File: extract_feature.cpp

package info (click to toggle)
pcl 1.11.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 142,936 kB
  • sloc: cpp: 512,326; xml: 28,792; ansic: 13,656; python: 526; lisp: 93; makefile: 74; sh: 27
file content (210 lines) | stat: -rw-r--r-- 7,826 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
/*
 * Software License Agreement (BSD License)
 *
 *  Point Cloud Library (PCL) - www.pointclouds.org
 *  Copyright (c) 2010-2011, Willow Garage, Inc.
 *
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of the copyright holder(s) nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 *
 */

#include <pcl/PCLPointCloud2.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/console/print.h>
#include <pcl/console/parse.h>
#include <pcl/console/time.h>

#include <pcl/features/normal_3d.h>
#include <pcl/features/fpfh.h>
#include <pcl/features/pfh.h>
#include <pcl/features/vfh.h>


using namespace pcl;
using namespace pcl::io;
using namespace pcl::console;

std::string default_feature_name = "FPFHEstimation";
int    default_n_k = 0;
double default_n_radius = 0.0;
int    default_f_k = 0;
double default_f_radius = 0.0;

void
printHelp (int, char **argv)
{
  print_error ("Syntax is: %s input.pcd output.pcd <options>\n", argv[0]);
  print_info ("  where options are:\n");
  print_info ("                     -feature X = the feature descriptor algorithm to be used (default: ");
  print_value ("%s", default_feature_name.c_str ()); print_info (")\n");
  print_info ("                     -n_radius X = use a radius of Xm around each point to determine the neighborhood in normal estimation (default: ");
  print_value ("%f", default_n_radius); print_info (")\n");
  print_info ("                     -n_k X      = use a fixed number of X-nearest neighbors around each point in normal estimation (default: ");
  print_value ("%f", default_n_k); print_info (")\n");
  print_info ("                     -f_radius X = use a radius of Xm around each point to determine the neighborhood in feature extraction (default: ");
  print_value ("%f", default_f_radius); print_info (")\n");
  print_info ("                     -f_k X      = use a fixed number of X-nearest neighbors around each point in feature extraction(default: ");
  print_value ("%f", default_f_k); print_info (")\n");
}

bool
loadCloud (const std::string &filename, pcl::PCLPointCloud2 &cloud)
{
  TicToc tt;
  print_highlight ("Loading "); print_value ("%s ", filename.c_str ());

  tt.tic ();
  if (loadPCDFile (filename, cloud) < 0)
    return (false);
  print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", cloud.width * cloud.height); print_info (" points]\n");
  print_info ("Available dimensions: "); print_value ("%s\n", pcl::getFieldsList (cloud).c_str ());

  return (true);
}

template <typename FeatureAlgorithm, typename PointIn, typename NormalT, typename PointOut>
void
computeFeatureViaNormals (const pcl::PCLPointCloud2::ConstPtr &input, pcl::PCLPointCloud2 &output,
         int argc, char** argv, bool set_search_flag = true)
{
  int n_k = default_n_k;
  int f_k = default_f_k;
  double n_radius = default_n_radius;
  double f_radius = default_f_radius;
  parse_argument (argc, argv, "-n_k", n_k);
  parse_argument (argc, argv, "-n_radius", n_radius);
  parse_argument (argc, argv, "-f_k", f_k);
  parse_argument (argc, argv, "-f_radius", f_radius);

  // Convert data to PointCloud<PointIn>
  typename PointCloud<PointIn>::Ptr xyz (new PointCloud<PointIn>);
  fromPCLPointCloud2 (*input, *xyz);

  // Estimate
  TicToc tt;
  tt.tic ();

  print_highlight (stderr, "Computing ");

  NormalEstimation<PointIn, NormalT> ne;
  ne.setInputCloud (xyz);
  ne.setSearchMethod (typename pcl::search::KdTree<PointIn>::Ptr (new pcl::search::KdTree<PointIn>));
  ne.setKSearch (n_k);
  ne.setRadiusSearch (n_radius);

  typename PointCloud<NormalT>::Ptr normals = typename PointCloud<NormalT>::Ptr (new PointCloud<NormalT>);
  ne.compute (*normals);

  FeatureAlgorithm feature_est;
  feature_est.setInputCloud (xyz);
  feature_est.setInputNormals (normals);

  feature_est.setSearchMethod (typename pcl::search::KdTree<PointIn>::Ptr (new pcl::search::KdTree<PointIn>));

  PointCloud<PointOut> output_features;

  if (set_search_flag) {
    feature_est.setKSearch (f_k);
    feature_est.setRadiusSearch (f_radius);
  }

  feature_est.compute (output_features);

  print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", output.width * output.height); print_info (" points]\n");

  // Convert data back
  toPCLPointCloud2 (output_features, output);
}

void
saveCloud (const std::string &filename, const pcl::PCLPointCloud2 &output)
{
  TicToc tt;
  tt.tic ();

  print_highlight ("Saving "); print_value ("%s ", filename.c_str ());

  pcl::io::savePCDFile (filename, output);

  print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", output.width * output.height); print_info (" points]\n");
}

/* ---[ */
int
main (int argc, char** argv)
{
  print_info ("Extract features from a point cloud. For more information, use: %s -h\n", argv[0]);

  if (argc < 3)
  {
    printHelp (argc, argv);
    return (-1);
  }

  // Parse the command line arguments for .pcd files
  std::vector<int> p_file_indices;
  p_file_indices = parse_file_extension_argument (argc, argv, ".pcd");
  if (p_file_indices.size () != 2)
  {
    print_error ("Need one input PCD file and one output PCD file to continue.\n");
    return (-1);
  }

  // Command line parsing
  std::string feature_name = default_feature_name;
  parse_argument (argc, argv, "-feature", feature_name);

  // Load the first file
  pcl::PCLPointCloud2::Ptr cloud (new pcl::PCLPointCloud2);
  if (!loadCloud (argv[p_file_indices[0]], *cloud))
    return (-1);

  // Perform the feature estimation
  pcl::PCLPointCloud2 output;
  if (feature_name == "PFHEstimation") 
    computeFeatureViaNormals< PFHEstimation<PointXYZ, Normal, PFHSignature125>, PointXYZ, Normal, PFHSignature125>
      (cloud, output, argc, argv);
  else if (feature_name == "FPFHEstimation")
    computeFeatureViaNormals< FPFHEstimation<PointXYZ, Normal, FPFHSignature33>, PointXYZ, Normal, FPFHSignature33>
      (cloud, output, argc, argv);
  else if (feature_name == "VFHEstimation")
    computeFeatureViaNormals< VFHEstimation<PointXYZ, Normal, VFHSignature308>, PointXYZ, Normal, VFHSignature308>
    (cloud, output, argc, argv, false);
  else
  {
    print_error ("Valid feature names are PFHEstimation, FPFHEstimation, VFHEstimation.\n");
    return (-1);
  }

  // Save into the second file
  saveCloud (argv[p_file_indices[1]], output);
}