File: test_board_estimation.cpp

package info (click to toggle)
pcl 1.13.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 143,524 kB
  • sloc: cpp: 518,578; xml: 28,792; ansic: 13,676; python: 334; lisp: 93; sh: 49; makefile: 30
file content (171 lines) | stat: -rw-r--r-- 6,329 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/*
 * Software License Agreement (BSD License)
 *
 *  Point Cloud Library (PCL) - www.pointclouds.org
 *  Copyright (c) 2010-2012, Willow Garage, Inc.
 *
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of the copyright holder(s) nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 * $Id$
 *
 */

#include <pcl/test/gtest.h>
#include <pcl/point_cloud.h>
#include <pcl/pcl_tests.h>
#include <pcl/features/normal_3d_omp.h>
#include <pcl/io/pcd_io.h>
#include <pcl/features/board.h>

using namespace pcl;
using namespace pcl::test;
using namespace pcl::io;

using KdTreePtr = search::KdTree<PointXYZ>::Ptr;

PointCloud<PointXYZ> cloud;
pcl::Indices indices;
KdTreePtr tree;

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (PCL, BOARDLocalReferenceFrameEstimation)
{
  PointCloud<Normal>::Ptr normals (new PointCloud<Normal> ());
  PointCloud<ReferenceFrame> bunny_LRF;

  pcl::IndicesPtr indicesptr (new pcl::Indices (indices));

  // Compute normals
  NormalEstimation<PointXYZ, Normal> ne;

  ne.setRadiusSearch (0.01);
  ne.setViewPoint (1, 1, 10);
  ne.setInputCloud (cloud.makeShared ());
  ne.setSearchMethod (tree);
  ne.setIndices (indicesptr);

  ne.compute (*normals);

  // Compute BOARD LRF
  BOARDLocalReferenceFrameEstimation<PointXYZ, Normal, ReferenceFrame> lrf_estimator;

  float meshRes = 0.001f;

  lrf_estimator.setFindHoles (true);
  lrf_estimator.setRadiusSearch (15 * meshRes);
  lrf_estimator.setTangentRadius (15 * meshRes);

  lrf_estimator.setInputCloud (cloud.makeShared ());
  lrf_estimator.setInputNormals (normals);
  lrf_estimator.setSearchMethod (tree);
  lrf_estimator.setIndices (indicesptr);

  lrf_estimator.compute (bunny_LRF);

  // TESTS
  EXPECT_EQ (indices.size (), bunny_LRF.size ());

  EXPECT_FALSE (bunny_LRF.is_dense);
  //EXPECT_EQ (std::numeric_limits<float>::max (), bunny_LRF.at (24).confidence);
  EXPECT_TRUE (std::isnan (bunny_LRF.at (24).x_axis[0]));

  // Expected Results
  //float point_15_conf = -9.06301;
  Eigen::Vector3f point_15_x (-0.784923f, 0.208529f, 0.583448f);
  Eigen::Vector3f point_15_y (0.334206f, -0.650436f, 0.682085f);
  Eigen::Vector3f point_15_z (0.52173f, 0.730376f, 0.440851f);

  //float point_45_conf = -9.55398;
  Eigen::Vector3f point_45_x (0.909111f, 0.30943f, 0.278874f);
  Eigen::Vector3f point_45_y (-0.362239f, 0.917811f, 0.162501f);
  Eigen::Vector3f point_45_z (-0.205671f, -0.248751f, 0.946479f);

  //float point_163_conf = -9.04891;
  Eigen::Vector3f point_163_x (-0.443962f, -0.890073f, -0.103285f);
  Eigen::Vector3f point_163_y (0.746929f, -0.30394f, -0.591369f);
  Eigen::Vector3f point_163_z (0.494969f, -0.339693f, 0.799759f);

  //float point_253_conf = -9.09443;
  Eigen::Vector3f point_253_x (-0.616855f, 0.757286f, -0.214495f);
  Eigen::Vector3f point_253_y (-0.661937f, -0.646584f, -0.379168f);
  Eigen::Vector3f point_253_z (-0.425827f, -0.0919098f, 0.900124f);

  //Test Results
  //EXPECT_NEAR (point_15_conf,bunny_LRF.at (15).confidence, 1E-3);
  //EXPECT_NEAR_VECTORS (point_15_x, bunny_LRF.at (15).x_axis.getNormalVector3fMap (), 1E-3);
  //EXPECT_NEAR_VECTORS (point_15_y, bunny_LRF.at (15).y_axis.getNormalVector3fMap (), 1E-3);
  //EXPECT_NEAR_VECTORS (point_15_z, bunny_LRF.at (15).z_axis.getNormalVector3fMap (), 1E-3);
  for (int d = 0; d < 3; ++d)
  {
    EXPECT_NEAR (point_15_x[d], bunny_LRF.at (15).x_axis[d], 1E-3);
    EXPECT_NEAR (point_15_y[d], bunny_LRF.at (15).y_axis[d], 1E-3);
    EXPECT_NEAR (point_15_z[d], bunny_LRF.at (15).z_axis[d], 1E-3);

    EXPECT_NEAR (point_45_x[d], bunny_LRF.at (45).x_axis[d], 1E-3);
    EXPECT_NEAR (point_45_y[d], bunny_LRF.at (45).y_axis[d], 1E-3);
    EXPECT_NEAR (point_45_z[d], bunny_LRF.at (45).z_axis[d], 1E-3);

    EXPECT_NEAR (point_163_x[d], bunny_LRF.at (163).x_axis[d], 1E-3);
    EXPECT_NEAR (point_163_y[d], bunny_LRF.at (163).y_axis[d], 1E-3);
    EXPECT_NEAR (point_163_z[d], bunny_LRF.at (163).z_axis[d], 1E-3);

    EXPECT_NEAR (point_253_x[d], bunny_LRF.at (253).x_axis[d], 1E-3);
    EXPECT_NEAR (point_253_y[d], bunny_LRF.at (253).y_axis[d], 1E-3);
    EXPECT_NEAR (point_253_z[d], bunny_LRF.at (253).z_axis[d], 1E-3);
  }
}

/* ---[ */
int
main (int argc, char** argv)
{
  if (argc < 2)
  {
    std::cerr << "No test file given. Please download `bun0.pcd` and pass its path to the test." << std::endl;
    return (-1);
  }

  if (loadPCDFile<PointXYZ> (argv[1], cloud) < 0)
  {
    std::cerr << "Failed to read test file. Please download `bun0.pcd` and pass its path to the test." << std::endl;
    return (-1);
  }

  indices.resize (cloud.size ());
  for (std::size_t i = 0; i < indices.size (); ++i)
    indices[i] = static_cast<int> (i);

  tree.reset (new search::KdTree<PointXYZ> (false));
  tree->setInputCloud (cloud.makeShared ());

  testing::InitGoogleTest (&argc, argv);
  return (RUN_ALL_TESTS ());
}
/* ]--- */