1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/features/normal_3d.h>
#include <pcl/features/feature.h>
#include <pcl/visualization/cloud_viewer.h>
#include <pcl/features/fpfh.h>
#include <pcl/features/impl/fpfh.hpp>
#include <pcl/recognition/implicit_shape_model.h>
#include <pcl/recognition/impl/implicit_shape_model.hpp>
int
main (int argc, char** argv)
{
if (argc == 0 || argc % 2 == 0)
return (-1);
unsigned int number_of_training_clouds = (argc - 3) / 2;
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normal_estimator;
normal_estimator.setRadiusSearch (25.0);
std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr> training_clouds;
std::vector<pcl::PointCloud<pcl::Normal>::Ptr> training_normals;
std::vector<unsigned int> training_classes;
for (unsigned int i_cloud = 0; i_cloud < number_of_training_clouds - 1; i_cloud++)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr tr_cloud(new pcl::PointCloud<pcl::PointXYZ> ());
if ( pcl::io::loadPCDFile <pcl::PointXYZ> (argv[i_cloud * 2 + 1], *tr_cloud) == -1 )
return (-1);
pcl::PointCloud<pcl::Normal>::Ptr tr_normals = (new pcl::PointCloud<pcl::Normal>)->makeShared ();
normal_estimator.setInputCloud (tr_cloud);
normal_estimator.compute (*tr_normals);
unsigned int tr_class = static_cast<unsigned int> (strtol (argv[i_cloud * 2 + 2], 0, 10));
training_clouds.push_back (tr_cloud);
training_normals.push_back (tr_normals);
training_classes.push_back (tr_class);
}
pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::Histogram<153> >::Ptr fpfh
(new pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::Histogram<153> >);
fpfh->setRadiusSearch (30.0);
pcl::Feature< pcl::PointXYZ, pcl::Histogram<153> >::Ptr feature_estimator(fpfh);
pcl::ism::ImplicitShapeModelEstimation<153, pcl::PointXYZ, pcl::Normal> ism;
ism.setFeatureEstimator(feature_estimator);
ism.setTrainingClouds (training_clouds);
ism.setTrainingNormals (training_normals);
ism.setTrainingClasses (training_classes);
ism.setSamplingSize (2.0f);
pcl::ism::ImplicitShapeModelEstimation<153, pcl::PointXYZ, pcl::Normal>::ISMModelPtr model (new pcl::features::ISMModel);
ism.trainISM (model);
std::string file ("trained_ism_model.txt");
model->saveModelToFile (file);
model->loadModelFromfile (file);
unsigned int testing_class = static_cast<unsigned int> (strtol (argv[argc - 1], 0, 10));
pcl::PointCloud<pcl::PointXYZ>::Ptr testing_cloud (new pcl::PointCloud<pcl::PointXYZ> ());
if ( pcl::io::loadPCDFile <pcl::PointXYZ> (argv[argc - 2], *testing_cloud) == -1 )
return (-1);
pcl::PointCloud<pcl::Normal>::Ptr testing_normals = (new pcl::PointCloud<pcl::Normal>)->makeShared ();
normal_estimator.setInputCloud (testing_cloud);
normal_estimator.compute (*testing_normals);
pcl::features::ISMVoteList<pcl::PointXYZ>::Ptr vote_list = ism.findObjects (
model,
testing_cloud,
testing_normals,
testing_class);
double radius = model->sigmas_[testing_class] * 10.0;
double sigma = model->sigmas_[testing_class];
std::vector<pcl::ISMPeak, Eigen::aligned_allocator<pcl::ISMPeak> > strongest_peaks;
vote_list->findStrongestPeaks (strongest_peaks, testing_class, radius, sigma);
pcl::PointCloud <pcl::PointXYZRGB>::Ptr colored_cloud = (new pcl::PointCloud<pcl::PointXYZRGB>)->makeShared ();
colored_cloud->height = 0;
colored_cloud->width = 1;
pcl::PointXYZRGB point;
point.r = 255;
point.g = 255;
point.b = 255;
for (std::size_t i_point = 0; i_point < testing_cloud->size (); i_point++)
{
point.x = (*testing_cloud)[i_point].x;
point.y = (*testing_cloud)[i_point].y;
point.z = (*testing_cloud)[i_point].z;
colored_cloud->points.push_back (point);
}
colored_cloud->height += testing_cloud->size ();
point.r = 255;
point.g = 0;
point.b = 0;
for (std::size_t i_vote = 0; i_vote < strongest_peaks.size (); i_vote++)
{
point.x = strongest_peaks[i_vote].x;
point.y = strongest_peaks[i_vote].y;
point.z = strongest_peaks[i_vote].z;
colored_cloud->points.push_back (point);
}
colored_cloud->height += strongest_peaks.size ();
pcl::visualization::CloudViewer viewer ("Result viewer");
viewer.showCloud (colored_cloud);
while (!viewer.wasStopped ())
{
}
return (0);
}
|