File: iterative_closest_point.cpp

package info (click to toggle)
pcl 1.11.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 142,936 kB
  • sloc: cpp: 512,326; xml: 28,792; ansic: 13,656; python: 526; lisp: 93; makefile: 74; sh: 27
file content (48 lines) | stat: -rw-r--r-- 1,394 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/registration/icp.h>

int
 main (int argc, char** argv)
{
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_in (new pcl::PointCloud<pcl::PointXYZ>(5,1));
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_out (new pcl::PointCloud<pcl::PointXYZ>);

  // Fill in the CloudIn data
  for (auto& point : *cloud_in)
  {
    point.x = 1024 * rand() / (RAND_MAX + 1.0f);
    point.y = 1024 * rand() / (RAND_MAX + 1.0f);
    point.z = 1024 * rand() / (RAND_MAX + 1.0f);
  }
  
  std::cout << "Saved " << cloud_in->size () << " data points to input:" << std::endl;
      
  for (auto& point : *cloud_in)
    std::cout << point << std::endl;
      
  *cloud_out = *cloud_in;
  
  std::cout << "size:" << cloud_out->size() << std::endl;
  for (auto& point : *cloud_out)
    point.x += 0.7f;

  std::cout << "Transformed " << cloud_in->size () << " data points:" << std::endl;
      
  for (auto& point : *cloud_out)
    std::cout << point << std::endl;

  pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;
  icp.setInputSource(cloud_in);
  icp.setInputTarget(cloud_out);
  
  pcl::PointCloud<pcl::PointXYZ> Final;
  icp.align(Final);

  std::cout << "has converged:" << icp.hasConverged() << " score: " <<
  icp.getFitnessScore() << std::endl;
  std::cout << icp.getFinalTransformation() << std::endl;

 return (0);
}