File: test_gradient_estimation.cpp

package info (click to toggle)
pcl 1.13.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 143,524 kB
  • sloc: cpp: 518,578; xml: 28,792; ansic: 13,676; python: 334; lisp: 93; sh: 49; makefile: 30
file content (130 lines) | stat: -rw-r--r-- 4,728 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/*
 * Software License Agreement (BSD License)
 *
 *  Point Cloud Library (PCL) - www.pointclouds.org
 *  Copyright (c) 2010-2012, Willow Garage, Inc.
 *
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of the copyright holder(s) nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 * $Id$
 *
 */

#include <pcl/test/gtest.h>
#include <pcl/point_cloud.h>
#include <pcl/features/normal_3d.h>
#include <pcl/features/intensity_gradient.h>

using namespace pcl;

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (PCL, IntensityGradientEstimation)
{
  // Create a test cloud
  PointCloud<PointXYZI> cloud_xyzi;
  cloud_xyzi.height = 1;
  cloud_xyzi.is_dense = true;
  for (float x = -5.0f; x <= 5.0f; x += 0.1f)
  {
    for (float y = -5.0f; y <= 5.0f; y += 0.1f)
    {
      PointXYZI p;
      p.x = x;
      p.y = y;
      p.z = 0.1f * powf (x, 2.0f) + 0.5f * y + 1.0f;
      p.intensity = 0.1f * powf (x, 3.0f) + 0.2f * powf (y, 2.0f) + 1.0f * p.z + 20000.0f;

      cloud_xyzi.push_back (p);
    }
  }
  cloud_xyzi.width = cloud_xyzi.size ();
  PointCloud<PointXYZI>::ConstPtr cloud_ptr = cloud_xyzi.makeShared ();

  // Estimate surface normals
  PointCloud<Normal>::Ptr normals (new PointCloud<Normal> ());
  NormalEstimation<PointXYZI, Normal> norm_est;
  norm_est.setInputCloud (cloud_ptr);
  search::KdTree<PointXYZI>::Ptr treept1 (new search::KdTree<PointXYZI> (false));
  norm_est.setSearchMethod (treept1);
  norm_est.setRadiusSearch (0.25);
  norm_est.compute (*normals);

  // Estimate intensity gradient
  PointCloud<IntensityGradient> gradient;
  IntensityGradientEstimation<PointXYZI, Normal, IntensityGradient> grad_est;
  grad_est.setInputCloud (cloud_ptr);
  grad_est.setInputNormals (normals);
  search::KdTree<PointXYZI>::Ptr treept2 (new search::KdTree<PointXYZI> (false));
  grad_est.setSearchMethod (treept2);
  grad_est.setRadiusSearch (0.25);
  grad_est.compute (gradient);

  // Compare to gradient estimates to actual values
  for (std::size_t i = 0; i < cloud_ptr->size (); ++i)
  {
    const PointXYZI &p = (*cloud_ptr)[i];

    // A pointer to the estimated gradient values
    const float * g_est = gradient[i].gradient;

    // Compute the surface normal analytically.
    float nx = -0.2f * p.x;
    float ny = -0.5f;
    float nz = 1.0f;
    float magnitude = std::sqrt (nx * nx + ny * ny + nz * nz);
    nx /= magnitude;
    ny /= magnitude;
    nz /= magnitude;

    // Compute the intensity gradient analytically...
    float tmpx = 0.3f * powf (p.x, 2.0f);
    float tmpy = 0.4f * p.y;
    float tmpz = 1.0f;
    // ...and project the 3-D gradient vector onto the surface's tangent plane.
    float gx = (1 - nx * nx) * tmpx + (-nx * ny) * tmpy + (-nx * nz) * tmpz;
    float gy = (-ny * nx) * tmpx + (1 - ny * ny) * tmpy + (-ny * nz) * tmpz;
    float gz = (-nz * nx) * tmpx + (-nz * ny) * tmpy + (1 - nz * nz) * tmpz;

    // Compare the estimates to the derived values.
    const float tolerance = 0.11f;
    EXPECT_NEAR (g_est[0], gx, tolerance);
    EXPECT_NEAR (g_est[1], gy, tolerance);
    EXPECT_NEAR (g_est[2], gz, tolerance);
  }
}

/* ---[ */
int
main (int argc, char** argv)
{
  testing::InitGoogleTest (&argc, argv);
  return (RUN_ALL_TESTS ());
}
/* ]--- */