File: template_alignment.cpp

package info (click to toggle)
pcl 1.11.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 142,936 kB
  • sloc: cpp: 512,326; xml: 28,792; ansic: 13,656; python: 526; lisp: 93; makefile: 74; sh: 27
file content (311 lines) | stat: -rw-r--r-- 9,771 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
#include <limits>
#include <fstream>
#include <vector>
#include <Eigen/Core>
#include <pcl/memory.h>
#include <pcl/pcl_macros.h>
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/io/pcd_io.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/filters/passthrough.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/features/normal_3d.h>
#include <pcl/features/fpfh.h>
#include <pcl/registration/ia_ransac.h>

class FeatureCloud
{
  public:
    // A bit of shorthand
    typedef pcl::PointCloud<pcl::PointXYZ> PointCloud;
    typedef pcl::PointCloud<pcl::Normal> SurfaceNormals;
    typedef pcl::PointCloud<pcl::FPFHSignature33> LocalFeatures;
    typedef pcl::search::KdTree<pcl::PointXYZ> SearchMethod;

    FeatureCloud () :
      search_method_xyz_ (new SearchMethod),
      normal_radius_ (0.02f),
      feature_radius_ (0.02f)
    {}

    ~FeatureCloud () {}

    // Process the given cloud
    void
    setInputCloud (PointCloud::Ptr xyz)
    {
      xyz_ = xyz;
      processInput ();
    }

    // Load and process the cloud in the given PCD file
    void
    loadInputCloud (const std::string &pcd_file)
    {
      xyz_ = PointCloud::Ptr (new PointCloud);
      pcl::io::loadPCDFile (pcd_file, *xyz_);
      processInput ();
    }

    // Get a pointer to the cloud 3D points
    PointCloud::Ptr
    getPointCloud () const
    {
      return (xyz_);
    }

    // Get a pointer to the cloud of 3D surface normals
    SurfaceNormals::Ptr
    getSurfaceNormals () const
    {
      return (normals_);
    }

    // Get a pointer to the cloud of feature descriptors
    LocalFeatures::Ptr
    getLocalFeatures () const
    {
      return (features_);
    }

  protected:
    // Compute the surface normals and local features
    void
    processInput ()
    {
      computeSurfaceNormals ();
      computeLocalFeatures ();
    }

    // Compute the surface normals
    void
    computeSurfaceNormals ()
    {
      normals_ = SurfaceNormals::Ptr (new SurfaceNormals);

      pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> norm_est;
      norm_est.setInputCloud (xyz_);
      norm_est.setSearchMethod (search_method_xyz_);
      norm_est.setRadiusSearch (normal_radius_);
      norm_est.compute (*normals_);
    }

    // Compute the local feature descriptors
    void
    computeLocalFeatures ()
    {
      features_ = LocalFeatures::Ptr (new LocalFeatures);

      pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> fpfh_est;
      fpfh_est.setInputCloud (xyz_);
      fpfh_est.setInputNormals (normals_);
      fpfh_est.setSearchMethod (search_method_xyz_);
      fpfh_est.setRadiusSearch (feature_radius_);
      fpfh_est.compute (*features_);
    }

  private:
    // Point cloud data
    PointCloud::Ptr xyz_;
    SurfaceNormals::Ptr normals_;
    LocalFeatures::Ptr features_;
    SearchMethod::Ptr search_method_xyz_;

    // Parameters
    float normal_radius_;
    float feature_radius_;
};

class TemplateAlignment
{
  public:

    // A struct for storing alignment results
    struct Result
    {
      float fitness_score;
      Eigen::Matrix4f final_transformation;
      PCL_MAKE_ALIGNED_OPERATOR_NEW
    };

    TemplateAlignment () :
      min_sample_distance_ (0.05f),
      max_correspondence_distance_ (0.01f*0.01f),
      nr_iterations_ (500)
    {
      // Initialize the parameters in the Sample Consensus Initial Alignment (SAC-IA) algorithm
      sac_ia_.setMinSampleDistance (min_sample_distance_);
      sac_ia_.setMaxCorrespondenceDistance (max_correspondence_distance_);
      sac_ia_.setMaximumIterations (nr_iterations_);
    }

    ~TemplateAlignment () {}

    // Set the given cloud as the target to which the templates will be aligned
    void
    setTargetCloud (FeatureCloud &target_cloud)
    {
      target_ = target_cloud;
      sac_ia_.setInputTarget (target_cloud.getPointCloud ());
      sac_ia_.setTargetFeatures (target_cloud.getLocalFeatures ());
    }

    // Add the given cloud to the list of template clouds
    void
    addTemplateCloud (FeatureCloud &template_cloud)
    {
      templates_.push_back (template_cloud);
    }

    // Align the given template cloud to the target specified by setTargetCloud ()
    void
    align (FeatureCloud &template_cloud, TemplateAlignment::Result &result)
    {
      sac_ia_.setInputSource (template_cloud.getPointCloud ());
      sac_ia_.setSourceFeatures (template_cloud.getLocalFeatures ());

      pcl::PointCloud<pcl::PointXYZ> registration_output;
      sac_ia_.align (registration_output);

      result.fitness_score = (float) sac_ia_.getFitnessScore (max_correspondence_distance_);
      result.final_transformation = sac_ia_.getFinalTransformation ();
    }

    // Align all of template clouds set by addTemplateCloud to the target specified by setTargetCloud ()
    void
    alignAll (std::vector<TemplateAlignment::Result, Eigen::aligned_allocator<Result> > &results)
    {
      results.resize (templates_.size ());
      for (std::size_t i = 0; i < templates_.size (); ++i)
      {
        align (templates_[i], results[i]);
      }
    }

    // Align all of template clouds to the target cloud to find the one with best alignment score
    int
    findBestAlignment (TemplateAlignment::Result &result)
    {
      // Align all of the templates to the target cloud
      std::vector<Result, Eigen::aligned_allocator<Result> > results;
      alignAll (results);

      // Find the template with the best (lowest) fitness score
      float lowest_score = std::numeric_limits<float>::infinity ();
      int best_template = 0;
      for (std::size_t i = 0; i < results.size (); ++i)
      {
        const Result &r = results[i];
        if (r.fitness_score < lowest_score)
        {
          lowest_score = r.fitness_score;
          best_template = (int) i;
        }
      }

      // Output the best alignment
      result = results[best_template];
      return (best_template);
    }

  private:
    // A list of template clouds and the target to which they will be aligned
    std::vector<FeatureCloud> templates_;
    FeatureCloud target_;

    // The Sample Consensus Initial Alignment (SAC-IA) registration routine and its parameters
    pcl::SampleConsensusInitialAlignment<pcl::PointXYZ, pcl::PointXYZ, pcl::FPFHSignature33> sac_ia_;
    float min_sample_distance_;
    float max_correspondence_distance_;
    int nr_iterations_;
};

// Align a collection of object templates to a sample point cloud
int
main (int argc, char **argv)
{
  if (argc < 3)
  {
    printf ("No target PCD file given!\n");
    return (-1);
  }

  // Load the object templates specified in the object_templates.txt file
  std::vector<FeatureCloud> object_templates;
  std::ifstream input_stream (argv[1]);
  object_templates.resize (0);
  std::string pcd_filename;
  while (input_stream.good ())
  {
    std::getline (input_stream, pcd_filename);
    if (pcd_filename.empty () || pcd_filename.at (0) == '#') // Skip blank lines or comments
      continue;

    FeatureCloud template_cloud;
    template_cloud.loadInputCloud (pcd_filename);
    object_templates.push_back (template_cloud);
  }
  input_stream.close ();

  // Load the target cloud PCD file
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
  pcl::io::loadPCDFile (argv[2], *cloud);

  // Preprocess the cloud by...
  // ...removing distant points
  const float depth_limit = 1.0;
  pcl::PassThrough<pcl::PointXYZ> pass;
  pass.setInputCloud (cloud);
  pass.setFilterFieldName ("z");
  pass.setFilterLimits (0, depth_limit);
  pass.filter (*cloud);

  // ... and downsampling the point cloud
  const float voxel_grid_size = 0.005f;
  pcl::VoxelGrid<pcl::PointXYZ> vox_grid;
  vox_grid.setInputCloud (cloud);
  vox_grid.setLeafSize (voxel_grid_size, voxel_grid_size, voxel_grid_size);
  //vox_grid.filter (*cloud); // Please see this http://www.pcl-developers.org/Possible-problem-in-new-VoxelGrid-implementation-from-PCL-1-5-0-td5490361.html
  pcl::PointCloud<pcl::PointXYZ>::Ptr tempCloud (new pcl::PointCloud<pcl::PointXYZ>); 
  vox_grid.filter (*tempCloud);
  cloud = tempCloud; 

  // Assign to the target FeatureCloud
  FeatureCloud target_cloud;
  target_cloud.setInputCloud (cloud);

  // Set the TemplateAlignment inputs
  TemplateAlignment template_align;
  for (std::size_t i = 0; i < object_templates.size (); ++i)
  {
    template_align.addTemplateCloud (object_templates[i]);
  }
  template_align.setTargetCloud (target_cloud);

  // Find the best template alignment
  TemplateAlignment::Result best_alignment;
  int best_index = template_align.findBestAlignment (best_alignment);
  const FeatureCloud &best_template = object_templates[best_index];

  // Print the alignment fitness score (values less than 0.00002 are good)
  printf ("Best fitness score: %f\n", best_alignment.fitness_score);

  // Print the rotation matrix and translation vector
  Eigen::Matrix3f rotation = best_alignment.final_transformation.block<3,3>(0, 0);
  Eigen::Vector3f translation = best_alignment.final_transformation.block<3,1>(0, 3);

  printf ("\n");
  printf ("    | %6.3f %6.3f %6.3f | \n", rotation (0,0), rotation (0,1), rotation (0,2));
  printf ("R = | %6.3f %6.3f %6.3f | \n", rotation (1,0), rotation (1,1), rotation (1,2));
  printf ("    | %6.3f %6.3f %6.3f | \n", rotation (2,0), rotation (2,1), rotation (2,2));
  printf ("\n");
  printf ("t = < %0.3f, %0.3f, %0.3f >\n", translation (0), translation (1), translation (2));

  // Save the aligned template for visualization
  pcl::PointCloud<pcl::PointXYZ> transformed_cloud;
  pcl::transformPointCloud (*best_template.getPointCloud (), transformed_cloud, best_alignment.final_transformation);
  pcl::io::savePCDFileBinary ("output.pcd", transformed_cloud);

  return (0);
}