File: virtual_scanner.cpp

package info (click to toggle)
pcl 1.11.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 142,936 kB
  • sloc: cpp: 512,326; xml: 28,792; ansic: 13,656; python: 526; lisp: 93; makefile: 74; sh: 27
file content (446 lines) | stat: -rw-r--r-- 16,550 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
/*
 * Software License Agreement (BSD License)
 *
 *  Copyright (c) 2010, Willow Garage, Inc.
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of the copyright holder(s) nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 * $Id$
 *
 */

/**
  * \author Radu Bogdan Rusu
  *
  * @b virtual_scanner takes in a .ply or a .vtk file of an object model, and virtually scans it
  * in a raytracing fashion, saving the end results as PCD (Point Cloud Data) files. In addition,
  * it noisifies the PCD models, and downsamples them.
  * The viewpoint can be set to 1 or multiple views on a sphere.
  */

#include <random>
#include <string>

#include <pcl/register_point_struct.h>
#include <pcl/io/pcd_io.h>
#include <pcl/io/vtk_lib_io.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/memory.h>  // for pcl::make_shared
#include <pcl/point_types.h>
#include <pcl/console/parse.h>
#include <pcl/visualization/vtk.h>

#include <boost/algorithm/string.hpp>  // for boost::is_any_of, boost::split, boost::token_compress_on, boost::trim
#include <boost/filesystem.hpp>  // for boost::filesystem::create_directories, boost::filesystem::exists, boost::filesystem::extension, boost::filesystem::path

using namespace pcl;

#define EPS 0.00001

struct ScanParameters
{
  int nr_scans;             // number of steps for sweep movement
  int nr_points_in_scans;   // number of laser beam measurements per scan
  double vert_res;          // vertical resolution (res. of sweep) in degrees
  double hor_res;           // horizontal  resolution (of laser beam) in degrees
  double max_dist;          // maximum distance in units.
};


/** \brief Loads a 3D point cloud from a given fileName, and returns: a
  * vtkDataSet object containing the point cloud.
  * \param file_name the name of the file containing the dataset
  */
vtkPolyData*
loadDataSet (const char* file_name)
{
  std::string extension = boost::filesystem::extension (file_name);
  if (extension == ".ply")
  {
    vtkPLYReader* reader = vtkPLYReader::New ();
    reader->SetFileName (file_name);
    reader->Update ();
    return (reader->GetOutput ());
  }
  if (extension == ".vtk")
  {
    vtkPolyDataReader* reader = vtkPolyDataReader::New ();
    reader->SetFileName (file_name);
    reader->Update ();
    return (reader->GetOutput ());
  }
  PCL_ERROR ("Needs a VTK/PLY file to continue.\n");
  return (nullptr);
}

int
main (int argc, char** argv)
{
  if (argc < 2)
  {
    PCL_INFO ("Usage %s [options] <model.ply | model.vtk>\n", argv[0]);
    PCL_INFO (" * where options are:\n"
              "         -object_coordinates <0|1> : save the dataset in object coordinates (1) or camera coordinates (0)\n"
              "         -single_view <0|1>        : take a single snapshot (1) or record a lot of camera poses on a view sphere (0)\n"
              "         -view_point <x,y,z>       : set the camera viewpoint from where the acquisition will take place\n"
              "         -target_point <x,y,z>     : the target point that the camera should look at (default: 0, 0, 0)\n"
              "         -organized <0|1>          : create an organized, grid-like point cloud of width x height (1), or keep it unorganized with height = 1 (0)\n"
              "         -noise <0|1>              : add gaussian noise (1) or keep the model noiseless (0)\n"
              "         -noise_std <x>            : use X times the standard deviation\n"
              "");
    return (-1);
  }
  std::string filename;
  // Parse the command line arguments for .vtk or .ply files
  std::vector<int> p_file_indices_vtk = console::parse_file_extension_argument (argc, argv, ".vtk");
  std::vector<int> p_file_indices_ply = console::parse_file_extension_argument (argc, argv, ".ply");
  bool object_coordinates = true;
  console::parse_argument (argc, argv, "-object_coordinates", object_coordinates);
  bool single_view = false;
  console::parse_argument (argc, argv, "-single_view", single_view);
  double vx = 0, vy = 0, vz = 0;
  console::parse_3x_arguments (argc, argv, "-view_point", vx, vy, vz);
  double tx = 0, ty = 0, tz = 0;
  console::parse_3x_arguments (argc, argv, "-target_point", tx, ty, tz);
  int organized = 0;
  console::parse_argument (argc, argv, "-organized", organized);
  if (organized)
    PCL_INFO ("Saving an organized dataset.\n");
  else
    PCL_INFO ("Saving an unorganized dataset.\n");

  vtkSmartPointer<vtkPolyData> data;
  // Loading PLY/VTK file
  if (p_file_indices_ply.empty () && p_file_indices_vtk.empty ())
  {
    PCL_ERROR ("Error: no .PLY or .VTK files given!\n");
    return (-1);
  }

  std::stringstream filename_stream;
  if (!p_file_indices_ply.empty ())
    filename_stream << argv[p_file_indices_ply.at (0)];
  else
    filename_stream << argv[p_file_indices_vtk.at (0)];

  filename = filename_stream.str ();

  data = loadDataSet (filename.c_str ());

  PCL_INFO ("Loaded model with %d vertices/points.\n", data->GetNumberOfPoints ());

  // Default scan parameters
  ScanParameters sp;
  sp.nr_scans           = 900;
  console::parse_argument (argc, argv, "-nr_scans", sp.nr_scans);
  sp.nr_points_in_scans = 900;
  console::parse_argument (argc, argv, "-pts_in_scan", sp.nr_points_in_scans);
  sp.max_dist           = 30000;   // maximum distance (in mm)
  sp.vert_res           = 0.25;
  console::parse_argument (argc, argv, "-vert_res", sp.vert_res);
  sp.hor_res            = 0.25;
  console::parse_argument (argc, argv, "-hor_res", sp.hor_res);

  int noise_model = 0;               // set the default noise level to none
  console::parse_argument (argc, argv, "-noise", noise_model);
  float noise_std = 0.05f;           // 0.5 standard deviations by default
  console::parse_argument (argc, argv, "-noise_std", noise_std);
  if (noise_model)
    PCL_INFO ("Adding Gaussian noise to the final model with %f x std_dev.\n", noise_std);
  else
    PCL_INFO ("Not adding any noise to the final model.\n");

  int subdiv_level = 1;
  double scan_dist = 3;
  std::string fname;
  char seq[256];

  // Compute start/stop for vertical and horizontal
  double vert_start = - (static_cast<double> (sp.nr_scans - 1) / 2.0) * sp.vert_res;
  double vert_end   = + ((sp.nr_scans-1) * sp.vert_res) + vert_start;
  double hor_start  = - (static_cast<double> (sp.nr_points_in_scans - 1) / 2.0) * sp.hor_res;
  double hor_end    = + ((sp.nr_points_in_scans-1) * sp.hor_res) + hor_start;

  // Prepare the point cloud data
  pcl::PointCloud<pcl::PointWithViewpoint> cloud;

  // Prepare the leaves for downsampling
  pcl::VoxelGrid<pcl::PointWithViewpoint> grid;
  grid.setLeafSize (2.5, 2.5, 2.5);    // @note: this value should be given in mm!

  // Reset and set a random seed for the Global Random Number Generator
  std::random_device rd;
  std::mt19937 rng(rd());
  std::normal_distribution<float> nd (0.0f, noise_std * noise_std);

  std::vector<std::string> st;
  // Virtual camera parameters
  double eye[3]     = {0.0, 0.0, 0.0};
  double viewray[3] = {0.0, 0.0, 0.0};
  double up[3]      = {0.0, 0.0, 0.0};
  double right[3]  = {0.0, 0.0, 0.0};
  double x_axis[3] = {1.0, 0.0, 0.0};
  double z_axis[3] = {0.0, 0.0, 1.0};
  double bounds[6];
  double temp_beam[3], beam[3], p[3];
  double p_coords[3], x[3], t;
  int subId;

  // Create a Icosahedron at center in origin and radius of 1
  vtkSmartPointer<vtkPlatonicSolidSource> icosa = vtkSmartPointer<vtkPlatonicSolidSource>::New ();
  icosa->SetSolidTypeToIcosahedron ();

  // Tesselize the source icosahedron (subdivide each triangular face
  // of the icosahedron into smaller triangles)
  vtkSmartPointer<vtkLoopSubdivisionFilter> subdivide = vtkSmartPointer<vtkLoopSubdivisionFilter>::New ();
  subdivide->SetNumberOfSubdivisions (subdiv_level);
  subdivide->SetInputConnection (icosa->GetOutputPort ());
  subdivide->Update ();

  // Get camera positions
  vtkPolyData *sphere = subdivide->GetOutput ();
  if (!single_view)
    PCL_INFO ("Created %ld camera position points.\n", sphere->GetNumberOfPoints ());

  // Build a spatial locator for our dataset
  vtkSmartPointer<vtkCellLocator> tree = vtkSmartPointer<vtkCellLocator>::New ();
  tree->SetDataSet (data);
  tree->CacheCellBoundsOn ();
  tree->SetTolerance (0.0);
  tree->SetNumberOfCellsPerBucket (1);
  tree->AutomaticOn ();
  tree->BuildLocator ();
  tree->Update ();

  // Get the min-max bounds of data
  data->GetBounds (bounds);

  // if single view is required iterate over loop only once
  int number_of_points = static_cast<int> (sphere->GetNumberOfPoints ());
  if (single_view)
    number_of_points = 1;

  int sid = -1;
  for (int i = 0; i < number_of_points; i++)
  {
    sphere->GetPoint (i, eye);
    if (std::abs(eye[0]) < EPS) eye[0] = 0;
    if (std::abs(eye[1]) < EPS) eye[1] = 0;
    if (std::abs(eye[2]) < EPS) eye[2] = 0;

    viewray[0] = -eye[0];
    viewray[1] = -eye[1];
    viewray[2] = -eye[2];
    eye[0] *= scan_dist;
    eye[1] *= scan_dist;
    eye[2] *= scan_dist;
    //Change here if only single view point is required
    if (single_view)
    {
      eye[0] = vx;//0.0;
      eye[1] = vy;//-0.26;
      eye[2] = vz;//-0.86;
      viewray[0] = tx - vx;
      viewray[1] = ty - vy;
      viewray[2] = tz - vz;
      double len = sqrt (viewray[0]*viewray[0] + viewray[1]*viewray[1] + viewray[2]*viewray[2]);
      if (len == 0)
      {
        PCL_ERROR ("The single_view option is enabled but the view_point and the target_point are the same!\n");
        break;
      }
      viewray[0] /= len;
      viewray[1] /= len;
      viewray[2] /= len;
    }

    if ((viewray[0] == 0) && (viewray[1] == 0))
      vtkMath::Cross (viewray, x_axis, right);
    else
      vtkMath::Cross (viewray, z_axis, right);
    if (std::abs(right[0]) < EPS) right[0] = 0;
    if (std::abs(right[1]) < EPS) right[1] = 0;
    if (std::abs(right[2]) < EPS) right[2] = 0;

    vtkMath::Cross (viewray, right, up);
    if (std::abs(up[0]) < EPS) up[0] = 0;
    if (std::abs(up[1]) < EPS) up[1] = 0;
    if (std::abs(up[2]) < EPS) up[2] = 0;

    if (!object_coordinates)
    {
      // Normalization
      double right_len = sqrt (right[0]*right[0] + right[1]*right[1] + right[2]*right[2]);
      right[0] /= right_len;
      right[1] /= right_len;
      right[2] /= right_len;
      double up_len = sqrt (up[0]*up[0] + up[1]*up[1] + up[2]*up[2]);
      up[0] /= up_len;
      up[1] /= up_len;
      up[2] /= up_len;

      // Output resulting vectors
      std::cerr << "Viewray Right Up:" << std::endl;
      std::cerr << viewray[0] << " " << viewray[1] << " " << viewray[2] << " " << std::endl;
      std::cerr << right[0] << " " << right[1] << " " << right[2] << " " << std::endl;
      std::cerr << up[0] << " " << up[1] << " " << up[2] << " " << std::endl;
    }

    // Create a transformation
    vtkGeneralTransform* tr1 = vtkGeneralTransform::New ();
    vtkGeneralTransform* tr2 = vtkGeneralTransform::New ();

    // right = viewray x up
    vtkMath::Cross (viewray, up, right);

    // Sweep vertically
    for (double vert = vert_start; vert <= vert_end; vert += sp.vert_res)
    {
      sid++;

      tr1->Identity ();
      tr1->RotateWXYZ (vert, right);
      tr1->InternalTransformPoint (viewray, temp_beam);

      // Sweep horizontally
      int pid = -1;
      for (double hor = hor_start; hor <= hor_end; hor += sp.hor_res)
      {
        pid ++;

        // Create a beam vector with (lat,long) angles (vert, hor) with the viewray
        tr2->Identity ();
        tr2->RotateWXYZ (hor, up);
        tr2->InternalTransformPoint (temp_beam, beam);
        vtkMath::Normalize (beam);

        // Find point at max range: p = eye + beam * max_dist
        for (int d = 0; d < 3; d++)
          p[d] = eye[d] + beam[d] * sp.max_dist;

        // Put p_coords into laser scan at packetid = vert, scan id = hor
        vtkIdType cellId;
        if (tree->IntersectWithLine (eye, p, 0, t, x, p_coords, subId, cellId))
        {
          pcl::PointWithViewpoint pt;
          if (object_coordinates)
          {
            pt.x = static_cast<float> (x[0]);
            pt.y = static_cast<float> (x[1]);
            pt.z = static_cast<float> (x[2]);
            pt.vp_x = static_cast<float> (eye[0]);
            pt.vp_y = static_cast<float> (eye[1]);
            pt.vp_z = static_cast<float> (eye[2]);
          }
          else
          {
            // z axis is the viewray
            // y axis is up
            // x axis is -right (negative because z*y=-x but viewray*up=right)
            pt.x = static_cast<float> (-right[0]*x[1] + up[0]*x[2] + viewray[0]*x[0] + eye[0]);
            pt.y = static_cast<float> (-right[1]*x[1] + up[1]*x[2] + viewray[1]*x[0] + eye[1]);
            pt.z = static_cast<float> (-right[2]*x[1] + up[2]*x[2] + viewray[2]*x[0] + eye[2]);
            pt.vp_x = pt.vp_y = pt.vp_z = 0.0f;
          }
          cloud.points.push_back (pt);
        }
        else
          if (organized)
          {
            pcl::PointWithViewpoint pt;
            pt.x = pt.y = pt.z = std::numeric_limits<float>::quiet_NaN ();
            pt.vp_x = static_cast<float> (eye[0]);
            pt.vp_y = static_cast<float> (eye[1]);
            pt.vp_z = static_cast<float> (eye[2]);
            cloud.points.push_back (pt);
          }
      } // Horizontal
    } // Vertical

    // Noisify each point in the dataset
    // \note: we might decide to noisify along the ray later
    for (auto &point : cloud.points)
    {
      // Add noise ?
      switch (noise_model)
      {
        // Gaussian
        case 1: { point.x += nd (rng); point.y += nd (rng); point.z += nd (rng); break; }
      }
    }

    // Downsample and remove silly point duplicates
    pcl::PointCloud<pcl::PointWithViewpoint> cloud_downsampled;
    grid.setInputCloud (pcl::make_shared<pcl::PointCloud<pcl::PointWithViewpoint> > (cloud));
    //grid.filter (cloud_downsampled);

    // Saves the point cloud data to disk
    sprintf (seq, "%d", i);
    boost::trim (filename);
    boost::split (st, filename, boost::is_any_of ("/\\"), boost::token_compress_on);

    std::stringstream ss;
    std::string output_dir = st.at (st.size () - 1);
    ss << output_dir << "_output";

    boost::filesystem::path outpath (ss.str ());
    if (!boost::filesystem::exists (outpath))
    {
      if (!boost::filesystem::create_directories (outpath))
      {
        PCL_ERROR ("Error creating directory %s.\n", ss.str ().c_str ());
        return (-1);
      }
      PCL_INFO ("Creating directory %s\n", ss.str ().c_str ());
    }

    fname = ss.str () + "/" + seq + ".pcd";

    if (organized)
    {
      cloud.height = 1 + static_cast<std::uint32_t> ((vert_end - vert_start) / sp.vert_res);
      cloud.width = 1 + static_cast<std::uint32_t> ((hor_end - hor_start) / sp.hor_res);
    }
    else
    {
      cloud.width = cloud.size ();
      cloud.height = 1;
    }

    pcl::PCDWriter writer;
    PCL_INFO("Wrote %zu points (%d x %d) to %s\n",
             static_cast<std::size_t>(cloud.size()),
             cloud.width,
             cloud.height,
             fname.c_str());
    writer.writeBinaryCompressed (fname, cloud);
  } // sphere
  return (0);
}
/* ]--- */