1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2011, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
/*
* obj_rec_ransac_model_opps.cpp
*
* Created on: Jan 29, 2013
* Author: papazov
*
* Adds a model to the model library and visualizes the oriented point pairs (opps) sampled from the model.
*/
#include <pcl/recognition/ransac_based/obj_rec_ransac.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/console/print.h>
#include <pcl/console/parse.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_cloud.h>
#include <vtkVersion.h>
#include <vtkPolyDataReader.h>
#include <vtkDoubleArray.h>
#include <vtkDataArray.h>
#include <vtkPointData.h>
#include <vtkHedgeHog.h>
#include <cstdio>
#include <thread>
#include <vector>
using namespace std::chrono_literals;
using namespace pcl;
using namespace io;
using namespace console;
using namespace recognition;
using namespace visualization;
#define _SHOW_MODEL_OCTREE_POINTS_
//#define _SHOW_MODEL_OCTREE_NORMALS_
void run (float pair_width, float voxel_size, float max_coplanarity_angle);
void showModelOpps (PCLVisualizer& viz, const ModelLibrary::HashTable& hash_table, const ModelLibrary::Model* model, float pair_width);
bool vtk_to_pointcloud (const char* file_name, PointCloud<PointXYZ>& pcl_points, PointCloud<Normal>& pcl_normals);
//===========================================================================================================================================
int
main (int argc, char** argv)
{
printf ("\nUsage: ./pcl_obj_rec_ransac_model_opps <pair_width> <voxel_size> <max_coplanarity_angle>\n\n");
const int num_params = 3;
float parameters[num_params] = {10.0f/*pair width*/, 5.0f/*voxel size*/, 5.0f/*max co-planarity angle*/};
std::string parameter_names[num_params] = {"pair_width", "voxel_size", "max_coplanarity_angle"};
// Read the user input if any
for ( int i = 0 ; i < argc-1 && i < num_params ; ++i )
{
parameters[i] = static_cast<float> (atof (argv[i+1]));
if ( parameters[i] <= 0.0f )
{
fprintf(stderr, "ERROR: the %i-th parameter has to be positive and not %f\n", i+1, parameters[i]);
return (-1);
}
}
printf ("The following parameter values will be used:\n");
for ( int i = 0 ; i < num_params ; ++i )
std::cout << " " << parameter_names[i] << " = " << parameters[i] << std::endl;
std::cout << std::endl;
run (parameters[0], parameters[1], parameters[2]);
return (0);
}
//===============================================================================================================================
void run (float pair_width, float voxel_size, float max_coplanarity_angle)
{
PointCloud<PointXYZ>::Ptr model_points (new PointCloud<PointXYZ> ());
PointCloud<Normal>::Ptr model_normals (new PointCloud<Normal> ());
char model_name[] = "../../test/tum_amicelli_box.vtk";
// Get the points and normals from the input vtk file
if ( !vtk_to_pointcloud (model_name, *model_points, *model_normals) )
return;
// The recognition object
ObjRecRANSAC objrec (pair_width, voxel_size);
objrec.setMaxCoplanarityAngleDegrees (max_coplanarity_angle);
// Add the model
objrec.addModel (*model_points, *model_normals, "amicelli");
const ModelLibrary::Model* model = objrec.getModel ("amicelli");
if ( !model )
return;
// The visualizer
PCLVisualizer viz;
// Run the recognition and update the viewer
showModelOpps (viz, objrec.getHashTable (), model, pair_width);
// Visualize a sphere with the radius 'pair_width'
pcl::PointXYZ sphere_center;
sphere_center.x = model->getOctree ().getFullLeaves ()[0]->getData ()->getPoint ()[0];
sphere_center.y = model->getOctree ().getFullLeaves ()[0]->getData ()->getPoint ()[1];
sphere_center.z = model->getOctree ().getFullLeaves ()[0]->getData ()->getPoint ()[2];
viz.addSphere (sphere_center, pair_width, 0.0, 0.2, 1.0);
#ifdef _SHOW_MODEL_OCTREE_POINTS_
PointCloud<PointXYZ>::Ptr octree_points (new PointCloud<PointXYZ> ());
model->getOctree ().getFullLeavesPoints (*octree_points);
viz.addPointCloud (octree_points, "octree points");
viz.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 5, "octree points");
viz.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_COLOR, 1.0, 0.0, 0.0, "octree points");
#endif
#if defined _SHOW_MODEL_OCTREE_NORMALS_ && defined _SHOW_MODEL_OCTREE_POINTS_
PointCloud<Normal>::Ptr octree_normals (new PointCloud<Normal> ());
model->getOctree ().getNormalsOfFullLeaves (*octree_normals);
viz.addPointCloudNormals<PointXYZ,Normal> (octree_points, octree_normals, 1, 6.0f, "octree normals");
#endif
// Enter the main loop
while (!viz.wasStopped ())
{
//main loop of the visualizer
viz.spinOnce (100);
std::this_thread::sleep_for(100ms);
}
}
//===============================================================================================================================
void showModelOpps (PCLVisualizer& viz, const ModelLibrary::HashTable& hash_table, const ModelLibrary::Model* model, float pair_width)
{
printf ("Visualizing ... "); fflush (stdout);
const ModelLibrary::HashTableCell* cells = hash_table.getVoxels ();
// The opps points and lines
vtkSmartPointer<vtkPolyData> vtk_opps = vtkSmartPointer<vtkPolyData>::New ();
vtkSmartPointer<vtkPoints> vtk_opps_points = vtkSmartPointer<vtkPoints>::New ();
vtkSmartPointer<vtkCellArray> vtk_opps_lines = vtkSmartPointer<vtkCellArray>::New ();
#ifndef _SHOW_MODEL_OCTREE_NORMALS_
vtkSmartPointer<vtkHedgeHog> vtk_hedge_hog = vtkSmartPointer<vtkHedgeHog>::New ();
vtkSmartPointer<vtkDoubleArray> vtk_normals = vtkSmartPointer<vtkDoubleArray>::New ();
vtk_normals->SetNumberOfComponents (3);
#endif
vtkIdType ids[2] = {0, 1};
// Check cell by cell
const int num_cells = hash_table.getNumberOfVoxels ();
for (int i = 0 ; i < num_cells ; ++i )
{
// Make sure that we get only point pairs belonging to 'model'
ModelLibrary::HashTableCell::const_iterator res = cells[i].find (model);
if ( res == cells[i].end () )
continue;
// Get the opps in the current cell
const ModelLibrary::node_data_pair_list& data_pairs = res->second;
for (const auto &data_pair : data_pairs)
{
vtk_opps_points->InsertNextPoint (data_pair.first->getPoint ());
vtk_opps_points->InsertNextPoint (data_pair.second->getPoint ());
vtk_opps_lines->InsertNextCell (2, ids);
ids[0] += 2;
ids[1] += 2;
#ifndef _SHOW_MODEL_OCTREE_NORMALS_
vtk_normals->InsertNextTuple3 (data_pair.first->getNormal ()[0], data_pair.first->getNormal ()[1], data_pair.first->getNormal ()[2]);
vtk_normals->InsertNextTuple3 (data_pair.second->getNormal ()[0], data_pair.second->getNormal ()[1], data_pair.second->getNormal ()[2]);
#endif
}
}
// Save points and connecting lines
vtk_opps->SetPoints (vtk_opps_points);
vtk_opps->SetLines (vtk_opps_lines);
#ifndef _SHOW_MODEL_OCTREE_NORMALS_
// Save the normals
vtk_opps->GetPointData ()->SetNormals (vtk_normals);
// Setup the hedge hog object
vtk_hedge_hog->SetInputData (vtk_opps);
vtk_hedge_hog->SetVectorModeToUseNormal ();
vtk_hedge_hog->SetScaleFactor (0.5f*pair_width);
vtk_hedge_hog->Update ();
// Show the opps' normals
viz.addModelFromPolyData (vtk_hedge_hog->GetOutput (), "opps' normals");
#endif
viz.addModelFromPolyData (vtk_opps, "opps");
viz.setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 1.0, 1.0, 0.0, "opps");
printf ("done.\n");
}
//===============================================================================================================================
bool vtk_to_pointcloud (const char* file_name, PointCloud<PointXYZ>& pcl_points, PointCloud<Normal>& pcl_normals)
{
std::size_t len = strlen (file_name);
if ( file_name[len-3] != 'v' || file_name[len-2] != 't' || file_name[len-1] != 'k' )
{
fprintf (stderr, "ERROR: we need a .vtk object!\n");
return false;
}
// Load the model
vtkSmartPointer<vtkPolyDataReader> reader = vtkSmartPointer<vtkPolyDataReader>::New ();
reader->SetFileName (file_name);
reader->Update ();
// Get the points
vtkPolyData *vtk_poly = reader->GetOutput ();
vtkPoints *vtk_points = vtk_poly->GetPoints ();
vtkIdType num_points = vtk_points->GetNumberOfPoints ();
double p[3];
pcl_points.resize (num_points);
// Copy the points
for ( vtkIdType i = 0 ; i < num_points ; ++i )
{
vtk_points->GetPoint (i, p);
pcl_points[i].x = static_cast<float> (p[0]);
pcl_points[i].y = static_cast<float> (p[1]);
pcl_points[i].z = static_cast<float> (p[2]);
}
// Check if we have normals
vtkDataArray *vtk_normals = vtk_poly->GetPointData ()->GetNormals ();
if ( !vtk_normals )
return false;
pcl_normals.resize (num_points);
// Copy the normals
for ( vtkIdType i = 0 ; i < num_points ; ++i )
{
vtk_normals->GetTuple (i, p);
pcl_normals[i].normal_x = static_cast<float> (p[0]);
pcl_normals[i].normal_y = static_cast<float> (p[1]);
pcl_normals[i].normal_z = static_cast<float> (p[2]);
}
return true;
}
//===============================================================================================================================
|