[(numValues/2)-1]) /
2.0;
}
return medianValue;
}
// Function for qsort(3) to determine the relative ordering of two
// doubles. Used in the call to qsort above.
int doublecomp(const void *a, const void *b)
{
double adouble = *(const double *) a;
double bdouble = *(const double *) b;
if (adouble == bdouble) {
return 0;
}
else {
if (adouble < bdouble) {
return -1;
}
else {
return 1;
}
}
}
//
// ResultTable::median
//
// Input:
//
// Output: Median value
//
// Compute the median of an array of unsigned ints.
// As a side effect, the input array is sorted
//
unsigned int ResultTable::median(unsigned int *values, unsigned int numValues)
{
unsigned int medianValue;
// Sort the using qsort(3).
extern int uintcomp(const void *a, const void *b);
qsort((void *) values, numValues, sizeof(unsigned int), uintcomp);
// Find median value.
if (numValues & 1) {
// Odd number of samples
medianValue = values[(numValues-1)/2];
}
else {
// Even number of samples
medianValue = (values[(numValues/2)] + values[(numValues/2)-1]) /
2;
}
return medianValue;
}
// Function for qsort(3) to determine the relative ordering of two
// doubles. Used in the call to qsort above.
int uintcomp(const void *a, const void *b)
{
unsigned int auint = *(const unsigned int *) a;
unsigned int buint = *(const unsigned int *) b;
if (auint == buint) {
return 0;
}
else {
if (auint < buint) {
return -1;
}
else {
return 1;
}
}
}
//
// ResultTable::Print
//
// Input: file pointer to print to, tag string, hop number
//
// Output: Success code
//
// Print the contents of the table to the file pointer fp.
//
int ResultTable::Print(FILE *fp, char *tag, int hop)
{
int i, j;
for (i = 0; i < columns; i++) {
for (j = 0; j < used[i]; j++) {
fprintf(fp, "%s %d %d %f\n", tag, hop, column2size(i),
data[i][j]);
}
}
return 0;
}
|